Weighted L^2 estimate for $\overline{\partial}$ and application to Corona problem

Song-Ying Li

University of California, Irvine

SCV, CR and Dynamic Conference University Côte d'Azur, Nice, France December 6–12, 2021

Contents of the talk

1. Overview of $\overline{\partial}$ estimate

2. Our results

Corona problems in SCV

4. Our results

Song-Ying Li Weighted L^2 estimate for $\overline{\partial}$ and application to Corona proble

・ロト ・ 四ト ・ ヨト ・ ヨト

臣

Contents of the talk

- 1. Overview of $\overline{\partial}$ estimate
- 2. Our results
- Corona problems in SCV
- 4. Our results

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Contents of the talk

- 1. Overview of $\overline{\partial}$ estimate
- 2. Our results
- 3. Corona problems in SCV
- 4. Our results

Song-Ying Li Weighted L^2 estimate for $\overline{\partial}$ and application to Corona proble

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Contents of the talk

- 1. Overview of $\overline{\partial}$ estimate
- 2. Our results
- 3. Corona problems in SCV
- 4. Our results

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Contents of the talk

- 1. Overview of $\overline{\partial}$ estimate
- 2. Our results
- 3. Corona problems in SCV
- 4. Our results

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Background

Let Ω be a bounded domains (open and connected set) in Cⁿ
Let f = ∑_{j=1}ⁿ f_j(z)dz_j be a (0, 1)-form
Cauchy-Riemann equation:

$$\overline{\partial}u = f \tag{1}$$

Remarks:

- 1) *u* is holomorphic in Ω if and only if f = 0 in Ω
- 2) Solution of (1) is not unique

Background

- Let Ω be a bounded domains (open and connected set) in \mathbb{C}^n
- Let $f = \sum_{j=1}^{n} f_j(z) d\overline{z}_j$ be a (0, 1)-form

• Cauchy-Riemann equation:

$$\overline{\partial} u = f \tag{1}$$

Remarks:

- 1) *u* is holomorphic in Ω if and only if f = 0 in Ω
- 2) Solution of (1) is not unique

Background

- Let Ω be a bounded domains (open and connected set) in \mathbb{C}^n
- Let $f = \sum_{j=1}^{n} f_j(z) d\overline{z}_j$ be a (0, 1)-form
- Cauchy-Riemann equation:

$$\overline{\partial} u = f \tag{1}$$

Remarks:

- 1) u is holomorphic in Ω if and only if f = 0 in Ω
- 2) Solution of (1) is not unique

Background

- Let Ω be a bounded domains (open and connected set) in \mathbb{C}^n
- Let $f = \sum_{j=1}^{n} f_j(z) d\overline{z}_j$ be a (0, 1)-form
- Cauchy-Riemann equation:

$$\overline{\partial} u = f \tag{1}$$

Remarks:

1) *u* is holomorphic in Ω if and only if f = 0 in Ω

2) Solution of (1) is not unique

Background

- Let Ω be a bounded domains (open and connected set) in \mathbb{C}^n
- Let $f = \sum_{j=1}^{n} f_j(z) d\overline{z}_j$ be a (0, 1)-form
- Cauchy-Riemann equation:

$$\overline{\partial} u = f \tag{1}$$

Remarks:

- 1) *u* is holomorphic in Ω if and only if f = 0 in Ω
- 2) Solution of (1) is not unique

Background

- Let Ω be a bounded domains (open and connected set) in \mathbb{C}^n
- Let $f = \sum_{j=1}^{n} f_j(z) d\overline{z}_j$ be a (0, 1)-form
- Cauchy-Riemann equation:

$$\overline{\partial} u = f \tag{1}$$

Remarks:

- 1) *u* is holomorphic in Ω if and only if f = 0 in Ω
- 2) Solution of (1) is not unique

Remarks continued

3) A necessary condition for $\overline{\partial}u = f$ having a solution is: *f* must be $\overline{\partial}$ -closed since $\overline{\partial}^2 = 0$.

Question. If *f* is $\overline{\partial}$ -closed (0, 1)-form or (0, *q*)-form in Ω , does $\overline{\partial}u = f$ have a solution in Ω ?

Answers: Yes when n = 1; No, when n > 1 for general Ω ; Yes, if Ω is pseudoconvex.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Remarks continued

3) A necessary condition for $\overline{\partial}u = f$ having a solution is: *f* must be $\overline{\partial}$ -closed since $\overline{\partial}^2 = 0$.

Question. If *f* is $\overline{\partial}$ -closed (0, 1)-form or (0, *q*)-form in Ω , does $\overline{\partial}u = f$ have a solution in Ω ?

Answers: Yes when n = 1; No, when n > 1 for general Ω ; Yes, if Ω is pseudoconvex.

Basic Setting

- ϕ is a plurisubharmonic function on Ω
- $L^2(\Omega, \phi)$ denote the set of all measurable functions *u* with

$$\|u\|_{\phi}^2 = \int_{\Omega} |u(z)|^2 e^{-\phi(z)} dv(z) < \infty.$$

• $L^2_{(0,1)}(\Omega, \phi)$ denote the set of all (0, 1)-forms $f = \sum_{j=1}^n f_j d\overline{z}_j$ with $f_j \in L^2(\Omega, \phi)$ and

$$\|f\|_{\phi}^{2} = \int_{\Omega} \sum_{j=1}^{n} |f_{j}(z)|^{2} e^{-\phi(z)} dv(z) < \infty.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Basic Setting

- ϕ is a plurisubharmonic function on Ω
- $L^2(\Omega, \phi)$ denote the set of all measurable functions u with

$$\|u\|_{\phi}^2=\int_{\Omega}|u(z)|^2e^{-\phi(z)}dv(z)<\infty.$$

• $L^2_{(0,1)}(\Omega, \phi)$ denote the set of all (0, 1)-forms $f = \sum_{j=1}^n f_j d\overline{z}_j$ with $f_j \in L^2(\Omega, \phi)$ and

$$\|f\|_{\phi}^{2} = \int_{\Omega} \sum_{j=1}^{n} |f_{j}(z)|^{2} e^{-\phi(z)} dv(z) < \infty.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Basic Setting

- ϕ is a plurisubharmonic function on Ω
- $L^2(\Omega, \phi)$ denote the set of all measurable functions u with

$$\|u\|_{\phi}^2 = \int_{\Omega} |u(z)|^2 e^{-\phi(z)} dv(z) < \infty.$$

• $L^2_{(0,1)}(\Omega, \phi)$ denote the set of all (0, 1)-forms $f = \sum_{j=1}^n f_j d\overline{z}_j$ with $f_j \in L^2(\Omega, \phi)$ and

$$\|f\|_{\phi}^{2} = \int_{\Omega} \sum_{j=1}^{n} |f_{j}(z)|^{2} e^{-\phi(z)} dv(z) < \infty.$$

Basic Setting

- ϕ is a plurisubharmonic function on Ω
- $L^2(\Omega, \phi)$ denote the set of all measurable functions u with

$$\|u\|_{\phi}^2 = \int_{\Omega} |u(z)|^2 e^{-\phi(z)} dv(z) < \infty.$$

• $L^2_{(0,1)}(\Omega, \phi)$ denote the set of all (0, 1)-forms $f = \sum_{j=1}^n f_j d\overline{z}_j$ with $f_j \in L^2(\Omega, \phi)$ and

$$\|f\|_{\phi}^{2} = \int_{\Omega} \sum_{j=1}^{n} |f_{j}(z)|^{2} e^{-\phi(z)} dv(z) < \infty.$$

Hörmander's theorem on L^2 estimate

Assume that

- Ω is a bounded pseudoconvex domain in \mathbb{C}^n ,
- ϕ is a plurisubharmonic function on Ω ,
- $A^2(\Omega, \phi)$ is the holomorphic subspace of $L^2(\Omega, \phi)$.

Then for any $\overline{\partial}$ -closed $f\in L^2_{(0,1)}(\Omega,\phi)$, the $\overline{\partial}$ -equation

 $\overline{\partial} u = f$

has the unique solution ${\it u}_0\perp {\it A}^2(\Omega,\phi)$ satisfying

 $\|u_0\|_{\phi} \leq C_{\Omega}\|f\|_{\phi}$

Hörmander's theorem on L^2 estimate

Assume that

- Ω is a bounded pseudoconvex domain in \mathbb{C}^n ,
- ϕ is a plurisubharmonic function on Ω ,
- $A^2(\Omega, \phi)$ is the holomorphic subspace of $L^2(\Omega, \phi)$.

Then for any $\overline{\partial}$ -closed $f \in L^2_{(0,1)}(\Omega, \phi)$, the $\overline{\partial}$ -equation

$$\overline{\partial} u = f$$

has the unique solution $u_0 \perp A^2(\Omega, \phi)$ satisfying

 $\|u_0\|_{\phi} \leq C_{\Omega}\|f\|_{\phi}$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Notation

- $\phi \in C^2(\Omega)$ is a strictly plurisubharmonic function on Ω ;
- \bullet Complex Hessian matrix of ϕ and its inverse are defined by

$$H(\phi)(z) = \left[\frac{\partial^2 \phi}{\partial z_i \partial \overline{z}_j}\right]_{n \times n}$$
 and $\left[\phi^{i\bar{j}}(z)\right]^t = H(\phi)(z)^{-1}$.

• For any (0, 1)-form $f = \sum_{j=1}^{n} f_j d\overline{z}_j$, we let

$$\|f(z)\|_{i\partial\overline{\partial}\phi}^2 := \sum_{i,j=1}^n \phi^{i\overline{j}}(z)\overline{f}_i(z)f_j(z)$$

Restatement of the Hörmander's theorem

Assume that

- Ω is a bounded pseudoconvex domain in \mathbb{C}^n ,
- $\phi \in C^2(\Omega)$ is a strictly plurisubharmonic function on Ω .

Then for any $\overline{\partial}$ -closed $f \in L^2_{(0,1)}(\Omega, \phi)$, the $\overline{\partial}$ -equation

 $\overline{\partial} u = f$

has the unique solution $u_0 \perp A^2(\Omega, \phi)$ (the canonical solution) satisfying

$$\|u_0\|_\phi^2 \leq \int_\Omega |f(z)|_{i\partial\overline\partial\phi}^2 e^{-\phi} dv$$

Restatement of the Hörmander's theorem

Assume that

- Ω is a bounded pseudoconvex domain in \mathbb{C}^n ,
- $\phi \in C^2(\Omega)$ is a strictly plurisubharmonic function on Ω .

Then for any $\overline{\partial}$ -closed $f \in L^2_{(0,1)}(\Omega, \phi)$, the $\overline{\partial}$ -equation

$$\overline{\partial} u = f$$

has the unique solution $u_0 \perp A^2(\Omega, \phi)$ (the canonical solution) satisfying

$$\|u_0\|_\phi^2 \leq \int_\Omega |f(z)|_{i\partial\overline\partial\phi}^2 e^{-\phi} dv$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Integral solutions and uniform estimate

• Another very important method to solve $\overline{\partial}$ -equation is to construct a kernel function B(z, w) on $\Omega \times \Omega$ which is (0, 1)-form in *z* and (n, n - 1)-form in *w* such that

$$J(z) = \int_{\Omega} B(z, w) \wedge f(w)$$
 (2)

• In 1970, G. M. Henkin; Grauart and Lieb constructed an integral formula and obtained a uniform estimate:

Theorem

Let Ω be a smoothly bounded strictly pseudoconvex domain in C^n . There is a kernel B(z, w) such that

 $\|u\|_{L^{\infty}(\Omega)} \leq C \|f\|_{L^{\infty}_{(0,1)}(\Omega)}$

where u is given by (2)

Weighted L^2 estimate for $\overline{\partial}$ and application to Corona proble

Integral solutions and uniform estimate

• Another very important method to solve $\overline{\partial}$ -equation is to construct a kernel function B(z, w) on $\Omega \times \Omega$ which is (0, 1)-form in *z* and (n, n - 1)-form in *w* such that

$$u(z) = \int_{\Omega} B(z, w) \wedge f(w)$$
 (2)

• In 1970, G. M. Henkin; Grauart and Lieb constructed an integral formula and obtained a uniform estimate:

Theorem

Let Ω be a smoothly bounded strictly pseudoconvex domain in C^n . There is a kernel B(z, w) such that

 $\|u\|_{L^{\infty}(\Omega)} \leq C \|f\|_{L^{\infty}_{(0,1)}(\Omega)}$

where u is given by (2)

Weighted L^2 estimate for $\overline{\partial}$ and application to Corona proble

Integral solutions and uniform estimate

• Another very important method to solve $\overline{\partial}$ -equation is to construct a kernel function B(z, w) on $\Omega \times \Omega$ which is (0, 1)-form in *z* and (n, n - 1)-form in *w* such that

$$u(z) = \int_{\Omega} B(z, w) \wedge f(w)$$
 (2)

• In 1970, G. M. Henkin; Grauart and Lieb constructed an integral formula and obtained a uniform estimate:

Theorem

Let Ω be a smoothly bounded strictly pseudoconvex domain in C^n . There is a kernel B(z, w) such that

$$\|u\|_{L^{\infty}(\Omega)} \leq C \|f\|_{L^{\infty}_{(0,1)}(\Omega)}$$

where u is given by (2)

Weighted L^2 estimate for $\overline{\partial}$ and application to Corona proble

Improvement for uniform estimate

• When Ω is smoothly bounded strictly pseudoconvex in \mathbb{C}^n , the uniform estimate:

$$\|u\|_{L^{\infty}(\Omega)} \leq C \|f\|_{L^{\infty}_{(0,1)}(\Omega)}$$

is **not** sharp.

In 1971, Kerzman improved the unoform estimate, he obtained

 $\|u\|_{\mathcal{C}^{lpha}(\overline{\Omega})} \leq C \|f\|_{\infty}$

for and $\alpha < 1/2$.

Improvement for uniform estimate

• When Ω is smoothly bounded strictly pseudoconvex in \mathbb{C}^n , the uniform estimate:

$$\|u\|_{L^{\infty}(\Omega)} \leq C \|f\|_{L^{\infty}_{(0,1)}(\Omega)}$$

is **not** sharp.

In 1971, Kerzman improved the unoform estimate, he obtained

$$\|u\|_{\mathcal{C}^{\alpha}(\overline{\Omega})} \leq C \|f\|_{\infty}$$

for and $\alpha < 1/2$.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Sharp estimate

In 1971, Henkin and Romanov improved Kerzman's estimate and got the following sharp estimate:

Theorem

Let Ω be a smoothly bounded strictly pseudoconvex domain in C^n . There is a solution u to $\overline{\partial} u = f$ such that

 $\|u\|_{C^{1/2}(\overline{\Omega})} \leq C \|f\|_{L^{\infty}_{(0,1)}(\Omega)}.$

and $C^{1/2}$ is the best regularity one may get.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Sharp estimate

In 1971, Henkin and Romanov improved Kerzman's estimate and got the following sharp estimate:

Theorem

Let Ω be a smoothly bounded strictly pseudoconvex domain in C^n . There is a solution u to $\overline{\partial}u = f$ such that

$$\|u\|_{\mathcal{C}^{1/2}(\overline{\Omega})} \leq C \|f\|_{L^{\infty}_{(0,1)}(\Omega)}.$$

and $C^{1/2}$ is the best regularity one may get.

Gong's theorem

• Xianghong Gong (Math Ann. 2019) was able to improve the above theorem for domaind Ω with $\partial \Omega \in C^2$.

Theorem

Let Ω be a bounded strictly pseudoconvex domain in C^n with C^2 boundary. There is a solution u to $\overline{\partial}u = f$ such that

$$\|u\|_{C^{1/2+\gamma}(\overline{\Omega})} \leq C \|f\|_{C^{\gamma}(\Omega)},$$

where $\frac{1}{2} + \gamma$ is not integer.

• When $\partial \Omega$ is not smooth, problems was studied by Range and Siu (1972 and 1973), Krantz (1976), Shaw, etc.

Gong's theorem

• Xianghong Gong (Math Ann. 2019) was able to improve the above theorem for domaind Ω with $\partial \Omega \in C^2$.

Theorem

Let Ω be a bounded strictly pseudoconvex domain in C^n with C^2 boundary. There is a solution u to $\overline{\partial}u = f$ such that

$$\|u\|_{C^{1/2+\gamma}(\overline{\Omega})} \leq C \|f\|_{C^{\gamma}(\Omega)},$$

where $\frac{1}{2} + \gamma$ is not integer.

• When $\partial \Omega$ is not smooth, problems was studied by Range and Siu (1972 and 1973), Krantz (1976), Shaw, etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Weakly pseudoconvex domains

- When Ω is a weakly pseudoconvex domain, $\overline{\partial}$ -estimate becomes much more complicated.
- Range (1976) proved: Uniform estimate holds for $\overline{\partial}$ when Ω is a convex domain with real analytic boundary.
- B. Berndtsson (1993), J. Fornaess (1986), and N. Sibony (1980) constructed weakly pseudoconvex domains in \mathbb{C}^2 , \mathbb{C}^3 respectively for which the uniform estimate fail.
- J. Fornaess and N. Sibony (1990s) constructed weakly pseudoconvex domains in \mathbb{C}^2 with one weakly pseudoconvex point for which $L^{\infty} L^{\rho}$ estimate fails for any $\rho > 2$.

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

Weakly pseudoconvex domains

• When Ω is a weakly pseudoconvex domain, $\overline{\partial}$ -estimate becomes much more complicated.

• Range (1976) proved: Uniform estimate holds for $\overline{\partial}$ when Ω is a convex domain with real analytic boundary.

• B. Berndtsson (1993), J. Fornaess (1986), and N. Sibony (1980) constructed weakly pseudoconvex domains in \mathbb{C}^2 , \mathbb{C}^3 respectively for which the uniform estimate fail.

• J. Fornaess and N. Sibony (1990s) constructed weakly pseudoconvex domains in \mathbb{C}^2 with one weakly pseudoconvex point for which $L^{\infty} - L^{p}$ estimate fails for any p > 2.

Weakly pseudoconvex domains

• When Ω is a weakly pseudoconvex domain, $\overline{\partial}$ -estimate becomes much more complicated.

• Range (1976) proved: Uniform estimate holds for $\overline{\partial}$ when Ω is a convex domain with real analytic boundary.

• B. Berndtsson (1993), J. Fornaess (1986), and N. Sibony (1980) constructed weakly pseudoconvex domains in \mathbb{C}^2 , \mathbb{C}^3 respectively for which the uniform estimate fail.

• J. Fornaess and N. Sibony (1990s) constructed weakly pseudoconvex domains in \mathbb{C}^2 with one weakly pseudoconvex point for which $L^{\infty} - L^{p}$ estimate fails for any p > 2.

Weakly pseudoconvex domains

• When Ω is a weakly pseudoconvex domain, $\overline{\partial}$ -estimate becomes much more complicated.

• Range (1976) proved: Uniform estimate holds for $\overline{\partial}$ when Ω is a convex domain with real analytic boundary.

• B. Berndtsson (1993), J. Fornaess (1986), and N. Sibony (1980) constructed weakly pseudoconvex domains in \mathbb{C}^2 , \mathbb{C}^3 respectively for which the uniform estimate fail.

• J. Fornaess and N. Sibony (1990s) constructed weakly pseudoconvex domains in \mathbb{C}^2 with one weakly pseudoconvex point for which $L^{\infty} - L^p$ estimate fails for any p > 2.
Solution for $\overline{\partial}$ on Bidisc

• Bidisc: $\Omega = D(0, 1)^2$

A special weakly pseudoconvex domain without C^1 boundary.

• In 1971, Henkin proved:

Theorem

Let $\Omega = D(0,1)^2$. For any $\overline{\partial}$ -closed (0,1)-form f with $f \in C^1_{(0,1)}(\overline{\Omega})$. Then there is a solution u of $\overline{\partial}u = f$ on Ω satisfies

 $\|u\|_{\infty}\leq C\|f\|_{\infty}.$

э

Solution for $\overline{\partial}$ on Bidisc

• Bidisc: $\Omega = D(0, 1)^2$

A special weakly pseudoconvex domain without C^1 boundary.

• In 1971, Henkin proved:

Theorem

Let $\Omega = D(0, 1)^2$. For any $\overline{\partial}$ -closed (0, 1)-form f with $f \in C^1_{(0,1)}(\overline{\Omega})$. Then there is a solution u of $\overline{\partial}u = f$ on Ω satisfies

 $\|\boldsymbol{u}\|_{\infty} \leq \boldsymbol{C} \|\boldsymbol{f}\|_{\infty}.$

Song-Ying Li Weighted L^2 estimate for $\overline{\partial}$ and application to Corona proble

Solution for $\overline{\partial}$ on Bidisc

• Bidisc: $\Omega = D(0, 1)^2$

A special weakly pseudoconvex domain without C^1 boundary.

• In 1971, Henkin proved:

Theorem

Let $\Omega = D(0, 1)^2$. For any $\overline{\partial}$ -closed (0, 1)-form f with $f \in C^1_{(0,1)}(\overline{\Omega})$. Then there is a solution u of $\overline{\partial} u = f$ on Ω satisfies

$$\|u\|_{\infty}\leq C\|f\|_{\infty}.$$

$\overline{\partial}$ -estimate on Polydis in \mathbb{C}^n

• Recently, the Henkin's result has been generalized by Chen and McNeal (2018) and Fassina and Pan (2019)

• However, problem the uniform estimate for $\overline{\partial}$:

$||u||_{L^{\infty}(D(0,1)^n)} \leq C ||f||_{L^{\infty}(D(0,1)^n)}$

without any assumption on *f* is still open.

・ロ・ ・ 四・ ・ 回・ ・ 回・

э

$\overline{\partial}$ -estimate on Polydis in \mathbb{C}^n

- Recently, the Henkin's result has been generalized by Chen and McNeal (2018) and Fassina and Pan (2019)
- However, problem the uniform estimate for $\overline{\partial}$:

$$\|u\|_{L^{\infty}(D(0,1)^n)} \leq C \|f\|_{L^{\infty}(D(0,1)^n)}$$

without any assumption on f is still open.

Problems to study

• In 1984, Henkin asked:

Question:

Does the uniform estimate hold for $\overline{\partial}$ on the classical bounded symmetric domains ?

In 1994, A. Sergeev proposed
 Problem:
 Tthe uniform estimate hold for ∂ on Lie ball in Cⁿ with n ≥ 3

・ロン ・雪 > ・ 画 > ・

Problems to study

• In 1984, Henkin asked:

Question:

Does the uniform estimate hold for $\overline{\partial}$ on the classical bounded symmetric domains ?

• In 1994, A. Sergeev proposed **Problem:**

The uniform estimate hold for $\overline{\partial}$ on Lie ball in \mathbb{C}^n with $n \geq 3$.

Berndtsson's results Our Result on Strictly pseudoconvex domains Our Results on Bounded Symmetric Domains Open problems

Weighted L² method

- Estimate through Integral presentation for solution is a very important method for uniform estimate for $\overline{\partial}$
- Another uniform estimate for $\overline{\partial}$ was given by B. Berndtsson (1996) through the

Hörmander's weighted L^2 estimate (presented before)

or

Donnelly-Fefferman weighted L² estimate (two weighted functions).

・ロ・ ・ 四・ ・ 回・ ・ 日・

Berndtsson's results Our Result on Strictly pseudoconvex domains Our Results on Bounded Symmetric Domains Open problems

Weighted L² method

- Estimate through Integral presentation for solution is a very important method for uniform estimate for $\overline{\partial}$
- \bullet Another uniform estimate for $\overline{\partial}$ was given by B. Berndtsson (1996) through the

Hörmander's weighted L^2 estimate (presented before)

or

Donnelly-Fefferman weighted *L*² estimate (two weighted functions).

Berndtsson's results Our Result on Strictly pseudoconvex domains Our Results on Bounded Symmetric Domains Open problems

Donnelly-Fefferman weighted L^2 estimate (1997)

• Assume that Ω is a bounded pseudoconvex domain in \mathbb{C}^n . ϕ and ψ are plurisubharmonic in Ω satisfying

$$|\overline{\partial}\phi|^{2}_{i\partial\overline{\partial}\phi} \leq 1/4.$$

If *u* is the solution of $\overline{\partial} u = f$ and $u \perp A^2(\Omega, \phi/2 + \psi)$ then

$$\|u\|_{L^{2}(\Omega,\psi)} \leq 4 \||f(\cdot)|_{i\partial\overline{\partial}\phi}\|_{L^{2}(\Omega,\psi)}.$$

・ロ・ ・ 四・ ・ 回・ ・ 回・

Berndtsson's results Our Result on Strictly pseudoconvex domains Our Results on Bounded Symmetric Domains Open problems

Berndtsson's approach

• Use the Donnelly-Fefferman's weighted L^2 estimate with the plurisubharmonic weight function $\phi(z) = -\log(1 - |z|^2)$. Which is the potential function for the Bergman metric *g*. Moreover,

$$\phi^{i\overline{j}}(z) = (1 - |z|^2)(\delta_{ij} - z_i\overline{z}_j)$$

Berndtsson studied the uniform estimate for $\overline{\partial} u = f$ on B_n .

・ロ・ ・ 四・ ・ 回・ ・ 回・

э

Berndtsson's results Our Result on Strictly pseudoconvex domains Our Results on Bounded Symmetric Domains Open problems

Berndtsson's approach

• Use the Donnelly-Fefferman's weighted L^2 estimate with the plurisubharmonic weight function $\phi(z) = -\log(1 - |z|^2)$. Which is the potential function for the Bergman metric *g*. Moreover,

$$\phi^{i\overline{j}}(z) = (1 - |z|^2)(\delta_{ij} - z_i\overline{z}_j)$$

Berndtsson studied the uniform estimate for $\overline{\partial} u = f$ on B_n .

Berndtsson's estemate

• Berbdtsson's Theorem: Let *g* be the Bergman metric over the unit ball B_n . If *f* is $\overline{\partial}$ -closed (0, 1)-form and if $u \perp A^2(\Omega)$ is a solution of $\overline{\partial}u = f$, then

$$|u(z)| \le C \sup_{w \in B_n} \left\{ |f(w)|_g \right\} \log \frac{4}{1 - |z|^2}$$
 (3)

and

$$\|u\|_{\infty} \leq C_{\epsilon} \sup_{z \in B_n} \left\{ (1-|z|^2)^{-\epsilon} |f(z)|_g \right\}$$

for any ε > 0.
Estimate (3) is sharp since u(z) = log(1 − |z|²) − c is the sharp solution

Berndtsson's estemate

• Berbdtsson's Theorem: Let *g* be the Bergman metric over the unit ball B_n . If *f* is $\overline{\partial}$ -closed (0, 1)-form and if $u \perp A^2(\Omega)$ is a solution of $\overline{\partial}u = f$, then

$$|u(z)| \le C \sup_{w \in B_n} \left\{ |f(w)|_g \right\} \log \frac{4}{1 - |z|^2}$$
(3)

and

$$\|u\|_{\infty} \leq C_{\epsilon} \sup_{z\in B_n} \left\{ (1-|z|^2)^{-\epsilon} |f(z)|_g
ight\}$$

for any $\epsilon > 0$.

 Estimate (3) is sharp since u(z) = log(1 − |z|²) − c is the sharp solution.

Berndtsson's estemate

• Berbdtsson's Theorem: Let *g* be the Bergman metric over the unit ball B_n . If *f* is $\overline{\partial}$ -closed (0, 1)-form and if $u \perp A^2(\Omega)$ is a solution of $\overline{\partial}u = f$, then

$$|u(z)| \le C \sup_{w \in B_n} \left\{ |f(w)|_g \right\} \log \frac{4}{1 - |z|^2}$$
 (3)

and

$$\|u\|_{\infty} \leq C_{\epsilon} \sup_{z\in B_n} \left\{ (1-|z|^2)^{-\epsilon} |f(z)|_g
ight\}$$

for any $\epsilon > 0$.

 Estimate (3) is sharp since u(z) = log(1 − |z|²) − c is the sharp solution.

A joint work with X. Dong and J. Treuer

Theorem (D-L-T, APDE, 2021) Let *g* be the Bergman metric over a smoothly bounded strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n$. If *f* is $\overline{\partial}$ -closed (0, 1)-form then there is a solution *u* for $\overline{\partial}u = f$ satisfying

$$|u(z)| \le C \sup_{w \in B_n} \left\{ |f(w)|_g \right\} \log K(z) \tag{4}$$

where K is the Bergman kernel on Ω . Moreover,

$$\|u\|_{\infty}^{2} \leq C_{\epsilon} \sup_{z \in B_{n}} \left\{ |f(z)|_{g}^{2} (\log(1+K(z)))^{p} \right\}$$

$$(5)$$

for any p > 1.Estimates (4) and (5) are sharp

A joint work with X. Dong and J. Treuer

Theorem (D-L-T, APDE, 2021) Let *g* be the Bergman metric over a smoothly bounded strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n$. If *f* is $\overline{\partial}$ -closed (0, 1)-form then there is a solution *u* for $\overline{\partial}u = f$ satisfying

$$|u(z)| \le C \sup_{w \in B_n} \left\{ |f(w)|_g \right\} \log K(z) \tag{4}$$

where K is the Bergman kernel on Ω . Moreover,

$$\|u\|_{\infty}^{2} \leq C_{\epsilon} \sup_{z \in B_{n}} \left\{ |f(z)|_{g}^{2} (\log(1 + K(z)))^{p} \right\}$$
(5)

for any p > 1. • Estimates (4) and (5) are sharp

A joint work with X. Dong and J. Treuer

Theorem (D-L-T, APDE, 2021) Let *g* be the Bergman metric over a smoothly bounded strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n$. If *f* is $\overline{\partial}$ -closed (0, 1)-form then there is a solution *u* for $\overline{\partial}u = f$ satisfying

$$|u(z)| \le C \sup_{w \in B_n} \left\{ |f(w)|_g \right\} \log K(z) \tag{4}$$

where K is the Bergman kernel on Ω . Moreover,

$$\|u\|_{\infty}^{2} \leq C_{\epsilon} \sup_{z \in B_{n}} \left\{ |f(z)|_{g}^{2} (\log(1 + K(z)))^{p} \right\}$$
(5)

for any p > 1. • Estimates (4) and (5) are sharp

・ロ・ ・ 四・ ・ 回・ ・ 回・

Definitions of BSD

- $M^{m,n}(\mathbb{C})$ denotes $m \times n$ matrices with entries in \mathbb{C} .
- Bounded symmetric domain of type I is defined by

$$\mathbf{I}(m,n) = \{\mathbf{z} \in M^{m,n}(\mathbb{C}) : I_m - \mathbf{z}\mathbf{z}^* > \mathbf{0}\}$$

BSD of type II is defined by

 $II(n) = {z \in I(n, n) : z \text{ is symmetric}}$

BSD of type III is defined by

 $\mathsf{III}(\mathit{n}) = \{\mathsf{z} \in \mathsf{I}(\mathit{n},\mathit{n}) : \mathsf{z}^t = -\mathsf{z}\}$

Definitions of BSD

- $M^{m,n}(\mathbb{C})$ denotes $m \times n$ matrices with entries in \mathbb{C} .
- Bounded symmetric domain of type I is defined by

$$\mathbf{I}(m,n) = \{\mathbf{z} \in M^{m,n}(\mathbb{C}) : I_m - \mathbf{z}\mathbf{z}^* > 0\}$$

BSD of type II is defined by

 $II(n) = {z \in I(n, n) : z \text{ is symmetric}}$

BSD of type III is defined by

 $\mathsf{III}(n) = \{\mathsf{z} \in \mathsf{I}(n,n) : \mathsf{z}^t = -\mathsf{z}\}$

Definitions of BSD

- $M^{m,n}(\mathbb{C})$ denotes $m \times n$ matrices with entries in \mathbb{C} .
- Bounded symmetric domain of type I is defined by

$$\mathsf{I}(m,n) = \{\mathsf{z} \in M^{m,n}(\mathbb{C}) : I_m - \mathsf{z}\mathsf{z}^* > 0\}$$

• BSD of type II is defined by

$$II(n) = {z \in I(n, n) : z \text{ is symmetric}}$$

BSD of type III is defined by

 $\mathsf{III}(n) = \{\mathsf{z} \in \mathsf{I}(n,n) : \mathsf{z}^t = -\mathsf{z}\}$

Definitions of BSD

- $M^{m,n}(\mathbb{C})$ denotes $m \times n$ matrices with entries in \mathbb{C} .
- Bounded symmetric domain of type I is defined by

$$\mathbf{I}(m,n) = \{\mathbf{z} \in M^{m,n}(\mathbb{C}) : I_m - \mathbf{z}\mathbf{z}^* > 0\}$$

• BSD of type II is defined by

$$II(n) = {z \in I(n, n) : z \text{ is symmetric}}$$

• BSD of type III is defined by

$$\mathsf{III}(n) = \{ \mathbf{z} \in \mathsf{I}(n, n) : \mathbf{z}^t = -\mathbf{z} \}$$

・ロ・ ・ 四・ ・ 回・ ・ 回・

э.

BSD of type IV is defined by

$$IV(n) = \{z \in \mathbb{C}^n : r(z) > 0, |s(z)| < 1\}$$

where $r(z) = 1 + |s(z)|^2 - 2|z|^2$, $s(z) = \sum_{j=1}^n z_j^2$.

• When n = 2, IV(2) is biholomorphic to bidisk $D(0, 1)^2$.

Our second results

Theorem (D-L-T, 2019). Let Ω be a classical bounded symmetric domain or polydisc in \mathbb{C}^n , *K* is the Bergman kernel function of Ω and *g* is the Bergman metric. Let *f* is a closed (0, 1)-form satisfying

$$\|f\|^2_{g,\infty}=\sup\{|f(z)|^2_g:z\in\Omega\}<\infty.$$

Let *u* be the canonical solution to $\overline{\partial} u = f$. Then

$$|u(z)| \leq C \|f\|_{g,\infty} \int_{\Omega} |K(z,w)| dv(w), \quad z \in \Omega.$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Our third result

Theorem (D-L-T, 2019). Let *g* be the Bergman metric over the polydisc in \mathbb{C}^n . If *f* is $\overline{\partial}$ -closed (0, 1)-form then the canonical solution *u* to $\overline{\partial}u = f$ satisfies

$$\|u\|_{\infty}^{2} \leq C_{p} \sup_{z \in B_{n}} \Big\{ |f(z)|_{g}^{2} \prod_{j=1}^{n} (\log \frac{2}{1-|z_{j}|}))^{p} \Big\}, \quad z \in D(0,1)^{n}$$

for any p > 1.

Our Example

Example. (D-L-T). Let *g* be the Bergman metric over a bounded symmetric domain Ω in \mathbb{C}^N . Let

$$u(z) = \log \det(I - zz^*), \quad z \in \Omega$$

Then (i) $P[u] = c_{\Omega}$

(ii) $|\overline{\partial}u|_a^2 = (zz^*)$ is bounded by 1 on Ω

 (iii) ∂u is bounded in the Bergman metric on Ω, but u – P[u] is not bounded on Ω.

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 - のへ⊙

Our Example

Example. (D-L-T). Let *g* be the Bergman metric over a bounded symmetric domain Ω in \mathbb{C}^N . Let

$$u(z) = \log \det(I - zz^*), \quad z \in \Omega.$$

Then (i) $P[u] = c_{\Omega}$

(ii) $|\overline{\partial}u|_g^2 = (zz^*)$ is bounded by 1 on Ω

 (iii) ∂u is bounded in the Bergman metric on Ω, but u – P[u] is not bounded on Ω.

Our Example

Example. (D-L-T). Let *g* be the Bergman metric over a bounded symmetric domain Ω in \mathbb{C}^N . Let

$$u(z) = \log \det(I - zz^*), \quad z \in \Omega$$

Then (i) $P[u] = c_{\Omega}$

(ii) $|\overline{\partial}u|_g^2 = (zz^*)$ is bounded by 1 on Ω

(iii) ∂u is bounded in the Bergman metric on Ω, but u – P[u] is not bounded on Ω.

Our Example

Example. (D-L-T). Let *g* be the Bergman metric over a bounded symmetric domain Ω in \mathbb{C}^N . Let

$$u(z) = \log \det(I - zz^*), \quad z \in \Omega$$

Then (i) $P[u] = c_{\Omega}$

(ii) $|\overline{\partial}u|_g^2 = (zz^*)$ is bounded by 1 on Ω

(iii) $\overline{\partial}u$ is bounded in the Bergman metric on Ω , but u - P[u] is not bounded on Ω .

Idea of the proof

Let *u* be the canonical solution of $\overline{\partial} u = f$. We try to prove

$$\oint_{B(a)} |u(z)dv(z) \leq C \int_{\Omega} |U(z)|dv(z)$$

where *U* is the canonical solution in $L^2(\Omega, \psi + \frac{\phi}{2})$. Here ϕ, ψ are two plurisubharmonic functions. Main technique is how to choose the weighted functions ϕ and ψ to get the estimate you want.

Open problems

Even if there are partial result for uniform or pointwise estimate, the following problem is still open.

Problem. Let $f \in L^{\infty}_{(0,1)}(\Omega)$ be a $\overline{\partial}$ -closed (0, 1)-form on a bounded symmetric domain Ω . Does there is $u \in L^{\infty}(\Omega)$ such that $\overline{\partial}u = f$?

Even if there are partial result for uniform or pointwise estimate, the following problem is still open.

Problem. Let $f \in L^{\infty}_{(0,1)}(\Omega)$ be a $\overline{\partial}$ -closed (0, 1)-form on a bounded symmetric domain Ω . Does there is $u \in L^{\infty}(\Omega)$ such that $\overline{\partial}u = f$?

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Corona Problem

- Let Ω be a bounded domains in \mathbb{C}^n
- $H^{\infty}(\Omega)$ is the set of bounded holomorphic functions on Ω with sup-norm

 $\|f\|_{\infty} = \sup\{|f(z)| : z \in \Omega\}$

It is easy to verify that

 $(H^{\infty}(\Omega), \|\cdot\|_{\infty})$ forms a Banach Algebra.

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Corona Problem

- Let Ω be a bounded domains in \mathbb{C}^n
- $H^\infty(\Omega)$ is the set of bounded holomorphic functions on Ω with sup-norm

$$\|f\|_{\infty} = \sup\{|f(z)| : z \in \Omega\}$$

It is easy to verify that

 $(H^{\infty}(\Omega), \|\cdot\|_{\infty})$ forms a Banach Algebra.

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Corona Problem

- Let Ω be a bounded domains in \mathbb{C}^n
- $H^\infty(\Omega)$ is the set of bounded holomorphic functions on Ω with sup-norm

$$\|f\|_{\infty} = \sup\{|f(z)| : z \in \Omega\}$$

• It is easy to verify that

 $(H^{\infty}(\Omega), \|\cdot\|_{\infty})$ forms a Banach Algebra.

 Overview of $\overline{\partial}$ -estimates
 Carleson's Theorem

 Our Main Results
 Tom Wolff's solution

 Corona problems in SCV
 Corona Problem in other function spaces

 Our Main Results
 Corona Problem in other function spaces

Question.

Given *m* elements $f_1, \dots, f_m \in H^{\infty}(\Omega)$. Under what conditions, one has

$$\langle f_1, f_2, \cdots, f_m \rangle = H^{\infty}(\Omega)?$$

Here, $\langle f_1, f_2, \cdots, f_m \rangle$ is the ideal generated by f_1, f_2, \cdots, f_m .

• A necessary condition:

If there are $g_1, \cdots, g_m \in H^\infty(\Omega)$ such that

$$1 = \sum_{j=1}^m f_j(z)g_j(z)$$

holds.
Overview of $\overline{\partial}$ -estimates **Our Main Results** Corona problems in SCV **Our Main Results**

Carleson's Theorem Tom Wolff's solution **Corona Problem in other function spaces**

Necessary Condition

Write

$$|f(z)|^2 = \sum_{j=1}^m |f_j(z)|^2, \quad |g(z)|^2 = \sum_{j=1}^m |g_j(z)|^2 \leq C^2.$$

Then
$$1 = \sum_{j=1}^m f_j(z)g_j(z)$$
 implies
 $1 \le |f(z)||g(z)| \le C|f(z)|.$

Therefore,

$$\frac{1}{C} \leq |f(z)|, \quad z \in \Omega$$

$$0<\delta^2\leq |f(z)|^2=\sum_{j=1}^m |f_j(z)|^2\leq 1,\quad z\in\Omega.$$

臣

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Necessary Condition

Write

$$|f(z)|^2 = \sum_{j=1}^m |f_j(z)|^2, \quad |g(z)|^2 = \sum_{j=1}^m |g_j(z)|^2 \leq C^2.$$

Then 1 =
$$\sum_{j=1}^{m} f_j(z)g_j(z)$$
 implies
1 $\leq |f(z)||g(z)| \leq C|f(z)|.$

Therefore,

$$rac{1}{C} \leq |f(z)|, \quad z \in \Omega$$

We may normalized it as:

(1)
$$0 < \delta^2 \le |f(z)|^2 = \sum_{j=1}^m |f_j(z)|^2 \le 1, \quad z \in \Omega.$$

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Statement of Corona Problem

Corona Problem.

Let Ω be a bounded domain in \mathbb{C}^n . Let $f_1, f_2, \cdots, f_m \in H^{\infty}(\Omega)$ such that

(1)
$$\delta^2 \leq |f(z)|^2 = \sum_{j=1}^m |f_j(z)|^2 \leq 1, \quad z \in \Omega.$$

Are there $g_1, g_2, \cdots, g_m \in H^\infty(\Omega)$ such that

(2)

$$\sum_{j=1}^m f_j(z)g_j(z) = 1, \quad z \in \Omega?$$

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Statement of Corona Problem

Corona Problem.

Let Ω be a bounded domain in \mathbb{C}^n . Let $f_1, f_2, \dots, f_m \in H^{\infty}(\Omega)$ such that

(1)
$$\delta^2 \leq |f(z)|^2 = \sum_{j=1}^m |f_j(z)|^2 \leq 1, \quad z \in \Omega.$$

Are there $g_1, g_2, \cdots, g_m \in H^\infty(\Omega)$ such that

(2)
$$\sum_{j=1}^m f_j(z)g_j(z) = 1, \quad z \in \Omega?$$

◆ロ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

Overview of $\overline{\partial}$ -estimates Our Main Results Corona problems in SCV Our Main Results

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

History

• The Corona problem was first formulated by Kakutani in 1941 from the point of view in the function algebra.

Are the point evaluation functionals dense in the maximal ideal space $H^{\infty}(D)$ on the unit disc $D \subset \mathbf{C}$?

• The popular formulation in the previous page was given by Etanne Bezout.

• The Corona problem (Ω is the unit disc) was solved by L. Carleson 1962.

・ロン ・四 ・ ・ 回 ・ ・ 日 ・

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

History

• The Corona problem was first formulated by Kakutani in 1941 from the point of view in the function algebra.

Are the point evaluation functionals dense in the maximal ideal space $H^{\infty}(D)$ on the unit disc $D \subset \mathbf{C}$?

• The popular formulation in the previous page was given by Etanne Bezout.

• The Corona problem (Ω is the unit disc) was solved by L. Carleson 1962.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

History

• The Corona problem was first formulated by Kakutani in 1941 from the point of view in the function algebra.

Are the point evaluation functionals dense in the maximal ideal space $H^{\infty}(D)$ on the unit disc $D \subset \mathbf{C}$?

• The popular formulation in the previous page was given by Etanne Bezout.

• The Corona problem (Ω is the unit disc) was solved by L. Carleson 1962.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

History

• The Corona problem was first formulated by Kakutani in 1941 from the point of view in the function algebra.

Are the point evaluation functionals dense in the maximal ideal space $H^{\infty}(D)$ on the unit disc $D \subset \mathbf{C}$?

• The popular formulation in the previous page was given by Etanne Bezout.

• The Corona problem (Ω is the unit disc) was solved by L. Carleson 1962.

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Overview of $\overline{\partial}$ -estimates Our Main Results Corona problems in SCV Our Main Results

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Carleson's idea of the solutions

Carleson's idea to solve the Corona problem is as follows:

1) Construct bounded functions $\phi_1(z), \cdots, \phi_m(z)$ such that

$$\sum_{j=1}^m f_j(z)\phi_j(z)=1, \quad z\in D$$

and $\overline{\partial}\phi_i$ are Carleson measures.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つくぐ

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Carleson's idea of the solutions

Carleson's idea to solve the Corona problem is as follows:

1) Construct bounded functions $\phi_1(z), \cdots, \phi_m(z)$ such that

$$\sum_{j=1}^m f_j(z)\phi_j(z)=1, \quad z\in D$$

and $\overline{\partial}\phi_i$ are Carleson measures.

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

2) Try to modify ϕ_j to get $g_j \in H^\infty(D)$ such that

$$\sum_{j=1}^m f_j(z)g_j(z) = 1$$

Q: How to modify it?

He defined

$$g_j(z) = \phi_j - \sum_{k=1}^m f_k A_{k,j}$$
 with $A_{k,j} = -A_{j,k}$

This implies

$$\sum_{j=1}^m f_j(z)g_j(z)=1.$$

Song-Ying Li Weighted L^2 estimate for $\overline{\partial}$ and application to Corona proble

臣

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

2) Try to modify ϕ_j to get $g_j \in H^\infty(D)$ such that

$$\sum_{j=1}^m f_j(z)g_j(z) = 1$$

Q: How to modify it?

He defined

$$g_j(z) = \phi_j - \sum_{k=1}^m f_k A_{k,j}$$
 with $A_{k,j} = -A_{j,k}$

This implies

$$\sum_{j=1}^m f_j(z)g_j(z)=1.$$

Song-Ying Li Weighted L^2 estimate for $\overline{\partial}$ and application to Corona proble

臣

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Carleson's idea

• g_j is holomorphic if and only if

$$0 = \overline{\partial} g_j(z) = \overline{\partial} \phi_j(z) - \sum_{k=1}^n f_k(z) \overline{\partial} A_{jk}(z)$$

One can see that if

$$\overline{\partial} \mathbf{A}_{kj} = \phi_k \overline{\partial} \phi_j - \phi_j \overline{\partial} \phi_k = \psi_{k,j}$$

then g_i is holomorphic.

Then the Corona problem is solved if $\overline{\partial} A_{k,j} = \psi_{k,j}$ has a solution $A_{jk} \in L^{\infty}(D)$.

• In his solution, Carleson introduced a very important concept: Carleson measure.

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Carleson's idea

• g_j is holomorphic if and only if

$$0 = \overline{\partial} g_j(z) = \overline{\partial} \phi_j(z) - \sum_{k=1}^n f_k(z) \overline{\partial} A_{jk}(z)$$

One can see that if

$$\overline{\partial} \mathbf{A}_{kj} = \phi_k \overline{\partial} \phi_j - \phi_j \overline{\partial} \phi_k = \psi_{k,j}$$

then g_i is holomorphic.

Then the Corona problem is solved if $\overline{\partial} A_{k,j} = \psi_{k,j}$ has a solution $A_{jk} \in L^{\infty}(D)$.

• In his solution, Carleson introduced a very important concept: Carleson measure.

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Tom Wolff's idea

Carleson's solution of Corona problem is very complicated based on his construction of $\phi_j \in L^{\infty}(D)$ with $\overline{\partial}\phi_j$ is a Carleson measure and

$$\sum_{j=1}^m f_j(z)\phi_j(z)=1, \quad z\in D.$$

In 1980, T. Wolff came up a new idea to choose

$$\phi_j(z) = rac{\overline{f}_j(z)}{|f(z)|^2}, \quad |f(z)|^2 = \sum_{k=1}^m |f_k(z)|^2.$$

Change to the difficulty of the problem to solve $\overline{\partial}$ -equation:

 $\overline{\partial} A_{k,j} = \phi_k \overline{\partial} \phi_j - \phi_j \overline{\partial} \phi_k.$

with $A_{j,k} \in L^{\infty}(D)$.

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Tom Wolff's idea

Carleson's solution of Corona problem is very complicated based on his construction of $\phi_j \in L^{\infty}(D)$ with $\overline{\partial}\phi_j$ is a Carleson measure and

$$\sum_{j=1}^m f_j(z)\phi_j(z)=1, \quad z\in D.$$

In 1980, T. Wolff came up a new idea to choose

$$\phi_j(z) = rac{\overline{f}_j(z)}{|f(z)|^2}, \quad |f(z)|^2 = \sum_{k=1}^m |f_k(z)|^2.$$

Change to the difficulty of the problem to solve $\overline{\partial}$ -equation:

$$\overline{\partial} \mathbf{A}_{\mathbf{k},j} = \phi_{\mathbf{k}} \overline{\partial} \phi_j - \phi_j \overline{\partial} \phi_{\mathbf{k}}.$$

with $A_{j,k} \in L^{\infty}(D)$.

• (1) • (

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Tom Wolff's proof

Let $S: L^2(\partial D) \to H^2(D)$ be the Szegö projection. He try to solve

$$\overline{\partial} B_{k,j} = \phi_k \overline{\partial} \phi_j, \quad A_{k,j} = B_{k,j} - B_{j,k}$$

with $B_{j,k} \in MBO(\partial D) \cap H^2(D)^{\perp}$. Then

$$B_{k,j} = (I - S)B_{k,j} = \overline{S}_0 B_{k,j}$$
 on ∂D .

Apply Stein-Weiss (Fefferman's duality) theorem

 $BMOA(D) = S(L^{\infty}(\partial D)), \quad BMOA(D) = H^{1}(D)^{*}.$

There is a $m{b}_{k,j}\in L^\infty(\partial D)$ such that

 $(I-S)b_{k,j} = \overline{S}_0(b_{k,j}) = \overline{S}_0B_{kj} = B_{k,j}$ on ∂D .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Tom Wolff's proof

Let $S: L^2(\partial D) \to H^2(D)$ be the Szegö projection. He try to solve

$$\overline{\partial} B_{k,j} = \phi_k \overline{\partial} \phi_j, \quad A_{k,j} = B_{k,j} - B_{j,k}$$

with $B_{j,k} \in MBO(\partial D) \cap H^2(D)^{\perp}$. Then

$$B_{k,j} = (I - S)B_{k,j} = \overline{S}_0 B_{k,j}$$
 on ∂D .

Apply Stein-Weiss (Fefferman's duality) theorem

 $BMOA(D) = S(L^{\infty}(\partial D)), \quad BMOA(D) = H^{1}(D)^{*}.$

There is a $b_{k,j} \in L^{\infty}(\partial D)$ such that

$$(I-S)b_{k,j} = \overline{S}_0(b_{k,j}) = \overline{S}_0B_{kj} = B_{k,j}$$
 on ∂D .

▲ロ▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● の Q @

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Then

$$g_j(z) = \phi_j(z) - \sum_{k=1}^m f_k(B_{k,j} - B_{j,k}) \quad (B_{k,j} = b_{k,j} - S(b_{k,j}))$$

are holomorphic in *D* and $g_j \in H^p(D)$ for any $p < \infty$.

We extend $b_{k,j}$ from ∂D to D by letting:

 $b_{k,j}=B_{k,j}+S(b_{k,j}).$

We modify the definition of g_j as:

$$g_j(z) = \phi_j(z) - \sum_{k=1}^m f_k(b_{k,j} - b_{j,k})$$

Then $g_j \in H^\infty(D)$ and

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Then

$$g_j(z) = \phi_j(z) - \sum_{k=1}^m f_k(B_{k,j} - B_{j,k}) \quad (B_{k,j} = b_{k,j} - S(b_{k,j}))$$

are holomorphic in *D* and $g_j \in H^p(D)$ for any $p < \infty$. We extend $b_{k,j}$ from ∂D to *D* by letting:

$$b_{k,j}=B_{k,j}+\mathcal{S}(b_{k,j}).$$

We modify the definition of g_j as:

$$g_j(z) = \phi_j(z) - \sum_{k=1}^m f_k(b_{k,j} - b_{j,k})$$

Then $g_j \in H^\infty(D)$ and

$$\sum_{j=1}^{m} f_j(z)g_j(z) = 1, \quad z \in D.$$

Song-Ying Li

Weighted L^2 estimate for $\overline{\partial}$ and application to Corona proble

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

$\overline{\partial}$ -solution

$$\overline{\partial}B_{k,j} = \phi_k\overline{\partial}\phi_j, \quad B_{k,j} \perp H^2(D)$$

For $h \in H^1(D)$ with $h(0) = 0$. Write $h(z) = h_1(z)h_2(z)$ with
 $h_j \in H^2(D)$ and $\|h\|_{H^1} = \|h_1\|_{H^2}\|h_2\|_{H^2}.$

It suffices to prove

$$\Big|\int_{\partial D} B_{k,j}(z)h(z)d\sigma(z)\Big| \leq C \|h\|_{H^1}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Overview of $\overline{\partial}$ -estimates Our Main Results Corona problems in SCV Our Main Results

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

$$\begin{aligned} \left| \int_{\partial D} B_{k,j} h_1(z) h_2(z) d\sigma(z) \right| \\ &= \left| \int_D \Delta \left(B_{k,j} h_1(z) h_2(z) \right) \log \frac{1}{|z|} dA(z) \right| \\ &= \left| \int_D [\Delta B_{k,j} h_1 h_2 + 4\overline{\partial} \left(B_{k,j} \right) \partial (h_1(z) h_2(z)) \log \frac{1}{|z|} \right| \\ &= 4 \left| \int_D [-\partial (\phi_k \overline{\partial} \phi_j) h_1 h_2 + \phi_k \overline{\partial} \phi_j (h_2 \partial h_1 + h_2 \partial h_1)] \log \frac{1}{|z|} \\ &\leq \frac{C}{\delta^3} \|h_2\|_{H^2} \|h_1\|_{H^2}. \quad \text{(Green's theorem).} \end{aligned}$$

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Remark.

• Carleson's theorem is true for any bounded domain with C^1 boundary.

However, the following problem is still open.

Problem. Let $f_1, \dots, f_m, h \in H^{\infty}(D)$ such that

$$\sum_{j=1} |f_j(z)|^2 \ge |h(z)|^2, \quad z \in D.$$

Then there are $g_1, \cdots, g_m \in H^\infty(D)$ such that

$$\sum_{j=1}^m f_j(z)g_j(z) = h(z)^2.$$

◆ロ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Remark continued

From the Tom Wolff's proof, one can prove:

There are $g_1, \cdots, g_m \in H^\infty(D)$ such that

$$\sum_{j=1}^m f_j(z)g_j(z) = h(z)^3$$

This problem is equivalent to estimate for the best constant

upper bound in original Corona Problem (J. Garnett and P. Jones) .

Question: Can one improve the upper bound to $\frac{C}{s^2}$

(日)

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Remark continued

From the Tom Wolff's proof, one can prove:

There are $g_1, \cdots, g_m \in H^\infty(D)$ such that

$$\sum_{j=1}^m f_j(z)g_j(z) = h(z)^3$$

This problem is equivalent to estimate for the best constant

upper bound in original Corona Problem (J. Garnett and P. Jones) .

$$\|g_j\|_{\infty} \leq rac{C}{\delta^2 \log rac{1}{\delta}}$$

Question: Can one improve the upper bound to $\frac{C}{\delta^2}$?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Corona problem in higher dimensions

• When *n* > 1.

Counter example was constructed by Fornaess and Sibony in 1993.

There is a bounded pseudoconvex domain in \mathbf{C}^2 with smooth boundary. Where the Corona problem is not solvable.

・ロ ・ ・ 日 ・ ・ 回 ・ ・ 日 ・

э

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Corona problem in higher dimensions

• When *n* > 1.

Counter example was constructed by Fornaess and Sibony in 1993.

There is a bounded pseudoconvex domain in \mathbf{C}^2 with smooth boundary. Where the Corona problem is not solvable.

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Varopoules in 1977, generalized the Carleson's idea to the higher dimension on the unit ball $B_n \subset \mathbf{C}^n$.

He constructed L^{∞} solutions ϕ_1, ϕ_2 (as Carleson did) such that

 $\sum_{j=1}^2 f_j(z)\phi_j(z) = 1$

and $\overline{\partial}\phi_{j}$ is a Carleson measure. He also proved

 $\overline{\partial} A = \phi_2 \overline{\partial} \phi_1 - \phi_1 \overline{\partial} \phi_2$

has a solution $A \in BMO(\partial B_n)$.

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Varopoules in 1977, generalized the Carleson's idea to the higher dimension on the unit ball $B_n \subset \mathbf{C}^n$.

He constructed L^{∞} solutions ϕ_1, ϕ_2 (as Carleson did) such that

$$\sum_{j=1}^2 f_j(z)\phi_j(z) = 1$$

and $\overline{\partial}\phi_i$ is a Carleson measure. He also proved

$$\overline{\partial} \mathbf{A} = \phi_2 \overline{\partial} \phi_1 - \phi_1 \overline{\partial} \phi_2$$

has a solution $A \in BMO(\partial B_n)$.

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Wen n > 1, $A \in BMO(\partial B_n)$ can have

$$g_1(z) = \phi_j(z) - f_2(z)A, \quad g_2(z) = \phi_2(z) + f_1(z)A$$

are holomorphic in B_n and

$$f_1(z)g_1(z) + f_2(z)g_2(z) = 1,$$

But, in general, A can not be written as

$$A = B - H$$

with $B \in L^{\infty}(B_n)$ and $H \in H^1(B_n)$.

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Multiplication operator

From the operator theory point of view, one can define a multiplication operator S_f associated to the Corona dada $f = (f_1, \dots, f_m)$ which satisfies

$$0<\delta^2\leq \sum_{j=1}^m |f_j(z)|^2\leq 1.$$

If X is function space over Ω , one define

$$S_f: X^m = X \oplus X \oplus \cdots \oplus X o X, \quad S_f(g) = \sum_{j=1}^m f_j g_j$$

Carleson Theorem. $S_f: H^{\infty}(D)^m \to H^{\infty}(D)$ is bounded and onto the second second

Song-Ying Li Weighted L^2 estimate for $\overline{\partial}$ and application to Corona proble

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Multiplication operator

From the operator theory point of view, one can define a multiplication operator S_f associated to the Corona dada $f = (f_1, \dots, f_m)$ which satisfies

$$0<\delta^2\leq \sum_{j=1}^m |f_j(z)|^2\leq 1.$$

If X is function space over Ω , one define

$$S_f: X^m = X \oplus X \oplus \cdots \oplus X o X, \quad S_f(g) = \sum_{j=1}^m f_j g_j$$

Carleson Theorem. $S_f: H^\infty(D)^m o H^\infty(D)$ is bounded and onto A_f , As a solution of the second second

Song-Ying Li Weigh

Weighted L^2 estimate for $\overline{\partial}$ and application to Corona proble

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Multiplication operator

From the operator theory point of view, one can define a multiplication operator S_f associated to the Corona dada $f = (f_1, \dots, f_m)$ which satisfies

$$0<\delta^2\leq \sum_{j=1}^m |f_j(z)|^2\leq 1.$$

If X is function space over Ω , one define

$$S_f: X^m = X \oplus X \oplus \cdots \oplus X \to X, \quad S_f(g) = \sum_{j=1}^m f_j g_j$$

Carleson Theorem.

 $S_f: H^\infty(D)^m o H^\infty(D)$ is bounded and onto .

Weighted L^2 estimate for $\overline{\partial}$ and application to Corona proble

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Arveson, using Foias lifting theorem, prove

Theorem. $S_f : H^{\infty}(D)^m \to H^{\infty}(D)$ is onto if and only if $S_f : H^p(D)^m \to H^p(D)$ is onto. (True, for a bounded domain $\Omega \subset$ with $C^{1,\epsilon}$ boundary by L)

When n > 1, whether the above theorem is true or not, it is not known for the most standard domains Ω , like B_n , $D(0, 1)^n$. We know

Theorem

 $S_f: X^m \to X$ is bounded and onto when $X = H^p(B_n)$ or $X = H^p(D(0, 1)^n)$.

Either *m* is finite or infinity, the above theorem proved by several people, including: Varopoules, K. C. Lin, S-Y Li, E. Amar, M. Anderson, etc.

臣

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Arveson, using Foias lifting theorem, prove

Theorem. $S_f : H^{\infty}(D)^m \to H^{\infty}(D)$ is onto if and only if $S_f : H^p(D)^m \to H^p(D)$ is onto. (True, for a bounded domain $\Omega \subset$ with $C^{1,\epsilon}$ boundary by L)

When n > 1, whether the above theorem is true or not, it is not known for the most standard domains Ω , like B_n , $D(0, 1)^n$. We know

Theorem

 $S_f: X^m \to X$ is bounded and onto when $X = H^p(B_n)$ or $X = H^p(D(0, 1)^n)$.

Either *m* is finite or infinity, the above theorem proved by several people, including: Varopoules, K. C. Lin, S-Y Li, E. Amar, M. Anderson, etc.

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Arveson, using Foias lifting theorem, prove

Theorem. $S_f : H^{\infty}(D)^m \to H^{\infty}(D)$ is onto if and only if $S_f : H^p(D)^m \to H^p(D)$ is onto. (True, for a bounded domain $\Omega \subset$ with $C^{1,\epsilon}$ boundary by L)

When n > 1, whether the above theorem is true or not, it is not known for the most standard domains Ω , like B_n , $D(0, 1)^n$. We know

Theorem

 $S_f: X^m \to X$ is bounded and onto when $X = H^p(B_n)$ or $X = H^p(D(0, 1)^n)$.

Either *m* is finite or infinity, the above theorem proved by several people, including: Varopoules, K. C. Lin, S-Y Li, E. Amar, M. Anderson, etc.
Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

For more general function space $X, S_f : X^m \to X$ may not be bounded. Under the boundedness assumption, there are more results are obtained.

Theorem

Let $S_f : X^m \to X$ be bounded. Then $S_f : X^m \to X$ is onto when $X = B_{m,\sigma}^p(B_n)$ with p > 1 and some restriction on m and σ .

Where $h \in B^{p}_{\sigma}(B_{n})$ if *h* is holomorphic and

$$\|f\|_{\rho,\sigma}^{p} =: \int_{B_{n}} \left(|D^{m}f(z)|r(z)^{\sigma} \right)^{p} \mathcal{K}(z,z) dv(z) < \infty$$

When $\sigma = m = 1$ and p > n, the above space is the standard Besov space. When n = 1 and p = 2, it is Dirichlet space.

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Contributors

The above theorem was proved by several mathematicians with various conditions, I listed part of them as follows.

M. Anderson (1994, 2011)

- J. Xiao (1998, n = 1 Dirichlet space)
- Arcozzi, Rochberg and Sawyer (2006)
- E. T. Sawyer (2009)

Costea, Sawyer and Wick (2010)

Costea, Sawyer and Wick (2011)

Several papers written by Krantz, Li, Treil, Trent, Wick and Zhang, etc.

イロト イヨト イヨト ・ ヨト

Overview of $\overline{\partial}$ -estimates Our Main Results Corona problems in SCV Our Main Results

Carleson's Theorem Tom Wolff's solution Corona Problem in other function spaces

Tool to study the Corona problem

Recently, I used the Hörmander's weighted L^2 estimate to study the Corona problem and obtained the following results.

Statements of the results

Result 1

Theorem

Let $f_1, \cdots, f_m \in H^2(B_n) \cap C^{\gamma}(\overline{B}_n)$ with $0 < \alpha < 1$ satisfy

(1)
$$0 < \delta^2 \leq \sum_{j=1}^m |f_j(z)|^2 \leq 1, \quad z \in B_n.$$

Then there are $g_j \in H^2(B_n) \cap C^{\gamma}(\overline{B}_n)$ such that

(2)
$$\sum_{j=1}^{m} f_j(z)g_j(z) = 1.$$

Remark. when $D = D(0, 1)^n$, the above was proved by Krantz and Li (1995)

Statements of the results

Result 2

We give a simpler proof of the following theorem:

Theorem

Let $f_1, f_2 \in H^\infty(B_n)$ satisfy Corona condition (1) and

$$\phi_j = \overline{f_j(z)}/|f(z)|^2, \quad |f(z)|^2 = \sum_{j=1}^2 |f_j(z)|^2.$$

Then the canonical solution of $\overline{\partial}$ -equation:

$$\overline{\partial} \mathbf{A} = \phi_1 \overline{\partial} \phi_2 - \phi_2 \overline{\partial} \phi_1$$

satisfies $A \in BMO(\partial B_n)$ and $|\nabla A|^2(1 - |z|^2)dv$ is a Carleson measure on B_n .

Statements of the results

Two Function Spaces

Let

$$r(z) = 1 - |z|^2$$
, $\phi_0(z) = -\log r(z)$.

• Let $\mathcal{L}B_p(B_n)$ be the space of all holomorphic functions *h* on B_n with

$$\|h\|_{\mathcal{L}B_p} = \sup\{|\log r(z)|^p |\overline{\partial h}(z)|_{i\partial\overline{\partial}\phi_0} : z \in B_n\} < \infty.$$

• Let $S(B_n)$ denote the space of all holomorphic functions *h* on B_n with

$$\|h\|_{\mathcal{S}(B_n)} = \sup_{a\in B_n} \int_{B_n} |\overline{\partial h}(z)|_{i\partial\overline{\partial}\phi_0} |K(z,a)| dv(z) < \infty.$$

Statements of the results

Result 3

Theorem

Let $f_1, f_2 \in H^{\infty}(B_n)$ satisfy Corona condition (1) and $f_j \in S(B_n) \cap \mathcal{L}B_p(B_n)$. Then there are $g_1, g_2 \in H^{\infty}(B_n)$ such that

 $f_1(z)g_1(z) + f_2(z)g_2(z) = 1.$

Moreover, $g_j \in S(B_n) \cap \mathcal{L}B_p(B_n)$. Here, p > 1/2 be any real number.

▲ロ▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● の Q @

Overview of $\overline{\partial}$ -estimates Our Main Results Corona problems in SCV Our Main Results

Statements of the results

• The Corona Problem for the unit ball B_n or for polydisc $D(0,1)^n$ with n > 1 is still open.

Overview of $\overline{\partial}$ -estimates Our Main Results Corona problems in SCV Our Main Results

Statements of the results

Thank you very much for your attention!

Song-Ying Li Weighted L^2 estimate for $\overline{\partial}$ and application to Corona proble

・ロト ・ 四ト ・ ヨト ・ ヨト

æ.