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In Several Complex Variables and Complex Geometry, a fundamental prob-
lem is to solve the Cauchy-Riemann equations.
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In Several Complex Variables and Complex Geometry, a fundamental prob-
lem is to solve the Cauchy-Riemann equations.

Let D be a domian in C™. Study the existence and regularity of
Ou=f in D.

Here 0 < p < n, 1 < g <mn, fisa (p,q) form satisfying the solvable
condition:
0f =0 in D.
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If D is a bounded pseudoconvex domain and f € Lgp ’Q)(D). Then there
exits a w with ||ul|r2 < ¢4l fl| 2.
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One also wants to know what kind of regularity can u have when f has
higher regularities. Kohn obtained the following global regularity theorem
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If D is a bounded pseudoconvex domain and f € LY “D(D). Then there
exits a w with ||ul|r2 < ¢4l fl| 2.

One also wants to know what kind of regularity can u have when f has
higher regularities. Kohn obtained the following global regularity theorem

Theorem ( J. Kohn 1973)

Let D be a bounded pseudoconvex domain in C" (n > 2) with smooth
boundary. For every f € C° (D), there exists au € C>° . (D) such

_ (p.2) (p,a—1)
that Ou = f.
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Kohn also raised the following local version regularity problem:
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Kohn also raised the following local version regularity problem:

Problem

Let D be a bounded smooth pseudoconvex domain in C™. Suppose that
Ou= f with df =0and f € C(Olfq)(U N D) for some neighborhood U.
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Kohn also raised the following local version regularity problem:

Problem

Let D be a bounded smooth pseudoconvex domain in C™. Suppose that
Ou= f with df =0and f € C(Olfq)(U N D) for some neighborhood U.

(1). Is there such a u satisfies u € Dom(9) N Cora—nU N D)?
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Kohn also raised the following local version regularity problem:

Problem

Let D be a bounded smooth pseudoconvex domain in C™. Suppose that
Ou= f with df =0and f € C(Olfq)(U N D) for some neighborhood U.

(1). Is there such a u satisfies u € Dom(9) N Cora—nU N D)?

(2). Is the canonical solution u satisfies w € Dom/(9) N C&?q—l)(U N D)?

Kohn, Catlin: In general, the answer is NEGATIVE.
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Kohn also raised the following local version regularity problem:

Problem

Let D be a bounded smooth pseudoconvex domain in C™. Suppose that
Ou= f with df =0and f € C(Olfq)(U N D) for some neighborhood U.

(1). Is there such a u satisfies u € Dom(9) N Cora—nU N D)?

(2). Is the canonical solution u satisfies w € Dom/(9) N C&f’q_l)(U N D)?

Kohn, Catlin: In general, the answer is NEGATIVE.

Kohn-Nirenberg: The answer is POSITIVE if the domain has subelliptic
estimates.
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J. Kohn(1963):

When D is strongly pseudoconvex, we have the subelliptic estimates:
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J. Kohn(1963):

When D is strongly pseudoconvex, we have the subelliptic estimates:
For f € Dom(8) N Dom(d"). Then

- , 1
LFIE < NOLIF + 10 FI7 + I F11* with e = 5.
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J. Kohn (1972):

When M C C?, we have the following invariants (which we will define these
conditions explicitly for the general dimensional case.)
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When M C C?, we have the following invariants (which we will define these
conditions explicitly for the general dimensional case.)

@ contact order by regular holomorphic curves a(l)(M, D),
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conditions explicitly for the general dimensional case.)

@ contact order by regular holomorphic curves a(l)(M, D),

@ iterated Lie brackets t() (M, p),
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J. Kohn (1972):

When M C C?, we have the following invariants (which we will define these
conditions explicitly for the general dimensional case.)

© contact order by regular holomorphic curves a'V) (M, p),
@ iterated Lie brackets t() (M, p),

O the degeneracy of the Levi form ¢(V)(M, p),
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J. Kohn (1972):

When M C C?, we have the following invariants (which we will define these
conditions explicitly for the general dimensional case.)

@ contact order by regular holomorphic curves a(l)(M, D),
@ iterated Lie brackets t() (M, p),
O the degeneracy of the Levi form ¢(V)(M, p),

@ contact order by holomorphic curves A (M, p).
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J. Kohn (1972):

e Theorem: o) (M, p) =t (M, p) = D (M, p) = Ay (M, p).
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J. Kohn (1972):

e Theorem: o) (M, p) =t (M, p) = D (M, p) = Ay (M, p).

@ pseudoconvexity is not necessary in the theorem.
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J. Kohn (1972):

e Theorem: o) (M, p) =t (M, p) = D (M, p) = Ay (M, p).
@ pseudoconvexity is not necessary in the theorem.

@ When M is pseudoconvex, these invariants = m if and only if
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J. Kohn (1972):

e Theorem: o) (M, p) =t (M, p) = D (M, p) = Ay (M, p).
@ pseudoconvexity is not necessary in the theorem.

@ When M is pseudoconvex, these invariants = m if and only if
(1) subelliptic estimates holds (for ¢ = 1 [Rothschild-Stein 1976]), but
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J. Kohn (1972):

e Theorem: o) (M, p) =t (M, p) = D (M, p) = Ay (M, p).
@ pseudoconvexity is not necessary in the theorem.

@ When M is pseudoconvex, these invariants = m if and only if
(1) subelliptic estimates holds (for ¢ = 1 [Rothschild-Stein 1976]), but
(2) (Greiner 1974) for no large value of e.
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Generalization of Kohn's notion of the boundary finite type condition to
higher dimensions has been a subject under extensive investigations in the
past 40 years in Several Complex Variables.
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Generalization of Kohn's notion of the boundary finite type condition to
higher dimensions has been a subject under extensive investigations in the
past 40 years in Several Complex Variables.

@ Kohn's finite type condition through the subelliptic multiplier ideals

@ regular finite type (of Bloom-Graham)

o Catlin multitype type
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Generalization of Kohn's notion of the boundary finite type condition to
higher dimensions has been a subject under extensive investigations in the
past 40 years in Several Complex Variables.

Kohn's finite type condition through the subelliptic multiplier ideals
regular finite type (of Bloom-Graham)

Catlin multitype type

D’Angelo finite type
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Generalization of Kohn's notion of the boundary finite type condition to
higher dimensions has been a subject under extensive investigations in the
past 40 years in Several Complex Variables.

Kohn's finite type condition through the subelliptic multiplier ideals
regular finite type (of Bloom-Graham)

Catlin multitype type

D’Angelo finite type
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T. Bloom (1981):

When M C C™. For each integer 1 < s < n—1, we can define corresponding
integer invaiants a®) (M, p), ) (M, p) and ¢*)(M, p) as follows.
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T. Bloom (1981):

When M C C™. For each integer 1 < s < n—1, we can define corresponding
integer invaiants a®) (M, p), ) (M, p) and ¢*)(M, p) as follows.

(i): The s-contact type a(®) (M, p):

a'® (M, p) = sup {r| 3 an s-dimensional complex submanifold X
X

whose order of vanishing of p|x at p is r}.

Wanke Yin
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T. Bloom (1981):

(ii) The s-vector field type t(*)(M, p):

Wanke Yin Finite type conditions Nice, Dec. 8 th 11 /35



T. Bloom (1981):

(ii) The s-vector field type t(*)(M, p):

Let B be an s-dimensional subbundle of T10M. We let M;(B) be the
C>°(M)-module spanned by the smooth tangential (1,0) vector fields L
with L|, € B|, for each ¢ € M, together with the conjugate of these vector
fields.
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T. Bloom (1981):

(ii) The s-vector field type t(*)(M, p):

Let B be an s-dimensional subbundle of T10M. We let M;(B) be the
C>°(M)-module spanned by the smooth tangential (1,0) vector fields L
with L|, € B|, for each ¢ € M, together with the conjugate of these vector
fields.

For 1 > 1, we let M, (B) denote the C°° (M )-module spanned by com-
mutators of length less than or equal to u of vector fields from M;(B). A
commutator of length p of vector fields in M;(B) is a vector field of the
following form: [V}, [Y,—1,---,[Y¥2,Y1]---]. Here Y; € M (B).
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T. Bloom (1981):

Define t)(B,p) = m if (F,dp)(p) = 0 for any F € M,,_1(B) but
(G,9p)(p) # 0 for a certain G € M,,(B). Then
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T. Bloom (1981):

Define t)(B,p) = m if (F,dp)(p) = 0 for any F € M,,_1(B) but
(G,9p)(p) # 0 for a certain G € M,,(B). Then

t)(M, p) = sup{t(B,p)| B is an s-dimensional subbundle of T'CM}.
B
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T. Bloom (1981):

Define t)(B,p) = m if (F,dp)(p) = 0 for any F € M,,_1(B) but
(G,9p)(p) # 0 for a certain G € M,,(B). Then

t)(M, p) = sup{t(B,p)| B is an s-dimensional subbundle of T'CM}.
B

t()(B,p) is the smallest length of the commutators by vector fields in
M (B) to recover the complex contact direction in CT}, M. t) (M, p) is the

largest possible value among all t(*)(B, p)’s. Namely, t(*)(M, p) describes
the most degenerate s-subbundle of TV,

Wanke Yin
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T. Bloom (1981):

(iii) The s-type of the Levi form ¢(*)(M, p):
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T. Bloom (1981):

(iii) The s-type of the Levi form ¢(*)(M, p):

Let B be as in (ii). Let Ly, be a Levi form associated with a defining
function p near p of M. For Vg = {Ly,---, Ls}, a basis of smooth sections
of B near p, we define the trace of L), along Vg by
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T. Bloom (1981):

(iii) The s-type of the Levi form ¢(*)(M, p):

Let B be as in (ii). Let Ly, be a Levi form associated with a defining
function p near p of M. For Vg = {Ly,---, Ls}, a basis of smooth sections
of B near p, we define the trace of L), along Vg by

s

vy Larp = S (L T3, 09) ().

j=1
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T. Bloom (1981):

We define ¢(Vp,p) = m if for any m — 3 vector fields Fy,--- , F,,_3 of
M (B), and any basis of sections of B, it holds that

Fi Pt £1y) () = 0
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T. Bloom (1981):

We define ¢(Vp,p) = m if for any m — 3 vector fields Fy,--- , F,,_3 of
M (B), and any basis of sections of B, it holds that

Fi Pt £1y) () = 0

and for a certain choice of m — 2 vector fields G1,--- ,Gy—2 of My (B),
and a certain choice of sections of B, we have

G+ Gmoa(trv Larp) (p) # 0.
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T. Bloom (1981):

We define ¢(Vp,p) = m if for any m — 3 vector fields Fy,--- , F,,_3 of
M (B), and any basis of sections of B, it holds that

Fi Pt £1y) () = 0

and for a certain choice of m — 2 vector fields G1,--- ,Gy—2 of My (B),
and a certain choice of sections of B, we have

Gi- G2 (trVBL’M,p) (p) 7é 0.
Then

(M, p) = sup{c(Vs,p) : B is an s-dimensional subbundle of T"*M/}.
B
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@ The first invariant is more of algebraic, comparatively more easily to
compute
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@ The first invariant is more of algebraic, comparatively more easily to
compute

@ The second is defined in a way more of differential geometry
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@ The first invariant is more of algebraic, comparatively more easily to
compute

@ The second is defined in a way more of differential geometry

@ The third invariant is defined by the degeneracy of the Levi form, it is
always more easily to be applied.
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o Bloom-Graham (1977): o~V (M, p) =t~V (M, p).
o Bloom (1978): o(»V(M,p) = "D (M, p).
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o Bloom-Graham (1977): o~V (M, p) =t~V (M, p).
o Bloom (1978): o(»V(M,p) = "D (M, p).

@ Bloom (1981): For any 1 < s < n — 1, a®(M,p) < t®(M,p),
al®) (M, p) < (M, p).
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o Bloom-Graham (1977): o~V (M, p) =t~V (M, p).
o Bloom (1978): o(»V(M,p) = "D (M, p).

@ Bloom (1981): For any 1 < s < n — 1, a®(M,p) < t®(M,p),
al®) (M, p) < (M, p).

For these results, pseudo-convexity is not necessary.
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T. Bloom 1981

o Conjecture: When M is pseudo-convex, for 1 < s < n—1, a'® (M, p) =
t)(M, p) = (M, p).
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T. Bloom 1981

o Conjecture: When M is pseudo-convex, for 1 < s < n—1, a'® (M, p) =
t)(M, p) = (M, p).

@ pseudo-convexity is necessary in this conjecture:

Wanke Yin Finite type conditions Nice, Dec. 8 th 17 / 35



T. Bloom 1981

o Conjecture: When M is pseudo-convex, for 1 < s < n—1, a'® (M, p) =
t)(M, p) = (M, p).

@ pseudo-convexity is necessary in this conjecture:
Let p = 2Re(w) + (22 + Z3 + [21/?)? and let M = {(z1,20,w) €
C3| p=0}. Let p = (0,0,0). Then a(V(M,p) = 4 but ¢V (M, p) =
tM(M,p) = oo .
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T. Bloom 1981

o Conjecture: When M is pseudo-convex, for 1 < s < n—1, a'® (M, p) =
t)(M, p) = (M, p).

@ pseudo-convexity is necessary in this conjecture:

Let p = 2Re(w) + (22 + Z3 + [21/?)? and let M = {(z1,20,w) €
C3| p=0}. Let p = (0,0,0). Then a(V(M,p) = 4 but ¢V (M, p) =
tM(M,p) = oo .

o When M c C3, oV (M,p) = (M, p).
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Huang-Y. (2021): When M is pseudo-convex,
"D (M, p) = 102 (M, p) = "2 (M, p).

In particular, this gives a complete solution for n = 3.
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Huang-Y. (2021): When M is pseudo-convex,
"D (M, p) = 102 (M, p) = "2 (M, p).
In particular, this gives a complete solution for n = 3.

Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form
at p has only one degenerate eigenvalue. Then o) (M, p) = tM) (M, p) =
(M, p).
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Huang-Y. (2021): When M is pseudo-convex,
"D (M, p) = "D (M, p) = "D (M, p).
In particular, this gives a complete solution for n = 3.

Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form
at p has only one degenerate eigenvalue. Then o) (M, p) = tM) (M, p) =
D (M, p).

(In this case, a®) (M, p) = ¢ (M, p) is due to Abdallah TALHAOUI (1983))
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A Conjecture of D'Angelo (1986)

Suppose M is pseudoconvex. Then for any fixed (1,0) tangent vector field
L, we have tM (L, p) = cW(L, p).
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A Conjecture of D'Angelo (1986)

Suppose M is pseudoconvex. Then for any fixed (1,0) tangent vector field
L, we have tM (L, p) = cW(L, p).

D’Angelo 1986: t(")(L,p) = 4 if and only if ¢(V)(L,p) = 4.
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A Conjecture of D'Angelo (1986)

Suppose M is pseudoconvex. Then for any fixed (1,0) tangent vector field
L, we have tM (L, p) = cW(L, p).

D’Angelo 1986: t(")(L,p) = 4 if and only if ¢(V)(L,p) = 4.
Chen-Y.-Yuan 2020: t") (L, p) = ¢(D(L,p) if n = 3.
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A Conjecture of D'Angelo (1986)

Suppose M is pseudoconvex. Then for any fixed (1,0) tangent vector field
L, we have tM (L, p) = cW(L, p).

D’Angelo 1986: t(")(L,p) = 4 if and only if ¢(V)(L,p) = 4.
Chen-Y.-Yuan 2020: t") (L, p) = ¢(D(L,p) if n = 3.

Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form
at p has only one degenerate eigenvalue. Then, for any fixed (1,0) tangent
vector field L, we have tM) (L, p) = ¢(D(L, p).
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The D’'Angelo finite type

The first D'Angelo finite type:

AOLO) = s PET)
2:(C,0)—(C",z0) /’L(Z)
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The D’'Angelo finite type

The first D'Angelo finite type:

AOLO) = s PET)
2:(C,0)—(C",z0) /’L(Z)

The general D'Angelo finite type:

Ay(M,0) = inf A1 (¢*M,0).
(M 0)= L AETM0)

Here ¢ : (C"~9T10) — (C™, 2) is a linear embedding.
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The D’'Angelo finite type

The first D'Angelo finite type:

AMO) = s MET)
2:(C,0)—(C",z0) /’L(Z)

The general D'Angelo finite type:

Ay(M,0) = inf A1 (¢*M,0).
(M 0)= L AETM0)

Here ¢ : (C"~9T10) — (C™, 2) is a linear embedding.

When z is required to be regular, this is exactly the regular finite type.
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The Catlin multitype

Let T',, denote the set of all n—tuple of numbers A = (Ay,---,\,) with
1 <\ <oosuchthat Ay < -+ <\,
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The Catlin multitype

Let T',, denote the set of all n—tuple of numbers A = (Ay,---,\,) with
1 <\ <oosuchthat Ay < -+ <\,
I';, is called a weight if for each k, either Ay, = +o0 or there is a set of

nonnegative integers aq, - -- ,ap with a; > 0 such that Z )\—7 =

Wanke Yin Finite type conditions Nice, Dec. 8 th 21 /35



The Catlin multitype

Let T',, denote the set of all n—tuple of numbers A = (Ay,---,\,) with
1 <\ <oosuchthat Ay < -+ <\,
I';, is called a weight if for each k, either Ay, = +o0 or there is a set of

nonnegative integers aq, - -- ,ap with a; > 0 such that Z a] =
j=1

Order of the weights: Let A’ = (\],---,)\,) and A" = ()\’1/, A
A" < A’ if for some k, N\ = A for j < k and A\j < A}
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The Catlin multitype

A weight A € T, is said to be distinguished if there exist holomorphic

coordinates (zy,- -, z,) about zy with zp mapped to the origin such that
n n
ZDO‘Dﬁp(zo) =0 for Z %T% < 1.
j=1 j=1 J
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The Catlin multitype

A weight A € T, is said to be distinguished if there exist holomorphic

coordinates (z1,- -, 2z,) about zy with zyp mapped to the origin such that
n n
N o+ ﬁ
D*D?B =0 fi —— <.
Z p(z0) or Z by
7=1 7=1
The multitype M (zp) is defined to be the smallest (my,--- ,m,) € I';, such

that for every distinguished weight A, we have M(zp) > A.
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The Catlin multitype

A weight A € T, is said to be distinguished if there exist holomorphic

coordinates (z1,- -, 2z,) about zy with zyp mapped to the origin such that
n n
N o+ ﬁ
D*D?B =0 fi —— <.
Z p(z0) or Z by
7=1 7=1
The multitype M (zp) is defined to be the smallest (my,--- ,m,) € I';, such

that for every distinguished weight A, we have M(zp) > A.

Notice that the Catlin multitype has a equivalent description by means of
the degeneracy of the Levi form (in some sense) similar to the definition of
) (M, p), which is crucial to Catlin's solution of Kohn's subelliptic esti-
mates problem.
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Relation between these invariants

Example: Let M C C* be a real hypersurface defined by

r=—2mw+ |z [* + |z %|22)? + |21|23]® + |22 — 23|%.
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Relation between these invariants

Example: Let M C C* be a real hypersurface defined by

r=—2mw+ |z [* + |z %|22)? + |21|23]® + |22 — 23|%.

The Caltin multitypes at 0 are 4, 4, 4,
The Bloom regular contact types are 4, 8, 12,

The D’Angelo finite types are 4, 8, +o0.
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Relation between these invariants

Yu 1992: When D is convex and M = 0D, then Caltin multi-type=D’Angelo
finite type.
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Relation between these invariants

Yu 1992: When D is convex and M = 0D, then Caltin multi-type=D’Angelo
finite type.

Fu-lsaev-Krantz 1998: When D is a Reinhardt domain and M = 90D,

then regular multi-type a'=D’Angelo finite type A;, Caltin multitype and
D’Angelo finite type may be different.
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Relation between these invariants

Yu 1992: When D is convex and M = 0D, then Caltin multi-type=D’Angelo
finite type.

Fu-lsaev-Krantz 1998: When D is a Reinhardt domain and M = 90D,

then regular multi-type a'=D’Angelo finite type A;, Caltin multitype and
D’Angelo finite type may be different.

It seems to me that the Bloom Conjecture for the boundary of a
convex domain is also unknown.
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Kohn's finite ideal type

As before, let D be a smooth pseudoconvex domain in C™. zg € M = bD.
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Kohn's finite ideal type

As before, let D be a smooth pseudoconvex domain in C™. zg € M = bD.

Denote by I%(x) the set of germs of multipliers satisfying the following:

3 a neighborhood U of xg, f € C§°(U N D) such that there are C,e > 0
for which

£81112 < C9]1% + 1107 ¢II*)
for all ¢ € DP9 (U N D).
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Kohn's finite ideal type

J. Kohn inductively defined the ideals I}}(z) as follows:

I(z) = D\R/r, coef f{Or N Or A (90r)"—1}.

I (x0) \/Iq (z0),coef f{Dfr A+ NOfj ANOr AOr A (9dr)r—a-i}.

Here f1,--- ,fj S Ig(xo).

Wanke Yin Finite type conditions Nice, Dec. 8 th 26 / 35



Kohn's finite ideal type

J. Kohn inductively defined the ideals I}}(z) as follows:

I(z) = D\R/r, coef f{Or N Or A (90r)"—1}.

I (x0) \/Iq (z0),coef f{Dfr A+ NOfj ANOr AOr A (9dr)r—a-i}.
Here f1, s ,fj S Ig(xo).

We say x is of finite ideal type with respect to (p,q) forms if there is a
integer k such that 1 € I](z).
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Back to the subelliptic estimates

Theorem (J. Kohn 1979:)

Let D be a pseudoconvex domain in C™ with real analytic boundary. Then
1 € Il (zo) if and only if Ag(M, z¢) < co.
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Back to the subelliptic estimates

Theorem (J. Kohn 1979:)

Let D be a pseudoconvex domain in C™ with real analytic boundary. Then
1 € Il (zo) if and only if Ag(M, z¢) < co.

v

Theorem (D. Catlin 1987:)

Let D be a pseudoconvex domain in C" with smooth boundary. Then
subelliptic estimates holds for (p, q) forms if and only if Aq(M, zg) < 0.
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Effectiveness

Let the domain is defined by

r=2Re(w) + |f1(2)]> + - + | fm(2)|?, which is of D'Angelo finite type at
the boundary point xg.
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Effectiveness

Let the domain is defined by
r=2Re(w) + |f1(2)]> + - + | fm(2)|?, which is of D'Angelo finite type at
the boundary point xg.

Siu(2010,2017): 1 € I.(zp) with some € bounded by constant depends on
the finite type.

Kim-Zaitsev (2021): give a explicit effective bound.

Nice, Dec. 8 th 28 / 35
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Sketch of the proof for n = 3

e Find sone special L € TMO M’ with M’ another pseudoconvex hy-
persurface and L with weighted homogeneous coefficients.
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Sketch of the proof for n = 3

e Find sone special L € TMO M’ with M’ another pseudoconvex hy-
persurface and L with weighted homogeneous coefficients.

@ By the Nagano theorem, the Lie algebra generated by Re(L), ImL and
their Lie brackets gives a unique homogeneous integral submanifold N°.
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e Find sone special L € TMO M’ with M’ another pseudoconvex hy-
persurface and L with weighted homogeneous coefficients.

@ By the Nagano theorem, the Lie algebra generated by Re(L), ImL and
their Lie brackets gives a unique homogeneous integral submanifold N°.

@ The given condition means that the T direction is always transversal
to N0 at any point of NY. Hence the dimension of N° must be 3 or 4.
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Sketch of the proof for n = 3

e Find sone special L € TMO M’ with M’ another pseudoconvex hy-
persurface and L with weighted homogeneous coefficients.

@ By the Nagano theorem, the Lie algebra generated by Re(L), ImL and
their Lie brackets gives a unique homogeneous integral submanifold N°.

@ The given condition means that the T direction is always transversal
to N0 at any point of NY. Hence the dimension of N° must be 3 or 4.

o Comparing with Bloom's proof of ) (M, 0) = ¢ (M, 0), we need to
replace two deep theorems by K. Diederich and J. Fornaess (Annals,
1978).

Wanke Yin Finite type conditions Nice, Dec. 8 th 29 / 35



Sketch of the proof

Theorem 1: Let S be a C2-submanifold of a pseudoconvex C*-hypersurface
M C C™. Let X,Y be C'-vector fields on S with values in TVS. Then
the vector field [X, Y] also has values in T™VS along S.

For all p € S,

TNS={X €T,S: X =ReY, Y € T"YM, 99p(Y,Y)(p) = 0}.

Wanke Yin
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Sketch of the proof

Theorem 2: Let M C C" be a pseudoconvex C*° hypersurface with 0 € M
and S C M a C°°—CR submanifold, 0 € S, with the following properties:
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Sketch of the proof

Theorem 2: Let M C C" be a pseudoconvex C*° hypersurface with 0 € M
and S C M a C°°—CR submanifold, 0 € S, with the following properties:
o S cC1x{0}, rank T = ¢, dimpS = 2¢ 47 with g +r =n—1.
e ITS=TNS
o By taking subsequent brackets of C*° vector fields with values in 7S
one generates the whole tangent bundle T'S.
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Sketch of the proof

Theorem 2: Let M C C" be a pseudoconvex C*° hypersurface with 0 € M
and S C M a C°°—CR submanifold, 0 € S, with the following properties:
o S cC1x{0}, rank T = ¢, dimpS = 2¢ 47 with g +r =n—1.
e ITS=TNS
o By taking subsequent brackets of C*° vector fields with values in 7S

one generates the whole tangent bundle T'S.

Then in any neighborhood of 0, there is a relatively open set U on M such
that C"~! x {0} is tangent to bM of infinite order at all points z € U.
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Sketch of the proof

Theorem 1': Let N be a real analytic hypersurface in C*~! with 0 € N
with n > 3. Let p(z,%) be a real analytic plurisubharmonic function with
p = O(|2]?) as z — 0 defined over a neighborhood of C"~!. Assume that N

is of finite type in the sense of Homander—Bloom-Graham and N C {p = 0}.
Then p = 0.
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Sketch of the proof

Theorem 2': Define the weight of z; and Z7 to be 1, the weight of 2z
and z3 to be k € N with & > 1. Let A = A(z1,%1) be a homogenous
polynomial of degree k — 1 in (21, z1) without holomorphic terms. Suppose
that f is a weighted homogeneous polynomial in (z,Z) of weighted degree
m > k. Further assume that Re(f) is plurisubharmonic, contains no non-
trivial holomorphic terms and assume that f satisfies the following equation:

f=5(2,2) + A(z1,71) fz(2,2) = 0. (0.1)

Then Re(f) = 0.
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The main difficulties

Suppose the hypersurface M is defined by » = 0 and a real submanifold NV
is defined by p1 =--- = pp, = 0.
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The main difficulties

Suppose the hypersurface M is defined by » = 0 and a real submanifold N
is defined by p1 =--- = pp, = 0.

@ In Diederich-Fornaess's Theorem, the problem is reduced to :
N CR manifold and (21, , 2,-1,0) = O(|p|?).
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is defined by p1 =--- = pp, = 0.

@ In Diederich-Fornaess's Theorem, the problem is reduced to :
N CR manifold and (21, , 2,-1,0) = O(|p|?).

@ In Theorem 1’, the problem is reduced to
N CR manifold of finite type and 7(z1,--- , z,—1,0) = O(|p]).
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is defined by p1 =--- = pp, = 0.

@ In Diederich-Fornaess's Theorem, the problem is reduced to :
N CR manifold and (21, , 2,-1,0) = O(|p|?).

@ In Theorem 1’, the problem is reduced to
N CR manifold of finite type and 7(z1,--- , z,—1,0) = O(|p]).

@ In Theorem 2’, we need to solve a PDE with the real part plurisubhar-
monic.
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The main difficulties

Suppose the hypersurface M is defined by » = 0 and a real submanifold N
is defined by p1 =--- = pp, = 0.

@ In Diederich-Fornaess's Theorem, the problem is reduced to :
N CR manifold and (21, , 2,-1,0) = O(|p|?).

@ In Theorem 1’, the problem is reduced to
N CR manifold of finite type and 7(z1,--- , z,—1,0) = O(|p]).

@ In Theorem 2’, we need to solve a PDE with the real part plurisubhar-
monic.

@ For higher dimensional case, we have to deal with the case:
N CR-singular manifold and r(z1,- -, 2,-1,0)|n satisfies some PDE
but is non-zero.
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Thank you for your attention!
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