Finite type conditions for real hypersurfaces in \mathbb{C}^n

Wanke Yin Joint works with Xiaojun Huang etc.

School of Mathematics and Statistics, Wuhan University

Nice, Dec. 8 th

Wanke Yin

Finite type conditions for real hypersurfaces in \mathbb{C}^n

Wanke Yin Joint works with Xiaojun Huang etc.

School of Mathematics and Statistics, Wuhan University

Nice, Dec. 8 th

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

In Several Complex Variables and Complex Geometry, a fundamental problem is to solve the Cauchy-Riemann equations. In Several Complex Variables and Complex Geometry, a fundamental problem is to solve the Cauchy-Riemann equations.

Let D be a domian in \mathbb{C}^n . Study the existence and regularity of

$$\overline{\partial}u = f$$
 in D .

Here $0 \le p \le n$, $1 \le q \le n$, f is a (p,q) form satisfying the solvable condition:

 $\overline{\partial}f = 0$ in D.

Theorem

If D is a bounded pseudoconvex domain and $f \in L_2^{(p,q)}(D)$. Then there exits a u with $||u||_{L^2} \leq c_q ||f||_{L^2}$.

Theorem

If D is a bounded pseudoconvex domain and $f \in L_2^{(p,q)}(D)$. Then there exits a u with $||u||_{L^2} \leq c_q ||f||_{L^2}$.

One also wants to know what kind of regularity can u have when f has higher regularities. Kohn obtained the following global regularity theorem

Theorem

If D is a bounded pseudoconvex domain and $f \in L_2^{(p,q)}(D)$. Then there exits a u with $||u||_{L^2} \leq c_q ||f||_{L^2}$.

One also wants to know what kind of regularity can u have when f has higher regularities. Kohn obtained the following global regularity theorem

Theorem (J. Kohn 1973)

Let D be a bounded pseudoconvex domain in \mathbb{C}^n $(n \ge 2)$ with smooth boundary. For every $f \in C^{\infty}_{(p,q)}(\overline{D})$, there exists a $u \in C^{\infty}_{(p,q-1)}(\overline{D})$ such that $\overline{\partial}u = f$.

Problem

Let D be a bounded smooth pseudoconvex domain in \mathbb{C}^n . Suppose that $\overline{\partial}u = f$ with $\overline{\partial}f = 0$ and $f \in C^{\infty}_{(p,q)}(U \cap \overline{D})$ for some neighborhood U.

Problem

Let D be a bounded smooth pseudoconvex domain in \mathbb{C}^n . Suppose that $\overline{\partial}u = f$ with $\overline{\partial}f = 0$ and $f \in C^{\infty}_{(p,q)}(U \cap \overline{D})$ for some neighborhood U. (1). Is there such a u satisfies $u \in Dom(\overline{\partial}) \cap C^{\infty}_{(p,q-1)}(U \cap \overline{D})$?

Problem

Let D be a bounded smooth pseudoconvex domain in \mathbb{C}^n . Suppose that $\overline{\partial}u = f$ with $\overline{\partial}f = 0$ and $f \in C^{\infty}_{(p,q)}(U \cap \overline{D})$ for some neighborhood U. (1). Is there such a u satisfies $u \in Dom(\overline{\partial}) \cap C^{\infty}_{(p,q-1)}(U \cap \overline{D})$? (2). Is the canonical solution u satisfies $u \in Dom(\overline{\partial}) \cap C^{\infty}_{(p,q-1)}(U \cap \overline{D})$?

Problem

Let D be a bounded smooth pseudoconvex domain in \mathbb{C}^n . Suppose that $\overline{\partial}u = f$ with $\overline{\partial}f = 0$ and $f \in C^{\infty}_{(p,q)}(U \cap \overline{D})$ for some neighborhood U. (1). Is there such a u satisfies $u \in Dom(\overline{\partial}) \cap C^{\infty}_{(p,q-1)}(U \cap \overline{D})$? (2). Is the canonical solution u satisfies $u \in Dom(\overline{\partial}) \cap C^{\infty}_{(p,q-1)}(U \cap \overline{D})$?

Kohn, Catlin: In general, the answer is NEGATIVE.

Problem

Let D be a bounded smooth pseudoconvex domain in \mathbb{C}^n . Suppose that $\overline{\partial}u = f$ with $\overline{\partial}f = 0$ and $f \in C^{\infty}_{(p,q)}(U \cap \overline{D})$ for some neighborhood U. (1). Is there such a u satisfies $u \in Dom(\overline{\partial}) \cap C^{\infty}_{(p,q-1)}(U \cap \overline{D})$? (2). Is the canonical solution u satisfies $u \in Dom(\overline{\partial}) \cap C^{\infty}_{(p,q-1)}(U \cap \overline{D})$?

Kohn, Catlin: In general, the answer is NEGATIVE.

Kohn-Nirenberg: The answer is POSITIVE if the domain has subelliptic estimates.

When D is strongly pseudoconvex, we have the subelliptic estimates:

When D is strongly pseudoconvex, we have the subelliptic estimates: For $f \in Dom(\overline{\partial}) \cap Dom(\overline{\partial}^*)$. Then

$$||f||_{\epsilon}^{2} \leq ||\partial f||^{2} + ||\overline{\partial}^{*}f||^{2} + ||f||^{2} with \ \epsilon = \frac{1}{2}.$$

 ${\small \textcircled{0}}$ contact order by regular holomorphic curves $a^{(1)}(M,p),$

 ${\rm O}\,$ contact order by regular holomorphic curves $a^{(1)}(M,p),$

2 iterated Lie brackets $t^{(1)}(M, p)$,

 ${\rm O}\,$ contact order by regular holomorphic curves $a^{(1)}(M,p),$

- 2 iterated Lie brackets $t^{(1)}(M, p)$,
- (3) the degeneracy of the Levi form $c^{(1)}(M,p)$,

 ${\rm O}\,$ contact order by regular holomorphic curves $a^{(1)}(M,p),$

- 2 iterated Lie brackets $t^{(1)}(M,p)$,
- (3) the degeneracy of the Levi form $c^{(1)}(M,p)$,
- contact order by holomorphic curves $\Delta_1(M, p)$.

• Theorem: $a^{(1)}(M,p) = t^{(1)}(M,p) = c^{(1)}(M,p) = \Delta_1(M,p).$

• • • • • • • • • • • •

- Theorem: $a^{(1)}(M,p) = t^{(1)}(M,p) = c^{(1)}(M,p) = \Delta_1(M,p).$
- pseudoconvexity is not necessary in the theorem.

- Theorem: $a^{(1)}(M,p) = t^{(1)}(M,p) = c^{(1)}(M,p) = \Delta_1(M,p).$
- pseudoconvexity is not necessary in the theorem.
- When M is pseudoconvex, these invariants = m if and only if

- Theorem: $a^{(1)}(M,p) = t^{(1)}(M,p) = c^{(1)}(M,p) = \Delta_1(M,p).$
- pseudoconvexity is not necessary in the theorem.
- When M is pseudoconvex, these invariants = m if and only if (1) subelliptic estimates holds (for $\epsilon = \frac{1}{m}$ [Rothschild-Stein 1976]), but

- Theorem: $a^{(1)}(M,p) = t^{(1)}(M,p) = c^{(1)}(M,p) = \Delta_1(M,p).$
- pseudoconvexity is not necessary in the theorem.
- When M is pseudoconvex, these invariants = m if and only if (1) subelliptic estimates holds (for $\epsilon = \frac{1}{m}$ [Rothschild-Stein 1976]), but (2) (Greiner 1974) for no large value of ϵ .

• Kohn's finite type condition through the subelliptic multiplier ideals

- Kohn's finite type condition through the subelliptic multiplier ideals
- regular finite type (of Bloom-Graham)

- Kohn's finite type condition through the subelliptic multiplier ideals
- regular finite type (of Bloom-Graham)
- Catlin multitype type

- Kohn's finite type condition through the subelliptic multiplier ideals
- regular finite type (of Bloom-Graham)
- Catlin multitype type
- D'Angelo finite type

- Kohn's finite type condition through the subelliptic multiplier ideals
- regular finite type (of Bloom-Graham)
- Catlin multitype type
- D'Angelo finite type

When $M \subset \mathbb{C}^n$. For each integer $1 \leq s \leq n-1$, we can define corresponding integer invalants $a^{(s)}(M,p)$, $t^{(s)}(M,p)$ and $c^{(s)}(M,p)$ as follows.

When $M \subset \mathbb{C}^n$. For each integer $1 \leq s \leq n-1$, we can define corresponding integer invalants $a^{(s)}(M,p)$, $t^{(s)}(M,p)$ and $c^{(s)}(M,p)$ as follows.

(i): The s-contact type $a^{(s)}(M, p)$:

 $a^{(s)}(M,p) = \sup_X \big\{ r | \exists \text{ an } s \text{-dimensional complex submanifold } X$ whose order of vanishing of $\rho|_X$ at p is $r \big\}.$

(ii) The s-vector field type $t^{(s)}(M,p)$:

Image: A matrix

3

(ii) The s-vector field type $t^{(s)}(M, p)$:

Let B be an s-dimensional subbundle of $T^{1,0}M$. We let $\mathcal{M}_1(B)$ be the $C^{\infty}(M)$ -module spanned by the smooth tangential (1,0) vector fields L with $L|_q \in B|_q$ for each $q \in M$, together with the conjugate of these vector fields.

(ii) The *s*-vector field type $t^{(s)}(M, p)$:

Let B be an s-dimensional subbundle of $T^{1,0}M$. We let $\mathcal{M}_1(B)$ be the $C^{\infty}(M)$ -module spanned by the smooth tangential (1,0) vector fields L with $L|_q \in B|_q$ for each $q \in M$, together with the conjugate of these vector fields.

For $\mu \geq 1$, we let $\mathcal{M}_{\mu}(B)$ denote the $C^{\infty}(M)$ -module spanned by commutators of length less than or equal to μ of vector fields from $\mathcal{M}_1(B)$. A commutator of length μ of vector fields in $\mathcal{M}_1(B)$ is a vector field of the following form: $[Y_{\mu}, [Y_{\mu-1}, \cdots, [Y_2, Y_1] \cdots]$. Here $Y_j \in \mathcal{M}_1(B)$.
Define $t^{(s)}(B,p) = m$ if $\langle F, \partial \rho \rangle(p) = 0$ for any $F \in \mathcal{M}_{m-1}(B)$ but $\langle G, \partial \rho \rangle(p) \neq 0$ for a certain $G \in \mathcal{M}_m(B)$. Then

3

Define $t^{(s)}(B,p) = m$ if $\langle F, \partial \rho \rangle(p) = 0$ for any $F \in \mathcal{M}_{m-1}(B)$ but $\langle G, \partial \rho \rangle(p) \neq 0$ for a certain $G \in \mathcal{M}_m(B)$. Then

 $t^{(s)}(M,p) = \sup_{B} \{t(B,p) | B \text{ is an } s \text{-dimensional subbundle of } T^{1,0}M \}.$

Define $t^{(s)}(B,p) = m$ if $\langle F, \partial \rho \rangle(p) = 0$ for any $F \in \mathcal{M}_{m-1}(B)$ but $\langle G, \partial \rho \rangle(p) \neq 0$ for a certain $G \in \mathcal{M}_m(B)$. Then

 $t^{(s)}(M,p) = \sup_{B} \{t(B,p)| \ B \text{ is an } s \text{-dimensional subbundle of } T^{1,0}M\}.$

 $t^{(s)}(B,p)$ is the smallest length of the commutators by vector fields in $\mathcal{M}_1(B)$ to recover the complex contact direction in $\mathbb{C}T_pM.$ $t^{(s)}(M,p)$ is the largest possible value among all $t^{(s)}(B,p)'s$. Namely, $t^{(s)}(M,p)$ describes the most degenerate s-subbundle of $T^{1,0}M.$

(iii) The s-type of the Levi form $c^{(s)}(M,p)$:

Image: A matrix and a matrix

3

(iii) The s-type of the Levi form $c^{(s)}(M, p)$:

Let B be as in (ii). Let $\mathcal{L}_{M,p}$ be a Levi form associated with a defining function ρ near p of M. For $V_B = \{L_1, \dots, L_s\}$, a basis of smooth sections of B near p, we define the trace of $\mathcal{L}_{M,p}$ along V_B by

(iii) The s-type of the Levi form $c^{(s)}(M, p)$:

Let B be as in (ii). Let $\mathcal{L}_{M,p}$ be a Levi form associated with a defining function ρ near p of M. For $V_B = \{L_1, \dots, L_s\}$, a basis of smooth sections of B near p, we define the trace of $\mathcal{L}_{M,p}$ along V_B by

$$\operatorname{tr}_{V_B} \mathcal{L}_{M,p} = \sum_{j=1}^{s} \langle [L_j, \overline{L_j}], \partial \rho \rangle(p).$$

T. Bloom (1981):

We define $c(V_B, p) = m$ if for any m - 3 vector fields F_1, \dots, F_{m-3} of $\mathcal{M}_1(B)$, and any basis of sections of B, it holds that

$$F_1 \cdots F_{m-3} \big(\mathsf{tr}_{V_B} \mathcal{L}_{M,p} \big)(p) = 0$$

T. Bloom (1981):

We define $c(V_B, p) = m$ if for any m - 3 vector fields F_1, \dots, F_{m-3} of $\mathcal{M}_1(B)$, and any basis of sections of B, it holds that

$$F_1 \cdots F_{m-3} \big(\mathsf{tr}_{V_B} \mathcal{L}_{M,p} \big)(p) = 0$$

and for a certain choice of m-2 vector fields G_1, \dots, G_{m-2} of $\mathcal{M}_1(B)$, and a certain choice of sections of B, we have

$$G_1 \cdots G_{m-2} (\operatorname{tr}_{V_B} \mathcal{L}_{M,p})(p) \neq 0.$$

T. Bloom (1981):

We define $c(V_B, p) = m$ if for any m - 3 vector fields F_1, \dots, F_{m-3} of $\mathcal{M}_1(B)$, and any basis of sections of B, it holds that

$$F_1 \cdots F_{m-3} \big(\mathsf{tr}_{V_B} \mathcal{L}_{M,p} \big)(p) = 0$$

and for a certain choice of m-2 vector fields G_1, \dots, G_{m-2} of $\mathcal{M}_1(B)$, and a certain choice of sections of B, we have

$$G_1 \cdots G_{m-2} (\operatorname{tr}_{V_B} \mathcal{L}_{M,p})(p) \neq 0.$$

Then

 $c^{(s)}(M,p) = \sup_{B} \{ c(V_B,p): B \text{ is an } s \text{-dimensional subbundle of } T^{1,0}M \}.$

• The first invariant is more of algebraic, comparatively more easily to compute

- The first invariant is more of algebraic, comparatively more easily to compute
- The second is defined in a way more of differential geometry

- The first invariant is more of algebraic, comparatively more easily to compute
- The second is defined in a way more of differential geometry
- The third invariant is defined by the degeneracy of the Levi form, it is always more easily to be applied.

- Bloom-Graham (1977): $a^{(n-1)}(M,p) = t^{(n-1)}(M,p)$.
- Bloom (1978): $a^{(n-1)}(M,p) = c^{(n-1)}(M,p)$.

∃ ► ∃ √Q (~

• Bloom-Graham (1977): $a^{(n-1)}(M,p) = t^{(n-1)}(M,p)$.

• Bloom (1978): $a^{(n-1)}(M,p) = c^{(n-1)}(M,p)$.

• Bloom (1981): For any $1 \le s \le n-1$, $a^{(s)}(M,p) \le t^{(s)}(M,p)$, $a^{(s)}(M,p) \le c^{(s)}(M,p)$.

• Bloom-Graham (1977): $a^{(n-1)}(M,p) = t^{(n-1)}(M,p)$.

• Bloom (1978): $a^{(n-1)}(M,p) = c^{(n-1)}(M,p)$.

• Bloom (1981): For any $1 \le s \le n-1$, $a^{(s)}(M,p) \le t^{(s)}(M,p)$, $a^{(s)}(M,p) \le c^{(s)}(M,p)$.

For these results, pseudo-convexity is not necessary.

• Conjecture: When M is pseudo-convex, for $1\leq s\leq n-1,$ $a^{(s)}(M,p)=t^{(s)}(M,p)=c^{(s)}(M,p).$

3

A 🖓 h

- Conjecture: When M is pseudo-convex, for $1 \le s \le n-1$, $a^{(s)}(M,p) = t^{(s)}(M,p) = c^{(s)}(M,p)$.
- pseudo-convexity is necessary in this conjecture:

- Conjecture: When M is pseudo-convex, for $1 \le s \le n-1$, $a^{(s)}(M,p) = t^{(s)}(M,p) = c^{(s)}(M,p)$.
- pseudo-convexity is necessary in this conjecture:

Let
$$\rho = 2\operatorname{Re}(w) + (z_2 + \overline{z_2} + |z_1|^2)^2$$
 and let $M = \{(z_1, z_2, w) \in \mathbb{C}^3 | \rho = 0\}$. Let $p = (0, 0, 0)$. Then $a^{(1)}(M, p) = 4$ but $c^{(1)}(M, p) = t^{(1)}(M, p) = \infty$.

- Conjecture: When M is pseudo-convex, for $1 \le s \le n-1$, $a^{(s)}(M,p) = t^{(s)}(M,p) = c^{(s)}(M,p)$.
- pseudo-convexity is necessary in this conjecture:

Let
$$\rho = 2\operatorname{Re}(w) + (z_2 + \overline{z_2} + |z_1|^2)^2$$
 and let $M = \{(z_1, z_2, w) \in \mathbb{C}^3 | \rho = 0\}$. Let $p = (0, 0, 0)$. Then $a^{(1)}(M, p) = 4$ but $c^{(1)}(M, p) = t^{(1)}(M, p) = \infty$.

• When $M \subset \mathbb{C}^3$, $a^{(1)}(M,p) = c^{(1)}(M,p)$.

Huang-Y. (2021): When M is pseudo-convex,

$$a^{(n-2)}(M,p) = t^{(n-2)}(M,p) = c^{(n-2)}(M,p).$$

In particular, this gives a complete solution for n = 3.

Huang-Y. (2021): When M is pseudo-convex,

$$a^{(n-2)}(M,p) = t^{(n-2)}(M,p) = c^{(n-2)}(M,p).$$

In particular, this gives a complete solution for n = 3.

Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form at p has only one degenerate eigenvalue. Then $a^{(1)}(M,p) = t^{(1)}(M,p) = c^{(1)}(M,p)$.

Huang-Y. (2021): When M is pseudo-convex,

$$a^{(n-2)}(M,p) = t^{(n-2)}(M,p) = c^{(n-2)}(M,p).$$

In particular, this gives a complete solution for n = 3.

Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form at p has only one degenerate eigenvalue. Then $a^{(1)}(M,p) = t^{(1)}(M,p) = c^{(1)}(M,p)$. (In this case, $a^{(1)}(M,p) = c^{(1)}(M,p)$ is due to Abdallah TALHAOUI (1983))

Suppose M is pseudoconvex. Then for any fixed (1,0) tangent vector field L, we have $t^{(1)}(L,p)=c^{(1)}(L,p).$

Suppose M is pseudoconvex. Then for any fixed (1,0) tangent vector field L, we have $t^{(1)}(L,p)=c^{(1)}(L,p).$

D'Angelo 1986: $t^{(1)}(L,p) = 4$ if and only if $c^{(1)}(L,p) = 4$.

Suppose M is pseudoconvex. Then for any fixed (1,0) tangent vector field L, we have $t^{(1)}(L,p)=c^{(1)}(L,p).$

D'Angelo 1986: $t^{(1)}(L,p) = 4$ if and only if $c^{(1)}(L,p) = 4$. **Chen-Y.-Yuan 2020:** $t^{(1)}(L,p) = c^{(1)}(L,p)$ if n = 3.

Suppose M is pseudoconvex. Then for any fixed (1,0) tangent vector field L, we have $t^{(1)}(L,p) = c^{(1)}(L,p)$.

D'Angelo 1986: $t^{(1)}(L,p) = 4$ if and only if $c^{(1)}(L,p) = 4$.

Chen-Y.-Yuan 2020: $t^{(1)}(L,p) = c^{(1)}(L,p)$ if n = 3.

Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form at p has only one degenerate eigenvalue. Then, for any fixed (1,0) tangent vector field L, we have $t^{(1)}(L,p) = c^{(1)}(L,p)$.

The first D'Angelo finite type:

$$\Delta_1(M,0) = \sup_{z:(\mathbb{C},0)\to(\mathbb{C}^n,z_0)} \frac{\mu(z^*r)}{\mu(z)}$$

3

The first D'Angelo finite type:

$$\Delta_1(M,0) = \sup_{z:(\mathbb{C},0)\to(\mathbb{C}^n,z_0)} \frac{\mu(z^*r)}{\mu(z)}$$

The general D'Angelo finite type:

$$\Delta_q(M,0) = \inf_{\phi: (\mathbb{C}^{n-q+1},0) \to (\mathbb{C}^n,z_0)} \Delta_1(\phi^*M,0).$$

Here $\phi : (\mathbb{C}^{n-q+1}, 0) \to (\mathbb{C}^n, z_0)$ is a linear embedding.

The first D'Angelo finite type:

$$\Delta_1(M,0) = \sup_{z:(\mathbb{C},0)\to(\mathbb{C}^n,z_0)} \frac{\mu(z^*r)}{\mu(z)}$$

The general D'Angelo finite type:

$$\Delta_q(M,0) = \inf_{\phi: (\mathbb{C}^{n-q+1}, 0) \to (\mathbb{C}^n, z_0)} \Delta_1(\phi^*M, 0).$$

Here $\phi : (\mathbb{C}^{n-q+1}, 0) \to (\mathbb{C}^n, z_0)$ is a linear embedding.

When z is required to be regular, this is exactly the regular finite type.

Let Γ_n denote the set of all *n*-tuple of numbers $\Lambda = (\lambda_1, \dots, \lambda_n)$ with $1 \leq \lambda_i \leq \infty$ such that $\lambda_1 \leq \dots \leq \lambda_n$.

Let Γ_n denote the set of all n-tuple of numbers $\Lambda = (\lambda_1, \dots, \lambda_n)$ with $1 \leq \lambda_i \leq \infty$ such that $\lambda_1 \leq \dots \leq \lambda_n$. Γ_n is called a weight if for each k, either $\lambda_k = +\infty$ or there is a set of nonnegative integers a_1, \dots, a_k with $a_k > 0$ such that $\sum_{i=1}^k \frac{a_i}{\lambda_j} = 1$ Let Γ_n denote the set of all n-tuple of numbers $\Lambda = (\lambda_1, \dots, \lambda_n)$ with $1 \leq \lambda_i \leq \infty$ such that $\lambda_1 \leq \dots \leq \lambda_n$. Γ_n is called a weight if for each k, either $\lambda_k = +\infty$ or there is a set of nonnegative integers a_1, \dots, a_k with $a_k > 0$ such that $\sum_{j=1}^k \frac{a_j}{\lambda_j} = 1$ **Order of the weights:** Let $\Lambda' = (\lambda'_1, \dots, \lambda'_n)$ and $\Lambda'' = (\lambda''_1, \dots, \lambda''_n)$. $\Lambda' < \Lambda'$ if for some k, $\lambda'_j = \lambda''_j$ for j < k and $\lambda'_k < \lambda''_k$. A weight $\Lambda \in \Gamma_n$ is said to be distinguished if there exist holomorphic coordinates (z_1, \cdots, z_n) about z_0 with z_0 mapped to the origin such that

$$\sum_{j=1}^n D^\alpha \overline{D^\beta} \rho(z_0) = 0 \text{ for } \sum_{j=1}^n \frac{\alpha_j + \beta_j}{\lambda_j} < 1.$$

A weight $\Lambda \in \Gamma_n$ is said to be distinguished if there exist holomorphic coordinates (z_1, \cdots, z_n) about z_0 with z_0 mapped to the origin such that

$$\sum_{j=1}^n D^{\alpha} \overline{D^{\beta}} \rho(z_0) = 0 \text{ for } \sum_{j=1}^n \frac{\alpha_j + \beta_j}{\lambda_j} < 1.$$

The multitype $\mathcal{M}(z_0)$ is defined to be the smallest $(m_1, \cdots, m_n) \in \Gamma_n$ such that for every distinguished weight Λ , we have $\mathcal{M}(z_0) \geq \Lambda$.

A weight $\Lambda \in \Gamma_n$ is said to be distinguished if there exist holomorphic coordinates (z_1, \cdots, z_n) about z_0 with z_0 mapped to the origin such that

$$\sum_{j=1}^n D^{\alpha} \overline{D^{\beta}} \rho(z_0) = 0 \text{ for } \sum_{j=1}^n \frac{\alpha_j + \beta_j}{\lambda_j} < 1.$$

The multitype $\mathcal{M}(z_0)$ is defined to be the smallest $(m_1, \cdots, m_n) \in \Gamma_n$ such that for every distinguished weight Λ , we have $\mathcal{M}(z_0) \geq \Lambda$.

Notice that the Catlin multitype has a equivalent description by means of the degeneracy of the Levi form (in some sense) similar to the definition of $c^{(s)}(M,p)$, which is crucial to Catlin's solution of Kohn's subelliptic estimates problem.

Example: Let $M \subset \mathbb{C}^4$ be a real hypersurface defined by

$$r = -2\mathsf{Im}w + |z_1|^4 + |z_1|^2|z_2|^2 + |z_1|^2|z_3|^2 + |z_2^2 - z_3^3|^4.$$
Example: Let $M \subset \mathbb{C}^4$ be a real hypersurface defined by

$$r = -2\mathsf{Im}w + |z_1|^4 + |z_1|^2|z_2|^2 + |z_1|^2|z_3|^2 + |z_2^2 - z_3^3|^4.$$

The Caltin multitypes at 0 are 4, 4, 4,

The Bloom regular contact types are 4, 8, 12,

The D'Angelo finite types are 4, 8, $+\infty$.

Yu 1992: When D is convex and $M = \partial D$, then Caltin multi-type=D'Angelo finite type.

- **Yu 1992:** When D is convex and $M = \partial D$, then Caltin multi-type=D'Angelo finite type.
- **Fu-Isaev-Krantz 1998:** When D is a Reinhardt domain and $M = \partial D$, then regular multi-type a^1 =D'Angelo finite type Δ_1 , Caltin multitype and D'Angelo finite type may be different.

Yu 1992: When D is convex and $M = \partial D$, then Caltin multi-type=D'Angelo finite type.

Fu-Isaev-Krantz 1998: When D is a Reinhardt domain and $M = \partial D$, then regular multi-type a^1 =D'Angelo finite type Δ_1 , Caltin multitype and D'Angelo finite type may be different.

It seems to me that the Bloom Conjecture for the boundary of a convex domain is also unknown.

As before, let D be a smooth pseudoconvex domain in \mathbb{C}^n . $x_0 \in M = bD$.

As before, let D be a smooth pseudoconvex domain in \mathbb{C}^n . $x_0 \in M = bD$.

Denote by $I^q(x_0)$ the set of germs of multipliers satisfying the following:

 \exists a neighborhood U of $x_0,\ f\in C_0^\infty(U\cap\overline{D})$ such that there are $C,\epsilon>0$ for which

$$\|f\phi\||_{\epsilon}^{2} \leq C(\|\overline{\partial}\phi\|^{2} + \|\overline{\partial}^{*}\phi\|^{2})$$

for all $\phi \in \mathcal{D}^{(p,q)}(U \cap D)$.

J. Kohn inductively defined the ideals $I_k^q(x_0)$ as follows:

$$I_1^q(x_0) = \sqrt[\mathbb{R}]{r, coeff.\{\partial r \wedge \overline{\partial} r \wedge (\partial \overline{\partial} r)^{n-q}\}}.$$

 $I_{k+1}^{q}(x_{0}) = \sqrt[\mathbb{R}]{I_{k}^{q}(x_{0}), coeff.\{\partial f_{1} \wedge \dots \wedge \partial f_{j} \wedge \partial r \wedge \overline{\partial} r \wedge (\partial \overline{\partial} r)^{n-q-j}\}}.$ Here $f_{1}, \dots, f_{j} \in I_{k}^{q}(x_{0}).$ J. Kohn inductively defined the ideals $I_k^q(x_0)$ as follows:

$$I_1^q(x_0) = \sqrt[\mathbb{R}]{r, coeff.\{\partial r \wedge \overline{\partial} r \wedge (\partial \overline{\partial} r)^{n-q}\}}.$$

$$I_{k+1}^{q}(x_{0}) = \sqrt[\mathbb{R}]{I_{k}^{q}(x_{0}), coeff. \{\partial f_{1} \wedge \dots \wedge \partial f_{j} \wedge \partial r \wedge \overline{\partial} r \wedge (\partial \overline{\partial} r)^{n-q-j}\}}.$$

Here $f_{1}, \dots, f_{j} \in I_{k}^{q}(x_{0}).$

We say x_0 is of finite ideal type with respect to (p,q) forms if there is a integer k such that $1 \in I_k^q(x_0)$.

Theorem (J. Kohn 1979:)

Let D be a pseudoconvex domain in \mathbb{C}^n with real analytic boundary. Then $1 \in I_k^q(x_0)$ if and only if $\Delta_q(M, x_0) < \infty$.

Theorem (J. Kohn 1979:)

Let D be a pseudoconvex domain in \mathbb{C}^n with real analytic boundary. Then $1 \in I_k^q(x_0)$ if and only if $\Delta_q(M, x_0) < \infty$.

Theorem (D. Catlin 1987:)

Let D be a pseudoconvex domain in \mathbb{C}^n with smooth boundary. Then subelliptic estimates holds for (p,q) forms if and only if $\Delta_q(M, x_0) < \infty$. Let the domain is defined by $r = 2\text{Re}(w) + |f_1(z)|^2 + \cdots + |f_m(z)|^2$, which is of D'Angelo finite type at the boundary point x_0 .

Let the domain is defined by $r = 2\text{Re}(w) + |f_1(z)|^2 + \cdots + |f_m(z)|^2$, which is of D'Angelo finite type at the boundary point x_0 .

Siu(2010,2017): $1 \in I_{\epsilon}(x_0)$ with some ϵ bounded by constant depends on the finite type.

Kim-Zaitsev (2021): give a explicit effective bound.

• Find sone special $L \in T^{(1,0)}M'$, with M' another pseudoconvex hypersurface and L with weighted homogeneous coefficients.

- Find sone special $L \in T^{(1,0)}M'$, with M' another pseudoconvex hypersurface and L with weighted homogeneous coefficients.
- By the Nagano theorem, the Lie algebra generated by Re(L), ImL and their Lie brackets gives a unique homogeneous integral submanifold N^0 .

- Find sone special $L \in T^{(1,0)}M'$, with M' another pseudoconvex hypersurface and L with weighted homogeneous coefficients.
- By the Nagano theorem, the Lie algebra generated by Re(L), ImL and their Lie brackets gives a unique homogeneous integral submanifold N^0 .
- The given condition means that the T direction is always transversal to N^0 at any point of N^0 . Hence the dimension of N^0 must be 3 or 4.

- Find sone special $L \in T^{(1,0)}M'$, with M' another pseudoconvex hypersurface and L with weighted homogeneous coefficients.
- By the Nagano theorem, the Lie algebra generated by Re(L), ImL and their Lie brackets gives a unique homogeneous integral submanifold N^0 .
- The given condition means that the T direction is always transversal to N^0 at any point of N^0 . Hence the dimension of N^0 must be 3 or 4.
- Comparing with Bloom's proof of $a^{(1)}(M,0) = c^{(1)}(M,0)$, we need to replace two deep theorems by K. Diederich and J. Fornaess (Annals, 1978).

Theorem 1: Let S be a C^2 -submanifold of a pseudoconvex C^4 -hypersurface $M \subset \mathbb{C}^n$. Let X, Y be C^1 -vector fields on S with values in $T^N S$. Then the vector field [X, Y] also has values in $T^N S$ along S.

For all $p \in S$, $T_p^N S = \{ X \in T_p S : X = \operatorname{Re}Y, \ Y \in T_p^{(1,0)}M, \ \partial\overline{\partial}\rho(Y,\overline{Y})(p) = 0 \}.$ **Theorem 2:** Let $M \subset \mathbb{C}^n$ be a pseudoconvex C^{∞} hypersurface with $0 \in M$ and $S \subset M$ a C^{∞} -CR submanifold, $0 \in S$, with the following properties: **Theorem 2:** Let $M \subset \mathbb{C}^n$ be a pseudoconvex C^{∞} hypersurface with $0 \in M$ and $S \subset M$ a C^{∞} -CR submanifold, $0 \in S$, with the following properties:

- $S \subset \mathbb{C}^{n-1} \times \{0\}$, rank $T^{(1,0)} = q$, dim_{\mathbb{R}}S = 2q + r with q + r = n 1. • $TS = T^N S$
- By taking subsequent brackets of C^{∞} vector fields with values in T^hS one generates the whole tangent bundle TS.

Theorem 2: Let $M \subset \mathbb{C}^n$ be a pseudoconvex C^{∞} hypersurface with $0 \in M$ and $S \subset M$ a C^{∞} -CR submanifold, $0 \in S$, with the following properties:

- $S \subset \mathbb{C}^{n-1} \times \{0\}$, rank $T^{(1,0)} = q$, dim_{\mathbb{R}}S = 2q + r with q + r = n 1. • $TS = T^N S$
- By taking subsequent brackets of C^{∞} vector fields with values in T^hS one generates the whole tangent bundle TS.

Then in any neighborhood of 0, there is a relatively open set \hat{U} on M such that $\mathbb{C}^{n-1} \times \{0\}$ is tangent to bM of infinite order at all points $z \in \hat{U}$.

Theorem 1': Let N be a real analytic hypersurface in \mathbb{C}^{n-1} with $0 \in N$ with $n \geq 3$. Let $\rho(z, \overline{z})$ be a real analytic plurisubharmonic function with $\rho = O(|z|^2)$ as $z \to 0$ defined over a neighborhood of \mathbb{C}^{n-1} . Assume that N is of finite type in the sense of Hömander–Bloom-Graham and $N \subset \{\rho = 0\}$. Then $\rho \equiv 0$.

Theorem 2': Define the weight of z_1 and $\overline{z_1}$ to be 1, the weight of z_2 and $\overline{z_2}$ to be $k \in \mathbb{N}$ with k > 1. Let $A = A(z_1, \overline{z_1})$ be a homogenous polynomial of degree k - 1 in $(z_1, \overline{z_1})$ without holomorphic terms. Suppose that f is a weighted homogeneous polynomial in (z, \overline{z}) of weighted degree m > k. Further assume that $\operatorname{Re}(f)$ is plurisubharmonic, contains no nontrivial holomorphic terms and assume that f satisfies the following equation:

$$f_{\overline{z_1}}(z,\overline{z}) + \overline{A(z_1,\overline{z_1})} f_{\overline{z_2}}(z,\overline{z}) = 0.$$
(0.1)

Then $\operatorname{Re}(f) \equiv 0$.

• In Diederich-Fornaess's Theorem, the problem is reduced to : N CR manifold and $r(z_1, \dots, z_{n-1}, 0) = O(|\rho|^2)$.

- In Diederich-Fornaess's Theorem, the problem is reduced to : N CR manifold and $r(z_1, \dots, z_{n-1}, 0) = O(|\rho|^2)$.
- In Theorem 1', the problem is reduced to
 N CR manifold of finite type and r(z₁, · · · , z_{n-1}, 0) = O(|ρ|).

- In Diederich-Fornaess's Theorem, the problem is reduced to : N CR manifold and $r(z_1, \dots, z_{n-1}, 0) = O(|\rho|^2)$.
- In Theorem 1', the problem is reduced to N CR manifold of finite type and $r(z_1, \dots, z_{n-1}, 0) = O(|\rho|)$.
- In Theorem 2', we need to solve a PDE with the real part plurisubharmonic.

- In Diederich-Fornaess's Theorem, the problem is reduced to : N CR manifold and $r(z_1, \dots, z_{n-1}, 0) = O(|\rho|^2)$.
- In Theorem 1', the problem is reduced to N CR manifold of finite type and $r(z_1, \dots, z_{n-1}, 0) = O(|\rho|)$.
- In Theorem 2', we need to solve a PDE with the real part plurisubharmonic.
- For higher dimensional case, we have to deal with the case: N CR-singular manifold and $r(z_1, \cdots, z_{n-1}, 0)|_N$ satisfies some PDE but is non-zero.

Thank you for your attention!