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In Several Complex Variables and Complex Geometry, a fundamental prob-
lem is to solve the Cauchy-Riemann equations.

Let D be a domian in Cn. Study the existence and regularity of

∂u = f in D.

Here 0 ≤ p ≤ n, 1 ≤ q ≤ n, f is a (p, q) form satisfying the solvable
condition:

∂f = 0 in D.
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Theorem

If D is a bounded pseudoconvex domain and f ∈ L
(p,q)
2 (D). Then there

exits a u with ‖u‖L2 ≤ cq‖f‖L2 .

One also wants to know what kind of regularity can u have when f has
higher regularities. Kohn obtained the following global regularity theorem

Theorem ( J. Kohn 1973)

Let D be a bounded pseudoconvex domain in Cn (n ≥ 2) with smooth
boundary. For every f ∈ C∞

(p,q)(D), there exists a u ∈ C∞
(p,q−1)(D) such

that ∂u = f .
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Kohn also raised the following local version regularity problem:

Problem

Let D be a bounded smooth pseudoconvex domain in Cn. Suppose that
∂u = f with ∂f = 0 and f ∈ C∞

(p,q)(U ∩D) for some neighborhood U .

(1). Is there such a u satisfies u ∈ Dom(∂) ∩ C∞
(p,q−1)(U ∩D)?

(2). Is the canonical solution u satisfies u ∈ Dom(∂) ∩ C∞
(p,q−1)(U ∩D)?

Kohn, Catlin: In general, the answer is NEGATIVE.

Kohn-Nirenberg: The answer is POSITIVE if the domain has subelliptic
estimates.
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J. Kohn(1963):

When D is strongly pseudoconvex, we have the subelliptic estimates:

For f ∈ Dom(∂) ∩Dom(∂∗). Then

‖f‖2
ε ≤ ‖∂f‖2 + ‖∂∗f‖2 + ‖f‖2 with ε =

1
2
.
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J. Kohn (1972):

When M ⊂ C2, we have the following invariants (which we will define these
conditions explicitly for the general dimensional case.)

1 contact order by regular holomorphic curves a(1)(M,p),

2 iterated Lie brackets t(1)(M,p),

3 the degeneracy of the Levi form c(1)(M,p),

4 contact order by holomorphic curves ∆1(M,p).
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J. Kohn (1972):

Theorem: a(1)(M,p) = t(1)(M,p) = c(1)(M,p) = ∆1(M,p).

pseudoconvexity is not necessary in the theorem.

When M is pseudoconvex, these invariants = m if and only if
(1) subelliptic estimates holds (for ε = 1

m [Rothschild-Stein 1976]), but
(2) (Greiner 1974) for no large value of ε.
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Generalization of Kohn’s notion of the boundary finite type condition to
higher dimensions has been a subject under extensive investigations in the
past 40 years in Several Complex Variables.

Kohn’s finite type condition through the subelliptic multiplier ideals

regular finite type (of Bloom-Graham)

Catlin multitype type

D’Angelo finite type
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T. Bloom (1981):

When M ⊂ Cn. For each integer 1 ≤ s ≤ n−1, we can define corresponding
integer invaiants a(s)(M,p), t(s)(M,p) and c(s)(M,p) as follows.

(i): The s-contact type a(s)(M,p):

a(s)(M,p) = sup
X

{
r| ∃ an s-dimensional complex submanifold X

whose order of vanishing of ρ|X at p is r
}
.
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T. Bloom (1981):

(ii) The s-vector field type t(s)(M,p):

Let B be an s-dimensional subbundle of T 1,0M . We let M1(B) be the
C∞(M)-module spanned by the smooth tangential (1, 0) vector fields L
with L|q ∈ B|q for each q ∈ M , together with the conjugate of these vector
fields.
For µ ≥ 1, we let Mµ(B) denote the C∞(M)-module spanned by com-
mutators of length less than or equal to µ of vector fields from M1(B). A
commutator of length µ of vector fields in M1(B) is a vector field of the
following form: [Yµ, [Yµ−1, · · · , [Y2, Y1] · · · ]. Here Yj ∈M1(B).
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T. Bloom (1981):

Define t(s)(B, p) = m if 〈F, ∂ρ〉(p) = 0 for any F ∈ Mm−1(B) but
〈G, ∂ρ〉(p) 6= 0 for a certain G ∈Mm(B). Then

t(s)(M,p) = sup
B
{t(B, p)| B is an s-dimensional subbundle of T 1,0M}.

t(s)(B, p) is the smallest length of the commutators by vector fields in
M1(B) to recover the complex contact direction in CTpM . t(s)(M,p) is the
largest possible value among all t(s)(B, p)′s. Namely, t(s)(M,p) describes
the most degenerate s-subbundle of T 1,0M .
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T. Bloom (1981):

(iii) The s-type of the Levi form c(s)(M,p):

Let B be as in (ii). Let LM,p be a Levi form associated with a defining
function ρ near p of M . For VB = {L1, · · · , Ls}, a basis of smooth sections
of B near p, we define the trace of LM,p along VB by

trVB
LM,p =

s∑
j=1

〈[Lj , Lj ], ∂ρ〉(p).
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T. Bloom (1981):

We define c(VB, p) = m if for any m − 3 vector fields F1, · · · , Fm−3 of
M1(B), and any basis of sections of B, it holds that

F1 · · ·Fm−3

(
trVB

LM,p

)
(p) = 0

and for a certain choice of m − 2 vector fields G1, · · · , Gm−2 of M1(B),
and a certain choice of sections of B, we have

G1 · · ·Gm−2

(
trVB

LM,p

)
(p) 6= 0.

Then

c(s)(M,p) = sup
B
{c(VB, p) : B is an s-dimensional subbundle of T 1,0M}.
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The first invariant is more of algebraic, comparatively more easily to
compute

The second is defined in a way more of differential geometry

The third invariant is defined by the degeneracy of the Levi form, it is
always more easily to be applied.
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Bloom-Graham (1977): a(n−1)(M,p) = t(n−1)(M,p).

Bloom (1978): a(n−1)(M,p) = c(n−1)(M,p).

Bloom (1981): For any 1 ≤ s ≤ n − 1, a(s)(M,p) ≤ t(s)(M,p),
a(s)(M,p) ≤ c(s)(M,p).

For these results, pseudo-convexity is not necessary.

Wanke Yin ( School of Mathematics and Statistics, Wuhan University )Finite type conditions Nice, Dec. 8 th 16 / 35



Bloom-Graham (1977): a(n−1)(M,p) = t(n−1)(M,p).

Bloom (1978): a(n−1)(M,p) = c(n−1)(M,p).

Bloom (1981): For any 1 ≤ s ≤ n − 1, a(s)(M,p) ≤ t(s)(M,p),
a(s)(M,p) ≤ c(s)(M,p).

For these results, pseudo-convexity is not necessary.

Wanke Yin ( School of Mathematics and Statistics, Wuhan University )Finite type conditions Nice, Dec. 8 th 16 / 35



Bloom-Graham (1977): a(n−1)(M,p) = t(n−1)(M,p).

Bloom (1978): a(n−1)(M,p) = c(n−1)(M,p).

Bloom (1981): For any 1 ≤ s ≤ n − 1, a(s)(M,p) ≤ t(s)(M,p),
a(s)(M,p) ≤ c(s)(M,p).

For these results, pseudo-convexity is not necessary.

Wanke Yin ( School of Mathematics and Statistics, Wuhan University )Finite type conditions Nice, Dec. 8 th 16 / 35



T. Bloom 1981

Conjecture: When M is pseudo-convex, for 1 ≤ s ≤ n−1, a(s)(M,p) =
t(s)(M,p) = c(s)(M,p).

pseudo-convexity is necessary in this conjecture:

Let ρ = 2Re(w) + (z2 + z2 + |z1|2)2 and let M = {(z1, z2, w) ∈
C3| ρ = 0}. Let p = (0, 0, 0). Then a(1)(M,p) = 4 but c(1)(M,p) =
t(1)(M,p) = ∞ .

When M ⊂ C3, a(1)(M,p) = c(1)(M,p).
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Huang-Y. (2021): When M is pseudo-convex,

a(n−2)(M,p) = t(n−2)(M,p) = c(n−2)(M,p).

In particular, this gives a complete solution for n = 3.

Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form
at p has only one degenerate eigenvalue. Then a(1)(M,p) = t(1)(M,p) =
c(1)(M,p).
(In this case, a(1)(M,p) = c(1)(M,p) is due to Abdallah TALHAOUI (1983))
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A Conjecture of D’Angelo (1986)

Suppose M is pseudoconvex. Then for any fixed (1, 0) tangent vector field
L, we have t(1)(L, p) = c(1)(L, p).

D’Angelo 1986: t(1)(L, p) = 4 if and only if c(1)(L, p) = 4.

Chen-Y.-Yuan 2020: t(1)(L, p) = c(1)(L, p) if n = 3.

Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form
at p has only one degenerate eigenvalue. Then, for any fixed (1, 0) tangent
vector field L, we have t(1)(L, p) = c(1)(L, p).
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The D’Angelo finite type

The first D’Angelo finite type:

∆1(M, 0) = sup
z:(C,0)→(Cn,z0)

µ(z∗r)
µ(z)

The general D’Angelo finite type:

∆q(M, 0) = inf
φ:(Cn−q+1,0)→(Cn,z0)

∆1(φ∗M, 0).

Here φ : (Cn−q+1, 0) → (Cn, z0) is a linear embedding.

When z is required to be regular, this is exactly the regular finite type.
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The Catlin multitype

Let Γn denote the set of all n−tuple of numbers Λ = (λ1, · · · , λn) with
1 ≤ λi ≤ ∞ such that λ1 ≤ · · · ≤ λn.

Γn is called a weight if for each k, either λk = +∞ or there is a set of

nonnegative integers a1, · · · , ak with ak > 0 such that
k∑

j=1

aj

λj
= 1

Order of the weights: Let Λ′ = (λ′1, · · · , λ′n) and Λ′′ = (λ′′1, · · · , λ′′n).
Λ′ < Λ′ if for some k, λ′j = λ′′j for j < k and λ′k < λ′′k.
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The Catlin multitype

A weight Λ ∈ Γn is said to be distinguished if there exist holomorphic
coordinates (z1, · · · , zn) about z0 with z0 mapped to the origin such that

n∑
j=1

DαDβρ(z0) = 0 for
n∑

j=1

αj + βj

λj
< 1.

The multitype M(z0) is defined to be the smallest (m1, · · · ,mn) ∈ Γn such
that for every distinguished weight Λ, we have M(z0) ≥ Λ.

Notice that the Catlin multitype has a equivalent description by means of
the degeneracy of the Levi form (in some sense) similar to the definition of
c(s)(M,p), which is crucial to Catlin’s solution of Kohn’s subelliptic esti-
mates problem.
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Relation between these invariants

Example: Let M ⊂ C4 be a real hypersurface defined by

r = −2Imw + |z1|4 + |z1|2|z2|2 + |z1|2|z3|2 + |z2
2 − z3

3 |4.

The Caltin multitypes at 0 are 4, 4, 4,

The Bloom regular contact types are 4, 8, 12,

The D’Angelo finite types are 4, 8, +∞.
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Relation between these invariants

Yu 1992: When D is convex and M = ∂D, then Caltin multi-type=D’Angelo
finite type.

Fu-Isaev-Krantz 1998: When D is a Reinhardt domain and M = ∂D,
then regular multi-type a1=D’Angelo finite type ∆1, Caltin multitype and
D’Angelo finite type may be different.

It seems to me that the Bloom Conjecture for the boundary of a
convex domain is also unknown.
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Kohn’s finite ideal type

As before, let D be a smooth pseudoconvex domain in Cn. x0 ∈ M = bD.

Denote by Iq(x0) the set of germs of multipliers satisfying the following:

∃ a neighborhood U of x0, f ∈ C∞
0 (U ∩D) such that there are C, ε > 0

for which
|‖fφ‖|2ε ≤ C(‖∂φ‖2 + ‖∂∗φ‖2)

for all φ ∈ D(p,q)(U ∩D).
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Kohn’s finite ideal type

J. Kohn inductively defined the ideals Iq
k(x0) as follows:

Iq
1(x0) = R

√
r, coeff.{∂r ∧ ∂r ∧ (∂∂r)n−q}.

Iq
k+1(x0) = R

√
Iq
k(x0), coeff.{∂f1 ∧ · · · ∧ ∂fj ∧ ∂r ∧ ∂r ∧ (∂∂r)n−q−j}.

Here f1, · · · , fj ∈ Iq
k(x0).

We say x0 is of finite ideal type with respect to (p, q) forms if there is a
integer k such that 1 ∈ Iq

k(x0).
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Back to the subelliptic estimates

Theorem (J. Kohn 1979:)

Let D be a pseudoconvex domain in Cn with real analytic boundary. Then
1 ∈ Iq

k(x0) if and only if ∆q(M,x0) < ∞.

Theorem (D. Catlin 1987:)

Let D be a pseudoconvex domain in Cn with smooth boundary. Then
subelliptic estimates holds for (p, q) forms if and only if ∆q(M,x0) < ∞.
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Effectiveness

Let the domain is defined by
r = 2Re(w) + |f1(z)|2 + · · ·+ |fm(z)|2, which is of D’Angelo finite type at
the boundary point x0.

Siu(2010,2017): 1 ∈ Iε(x0) with some ε bounded by constant depends on
the finite type.

Kim-Zaitsev (2021): give a explicit effective bound.
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Sketch of the proof for n = 3

Find sone special L ∈ T (1,0)M ′, with M ′ another pseudoconvex hy-
persurface and L with weighted homogeneous coefficients.

By the Nagano theorem, the Lie algebra generated by Re(L), ImL and
their Lie brackets gives a unique homogeneous integral submanifold N0.

The given condition means that the T direction is always transversal
to N0 at any point of N0. Hence the dimension of N0 must be 3 or 4.

Comparing with Bloom’s proof of a(1)(M, 0) = c(1)(M, 0), we need to
replace two deep theorems by K. Diederich and J. Fornaess (Annals,
1978).
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Sketch of the proof

Theorem 1: Let S be a C2-submanifold of a pseudoconvex C4-hypersurface
M ⊂ Cn. Let X, Y be C1-vector fields on S with values in TNS. Then
the vector field [X, Y ] also has values in TNS along S.

For all p ∈ S,

TN
p S = {X ∈ TpS : X = ReY, Y ∈ T (1,0)

p M, ∂∂ρ(Y, Y )(p) = 0}.
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Sketch of the proof

Theorem 2: Let M ⊂ Cn be a pseudoconvex C∞ hypersurface with 0 ∈ M
and S ⊂ M a C∞−CR submanifold, 0 ∈ S, with the following properties:

S ⊂ Cn−1×{0}, rank T (1,0) = q, dimRS = 2q + r with q + r = n−1.

TS = TNS

By taking subsequent brackets of C∞ vector fields with values in T hS
one generates the whole tangent bundle TS.

Then in any neighborhood of 0, there is a relatively open set Û on M such
that Cn−1 × {0} is tangent to bM of infinite order at all points z ∈ Û .
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Sketch of the proof

Theorem 1’: Let N be a real analytic hypersurface in Cn−1 with 0 ∈ N
with n ≥ 3. Let ρ(z, z) be a real analytic plurisubharmonic function with
ρ = O(|z|2) as z → 0 defined over a neighborhood of Cn−1. Assume that N
is of finite type in the sense of Hömander–Bloom-Graham and N ⊂ {ρ = 0}.
Then ρ ≡ 0.
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Sketch of the proof

Theorem 2’: Define the weight of z1 and z1 to be 1, the weight of z2

and z2 to be k ∈ N with k > 1. Let A = A(z1, z1) be a homogenous
polynomial of degree k− 1 in (z1, z1) without holomorphic terms. Suppose
that f is a weighted homogeneous polynomial in (z, z) of weighted degree
m > k. Further assume that Re(f) is plurisubharmonic, contains no non-
trivial holomorphic terms and assume that f satisfies the following equation:

fz1(z, z) + A(z1, z1)fz2(z, z) = 0. (0.1)

Then Re(f) ≡ 0.
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The main difficulties

Suppose the hypersurface M is defined by r = 0 and a real submanifold N
is defined by ρ1 = · · · = ρm = 0.

In Diederich-Fornaess’s Theorem, the problem is reduced to :
N CR manifold and r(z1, · · · , zn−1, 0) = O(|ρ|2).

In Theorem 1’, the problem is reduced to
N CR manifold of finite type and r(z1, · · · , zn−1, 0) = O(|ρ|).

In Theorem 2’, we need to solve a PDE with the real part plurisubhar-
monic.

For higher dimensional case, we have to deal with the case:
N CR-singular manifold and r(z1, · · · , zn−1, 0)|N satisfies some PDE
but is non-zero.
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Thank you!

Thank you for your attention!
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