Finite type conditions for real hypersurfaces in \mathbb{C}^{n}

Wanke Yin
Joint works with Xiaojun Huang etc.

School of Mathematics and Statistics, Wuhan University

Nice, Dec. 8 th

Finite type conditions for real hypersurfaces in \mathbb{C}^{n}

Wanke Yin
Joint works with Xiaojun Huang etc.

School of Mathematics and Statistics, Wuhan University

Nice, Dec. 8 th

In Several Complex Variables and Complex Geometry, a fundamental problem is to solve the Cauchy-Riemann equations.

In Several Complex Variables and Complex Geometry, a fundamental problem is to solve the Cauchy-Riemann equations.

Let D be a domian in \mathbb{C}^{n}. Study the existence and regularity of

$$
\bar{\partial} u=f \quad \text { in } D .
$$

Here $0 \leq p \leq n, 1 \leq q \leq n, f$ is a (p, q) form satisfying the solvable condition:

$$
\bar{\partial} f=0 \quad \text { in } \quad D
$$

Theorem

If D is a bounded pseudoconvex domain and $f \in L_{2}^{(p, q)}(D)$. Then there exits a u with $\|u\|_{L^{2}} \leq c_{q}\|f\|_{L^{2}}$.

Theorem

If D is a bounded pseudoconvex domain and $f \in L_{2}^{(p, q)}(D)$. Then there exits a u with $\|u\|_{L^{2}} \leq c_{q}\|f\|_{L^{2}}$.

One also wants to know what kind of regularity can u have when f has higher regularities. Kohn obtained the following global regularity theorem

Theorem

If D is a bounded pseudoconvex domain and $f \in L_{2}^{(p, q)}(D)$. Then there exits a u with $\|u\|_{L^{2}} \leq c_{q}\|f\|_{L^{2}}$.

One also wants to know what kind of regularity can u have when f has higher regularities. Kohn obtained the following global regularity theorem

Theorem (J. Kohn 1973)

Let D be a bounded pseudoconvex domain in $\mathbb{C}^{n}(n \geq 2)$ with smooth boundary. For every $f \in C_{(p, q)}^{\infty}(\bar{D})$, there exists a $u \in C_{(p, q-1)}^{\infty}(\bar{D})$ such that $\bar{\partial} u=f$.

Kohn also raised the following local version regularity problem:

Kohn also raised the following local version regularity problem:

Problem

Let D be a bounded smooth pseudoconvex domain in \mathbb{C}^{n}. Suppose that $\bar{\partial} u=f$ with $\bar{\partial} f=0$ and $f \in C_{(p, q)}^{\infty}(U \cap \bar{D})$ for some neighborhood U.

Kohn also raised the following local version regularity problem:

Problem

Let D be a bounded smooth pseudoconvex domain in \mathbb{C}^{n}. Suppose that $\bar{\partial} u=f$ with $\bar{\partial} f=0$ and $f \in C_{(p, q)}^{\infty}(U \cap \bar{D})$ for some neighborhood U.
(1). Is there such a u satisfies $u \in \operatorname{Dom}(\bar{\partial}) \cap C_{(p, q-1)}^{\infty}(U \cap \bar{D})$?

Kohn also raised the following local version regularity problem:

Problem

Let D be a bounded smooth pseudoconvex domain in \mathbb{C}^{n}. Suppose that $\bar{\partial} u=f$ with $\bar{\partial} f=0$ and $f \in C_{(p, q)}^{\infty}(U \cap \bar{D})$ for some neighborhood U.
(1). Is there such a u satisfies $u \in \operatorname{Dom}(\bar{\partial}) \cap C_{(p, q-1)}^{\infty}(U \cap \bar{D})$?
(2). Is the canonical solution u satisfies $u \in \operatorname{Dom}(\bar{\partial}) \cap C_{(p, q-1)}^{\infty}(U \cap \bar{D})$?

Kohn also raised the following local version regularity problem:

Problem

Let D be a bounded smooth pseudoconvex domain in \mathbb{C}^{n}. Suppose that $\bar{\partial} u=f$ with $\bar{\partial} f=0$ and $f \in C_{(p, q)}^{\infty}(U \cap \bar{D})$ for some neighborhood U.
(1). Is there such a u satisfies $u \in \operatorname{Dom}(\bar{\partial}) \cap C_{(p, q-1)}^{\infty}(U \cap \bar{D})$?
(2). Is the canonical solution u satisfies $u \in \operatorname{Dom}(\bar{\partial}) \cap C_{(p, q-1)}^{\infty}(U \cap \bar{D})$?

Kohn, Catlin: In general, the answer is NEGATIVE.

Kohn also raised the following local version regularity problem:

Problem

Let D be a bounded smooth pseudoconvex domain in \mathbb{C}^{n}. Suppose that $\bar{\partial} u=f$ with $\bar{\partial} f=0$ and $f \in C_{(p, q)}^{\infty}(U \cap \bar{D})$ for some neighborhood U.
(1). Is there such a u satisfies $u \in \operatorname{Dom}(\bar{\partial}) \cap C_{(p, q-1)}^{\infty}(U \cap \bar{D})$?
(2). Is the canonical solution u satisfies $u \in \operatorname{Dom}(\bar{\partial}) \cap C_{(p, q-1)}^{\infty}(U \cap \bar{D})$?

Kohn, Catlin: In general, the answer is NEGATIVE.
Kohn-Nirenberg: The answer is POSITIVE if the domain has subelliptic estimates.

J. Kohn(1963):

When D is strongly pseudoconvex, we have the subelliptic estimates:

J. Kohn(1963):

When D is strongly pseudoconvex, we have the subelliptic estimates: For $f \in \operatorname{Dom}(\bar{\partial}) \cap \operatorname{Dom}\left(\bar{\partial}^{*}\right)$. Then

$$
\|f\|_{\epsilon}^{2} \leq\|\partial f\|^{2}+\left\|\bar{\partial}^{*} f\right\|^{2}+\|f\|^{2} \text { with } \epsilon=\frac{1}{2} .
$$

J. Kohn (1972):

When $M \subset \mathbb{C}^{2}$, we have the following invariants (which we will define these conditions explicitly for the general dimensional case.)

J. Kohn (1972):

When $M \subset \mathbb{C}^{2}$, we have the following invariants (which we will define these conditions explicitly for the general dimensional case.)
(1) contact order by regular holomorphic curves $a^{(1)}(M, p)$,

J. Kohn (1972):

When $M \subset \mathbb{C}^{2}$, we have the following invariants (which we will define these conditions explicitly for the general dimensional case.)
(1) contact order by regular holomorphic curves $a^{(1)}(M, p)$,
(2) iterated Lie brackets $t^{(1)}(M, p)$,

J. Kohn (1972):

When $M \subset \mathbb{C}^{2}$, we have the following invariants (which we will define these conditions explicitly for the general dimensional case.)
(1) contact order by regular holomorphic curves $a^{(1)}(M, p)$,
(2) iterated Lie brackets $t^{(1)}(M, p)$,
(3) the degeneracy of the Levi form $c^{(1)}(M, p)$,

J. Kohn (1972):

When $M \subset \mathbb{C}^{2}$, we have the following invariants (which we will define these conditions explicitly for the general dimensional case.)
(1) contact order by regular holomorphic curves $a^{(1)}(M, p)$,
(2) iterated Lie brackets $t^{(1)}(M, p)$,
(3) the degeneracy of the Levi form $c^{(1)}(M, p)$,
(9) contact order by holomorphic curves $\Delta_{1}(M, p)$.

J. Kohn (1972):

- Theorem: $a^{(1)}(M, p)=t^{(1)}(M, p)=c^{(1)}(M, p)=\Delta_{1}(M, p)$.

J. Kohn (1972):

- Theorem: $a^{(1)}(M, p)=t^{(1)}(M, p)=c^{(1)}(M, p)=\Delta_{1}(M, p)$.
- pseudoconvexity is not necessary in the theorem.

J. Kohn (1972):

- Theorem: $a^{(1)}(M, p)=t^{(1)}(M, p)=c^{(1)}(M, p)=\Delta_{1}(M, p)$.
- pseudoconvexity is not necessary in the theorem.
- When M is pseudoconvex, these invariants $=m$ if and only if

J. Kohn (1972):

- Theorem: $a^{(1)}(M, p)=t^{(1)}(M, p)=c^{(1)}(M, p)=\Delta_{1}(M, p)$.
- pseudoconvexity is not necessary in the theorem.
- When M is pseudoconvex, these invariants $=m$ if and only if (1) subelliptic estimates holds (for $\epsilon=\frac{1}{m}$ [Rothschild-Stein 1976]), but

J. Kohn (1972):

- Theorem: $a^{(1)}(M, p)=t^{(1)}(M, p)=c^{(1)}(M, p)=\Delta_{1}(M, p)$.
- pseudoconvexity is not necessary in the theorem.
- When M is pseudoconvex, these invariants $=m$ if and only if (1) subelliptic estimates holds (for $\epsilon=\frac{1}{m}$ [Rothschild-Stein 1976]), but (2) (Greiner 1974) for no large value of ϵ.

Generalization of Kohn's notion of the boundary finite type condition to higher dimensions has been a subject under extensive investigations in the past 40 years in Several Complex Variables.

Generalization of Kohn's notion of the boundary finite type condition to higher dimensions has been a subject under extensive investigations in the past 40 years in Several Complex Variables.

- Kohn's finite type condition through the subelliptic multiplier ideals

Generalization of Kohn's notion of the boundary finite type condition to higher dimensions has been a subject under extensive investigations in the past 40 years in Several Complex Variables.

- Kohn's finite type condition through the subelliptic multiplier ideals
- regular finite type (of Bloom-Graham)

Generalization of Kohn's notion of the boundary finite type condition to higher dimensions has been a subject under extensive investigations in the past 40 years in Several Complex Variables.

- Kohn's finite type condition through the subelliptic multiplier ideals
- regular finite type (of Bloom-Graham)
- Catlin multitype type

Generalization of Kohn's notion of the boundary finite type condition to higher dimensions has been a subject under extensive investigations in the past 40 years in Several Complex Variables.

- Kohn's finite type condition through the subelliptic multiplier ideals
- regular finite type (of Bloom-Graham)
- Catlin multitype type
- D'Angelo finite type

Generalization of Kohn's notion of the boundary finite type condition to higher dimensions has been a subject under extensive investigations in the past 40 years in Several Complex Variables.

- Kohn's finite type condition through the subelliptic multiplier ideals
- regular finite type (of Bloom-Graham)
- Catlin multitype type
- D'Angelo finite type

T. Bloom (1981):

When $M \subset \mathbb{C}^{n}$. For each integer $1 \leq s \leq n-1$, we can define corresponding integer invaiants $a^{(s)}(M, p), t^{(s)}(M, p)$ and $c^{(s)}(M, p)$ as follows.

T. Bloom (1981):

When $M \subset \mathbb{C}^{n}$. For each integer $1 \leq s \leq n-1$, we can define corresponding integer invaiants $a^{(s)}(M, p), t^{(s)}(M, p)$ and $c^{(s)}(M, p)$ as follows.
(i): The s-contact type $a^{(s)}(M, p)$:
$a^{(s)}(M, p)=\sup _{X}\{r \mid \exists$ an s-dimensional complex submanifold X
whose order of vanishing of $\left.\rho\right|_{X}$ at p is $\left.r\right\}$.

T. Bloom (1981):

(ii) The s-vector field type $t^{(s)}(M, p)$:

T. Bloom (1981):

(ii) The s-vector field type $t^{(s)}(M, p)$:

Let B be an s-dimensional subbundle of $T^{1,0} M$. We let $\mathcal{M}_{1}(B)$ be the $C^{\infty}(M)$-module spanned by the smooth tangential $(1,0)$ vector fields L with $\left.\left.L\right|_{q} \in B\right|_{q}$ for each $q \in M$, together with the conjugate of these vector fields.
(ii) The s-vector field type $t^{(s)}(M, p)$:

Let B be an s-dimensional subbundle of $T^{1,0} M$. We let $\mathcal{M}_{1}(B)$ be the $C^{\infty}(M)$-module spanned by the smooth tangential $(1,0)$ vector fields L with $\left.\left.L\right|_{q} \in B\right|_{q}$ for each $q \in M$, together with the conjugate of these vector fields.
For $\mu \geq 1$, we let $\mathcal{M}_{\mu}(B)$ denote the $C^{\infty}(M)$-module spanned by commutators of length less than or equal to μ of vector fields from $\mathcal{M}_{1}(B)$. A commutator of length μ of vector fields in $\mathcal{M}_{1}(B)$ is a vector field of the following form: $\left[Y_{\mu},\left[Y_{\mu-1}, \cdots,\left[Y_{2}, Y_{1}\right] \cdots\right]\right.$. Here $Y_{j} \in \mathcal{M}_{1}(B)$.

T. Bloom (1981):

Define $t^{(s)}(B, p)=m$ if $\langle F, \partial \rho\rangle(p)=0$ for any $F \in \mathcal{M}_{m-1}(B)$ but $\langle G, \partial \rho\rangle(p) \neq 0$ for a certain $G \in \mathcal{M}_{m}(B)$. Then

T. Bloom (1981):

Define $t^{(s)}(B, p)=m$ if $\langle F, \partial \rho\rangle(p)=0$ for any $F \in \mathcal{M}_{m-1}(B)$ but $\langle G, \partial \rho\rangle(p) \neq 0$ for a certain $G \in \mathcal{M}_{m}(B)$. Then
$t^{(s)}(M, p)=\sup _{B}\left\{t(B, p) \mid B\right.$ is an s-dimensional subbundle of $\left.T^{1,0} M\right\}$.

T. Bloom (1981):

Define $t^{(s)}(B, p)=m$ if $\langle F, \partial \rho\rangle(p)=0$ for any $F \in \mathcal{M}_{m-1}(B)$ but $\langle G, \partial \rho\rangle(p) \neq 0$ for a certain $G \in \mathcal{M}_{m}(B)$. Then
$t^{(s)}(M, p)=\sup _{B}\left\{t(B, p) \mid B\right.$ is an s-dimensional subbundle of $\left.T^{1,0} M\right\}$.
$t^{(s)}(B, p)$ is the smallest length of the commutators by vector fields in $\mathcal{M}_{1}(B)$ to recover the complex contact direction in $\mathbb{C} T_{p} M . t^{(s)}(M, p)$ is the largest possible value among all $t^{(s)}(B, p)^{\prime} s$. Namely, $t^{(s)}(M, p)$ describes the most degenerate s-subbundle of $T^{1,0} M$.

T. Bloom (1981):

(iii) The s-type of the Levi form $c^{(s)}(M, p)$:

T. Bloom (1981):

(iii) The s-type of the Levi form $c^{(s)}(M, p)$:

Let B be as in (ii). Let $\mathcal{L}_{M, p}$ be a Levi form associated with a defining function ρ near p of M. For $V_{B}=\left\{L_{1}, \cdots, L_{s}\right\}$, a basis of smooth sections of B near p, we define the trace of $\mathcal{L}_{M, p}$ along V_{B} by

T. Bloom (1981):

(iii) The s-type of the Levi form $c^{(s)}(M, p)$:

Let B be as in (ii). Let $\mathcal{L}_{M, p}$ be a Levi form associated with a defining function ρ near p of M. For $V_{B}=\left\{L_{1}, \cdots, L_{s}\right\}$, a basis of smooth sections of B near p, we define the trace of $\mathcal{L}_{M, p}$ along V_{B} by

$$
\operatorname{tr}_{V_{B}} \mathcal{L}_{M, p}=\sum_{j=1}^{s}\left\langle\left[L_{j}, \overline{L_{j}}\right], \partial \rho\right\rangle(p) .
$$

T. Bloom (1981):

We define $c\left(V_{B}, p\right)=m$ if for any $m-3$ vector fields F_{1}, \cdots, F_{m-3} of $\mathcal{M}_{1}(B)$, and any basis of sections of B, it holds that

$$
F_{1} \cdots F_{m-3}\left(\operatorname{tr}_{V_{B}} \mathcal{L}_{M, p}\right)(p)=0
$$

T. Bloom (1981):

We define $c\left(V_{B}, p\right)=m$ if for any $m-3$ vector fields F_{1}, \cdots, F_{m-3} of $\mathcal{M}_{1}(B)$, and any basis of sections of B, it holds that

$$
F_{1} \cdots F_{m-3}\left(\operatorname{tr}_{V_{B}} \mathcal{L}_{M, p}\right)(p)=0
$$

and for a certain choice of $m-2$ vector fields G_{1}, \cdots, G_{m-2} of $\mathcal{M}_{1}(B)$, and a certain choice of sections of B, we have

$$
G_{1} \cdots G_{m-2}\left(\operatorname{tr}_{V_{B}} \mathcal{L}_{M, p}\right)(p) \neq 0
$$

T. Bloom (1981):

We define $c\left(V_{B}, p\right)=m$ if for any $m-3$ vector fields F_{1}, \cdots, F_{m-3} of $\mathcal{M}_{1}(B)$, and any basis of sections of B, it holds that

$$
F_{1} \cdots F_{m-3}\left(\operatorname{tr}_{V_{B}} \mathcal{L}_{M, p}\right)(p)=0
$$

and for a certain choice of $m-2$ vector fields G_{1}, \cdots, G_{m-2} of $\mathcal{M}_{1}(B)$, and a certain choice of sections of B, we have

$$
G_{1} \cdots G_{m-2}\left(\operatorname{tr}_{V_{B}} \mathcal{L}_{M, p}\right)(p) \neq 0
$$

Then
$c^{(s)}(M, p)=\sup _{B}\left\{c\left(V_{B}, p\right): B\right.$ is an s-dimensional subbundle of $\left.T^{1,0} M\right\}$.

- The first invariant is more of algebraic, comparatively more easily to compute
- The first invariant is more of algebraic, comparatively more easily to compute
- The second is defined in a way more of differential geometry
- The first invariant is more of algebraic, comparatively more easily to compute
- The second is defined in a way more of differential geometry
- The third invariant is defined by the degeneracy of the Levi form, it is always more easily to be applied.
- Bloom-Graham (1977): $a^{(n-1)}(M, p)=t^{(n-1)}(M, p)$.
- Bloom (1978): $a^{(n-1)}(M, p)=c^{(n-1)}(M, p)$.
- Bloom-Graham (1977): $a^{(n-1)}(M, p)=t^{(n-1)}(M, p)$.
- Bloom (1978): $a^{(n-1)}(M, p)=c^{(n-1)}(M, p)$.
- Bloom (1981): For any $1 \leq s \leq n-1, a^{(s)}(M, p) \leq t^{(s)}(M, p)$, $a^{(s)}(M, p) \leq c^{(s)}(M, p)$.
- Bloom-Graham (1977): $a^{(n-1)}(M, p)=t^{(n-1)}(M, p)$.
- Bloom (1978): $a^{(n-1)}(M, p)=c^{(n-1)}(M, p)$.
- Bloom (1981): For any $1 \leq s \leq n-1, a^{(s)}(M, p) \leq t^{(s)}(M, p)$, $a^{(s)}(M, p) \leq c^{(s)}(M, p)$.
For these results, pseudo-convexity is not necessary.

T. Bloom 1981

- Conjecture: When M is pseudo-convex, for $1 \leq s \leq n-1, a^{(s)}(M, p)=$ $t^{(s)}(M, p)=c^{(s)}(M, p)$.

T. Bloom 1981

- Conjecture: When M is pseudo-convex, for $1 \leq s \leq n-1, a^{(s)}(M, p)=$ $t^{(s)}(M, p)=c^{(s)}(M, p)$.
- pseudo-convexity is necessary in this conjecture:

T. Bloom 1981

- Conjecture: When M is pseudo-convex, for $1 \leq s \leq n-1, a^{(s)}(M, p)=$ $t^{(s)}(M, p)=c^{(s)}(M, p)$.
- pseudo-convexity is necessary in this conjecture:

$$
\begin{aligned}
& \text { Let } \rho=2 \operatorname{Re}(w)+\left(z_{2}+\overline{z_{2}}+\left|z_{1}\right|^{2}\right)^{2} \text { and let } M=\left\{\left(z_{1}, z_{2}, w\right) \in\right. \\
& \left.\mathbb{C}^{3} \mid \rho=0\right\} \text {. Let } p=(0,0,0) \text {. Then } a^{(1)}(M, p)=4 \operatorname{but} c^{(1)}(M, p)= \\
& t^{(1)}(M, p)=\infty \text {. }
\end{aligned}
$$

T. Bloom 1981

- Conjecture: When M is pseudo-convex, for $1 \leq s \leq n-1, a^{(s)}(M, p)=$ $t^{(s)}(M, p)=c^{(s)}(M, p)$.
- pseudo-convexity is necessary in this conjecture:

$$
\begin{aligned}
& \text { Let } \rho=2 \operatorname{Re}(w)+\left(z_{2}+\overline{z_{2}}+\left|z_{1}\right|^{2}\right)^{2} \text { and let } M=\left\{\left(z_{1}, z_{2}, w\right) \in\right. \\
& \left.\mathbb{C}^{3} \mid \rho=0\right\} \text {. Let } p=(0,0,0) \text {. Then } a^{(1)}(M, p)=4 \operatorname{but} c^{(1)}(M, p)= \\
& t^{(1)}(M, p)=\infty \text {. }
\end{aligned}
$$

- When $M \subset \mathbb{C}^{3}, a^{(1)}(M, p)=c^{(1)}(M, p)$.

Huang-Y. (2021): When M is pseudo-convex,

$$
a^{(n-2)}(M, p)=t^{(n-2)}(M, p)=c^{(n-2)}(M, p)
$$

In particular, this gives a complete solution for $n=3$.

Huang-Y. (2021): When M is pseudo-convex,

$$
a^{(n-2)}(M, p)=t^{(n-2)}(M, p)=c^{(n-2)}(M, p)
$$

In particular, this gives a complete solution for $n=3$.
Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form at p has only one degenerate eigenvalue. Then $a^{(1)}(M, p)=t^{(1)}(M, p)=$ $c^{(1)}(M, p)$.

Huang-Y. (2021): When M is pseudo-convex,

$$
a^{(n-2)}(M, p)=t^{(n-2)}(M, p)=c^{(n-2)}(M, p)
$$

In particular, this gives a complete solution for $n=3$.
Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form at p has only one degenerate eigenvalue. Then $a^{(1)}(M, p)=t^{(1)}(M, p)=$ $c^{(1)}(M, p)$.
(In this case, $a^{(1)}(M, p)=c^{(1)}(M, p)$ is due to Abdallah TALHAOUI (1983))

A Conjecture of D'Angelo (1986)

Suppose M is pseudoconvex. Then for any fixed $(1,0)$ tangent vector field L, we have $t^{(1)}(L, p)=c^{(1)}(L, p)$.

A Conjecture of D'Angelo (1986)

Suppose M is pseudoconvex. Then for any fixed $(1,0)$ tangent vector field L, we have $t^{(1)}(L, p)=c^{(1)}(L, p)$.

D'Angelo 1986: $t^{(1)}(L, p)=4$ if and only if $c^{(1)}(L, p)=4$.

A Conjecture of D'Angelo (1986)

Suppose M is pseudoconvex. Then for any fixed $(1,0)$ tangent vector field L, we have $t^{(1)}(L, p)=c^{(1)}(L, p)$.

D'Angelo 1986: $t^{(1)}(L, p)=4$ if and only if $c^{(1)}(L, p)=4$.
Chen-Y.-Yuan 2020: $t^{(1)}(L, p)=c^{(1)}(L, p)$ if $n=3$.

A Conjecture of D'Angelo (1986)

Suppose M is pseudoconvex. Then for any fixed $(1,0)$ tangent vector field L, we have $t^{(1)}(L, p)=c^{(1)}(L, p)$.

D'Angelo 1986: $t^{(1)}(L, p)=4$ if and only if $c^{(1)}(L, p)=4$.
Chen-Y.-Yuan 2020: $t^{(1)}(L, p)=c^{(1)}(L, p)$ if $n=3$.
Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form at p has only one degenerate eigenvalue. Then, for any fixed (1,0) tangent vector field L, we have $t^{(1)}(L, p)=c^{(1)}(L, p)$.

The D'Angelo finite type

The first D'Angelo finite type:

$$
\Delta_{1}(M, 0)=\sup _{z:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{n}, z_{0}\right)} \frac{\mu\left(z^{*} r\right)}{\mu(z)}
$$

The D'Angelo finite type

The first D'Angelo finite type:

$$
\Delta_{1}(M, 0)=\sup _{z:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{n}, z_{0}\right)} \frac{\mu\left(z^{*} r\right)}{\mu(z)}
$$

The general D'Angelo finite type:

$$
\Delta_{q}(M, 0)=\inf _{\phi:\left(\mathbb{C}^{n-q+1}, 0\right) \rightarrow\left(\mathbb{C}^{n}, z_{0}\right)} \Delta_{1}\left(\phi^{*} M, 0\right)
$$

Here $\phi:\left(\mathbb{C}^{n-q+1}, 0\right) \rightarrow\left(\mathbb{C}^{n}, z_{0}\right)$ is a linear embedding.

The D'Angelo finite type

The first D'Angelo finite type:

$$
\Delta_{1}(M, 0)=\sup _{z:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{n}, z_{0}\right)} \frac{\mu\left(z^{*} r\right)}{\mu(z)}
$$

The general D'Angelo finite type:

$$
\Delta_{q}(M, 0)=\inf _{\phi:\left(\mathbb{C}^{n-q+1}, 0\right) \rightarrow\left(\mathbb{C}^{n}, z_{0}\right)} \Delta_{1}\left(\phi^{*} M, 0\right)
$$

Here $\phi:\left(\mathbb{C}^{n-q+1}, 0\right) \rightarrow\left(\mathbb{C}^{n}, z_{0}\right)$ is a linear embedding.
When z is required to be regular, this is exactly the regular finite type.

The Catlin multitype

Let Γ_{n} denote the set of all n-tuple of numbers $\Lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ with $1 \leq \lambda_{i} \leq \infty$ such that $\lambda_{1} \leq \cdots \leq \lambda_{n}$.

The Catlin multitype

Let Γ_{n} denote the set of all n-tuple of numbers $\Lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ with $1 \leq \lambda_{i} \leq \infty$ such that $\lambda_{1} \leq \cdots \leq \lambda_{n}$.
Γ_{n} is called a weight if for each k, either $\lambda_{k}=+\infty$ or there is a set of nonnegative integers a_{1}, \cdots, a_{k} with $a_{k}>0$ such that $\sum_{j=1}^{k} \frac{a_{j}}{\lambda_{j}}=1$

The Catlin multitype

Let Γ_{n} denote the set of all n-tuple of numbers $\Lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ with $1 \leq \lambda_{i} \leq \infty$ such that $\lambda_{1} \leq \cdots \leq \lambda_{n}$.
Γ_{n} is called a weight if for each k, either $\lambda_{k}=+\infty$ or there is a set of nonnegative integers a_{1}, \cdots, a_{k} with $a_{k}>0$ such that $\sum_{j=1}^{k} \frac{a_{j}}{\lambda_{j}}=1$
Order of the weights: Let $\Lambda^{\prime}=\left(\lambda_{1}^{\prime}, \cdots, \lambda_{n}^{\prime}\right)$ and $\Lambda^{\prime \prime}=\left(\lambda_{1}^{\prime \prime}, \cdots, \lambda_{n}^{\prime \prime}\right)$. $\Lambda^{\prime}<\Lambda^{\prime}$ if for some $k, \lambda_{j}^{\prime}=\lambda_{j}^{\prime \prime}$ for $j<k$ and $\lambda_{k}^{\prime}<\lambda_{k}^{\prime \prime}$.

The Catlin multitype

A weight $\Lambda \in \Gamma_{n}$ is said to be distinguished if there exist holomorphic coordinates $\left(z_{1}, \cdots, z_{n}\right)$ about z_{0} with z_{0} mapped to the origin such that

$$
\sum_{j=1}^{n} D^{\alpha} \overline{D^{\beta}} \rho\left(z_{0}\right)=0 \text { for } \sum_{j=1}^{n} \frac{\alpha_{j}+\beta_{j}}{\lambda_{j}}<1
$$

The Catlin multitype

A weight $\Lambda \in \Gamma_{n}$ is said to be distinguished if there exist holomorphic coordinates $\left(z_{1}, \cdots, z_{n}\right)$ about z_{0} with z_{0} mapped to the origin such that

$$
\sum_{j=1}^{n} D^{\alpha} \overline{D^{\beta}} \rho\left(z_{0}\right)=0 \text { for } \sum_{j=1}^{n} \frac{\alpha_{j}+\beta_{j}}{\lambda_{j}}<1
$$

The multitype $\mathcal{M}\left(z_{0}\right)$ is defined to be the smallest $\left(m_{1}, \cdots, m_{n}\right) \in \Gamma_{n}$ such that for every distinguished weight Λ, we have $\mathcal{M}\left(z_{0}\right) \geq \Lambda$.

The Catlin multitype

A weight $\Lambda \in \Gamma_{n}$ is said to be distinguished if there exist holomorphic coordinates $\left(z_{1}, \cdots, z_{n}\right)$ about z_{0} with z_{0} mapped to the origin such that

$$
\sum_{j=1}^{n} D^{\alpha} \overline{D^{\beta}} \rho\left(z_{0}\right)=0 \text { for } \sum_{j=1}^{n} \frac{\alpha_{j}+\beta_{j}}{\lambda_{j}}<1
$$

The multitype $\mathcal{M}\left(z_{0}\right)$ is defined to be the smallest $\left(m_{1}, \cdots, m_{n}\right) \in \Gamma_{n}$ such that for every distinguished weight Λ, we have $\mathcal{M}\left(z_{0}\right) \geq \Lambda$.

Notice that the Catlin multitype has a equivalent description by means of the degeneracy of the Levi form (in some sense) similar to the definition of $c^{(s)}(M, p)$, which is crucial to Catlin's solution of Kohn's subelliptic estimates problem.

Relation between these invariants

Example: Let $M \subset \mathbb{C}^{4}$ be a real hypersurface defined by

$$
r=-2 \operatorname{lm} w+\left|z_{1}\right|^{4}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}+\left|z_{1}\right|^{2}\left|z_{3}\right|^{2}+\left|z_{2}^{2}-z_{3}^{3}\right|^{4} .
$$

Relation between these invariants

Example: Let $M \subset \mathbb{C}^{4}$ be a real hypersurface defined by

$$
r=-2 \operatorname{lm} w+\left|z_{1}\right|^{4}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}+\left|z_{1}\right|^{2}\left|z_{3}\right|^{2}+\left|z_{2}^{2}-z_{3}^{3}\right|^{4} .
$$

The Caltin multitypes at 0 are $4,4,4$,
The Bloom regular contact types are $4,8,12$,
The D'Angelo finite types are $4,8,+\infty$.

Relation between these invariants

Yu 1992: When D is convex and $M=\partial D$, then Caltin multi-type=D'Angelo finite type.

Relation between these invariants

Yu 1992: When D is convex and $M=\partial D$, then Caltin multi-type=D'Angelo finite type.

Fu-Isaev-Krantz 1998: When D is a Reinhardt domain and $M=\partial D$, then regular multi-type $a^{1}=$ D'Angelo finite type Δ_{1}, Caltin multitype and D'Angelo finite type may be different.

Relation between these invariants

Yu 1992: When D is convex and $M=\partial D$, then Caltin multi-type=D'Angelo finite type.

Fu-Isaev-Krantz 1998: When D is a Reinhardt domain and $M=\partial D$, then regular multi-type $a^{1}=$ D'Angelo finite type Δ_{1}, Caltin multitype and D'Angelo finite type may be different.

It seems to me that the Bloom Conjecture for the boundary of a convex domain is also unknown.

Kohn's finite ideal type

As before, let D be a smooth pseudoconvex domain in $\mathbb{C}^{n} . x_{0} \in M=b D$.

Kohn's finite ideal type

As before, let D be a smooth pseudoconvex domain in $\mathbb{C}^{n} . x_{0} \in M=b D$.

Denote by $I^{q}\left(x_{0}\right)$ the set of germs of multipliers satisfying the following:
\exists a neighborhood U of $x_{0}, f \in C_{0}^{\infty}(U \cap \bar{D})$ such that there are $C, \epsilon>0$ for which

$$
|\|f \phi\||_{\epsilon}^{2} \leq C\left(\|\bar{\partial} \phi\|^{2}+\left\|\bar{\partial}^{*} \phi\right\|^{2}\right)
$$

for all $\phi \in \mathcal{D}^{(p, q)}(U \cap D)$.

Kohn's finite ideal type

J. Kohn inductively defined the ideals $I_{k}^{q}\left(x_{0}\right)$ as follows:

$$
I_{1}^{q}\left(x_{0}\right)=\sqrt[\mathbb{R}]{r, \text { coeff. }\left\{\partial r \wedge \bar{\partial} r \wedge(\partial \bar{\partial} r)^{n-q}\right\}}
$$

$$
I_{k+1}^{q}\left(x_{0}\right)=\sqrt[\mathbb{R}]{I_{k}^{q}\left(x_{0}\right), \operatorname{coeff} \cdot\left\{\partial f_{1} \wedge \cdots \wedge \partial f_{j} \wedge \partial r \wedge \bar{\partial} r \wedge(\partial \bar{\partial} r)^{n-q-j}\right\}}
$$

Here $f_{1}, \cdots, f_{j} \in I_{k}^{q}\left(x_{0}\right)$.

Kohn's finite ideal type

J. Kohn inductively defined the ideals $I_{k}^{q}\left(x_{0}\right)$ as follows:

$$
I_{1}^{q}\left(x_{0}\right)=\sqrt[\mathbb{R}]{r, \text { coeff. }\left\{\partial r \wedge \bar{\partial} r \wedge(\partial \bar{\partial} r)^{n-q}\right\}}
$$

$$
I_{k+1}^{q}\left(x_{0}\right)=\sqrt[\mathbb{R}]{I_{k}^{q}\left(x_{0}\right), \operatorname{coeff} f \cdot\left\{\partial f_{1} \wedge \cdots \wedge \partial f_{j} \wedge \partial r \wedge \bar{\partial} r \wedge(\partial \bar{\partial} r)^{n-q-j}\right\}}
$$

Here $f_{1}, \cdots, f_{j} \in I_{k}^{q}\left(x_{0}\right)$.
We say x_{0} is of finite ideal type with respect to (p, q) forms if there is a integer k such that $1 \in I_{k}^{q}\left(x_{0}\right)$.

Back to the subelliptic estimates

Theorem (J. Kohn 1979:)

Let D be a pseudoconvex domain in \mathbb{C}^{n} with real analytic boundary. Then $1 \in I_{k}^{q}\left(x_{0}\right)$ if and only if $\Delta_{q}\left(M, x_{0}\right)<\infty$.

Back to the subelliptic estimates

Theorem (J. Kohn 1979:)

Let D be a pseudoconvex domain in \mathbb{C}^{n} with real analytic boundary. Then $1 \in I_{k}^{q}\left(x_{0}\right)$ if and only if $\Delta_{q}\left(M, x_{0}\right)<\infty$.

Theorem (D. Catlin 1987:)

Let D be a pseudoconvex domain in \mathbb{C}^{n} with smooth boundary. Then subelliptic estimates holds for (p, q) forms if and only if $\Delta_{q}\left(M, x_{0}\right)<\infty$.

Effectiveness

Let the domain is defined by $r=2 \operatorname{Re}(w)+\left|f_{1}(z)\right|^{2}+\cdots+\left|f_{m}(z)\right|^{2}$, which is of D'Angelo finite type at the boundary point x_{0}.

Effectiveness

Let the domain is defined by
$r=2 \operatorname{Re}(w)+\left|f_{1}(z)\right|^{2}+\cdots+\left|f_{m}(z)\right|^{2}$, which is of D'Angelo finite type at the boundary point x_{0}.

Siu(2010,2017): $1 \in I_{\epsilon}\left(x_{0}\right)$ with some ϵ bounded by constant depends on the finite type.

Kim-Zaitsev (2021): give a explicit effective bound.

Sketch of the proof for $n=3$

- Find sone special $L \in T^{(1,0)} M^{\prime}$, with M^{\prime} another pseudoconvex hypersurface and L with weighted homogeneous coefficients.

Sketch of the proof for $n=3$

- Find sone special $L \in T^{(1,0)} M^{\prime}$, with M^{\prime} another pseudoconvex hypersurface and L with weighted homogeneous coefficients.
- By the Nagano theorem, the Lie algebra generated by $\operatorname{Re}(L), \operatorname{Im} L$ and their Lie brackets gives a unique homogeneous integral submanifold N^{0}.

Sketch of the proof for $n=3$

- Find sone special $L \in T^{(1,0)} M^{\prime}$, with M^{\prime} another pseudoconvex hypersurface and L with weighted homogeneous coefficients.
- By the Nagano theorem, the Lie algebra generated by $\operatorname{Re}(L), \operatorname{ImL}$ and their Lie brackets gives a unique homogeneous integral submanifold N^{0}.
- The given condition means that the T direction is always transversal to N^{0} at any point of N^{0}. Hence the dimension of N^{0} must be 3 or 4 .

Sketch of the proof for $n=3$

- Find sone special $L \in T^{(1,0)} M^{\prime}$, with M^{\prime} another pseudoconvex hypersurface and L with weighted homogeneous coefficients.
- By the Nagano theorem, the Lie algebra generated by $\operatorname{Re}(L), I m L$ and their Lie brackets gives a unique homogeneous integral submanifold N^{0}.
- The given condition means that the T direction is always transversal to N^{0} at any point of N^{0}. Hence the dimension of N^{0} must be 3 or 4 .
- Comparing with Bloom's proof of $a^{(1)}(M, 0)=c^{(1)}(M, 0)$, we need to replace two deep theorems by K. Diederich and J. Fornaess (Annals, 1978).

Sketch of the proof

Theorem 1: Let S be a C^{2}-submanifold of a pseudoconvex C^{4}-hypersurface $M \subset \mathbb{C}^{n}$. Let X, Y be C^{1}-vector fields on S with values in $T^{N} S$. Then the vector field $[X, Y]$ also has values in $T^{N} S$ along S.

For all $p \in S$,

$$
T_{p}^{N} S=\left\{X \in T_{p} S: X=\operatorname{Re} Y, Y \in T_{p}^{(1,0)} M, \partial \bar{\partial} \rho(Y, \bar{Y})(p)=0\right\}
$$

Sketch of the proof

Theorem 2: Let $M \subset \mathbb{C}^{n}$ be a pseudoconvex C^{∞} hypersurface with $0 \in M$ and $S \subset M$ a $C^{\infty}-\mathrm{CR}$ submanifold, $0 \in S$, with the following properties:

Sketch of the proof

Theorem 2: Let $M \subset \mathbb{C}^{n}$ be a pseudoconvex C^{∞} hypersurface with $0 \in M$ and $S \subset M$ a $C^{\infty}-\mathrm{CR}$ submanifold, $0 \in S$, with the following properties:

- $S \subset \mathbb{C}^{n-1} \times\{0\}, \operatorname{rank} T^{(1,0)}=q, \operatorname{dim}_{\mathbb{R}} S=2 q+r$ with $q+r=n-1$.
- $T S=T^{N} S$
- By taking subsequent brackets of C^{∞} vector fields with values in $T^{h} S$ one generates the whole tangent bundle $T S$.

Sketch of the proof

Theorem 2: Let $M \subset \mathbb{C}^{n}$ be a pseudoconvex C^{∞} hypersurface with $0 \in M$ and $S \subset M$ a $C^{\infty}-\mathrm{CR}$ submanifold, $0 \in S$, with the following properties:

- $S \subset \mathbb{C}^{n-1} \times\{0\}, \operatorname{rank} T^{(1,0)}=q, \operatorname{dim}_{\mathbb{R}} S=2 q+r$ with $q+r=n-1$.
- $T S=T^{N} S$
- By taking subsequent brackets of C^{∞} vector fields with values in $T^{h} S$ one generates the whole tangent bundle $T S$.
Then in any neighborhood of 0 , there is a relatively open set \widehat{U} on M such that $\mathbb{C}^{n-1} \times\{0\}$ is tangent to $b M$ of infinite order at all points $z \in \widehat{U}$.

Sketch of the proof

Theorem 1': Let N be a real analytic hypersurface in \mathbb{C}^{n-1} with $0 \in N$ with $n \geq 3$. Let $\rho(z, \bar{z})$ be a real analytic plurisubharmonic function with $\rho=O\left(|z|^{2}\right)$ as $z \rightarrow 0$ defined over a neighborhood of \mathbb{C}^{n-1}. Assume that N is of finite type in the sense of Hömander-Bloom-Graham and $N \subset\{\rho=0\}$. Then $\rho \equiv 0$.

Sketch of the proof

Theorem 2': Define the weight of z_{1} and $\overline{z_{1}}$ to be 1 , the weight of z_{2} and $\overline{z_{2}}$ to be $k \in \mathbb{N}$ with $k>1$. Let $A=A\left(z_{1}, \overline{z_{1}}\right)$ be a homogenous polynomial of degree $k-1$ in $\left(z_{1}, \overline{z_{1}}\right)$ without holomorphic terms. Suppose that f is a weighted homogeneous polynomial in (z, \bar{z}) of weighted degree $m>k$. Further assume that $\operatorname{Re}(f)$ is plurisubharmonic, contains no nontrivial holomorphic terms and assume that f satisfies the following equation:

$$
\begin{equation*}
f_{\overline{z_{1}}}(z, \bar{z})+\overline{A\left(z_{1}, \overline{z_{1}}\right)} f_{\overline{z_{2}}}(z, \bar{z})=0 \tag{0.1}
\end{equation*}
$$

Then $\operatorname{Re}(f) \equiv 0$.

The main difficulties

Suppose the hypersurface M is defined by $r=0$ and a real submanifold N is defined by $\rho_{1}=\cdots=\rho_{m}=0$.

The main difficulties

Suppose the hypersurface M is defined by $r=0$ and a real submanifold N is defined by $\rho_{1}=\cdots=\rho_{m}=0$.

- In Diederich-Fornaess's Theorem, the problem is reduced to: N CR manifold and $r\left(z_{1}, \cdots, z_{n-1}, 0\right)=O\left(|\rho|^{2}\right)$.

The main difficulties

Suppose the hypersurface M is defined by $r=0$ and a real submanifold N is defined by $\rho_{1}=\cdots=\rho_{m}=0$.

- In Diederich-Fornaess's Theorem, the problem is reduced to :
N CR manifold and $r\left(z_{1}, \cdots, z_{n-1}, 0\right)=O\left(|\rho|^{2}\right)$.
- In Theorem 1^{\prime}, the problem is reduced to
N CR manifold of finite type and $r\left(z_{1}, \cdots, z_{n-1}, 0\right)=O(|\rho|)$.

The main difficulties

Suppose the hypersurface M is defined by $r=0$ and a real submanifold N is defined by $\rho_{1}=\cdots=\rho_{m}=0$.

- In Diederich-Fornaess's Theorem, the problem is reduced to : N CR manifold and $r\left(z_{1}, \cdots, z_{n-1}, 0\right)=O\left(|\rho|^{2}\right)$.
- In Theorem 1', the problem is reduced to N CR manifold of finite type and $r\left(z_{1}, \cdots, z_{n-1}, 0\right)=O(|\rho|)$.
- In Theorem 2', we need to solve a PDE with the real part plurisubharmonic.

The main difficulties

Suppose the hypersurface M is defined by $r=0$ and a real submanifold N is defined by $\rho_{1}=\cdots=\rho_{m}=0$.

- In Diederich-Fornaess's Theorem, the problem is reduced to : N CR manifold and $r\left(z_{1}, \cdots, z_{n-1}, 0\right)=O\left(|\rho|^{2}\right)$.
- In Theorem 1^{\prime}, the problem is reduced to N CR manifold of finite type and $r\left(z_{1}, \cdots, z_{n-1}, 0\right)=O(|\rho|)$.
- In Theorem 2', we need to solve a PDE with the real part plurisubharmonic.
- For higher dimensional case, we have to deal with the case: N CR-singular manifold and $\left.r\left(z_{1}, \cdots, z_{n-1}, 0\right)\right|_{N}$ satisfies some PDE but is non-zero.

Thank you!

Thank you for your attention!

