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Geometry vs Arithmetic

In 1983, Faltings (Fields Medal 1986) proved that For the
Fermat’s equation xn + yn = zn, when n ≥ 4, it has only finitely
many solutions in k where k is any number field (the finite
extension of Q).

Min Ru Some applications of Ru-Vojta theorem



Geometry vs Arithmetic

In 1983, Faltings (Fields Medal 1986) proved that For the
Fermat’s equation xn + yn = zn, when n ≥ 4, it has only finitely
many solutions in k where k is any number field (the finite
extension of Q).

Min Ru Some applications of Ru-Vojta theorem



Let V := {[x : y : z ] | xn + yn = zn} ⊂ P2(C).

It is known that
n ≥ 4 if and only if the genus of the Riemann surface V is ≥ 2.
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Faltings actually proved the following stronger version (known as
Mordell’s conjecture):

if V is a Riemann surface defined over k
whose geneus is ≥ 2, then there are only finitely many k-points on
V (k) for any number field k. On geometric side, if a Riemann
surface M is of geneus ≥ 2, then it carries a metric of curvature
−1. On analytic side, M is Brody hyperbolic, i.e. every
holomorphic map f : C→ M must be constant (Nevanlinna
theory). It is believed that geometry determines arithmetic (as
well as the analytic properties).
Lang’s conjecture: Let V be a projective variety defined over a
number field, then #V (k) <∞ if and only if V (C) is hyperbolic.
More specically, an infinite set of k-rational points in V (k)
correspends to a non-consant holomorphic curve f : C→ V (C).
It is the so-called Lang’s program.
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The Weil function and the First Main Theorem

Complex case: Let X be a complex projective variety and D be
an effective Cartier divisor. Let sD be the canonical divisor of [D]
(i.e. [sD = 0] = D) and ‖ ‖ be an hermitian metric, i.e.
‖s‖2 = |sα|2hα. By Poincare-Lelong formula,
−ddc [log ‖sD‖2] = −D + c1([D]). Let f : C→ X be a
holomorphic. By pulling back through f and applying

∫ t
1

dt
t

∫
|z|<t ,

we get mf (r ,D) + Nf (r ,D) = Tf ,D(r) + O(1) (First Main
Theorem), where λD(x) = − log ‖sD(x)‖ =− log distance from x

to D (Weil function for D). mf (r ,D) =
∫ 2π
0 λD(f (re iθ))dθ2π

(Approximation function). Tf ,L(r) :=
∫ r
1

dt
t

∫
|z|<t f

∗c1(L) (Height

function). The Second Main Theorem seeks the control the
boundary term mf (r ,D) in terms of the height function.
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Weil function: Let k be a number field, and Mk the set of
places.

Assume X and D are both defined over k . The
Weil-function, for v ∈ Mk , λD,v (x) can be defined using the notion
of v -adically metrized line sheaf due to S. Zhang [Zhang
(1992)] The main properties of Weil functions are additivity,
functoriality, and if D is effective, then, for all v ∈ Mk , λD,v is
bounded from below. For a finite set S ⊂ Mk ,
mS(x ,D) =

∑
v∈S λD,v (x) and the height function is

hD(x) =
∑
v∈Mk

λD,v (x).
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The Griffiths’ and Vojta’s conjecture

Griffiths’ Conjecture. Let f : C→ X be a holomorphic mapping
with Zariski-dense image. Let D be a divisor on X with a simple
normal crossing and A be an ample divisor on X . Then for any
ε > 0,

mf (r ,D) + Tf ,KX
(r) ≤exc εTf ,A(r).

Vojta’s Conjecture Let k be a number field and S be a finite set
of places of k . Let X be a projective variety and D be a simple
normal crossing divisor, both defined over k. Let A be an ample
divisor. Then, for ε > 0, there exits a Zariski closed variety Z of X
such that for all P ∈ X (k) with P 6∈ Z we have

mS(P,D) + hKX
(P) < εhA(P) + O(1),

where mS(P,D) =
∑

υ∈S λD,υ(P).
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Note, from the First Main Theorem, mf (r ,D) = Tf ,D(r) + O(1) if
f (C) omits D.

Hence, when dimX = 1, Griffiths’ conjecture
implies that P1 minus three points is hyperbolic, X minus one
points is hyperbolic when the genus g of X is 1, and X is
hyperbolic if g ≥ 2. In the arithmetic case, Vojta’s conjecture
implies Roth’s theorem, Siegel’s theorem and Faltings’ theorem
about the Mordell conjecture.

When dimX = 2, Griffiths’ conjecture gives the so-called
Green-Griffiths conjecture: If X is a complex surface of general
type, then every holomorphic map f : C→ X must be degenerate.
Vojta’s conjecture gives Bomberie’s conjecture: If X is a projective
surface defined over a Q, then the set of k-rational points of X is
degenerate, for any number field k .
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The result of Ru-Vojta

Define β(L,D) = lim supN→+∞

∑
m≥1 h

0(LN(−mD))

Nh0(LN)
.

Theorem (Ru-Vojta, 2020, Amer. J. Math.) Let X be a complex
projective variety, and D1, . . . ,Dq be effective Cartier divisors
intersecting properly on X . Let L be a line bundle over X with
dimH0(X , LN) ≥ 1 for N big enough. Let f : C→ X be a
holomorphic mapping with Zariski-dense image. Then, for every
ε > 0,

∑q
i=1 β(L,Dj)mf (r ,Di ) ≤exc (1 + ε)Tf ,L(r).

Theorem (Ru-Vojta) (arithmetic). Same assumption, assume that
X and D1, . . . ,Dq are defined over a number filed k . Then, for
every ε > 0,

q∑
j=1

β(L,Dj)mS(x ,Dj) ≤exc (1 + ε)hL(x).

Note: by taking L = −KX , if β(−KX ,D) ≥ 1, the Grrffiths’
conjecture and Vojta’s conjecture hold.
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Silverman’s “blow-up method” in the study of
divisibility and GCD problem

As a special case of Pisot’s conjecure, Given integers a, b > 1, if
(an − 1)|(bn − 1) for ∀n >> 0, then a is a power of b (about
divisibility) It was solved by Van den Porteen in 1988. Instead of
considering the condition (an − 1)|(bn − 1) (divisibility), one
considers gcd(an − 1, bn − 1) (GCD problem).
Theorem (Bugeaud, Corvaja, Zannier, 2003). Let a, b be
multiplicatively independent integers ≥ 2. Then, for ε > 0, there
is N(a, b, ε) such that for n > N,

gcd(an − 1, bn − 1) < 2εn.

Corvaja and Zannier generalized the above result by replacing an

and bn with arbitrary elements from a fixed finitely generated
subgroup of Q∗
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Theorem (Corvaja-Zannier, 2004).

Let S = {∞, p1, . . . , pt} be a
finite set of primes. If α, β ∈ Z are S-units, then, for ε > 0. Then

gcd(α− 1, β − 1) ≤ max(|α|, |β|)ε,

except for some obvious families of exceptions together with a
finite number of additional exceptions. Here a is a S-unit means
that a = ±pa11 · · · p

at
t .
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The analogy result of Corvaja and Zannier in Nevanlinna theory is
as follows:

Theorem (Noguchi, Winkelmann and Yamanoi, 2002). Let f , g be
entire functions without zeros (i.e., units of entire functions), and
suppose that f , g are multiplicatively independent(i.e., for
∀(m, n) ∈ Z× Z\(0, 0), we have f m · gn 6∈ C). Then, for every
ε > 0,

N(f − 1, g − 1, r) ≤exc εmax{Tf (r),Tg (r)},
where n(f , g , r) :=

∑
|z|≤r min{ord+

z (f ), ord+
z (g)}.

Their full -statement is as follows.
Let f : C→ A be a holomorphic map to a semi-abelian variety A
with Zariski-dense image. Let Y be a closed subscheme of A
with codimY ≥ 2. Then, for any ε > 0, we have

Nf (Y , r) ≤exc εTf (r).

Note: The GCD problem eventually gets to to estimate Nf (Y , r)
(or Tf ,Y (r) or hY (x) in the arithmetic case) for closed subscheme
Y with codimY ≥ 2.
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J. Silverman in 2005 proposed a method of applying Vojta’s
Conjecture (Griffiths’ conjecture) to varieties blown up along
smooth subschemes which leads to a very general statement about
greatest common divisors that encompasses many known results
and previous conjectures.

Silverman’s blow-up method:
assuming Griffiths conjecture holds (in arithmetic case, assuming
Vojta’s conjecture). Let f1, f2 be two mero. functions, alg. indep.
Let f := (f1, f2) : C→ X := P1 × P1. Let π : X̃ → X be the
blowup at (1, 1) ∈ X and E be the exceptional divisor. Applying
Griffiths’ conjecture with D := −π∗KX on X̃ , we get
mf̃ (r ,−π∗KX ) + Tf̃ ,KX̃

(r) ≤exc εTf̃ ,−KX̃
(r). This implies that,

noticing KX̃ = π∗KX + E ,

−Nf̃ (r ,−π∗KX ) + (1 + ε)Tf̃ ,E (r) ≤exc εTf̃ ,−π∗KX
(r).

Since KX = −{0} × P1 − {∞}× P1 − P1 × {0} − P1 × {∞}, we
get

(1 + ε)N(f1 − 1, f2 − 1, r) ≤exc

2∑
i=1

(Nfi (r , 0) + Nfi (r ,∞))

+4εmax{Tf1(r) + Tf2(r)}.
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Following Silverma’s approach, Ji Guo and J. Wang used the result
of Ru-Vojta to replace Girffiths’ conjecture to obtain:
Theorem (Ji Guo and J. Wang, Trans. AMS, 2019).

Let f1 and f2
be algebraically independent meromorphic functions. For any
ε > 0, there exists n0 such that for all n ≥ n0,

N(f n1 − 1, f n2 − 1, r) ≤exc

(
1

2
+ ε

)
max{Tf n1

(r),Tf n2
(r)}.

Corollary. Let f , g be transcendental entire functions with
Tf (r) ∼ Tg (r). Suppose that (f n − 1)|(gn − 1) for infinitely many
integers n. Then f , g are multiplicatively dependent.
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In the case of Guo-Wang, they proved the following: Let p be a
point in P1 and let D1 = {p} × P1 and D2 = P1 × {p}. Then
β(−KX̃ , π

∗Di ) ≥ 7
8 for i = 1, 2.

Applying Ru-Vojta, by taking
L := −KX̃ and D := −π∗KX , we get

Tf̃ (r ,D)−
(

8

7
+ ε

)
Tf̃ ,−KX̃

≤exc N
(M)

f̃
(r ,D).

Comparing with Griffiths’ conjecture:

Tf̃ (r ,D)− (1 + ε)Tf̃ ,−KX̃
(r) ≤exc Nf̃ (r ,D).
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Work of Wang and Yasufuku

Very recently, Julie Wang and Yu
Yasufuku again used Ru-Vojta theorem to replace Griffiths
conjecture. More importantly, the approach is very simple and
recovers most previous important results in GCD problem,
including Levin’s 2019 Invention Math paper result.
Let D1, . . . ,Dn+1 be effective divisors on X in general position,
and assume that Di ≡ diA. Let Y be a closed subscheme of
X . Let π : X̃ → X be the blowup along Y and E be the
exceptional divisor. Wang-Yasufuku used, instead of taking
L = −KX̃ , L := mπ∗A− E , and showed that, for m big enough,

β−1(L, π∗Di ) ≤
1

m

(
1 +

1

m
√
m

)
.
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Theorem (Wang-Yasufuku), Algebra & Number Theory, 2021.

Let
X be a smooth algebraic variety. Let D1, . . . ,Dn+1 be effective
divisors on X in general position, and assume that Di ≡ diA. Let
Y be a closed subscheme of X which does not contain any point
of the set ∪n+1

i=1 (∩1≤j 6=i≤n+1Dj). Let f : C→ X\(∪n+1
j=1Dj) be a

holomorphic mapping with Zariski-dense image. Then, for a
given ε > 0. We have

Tf ,Y (r) ≤exc εTf ,A(r).

Outline of proof. Let π : X̃ → X be the blowup along Y and E be
the exceptional divisor. Applying Ru-Vojta’s theorem with

ε = m−
5
2 , we have

n+1∑
j=1

mf̃ (r , D̃i ) ≤exc
1

m

(
1 +

1

m
√
m

+ ε

)
Tf̃ ,mπ∗A−E (r)

=

(
1 +

2

m
√
m

)
Tf̃ ,A(r)−

(
1

m
+

2

m2
√
m

)
Tf̃ ,E (r).
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i=1 (∩1≤j 6=i≤n+1Dj). Let f : C→ X\(∪n+1
j=1Dj) be a

holomorphic mapping with Zariski-dense image. Then, for a
given ε > 0. We have

Tf ,Y (r) ≤exc εTf ,A(r).

Outline of proof. Let π : X̃ → X be the blowup along Y and E be
the exceptional divisor. Applying Ru-Vojta’s theorem with

ε = m−
5
2 , we have

n+1∑
j=1

mf̃ (r , D̃i ) ≤exc
1

m

(
1 +

1

m
√
m

+ ε

)
Tf̃ ,mπ∗A−E (r)

=

(
1 +

2

m
√
m

)
Tf̃ ,A(r)−

(
1

m
+

2

m2
√
m

)
Tf̃ ,E (r).
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Divisibilities and integral points (and hyperbolicity

Work of E. Rousseau, A. Turchet and Julie Tzu-Yueh Wang

For
their abstract: We prove several statements about arithmetic
hyperbolicity of certain blow-up varieties. As a corollary we obtain
multiple examples of simply connected quasi-projective varieties
that are pseudo arithmetically hyperbolic. This generalizes results
of Corvaja and Zannier obtained in dimension 2 to arbitrary
dimension. The key input is an application of the Ru-Vojta’s
strategy.
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Theorem. Let n ≥ 2, F1, ...,Fr ,G ∈ C[X1, ...,Xn] be polynomials in
general position (i.e. the associated hypersurfaces are in general
position) with deg(Fi ) ≥ deg(G ) for i = 1, . . . , r .

Let h1, ..., hn
be holomorphic functions on C such that one of the following holds

(i) r ≥ 2n and G(h1,...,hn)
Fi (h1,...,hn)

is holomorphic, for i = 1, ..., r ; or

(ii) r ≥ n + 1 and G(h1,...,hn)∏r
i=1 Fi (h1,...,hn)

is holomorphic.

Then h1, . . . , hn are algebraically dependent.
This can be seen as a generalization of Borel Lemma stating that
nowhere vanishing entire functions h1, ..., hn+1 satisfying the
identity h1 + · · ·+ hn+1 = 1 are linearly dependent. Indeed, we
have the following corollary.
Corollary. Let h1, ..., hn+1 be holomorphic functions on C such
that 1

(h1···hn)(1−
∑n

i=1 hi )
is holomorphic. Then h1, . . . , hn are linearly

dependent.
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Theorem. Let n ≥ 2. Let k be a number field, let S be a finite set
of places including the Archimedean ones, and let OS be the ring
of S-integers.

Let F1, ...,Fr ,G ∈ OS [X1, ...,Xn] be absolutely
irreducible homogeneous polynomials of the same degree. Suppose
that the hypersurfaces defined by F1, ...,Fr and G are in general
position, and deg(Fi ) ≥ deg(G ) for i = 1, ..., r . Then there exists
a closed subset Z ⊂ Pn, independent of k and S , such that there
are only finitely many points (x0, ..., xn) ∈ Pn(OS)\Z such that one
of the following holds:
(i) r ≥ 2n + 1 and Fi (x0, . . . , xn)|G (x0, ..., xn) in the ring OS , for
i = 0, ..., r ; or
(ii) r ≥ n + 2 and an

∏r
i=1 Fi (x0, ..., xn)|G (x0, ..., xn) in the ring

OS .
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Theorem. Let V be a Cohen–Macaulay complex projective variety
of dimension n.

Let D0,D1, ...,Dr , r ≥ n + 1, be effective Cartier
divisors of V in general position. Suppose that there exist an
ample Cartier divisor A on V and positive integers di such that
Di ≡ diA and di ≥ d0 for all 0 ≤ i ≤ r . Let f : C→ X be a
holomorphic map. Assume that the following

(i) r ≥ 2n + 1 and 1
di
f ∗Di ≤ 1

d0
f ∗D0 + O(1) for all i = 0, . . . , r ; or

(ii) r ≥ n + 2 and
∑r

i=1
1
di
f ∗Di ≤ 1

d0
f ∗D0 + O(1). Then f is

algebraic degenerate.

Min Ru Some applications of Ru-Vojta theorem



Theorem. Let V be a Cohen–Macaulay complex projective variety
of dimension n. Let D0,D1, ...,Dr , r ≥ n + 1, be effective Cartier
divisors of V in general position.

Suppose that there exist an
ample Cartier divisor A on V and positive integers di such that
Di ≡ diA and di ≥ d0 for all 0 ≤ i ≤ r . Let f : C→ X be a
holomorphic map. Assume that the following

(i) r ≥ 2n + 1 and 1
di
f ∗Di ≤ 1

d0
f ∗D0 + O(1) for all i = 0, . . . , r ; or

(ii) r ≥ n + 2 and
∑r

i=1
1
di
f ∗Di ≤ 1

d0
f ∗D0 + O(1). Then f is

algebraic degenerate.

Min Ru Some applications of Ru-Vojta theorem



Theorem. Let V be a Cohen–Macaulay complex projective variety
of dimension n. Let D0,D1, ...,Dr , r ≥ n + 1, be effective Cartier
divisors of V in general position. Suppose that there exist an
ample Cartier divisor A on V and positive integers di such that
Di ≡ diA and di ≥ d0 for all 0 ≤ i ≤ r . Let f : C→ X be a
holomorphic map.

Assume that the following

(i) r ≥ 2n + 1 and 1
di
f ∗Di ≤ 1

d0
f ∗D0 + O(1) for all i = 0, . . . , r ; or

(ii) r ≥ n + 2 and
∑r

i=1
1
di
f ∗Di ≤ 1

d0
f ∗D0 + O(1). Then f is

algebraic degenerate.

Min Ru Some applications of Ru-Vojta theorem



Theorem. Let V be a Cohen–Macaulay complex projective variety
of dimension n. Let D0,D1, ...,Dr , r ≥ n + 1, be effective Cartier
divisors of V in general position. Suppose that there exist an
ample Cartier divisor A on V and positive integers di such that
Di ≡ diA and di ≥ d0 for all 0 ≤ i ≤ r . Let f : C→ X be a
holomorphic map. Assume that the following

(i) r ≥ 2n + 1 and 1
di
f ∗Di ≤ 1

d0
f ∗D0 + O(1) for all i = 0, . . . , r ; or

(ii) r ≥ n + 2 and
∑r

i=1
1
di
f ∗Di ≤ 1

d0
f ∗D0 + O(1).

Then f is
algebraic degenerate.

Min Ru Some applications of Ru-Vojta theorem



Theorem. Let V be a Cohen–Macaulay complex projective variety
of dimension n. Let D0,D1, ...,Dr , r ≥ n + 1, be effective Cartier
divisors of V in general position. Suppose that there exist an
ample Cartier divisor A on V and positive integers di such that
Di ≡ diA and di ≥ d0 for all 0 ≤ i ≤ r . Let f : C→ X be a
holomorphic map. Assume that the following

(i) r ≥ 2n + 1 and 1
di
f ∗Di ≤ 1

d0
f ∗D0 + O(1) for all i = 0, . . . , r ; or

(ii) r ≥ n + 2 and
∑r

i=1
1
di
f ∗Di ≤ 1

d0
f ∗D0 + O(1). Then f is

algebraic degenerate.

Min Ru Some applications of Ru-Vojta theorem



Proof: WLOG, we assume that A is very ample, and Di ≡ A for
i = 0, 1, . . . , r .

LetYi = Di ∩ D0 and Y = ∪ri=1Yi . Let
π : Ṽ → V be the blowup along Y , and E = E1 + · · ·+ Er ,
Ei = π−1(Yi ) be the exceptional divisors. Consider the line sheaf
L = O(`(n + 1)π∗A− E ) which is ample and, by a computation, a
fixed sufficiently large integer `,

β−1L,π∗Di
≤ 1

`

(
1 +

1

`
√
`

)
.

If f is not algebraically degenerate, then Ru-Vojta implies that,
with ε′ = `−5/2,

r∑
i=1

mf̃ (r , π∗Di ) ≤exc

(
1

`

(
1 +

1

`
√
`

)
+ ε′

)
Tf̃ ,O(`(n+1)π∗A−E)(r)

≤
(

1 +
2

`
√
`

)
(n + 1)Tf̃ ,O(π∗A)(r)− 1

`
Tf̃ ,E (r).
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1 +

1

`
√
`

)
.
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r∑
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mf̃ (r , π∗Di ) ≤exc

(
1

`

(
1 +

1

`
√
`

)
+ ε′

)
Tf̃ ,O(`(n+1)π∗A−E)(r)
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(

1 +
2

`
√
`

)
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Hence,(
r − (n − 1)− 2(n + 1)

`
√
`

)
Tf ,A(r) +

1

`
TY ,f (r) ≤

r∑
i=1

Nf (r ,Di ).

Since D1, . . . ,Dr are in general position,

r∑
i=1

Nf (r ,Di )≤ nNf (r ,D0) + O(1) ≤
(
n +

1

`2

)
Tf ,A(r).

Thus (
r − 2n − 1 +

1

`
− 2(n + 1)

`
√
`
− 2

`2

)
Tf ,A(r) ≤ O(1)

which gives a contradiction.
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Examples of weakly special, but not special.

Let p > 0. A rank one saturated coherent sheaf L ⊂ Ωp
X is

called a Bogomolov sheaf if κ(X ,L) = p, i.e. if L has the
largest possible Iitaka dimension.

A nonsingular variety X is said to be special (or of special
type) if there is no Bogomolov sheaf on X . A projective
variety is said to be special if some (or any) of its resolutions
are special.

A variety X is special if and only if it has no fibrations of
general type. (Campana)

A smooth projective variety X over a field k is weakly special
if for every finite étale morphism u : X → Xk the variety X ′

does not admit a dominant rational map f : X → Z to a
positive dimensional variety Z ′ of general type.
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Conjecture The set of rational points on X is potentially
dense if and only if X is weakly special.

Conjecture Let X be a complex proj. variety. X is weakly
special if and only if: (1) there exists an entire curve C→ X
with Zariski dense image; (2) X is pseudo algebraic
hyperbolic.

Rousseau, A. Turchet and Julie Tzu-Yueh Wang (Forum of
Mathematics, 2021) constructed examples of 3-dimensional
projective varieties which are weakly special, but not special.
They showed that the examples contradict the conjecture
above.
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Theorem(RTW). Let X ⊂ Pm be a smooth projective surface and
D = D1 + · · ·+ Dq be a divisor with q ≥ 2, such that

(1) No three of the components Di meet at a point;
(2) There exists a choice of positive integers pi such that the
divisor Dp := p1D1 + p2D2 + · · ·+ pqDq is ample and the the
following inequality holds:

2D2
pξi > (Dp · Di )ξ

2
i + 3D2

ppi ,

for every i = 1, . . . , q where ξi is the minimal positive solution of
the equation D2

i x
2 − 2(Dp · Di )x + D2

p = 0. Let 4 be the
Q-divisor defined as

4 =

q∑
j=1

(
1− 1

mi

)
Di .

Then, there exists a positive integer m such that, if mi ≥ m for
every i , every orbifold entire curve f : C→ (X ,4) is algebraically
degenerate.
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Proof.

By the Riemann-Roch Theorem, for N large enough we
have that 2h0(NDp) = D2

pN
2 + O(N). Also use Riemann-Roch,

ξiN∑
k=0

h0(NDp − kDi ) ≥ N3

(
ξ2i (Dp · Di )

2
−
ξ3i D

2
i

3

)
+ O(N2).

By definition of ξi , we have D2
i x

2 − 2(Dp ·Di )x + D2
p = 0. This

implies that

β(NDp,Di ) ≥
2
3ξiD

2
p − 1

3(Dp · Di )ξ
2
i

D2
p

> pi .

We concludes the theorem by the result of Ru-Vojta.
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