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Abstract
We consider an embedded n-dimensional compact complex manifold in n+d dimen-
sional complex manifolds. We are interested in the holomorphic classification of
neighborhoods as part of Grauert’s formal principle program. We will give conditions
ensuring that a neighborhood of Cn in Mn+d is biholomorphic to a neighborhood of
the zero section of its normal bundle. This extends Arnold’s result about neighbor-
hoods of a complex torus in a surface. We also prove the existence of a holomorphic
foliation in Mn+d having Cn as a compact leaf, extending Ueda’s theory to the high
codimension case. Both problems appear as a kind of linearization problems involving
small divisors condition arising from solutions to their cohomological equations.
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1 Introduction

We are interested in the classification of the germs of neighborhood of an embedded
compact complex manifold C in a complex manifold M . Here, two germs (M,C)

and (M̃,C) are holomorphically equivalent if there is a biholomorphic mapping F
fixing C pointwise and sending a neighborhood V of C in M into a neighborhood Ṽ
of C in M̃ . These considerations can be useful to extend holomorphic objects such as
cohomology classes of holomorphic sections of bundles over C or functions on C to a
neighborhood of C in M . Indeed, it might be that such an extension problem is much
easy to solve on an equivalent neighborhood. We are also interested in the existence of
a non-singular holomorphic foliation of the germ of neighborhood of C in a complex
manifold having C as a compact leaf. We refer to it as a “horizontal foliation”.

A neighborhood V of an embedded complex manifold Cn in Mn+d has local holo-
morphic charts (h j , v j ) = � j mapping Vj onto V̂ j in Cn+d with n = dimC . Here
∪Vj is a neighborhood of C and Uj := Vj ∩ C is defined by v j = 0. The above-
mentioned classification of the germs of neighborhoods of C is then the classification
of transition functions �k j := �k�

−1
j under holomorphic conjugacy F−1

k �k j Fj . To
such an embedding, one can associate the normal bundle NC (M) of C in M , which
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has the transition matrices gkj (p), p ∈ Uk ∩ Uj . To this embedding one can asso-
ciate another natural embedding, namely the embedding of C as the zero section of
NC (M). Under a mild assumption, this last embedding (NC (M),C) naturally serves
as a first order approximation of (M,C). Let ϕ j = � j |Uj and let ϕk j = ϕkϕ

−1
j

be the transition functions of C . To have a neighborhood of C in M equivalent
to a neighborhood of the zero section in NC (M) is equivalent to seeking Fj such
that �̂k j = F−1

k �k j Fj are of the form �̂k j (h j , v j ) = (ϕk j (h j ), tk j (h j )v j ) with
tk j (h j ) = gkj , the latter being regarded as the transition functions of a neighbor-
hood of the zero section of NC (M). We call this process a “full linearization” of the
neighborhood. The above-mentioned “horizontal foliation” will be obtained as a con-
sequence of a “vertical linearization” of the neighborhood which amounts to seeking
Fj such that �̂k j = (ϕk j (h j ) + φ̂h

k j (h j , v j ), tk j (h j )v j ).
Without even considering holomorphic equivalence problem, it is known that there

are formal obstructions to linearizing [16,34] or to linearizing vertically [42] a neigh-
borhood; see Sect. 2. Part of the Grauert formal principle [6,13,18,29] is to seek
geometry conditions that ensure a holomorphic linearization when the formal obstruc-
tions are absent. In this paper, we will obtain a linearization of a neighborhood of an
embedded compact complex manifold Cn at the absence of formal obstructions under
small divisor conditions in the form of bounds of solutions of cohomology equations
involving all symmetric powers of N∗

C , the dual of the normal bundle NC of Cn in
Mn+d . Because of the very nonlinear nature of the problem, we need to work with a
family of nested domains on which we solve and eventually bound the solutions of
1-cohomological equations. Indeed, we are naturally led to dealing with shrinking of
the domains as we need to get estimates of derivatives of sections (by Cauchy esti-
mates for instance). To be more precise, assume that a 1-cocycle f with value in the
sheaf of sections of holomorphic bundle (involving symmetric power SmN∗

C for some
m ≥ 2) onC vanishes in the 1st cohomology group over a coveringW . Then there is a
0-cochain w overW such that δw = f . Nevertheless, we need to prove the existence
of a (possibly different) solution u satisfying the linear equation δu = f and a “lin-
ear” estimate of the form ‖u‖W ≤ K‖ f ‖W (the norm is either L2 or the sup-norm).
Because of the nonlinear nature of our problem, we need to solve the linear equation
iteratively and estimate solutions of the form δum = Fm( f2, . . . , fm, u2, . . . , um−1),
m ≥ 2. Here Fm( f2, . . . , fm, u2, . . . , um−1) is a nonlinear function and vanishes in
a first cohomology group. Therefore, the bound K , depending on m, will compound,
which leads to a problem on non-linear estimates. Here come some of the main issues :
we need that, at the limit, the sequence of nested domains, over which the solutions
are estimated iteratively, remains to cover the manifold. And we need to control the
growth of the bound K with respect to m, that gives rise to the so-called small divi-
sors condition. Therefore, the existence of any bound K for linear solutions u without
shrinking the covering W is a basic question. The latter was solved affirmatively by
Kodaira–Spencer [26, eq. (9), p. 499] for the case of line bundles for a general cov-
ering. For higher rank vector bundles, we provide a positive solution in the following
result :

Proposition 1.1 Let C be a compact complex manifold. There exists a family of cov-
erings Ur = {Ur

j } of C with r∗ ≤ r < r∗ and Ur
j = ϕ−1

j (�n
r ) via a holomorphic
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coordinate map ϕ j mapping Ur∗
j onto the polydisc �n

r∗ such that for any holomorphic

vector bundle E over C, and each f ∈ C1(Ur ′
, E), the space of 1-cochains on Ur ′

of
holomorphic sections with values in E, satisfying f = δu0 for some u0 ∈ C0(Ur ′

, E),
there exist u ∈ C0(Ur ′

, E) and v ∈ C0(Ur ′′
, E) such that δu = f and δv = f , and

|u|r ′ ≤ K (E)| f |r ′ , (1.1)

|v|r ′′ ≤ D(E)

(r ′ − r ′′)τ
| f |r ′ . (1.2)

Here r ′, r ′′ are any numbers satisfying r∗ < r ′′ < r ′ ≤ r̃ < r∗ and r ′ − r ′′ ≤ r∗ − r̃ ,
and τ, K (E), D(E) are independent of r ′, r ′′.

Here, we have used the sup-norm (or L2-norm) of cochains of holomorphic sections
of bundles (see Sect. A.2 for specific notations). We do not know if K (E) and D(E)

are comparable when they are applied to the symmetric powers of N∗
C except when

NC is unitary. We note that Hörmander [20,35] obtained solutions with bounds for
cohomology groups with respect to the ∂̄ operator acting on the sheaf of (p, q)-forms
with L2 coefficients on bounded pseudoconvex domains in Cn .

The estimate (1.2) was proved by Donin [9] for a special family of coverings by
the L2 theory. He also raised the question if estimate (1.1) exists, which is the basic
question mentioned above. Proposition 1.1 gives us a more flexible kind of results and
ultimately an estimate that holds without any shrinking for higher rank vector bundles
via the above mentioned nested coverings. We also use the L2-theory. We first obtain
(1.2) by Theorem A.9. Then (1.1) is obtained by Lemma A.2. The constant K (E)

is defined for the kind of bundles we need in Definition A.5. This is summarized in
Theorem A.12. The main results of this paper are based on the existence of nested
finite coverings proved in subsection A.5.

Proposition 1.1 will be a useful tool in this paper. We now formulate our main
results. We say that TCM = T M |C splits if TCM = TC ⊕ NC holomorphically.
For instance, TC E splits for any holomorphic vector bundle E over C , where TC E is
the restriction of T E to its zero section identified with C . Here and in the sequel, we
identify C with the zero section of E . We say that NC is flat if the transition matrices
of NC are locally constant. We say that NC is unitary if its transition matrices are
unitary. Note that the maximum principle implies that a unitary NC is flat; see a proof
following Definiton 2.2. We have the following “vertical linearization” result:

Theorem 1.2 Let Cn be a compact submanifold of Mn+d with splitting TCM and
unitary NC. Let η0 = 1 and

ηm := K (NC ⊗ Sm(N∗
C )) max

m1+···+mp+s=m
ηm1 · · · ηmp ,

where the maximum is taken in 1 ≤ mi < m for all i and s ∈ N. Assume that there
are positive constants L, L0 such that

ηm ≤ L0L
m, m = 1, 2 . . . .
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Assume that H0(C, NC ⊗S
(N∗
C )) = 0 for all 
 > 1 . Assume that either H1(U , NC ⊗

S
(N∗
C )) = 0 for all 
 > 1 or a neighborhood of C is formally vertically linearizable

by a formal holomorphic mapping that is tangent to the identity (see Definition 2.5).
Then the embedding is actually vertically linearizable by a holomorphic mapping that
is tangent to the identity.

When C is a compact holomorphic curve embedded in a complex surface M with
a unitary normal bundle NC , the above vertical linearization is one of main results in
Ueda [42] where H0(C, NC ⊗ S
(N∗

C )) = 0 for all 
 > 1 follows from his small-
divisor condition. This has been generalized by Koike in higher codimension case
under a strong assumption that NC is a direct sum of unitary line bundles [27,28]; see
also the direct sum condition stated in [28, Lemma 3.4 and Remark 3.5]. The Ueda
theory for codimension-one foliations has also been extended by Claudon–Loray–
Pereira–Touzet [7] and Loray–Thom–Touzet [31]. We remark that Theorem 1.2 via
the flatness of NC ensures the existence of a “horizontal” foliation :

Corollary 1.3 Under assumptions of Theorem 1.2, there exists a neighborhood of Cn

in Mn+d that admits an n-dimensional smooth holomorphic foliation having Cn as a
leaf.

The following results can be understood in the context of the Grauert formal
principle for rigidity: If (M,C) is formal equivalent to (NC ,C), then they are holo-
morphically equivalent under suitable assumptions. We first consider the unitary case.

Theorem 1.4 Let Cn be a compact submanifold of Mn+d . Suppose that NC is unitary.
Let η0 = 1 and

ηm := max
(
K (NC ⊗ Sm(N∗

C )), K (TC ⊗ Sm(N∗
C ))
)

max
m1+···+mp+s=m

ηm1 · · · ηmp ,

where the maximum is taken in 1 ≤ mi < m for all i and s ∈ N. Assume that there
are positive constants L, L0 such that

ηm ≤ L0L
m, m = 1, 2 . . . . (1.3)

If TCM splits and H1(U , TCM ⊗ S
(N∗
C )) = 0 for all 
 > 1 or more generally if a

neighborhood of C in M is linearizable by a formal holomorphic mapping which is
tangent to the identity, then there exists a neighborhood of C in M which is equiva-
lent to a neighborhood of C (i.e the 0th section) in NC by a holomorphic mapping
that is tangent to the identity. In that case, we say that the embedding C ↪→ M is
holomorphically linearizable.

More generally, the following result treats more general cases, including the case
where NC is not necessarily flat.

Theorem 1.5 Let Cn be a compact submanifold of Mn+d . Suppose that

∑

k≥1

log D∗(2k+1)

2k
< +∞, (1.4)
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where D∗(2k+1) is defined by (5.27). Suppose that either H0(C, TC ⊗ S
(N∗
C )) = 0

for all 
 > 1, or NC is flat. Assume further that either TCM splits and H1(U , TCM ⊗
S
(N∗

C )) = 0 for all 
 > 1 or (M,C) and (NC ,C) are equivalent by a formal
holomorphic mapping which is tangent to the identity. Then (M,C) and (NC ,C) are
actually holomorphically equivalent.

The previous results can be seen as “full linearization” results. Theorem 1.4 is
proved using a majorant method while Theorem 1.5 is based on a Newton scheme.
It is not clear how to compare the two ”small divisors conditions” (1.3) and (1.4)
although the counterparts in theory of dynamical systems are equivalent [4,5].

Let us mention a few results for the above-mentioned Grauert formal principle.
The formal principle holds in the following cases: (a) negative NC in the sense of
Grauert, by results of Grauert [13] and Hironaka-Rossi [18]. In Grauert’s case, Cn

has a system of strictly pseudoconvex neighborhoods and consequently Cn is the
only compact n-submanifold near Cn . In the same spirit, Savelev proved that all
neighborhoods of embeddings of P1 in complex surfaces with a unitary flat normal
bundle are holomorphically equivalent [38]. (b) sufficiently positive NC and dimC >

2, by a result of Griffiths [16, Thm II (i)] showing that a neighborhood is determined
by a finite-order neighborhood. In other words, under this condition the holomorphic
classification of neighborhoods is “finitely determined”. (c) H1(C, NC ) = 0 and the
case that for each x ∈ C there is x ′ ∈ C such that the fiber of NC at x is generated by
global sections of NC vanishing at x ′, by a result of Hirschowitz (see [19] for more
general results)1. (d) 1-positive NC , by a result of Commichau-Grauert [8].

We should remark that the above “full linearization” result was obtained by
Arnol’d when C is an elliptic curve and M is a surface, where the vanishing of
H0(X , TCM ⊗ S
M) follows from the non-vanishing of “small divisors” [2,3].
Ilyashenko and Pyartli [23] proved an analogous result for special embeddings of
the product flat tori under a strong assumption that NC is a direct sum of flat line
bundles. We emphasize that in our Theorem 1.5, for general compact manifolds Cn ,
we impose the vanishing of H0(X , TCM ⊗ S
M) for all integers 
 ≥ 2 whereas there
is no restriction on H0 when C has affine transition functions for coordinate charts
and NC is flat.

As a simple consequence, we have the following

Corollary 1.6 Under assumptions of Theorem 1.5 on C and M, any holomorphic sec-
tion of a holomorphic vector bundle E over C extends to a holomorphic section of a
holomorphic-vector-bundle extension of E over a neighborhood of C in M.

Corollary 1.7 Let C be a compact complex manifold. Let (M,C) be equivalent to
(C × Cd ,C) by a formal holomorphic mapping which is tangent to the identity.
Suppose that the small-divisor condition in Theorem 1.5 is satisfied. Then (M,C) is
holomorphically equivalent to (C × Cd ,C).

We now give an outline of the paper.

1 Recently, Jun-Muk Hwang proved instances of Hirschowitz’s conjecture on the Formal Principle [22].
The authors thank Takeo Ohsawa for acknowledging this work.
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In Sect. 2, we study the formal obstructions to the full linearization and vertical
linearization problems. The formal obstructions are known from work of Nirenberg-
Spencer [34], Griffiths [16], Morrow–Rossi [32], for the the full linearization problem
and by Ueda [42] (see also Neeman [33] and among others) for the vertical lin-
earization problem. The obstructions are described in H1(C, E ⊗ S
N∗

C ) for a natural
vector bundle E that is either TCM or NC . In this paper we emphasize the role of
H0(C, TCM ⊗ S
N∗

C ). In local dynamical systems, the elements in the analogous
group appear as finite symmetries in the Ecalle–Voronin theory [1] and centralizers
for the linearizations [12]. The small divisors in local dynamics emerge in the form
of the bounds K (NC ⊗ S
N∗

C ) and D(TCM ⊗ S
N∗
C ) in Proposition 1.1. In work of

Arnol’d [2] and Ueda [42], the vanishing condition of the corresponding zero-th coho-
mology groups is not explicit; however, it follows from their small-divisor conditions.

In Sect. 3, we prove Theorem 1.2 by using Ueda’s majorization method [42]. In
our case the majorization relies on an important tool of the (modified) Fischer norm
which is invariant under a unitary change of coordinates. The invariance allows us
to overcome the main difficulty in our majorization proof to deal with the transition
functions of N∗

C when they are unitary, but not necessarily diagonal. The (modified)
Fischer norms have also been useful in other convergence proofs [24,30,40]; see also
Koike [28] for a recent use of Fischer norms in the diagonal case. In Sect. 4, we
also extend the majorant method to the full linearization problem for the special case
where NC is unitary. In Sect. 5, we obtain the full linearization in the general case by
introducing a Newton scheme, i.e. a rapid convergence scheme as in Brjuno’s work
[4,5]; see also [37,41]. However, wemust copewith the domains of transition functions
which are not so regular. These domains, when carefully chosen, have nevertheless a
disc structure. This allows us to obtain a proof using sup-norm estimates.

Finally, the paper contains an appendix which has interests in its own right. It has
two results, namely the existence of the two bounds stated in Proposition 1.1 and the
existence of nested coverings (see Definition A.1). The existence of bound K (E) was
employed by Ueda [42] through the complete system of Kodaira–Spencer [26] when
dimC = 1 and codimM C = 1.

We will prove Proposition 1.1 using some techniques developed by Donin [9]. Our
proof also relies on a ”quantified” version of Grauert–Remmert finiteness theorem
[15]. The existence of bound D(E ′ ⊗ S
E ′′)was proved by Donin [9] for the so-called
“normal” coverings. We have used nested coverings in the proof of Proposition 1.1 as
well as the convergence proof in Theorem 1.5. We believe that the methods and tools
developed in this article will be useful for other kinds of problems.

2 Full Linearizations, Horizontal Foliations, and Vertical
Linearizations

In this section, we describe the problem of equivalence of a neighborhood of a complex
compact submanifold C of M with a neighborhood of the zero section in the normal
bundle of C in M as a “full” linearization problem of the transition functions of
this neighborhood. We also describe the existence of a holomorphic foliation of a
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neighborhood of C having C as a leaf as a consequence of a vertical linearization
problem of the transition functions of this neighborhood.

We will first describe the formal coordinate changes in terms of cohomological
groups of holomorphic sections of a suitable sequence of holomorphic vector bundles.

2.1 Transition Functions

We recall basic facts on vector bundles, which we refer to [17, Chap. 0, Sect. 5].
We first set up notation. If a vector space E has a basis e = {e1, . . . , ed}, then a

vector v in E can be expressed as

v = ξμeμ, ξ = (ξ1, . . . , ξd)t .

Here, we use the summation notation: ξμeμ stands for
∑d

μ=1 ξμeμ. The ξμ’s are the
coordinates or components of v in the basis e.

We recall that a holomorphic vector bundleE over a complex manifold X is defined
by a projectionπ : E → X and holomorphic trivializations� j : π−1(Dj ) → Dj ×Cr

such that each � j : π−1(Dj ) → Dj × Cr is a biholomorphism, and � j (Ep) =
{p}×Cr forEp := π−1(p). Furthermore {Dj } is an open covering of X and the maps
�k j = �k�

−1
j : Dk ∩ Dj × Cr → Dk ∩ Dj × Cr satisfy

�k j (p, ξ j ) = (p, gkj (p)ξ j ), (2.1)

where gkj are transition matrices which are holomorphic and invertible on Dk ∩ Dj .
Thus for ξ

μ
k ek,μ = ξ

μ
j e j,μ, we have

ξ
μ
k = gμ

k j,νξ
ν
j , e j,μ = gν

k j,μek,ν , (2.2)

ξk = gkjξ j , ek = (g−1
k j )t e j . (2.3)

They satisfy the cocycle conditions,

gkj g jk = Id, on Dk ∩ Dj ; gki gi j = gkj , on Dk ∩ Dj ∩ Di , (2.4)

where Id is the identity matrix. We also need to consider the dual bundle E∗. Let
e∗
j be the basis dual to e j so that (e∗

j,μ(e j,ν))1≤μ,ν≤r is the identity matrix. Suppose

ζ
μ
j e

∗
j,μ = ζ

μ
k e

∗
k,μ ∈ E∗. Corresponding to (2.3), we have

e∗
k = gkj e

∗
j , ζk = (g−1

k j )tζ j . (2.5)

Let us also express transition functions for various vector bundles in coordinate
charts as above. Let Cn be a compact complex manifold embedded in complex mani-
fold Mn+d . We cover a neighborhood ofC in M by open sets Vj so that we can choose
coordinate charts (z j , w j ) on Vj for M such that

Uj := C ∩ Vj = {w j = 0}.
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Then U = {Ui } is a finite covering of C by open sets on which the coordinate charts
zi = (z1i , . . . , z

n
i ) are defined. Let

zk = ϕk j (z j ) = ϕkϕ
−1
j (z j ) (2.6)

be the transition function of C on Ukj := Uk ∩ Uj . It is a biholomorphic mapping
from ϕ j (Ukj ) onto ϕk(Ukj ) in Cn . Then TC has a basis

e j,α := ∂

∂zαj
, 1 ≤ α ≤ n

over Uj and its transition matrices sk j have the form

sα
k j,β(z j ) := ∂zαk

∂zβj

∣
∣∣∣
Uj∩Uk

. (2.7)

Thus for ηα
k

∂
∂zαk

= ηα
j

∂
∂zαj

on Uj ∩Uk , we have ηk = sk j (z j )η j .

Regarding the normal bundle NC , its transition matrices tμk j,ν(z j ) := ∂w
μ
k

∂wν
j
|Uj∩Uk

on Uj ∩Uk are for the basis

f j,μ := ∂

∂w
μ
j

mod TC, 1 ≤ μ ≤ d.

Thus for ξμ
k f j,μ = ξ

μ
j fk,μ, we have ξk = tk j (z j )ξ j . With notation (2.1), the transition

matrices of T M |C are then of the form

gkj :=
(
sk j lk j
0 tk j

)
(z j ) on Uj ∩Uk

for some n × d matrices l jk . Note that
∂w j
∂zk

|C = 0.
Throughout the paper, τk j (z j ) are the transition matrices of N∗

C for the base dw j .
Note that

τk j = (t−1
k j )t .

More specifically, if w∗
j,μ := dw

μ
j |Uj and ζ

μ
j w∗

j,μ = ζ
μ
k w∗

k,μ, then (2.5) becomes

ζ ∗
k = (t−1

k j (z j ))
tζ ∗

j , w∗
k = tk j (z j )w

∗
j . (2.8)

We remark that the cocycle conditions (2.4) for NC now take the form

tk j (z j )t jk(zk) = Id onUj ∩Uk, tk j (z j )t j
(z
) = tk
(z
) onUj ∩Uk ∩U
.

(2.9)
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We say that T M splits on C , if there is a (non-canonical) decomposition

T M |C = TC ⊕ ÑC , ÑC ∼= NC . (2.10)

Equivalently, there exists a system of coordinate charts such that on C , the transition
matrices of T M |C are of the form

gkj =
(
sk j 0
0 tk j

)
(z j ) on Uj ∩Uk .

In other words,
∂z j
∂wk

∣∣∣
C

= 0.

Throughout the paper, we assume that T M splits on C and we fix a splitting (2.10).
Then the change of bases of the normal bundle NC has a simple form

zk = ϕk j (z j ),
∂

∂wν
k

= tμjk,ν(zk)
∂

∂w
μ
j

, onUj ∩Uk .

In summary, for a neighborhood of the embedded manifold C in M with splitting
TCM , we can find a covering V = {Vi }, with � j (Vj ) = Ũi × W̃i , by open sets on M
and coordinates (zi , wi ) defined on Vi . We assume that Uj := C ∩ Vi is defined by
{wi = 0}. A neighborhood of C will then be described by transition functions on Vkj
of the form

�k j :
zk = �h

k j (z j , w j ) := ϕk j (z j ) + φh
k j (z j , w j ),

wk = �v
k j (z j , w j ) := tk j (z j )w j + φv

k j (z j , w j ).
(2.11)

Here, φh
k j (resp. φ

v
k j ) are holomorphic functions of vanishing order≥ 2 alongw j = 0:

φh
k j (z j , w j ) = O(|w j |2), φv

k j (z j , w j ) = O(|w j |2). (2.12)

That φh
k j vanishes to order ≥ 2 follows from the fact that T M |C splits as TC ⊕ NC

(see above and [32, proposition 2.9]). An interested reader can also refer to [32] for a
non-splitting example. Define

Nkj (h j , v j ) := (ϕk j (z j ), tk j (h j )v j ).

Our goals are to apply changes of coordinates to simplify φh
k j , φ

v
k j , or one of them,

according to the problem we study.

2.2 The Equivalence of Transition Functions

The germ of neighborhood of an embedded manifold is well-defined. For the formal
normalization, we need to introduce (semi) formal charts and formal neighborhoods
of an embedded manifold in a (semi) formal manifold.
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Definition 2.1 We call M̂ an (admissible and splitting) formal neighborhood of C if
there are holomorphic coordinate charts ϕ j on Uj where {Uj } is a covering of C and
there are formal power series

(z j , w j ) = �̂ j (p, w) := (ϕ j (p), t j (p)w) +
∑

|Q|≥2

� j,Q(p)wQ,

where � j,Q are holomorphic functions inUj and each t j is an invertible holomorphic
d × d matrix onUj . Note that the formal transition functions �̂k j = �̂k�̂

−1
j have the

form

�̂k j (z j , w j ) = (ϕk j (z j ), tk j (z j )w j ) +
∑

|Q|>1

�̂k j,Q(z j )w
Q
j , z j ∈ ϕ j (Uj ∩Uk).

(a) When all � j are holomorphic, the formal neighborhood M̂ is called the germ of
a (holomorphic) neighborhood of C .

(b) M̂ is called a linear neighborhood of C if additionally

�̂k j (z j , v j ) = (ϕk j (z j ), tk j (z j )v j ) (2.13)

and each tk j is an invertible holomorphic matrix in Uk ∩ Uj . The terminology is
meaningful since the �̂k j can be realized as the transition functions of a holomor-
phic vector bundle over C , namely the normal bundle of C in M .

We are mainly interested in the classification of a neighborhood of C for a given C .
Therefore, it is reasonable to assume that the local trivialization ofC are fixed. In other
words, ϕk j are fixed and we will only consider mappings sending a neighborhood of
C into another neighborhood of C that fix C pointwise.

Definition 2.2 We shall say that NC is flat (resp. unitary flat), if we can find constant
(resp. with values in group of unitary matrices Ud ) transition functions in a possibly
refined covering. If TCM := (T M)|C is holomorphically flat, or flat, i.e. in some
coordinates both transition functions NC and TC are constant matrices, then by (2.7)

ϕk j (z j ) = sk j z j + ck j

where sk j are constant matrices and ck j are constant vectors. Then, the transition
functions of a neighborhood of the zero section of the normal bundle, �̂k j as defined
in (2.13) read

Akj (z j , w j ) := (sk j z j + ck j , tk jw j ).

Wewill use the following notation:When NC is flat, we write its transition matrices
tk j (z j ) as tk j , indicating that they are independent of z j .
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As mentioned in the introduction, a unitary holomorphic vector bundle is flat.
Indeed, let tk j be unitary and holomorphic transition matrices. Let ( f1, . . . , fd) be a
row vector of the matrices. We have

| f1|2 + · · · + | fd |2 = 1. (2.14)

Fix a point p ∈ Uk ∩ Uj . Conjugating the matrix by a constant unitary matrix, we
may assume that ( f1, . . . , fd) = (1, . . . , 0) at p. By the maximum principle, (2.14)
implies that near p, f1 = 1 and hence f j = 0 for j > 1.

Definition 2.3 We shall say that a change of coordinates {Fj } preserves the germ of
a neighborhood of the zero section of NC with transition maps {Nkj } if each Fj is
biholomorphic and fixes v j = 0 pointwise and FkNkj = Nkj Fj , in which case we say
that {Fj } preserves {Nkj } for simplicity.

We further observe the following.

Lemma 2.4 Let M, M̂ be two (admissible) neighborhoods of C, of which coordinate
charts are {� j }, {�̂ j }, respectively. Let �k j = �k�

−1
j and �̂k j = �̂k�̂

−1
j .

(a) There is a biholomorphic mapping F : M → M̂, defined near C and fixing C, if
and only if there are biholomorphic mappings Fj satisfying

Fk�̂k j (z j , w j ) = �k j Fj (z j , w j ), Fj (z j , 0) = (z j , 0). (2.15)

(b) If Fj satisfies (2.15), then

Fj (z j , w j ) = LFj (z j , w j ) + O(|w j |2), LFj = (z j + s j (z j )w j , u j (z j )w j ),

sk(ϕk j (z j ))tk j (z j ) = Dϕk j (z j )s j (z j ),

uk(ϕk j (z j ))tk j (z j ) = tk j (z j )u j (z j ).

Assume further that F preserves the splitting. Then s j = 0.
(c) Let TC and NC be flat and let Fj be (semi) formal biholomorphism fixing C

pointwise. Suppose that F−1
k �k j Fj = Nkj + O(|v|2j ). Then {LFj } preserves

{Nkj }, i.e. LFkNkj (LFj )
−1 = Nkj , where

Fj (h j , v j )=LFj (h j , v j ) + O(|v j |2), LFj (h j , v j )=(h j +s j (h j )v j , u j (h j )v j ).

Proof The points (a),(b) can be verified easily. For (c), let us expand Fk�k j (h j , v j ) =
Nkj ◦ Fj (h j , v j ) + O(|v j |2) and compare the constant and linear terms in v j . We
obtain

ϕk j (h j ) + s j (ϕk j (h j ))tk jv j = ϕk j (h j + s j (h j )v j ) + O(|v j |2),
uk(ϕk j (h j ))tk jv j = tk j u j (h j )v j + O(|v j |2).

Here we have used the assumption that tk j are constant. Since ϕk j are affine, the
two identities still hold if we drop O(|v j |2) from them. This shows that LFkNkj =
Nkj LFj , again using the fact that tk j are constant and ϕk j are affine. ��
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Finally, we mention that we will choose the atlas of C so that each ϕ j is a biholo-
morphism fromUj onto the unit polydisc�n inCn and from a neighborhood Ũ j ofUj

onto another larger polydisc. When C is embedded in a complex manifold M , we can
extend ϕ j to Vj to get a coordinate chart� j on Vj such that� j maps Vj ontoUj ×�d

δ .
This can be achieved since any holomorphic vector bundle over Ũ j is holomorphically
trivial. Thus NC |Uj splits. Consequently, we can use a flow box of holomorphic normal
vector fields to construct the required � j . Therefore, if C is embedded into another
complex manifold M̃ , we will choose the atlas of a neighborhood of C in M̃ such that
the restriction of the chart on Uj agrees with ϕ j .

Therefore, we introduce the following.

Definition 2.5 We say that a formal neighborhood {�k j } of C is equivalent to a neigh-
borhood {�̂k j } of C in M by a formal holomorphic mapping F that is tangent to the

identity, if there are formal maps Fj (z j ) = (z j , w j )+∑|Q|>1 Fj,Q(z j )w
Q
j such that

Fj,Q(z j ) are holomorphic functions in Uj and as power series in w j

Fk�̂k j (z j , w j ) = �k j Fj (z j , w j ).

We take F = �̂−1
j Fj� j , which is well-defined, when �k j = �k�

−1
j and �̂k j =

�̂k�̂
−1
j .

2.3 The Full Linearization of a Neighborhood

In this case, our goal is to seek new coordinates (hk, vk) so that all φh
k j , φ

v
k j are 0.

Let us consider a change of coordinates in a neighborhood of C by modifying the
old coordinate charts (zk, wk) via Fk . We write it as

Fk : zk = Fh
k (hk, vk) := hk + f hk (hk, vk),

wk = Fv
k (hk, vk) := vk + f v

k (hk, vk).
(2.16)

Here, f hk (hk, vk) and f v
k (hk, vk) are holomorphic functions vanishing to order ≥ 2

at vk = 0. In particular, C is pointwise fixed by the change as zk = hk on C (i.e. for
vk = 0). We require that the inverse of Fk is defined in a possibly smaller open sets
V̂k ⊂ ϕk(Uk) such that the union of �−1

k (V̂k) remains a neighborhood of C in M .
We recall that the cocycle condition (2.9) on the transition matrices tk j has the form

tk j (z j )t jk(ϕk j (z j )) = Id,

tk j (ϕ j
(z
))t j
(z
) = tk
(z
). (2.17)

Let us assume that the (a priori formal) change of coordinates (2.16) maps a neigh-
borhood C to a neighborhood of the zero section in the normal bundle. This means
that, in these new coordinates, we have
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Nkj := F−1
k �k j Fj : hk = ϕk j (h j ),

vk = tk j (z j )v j .

Let us write down the above “conjugacy equations”.We first consider the horizontal
equation of

FkNkj = �k j Fj .

On the left side of the equation, we have

zk = hk + f hk (hk, vk) = ϕk j (h j ) + f hk (ϕk j (h j ), tk j (h j )v j ).

On the other side, we have

zk = ϕk j (h j + f hj (h j , v j )) + φh
k j (h j + f hj , v j + f v

j ).

Let us define the horizontal cohomological operator to be

Lh
k j ( f

h
j ) := f hk (ϕk j (h j ), tk j (h j )v j ) − sk j (h j ) f

h
j (h j , v j ). (2.18)

Recall that sk j (h j ) = Dϕk j (h j ) is the Jacobian matrix of ϕk j . Hence, we can write
the previous horizontal equation as

Lh
k j ( f

h
j ) = φh

k j (h j + f hj , v j + f v
j )

+ϕk j (h j + f hj (h j , v j )) − ϕk j (h j ) − Dϕk j (h j ) f
h
j (h j , v j ).

(2.19)

Let us consider the vertical equation. We have, on one side of the equation,

wk = vk + f v
k (hk, vk) = tk j (h j )v j + f v

k (ϕk j (h j ), tk j (h j )v j ).

On the other side, we have

wk = tk j (h j + f hj )(v j + f v
j ) + φv

k j (h j + f hj , v j + f v
j ).

Let us define the vertical cohomological operator to be

Lv
k j ( f

v
j ) := f v

k (ϕk j (h j ), tk j (h j )v j ) − tk j (h j ) f
v
j . (2.20)

Hence, we can write the previous vertical equation as

Lv
k j ( f

v
j ) = φv

k j (h j + f hj , v j + f v
j )

+
(
tk j (h j + f hj (h j , v j )) − tk j (h j )

)
f v
j

+
(
tk j (h j + f hj (h j , v j )) − tk j (h j )

)
v j . (2.21)
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2.4 Horizontal Foliations andVertical Trivializations

Let us assume that there exists a non singular holomorphic foliation having C as a
leaf. We seek holomorphic functions f j = ( f j,1, . . . , f j,d) defined in a neighborhood
Vj of Uj such that f j = 0 on Uj and d f j,1 ∧ · · · ∧ d f j,d �= 0. Then, we may use
(h j , v j ) = (z j , f j (z j , w j )) as a coordinate mapping on Vj , which changes variables
in vertical components. We then prove that in these new coordinates, the transition
functions of a neighborhood of C are of the form �̂k j = (�̂h

k j , �̂
v
k j ) such that �

v
k j are

independent of h j . We remark that NC must be flat if a horizontal foliation exists.

Proposition 2.6 Assume that there is smooth holomorphic horizontal foliation defined
in a neighborhood V of C in M. By a refinement of U j , then there exists a change of
variables of the form

zk = hk wk = s(h j )v j + O(|v j |2)

so that in the new variables, we have

hk = ϕk j (h j ) + φh
k j (h j , v j ),

vk = t̃k jv j +
∑

|Q|>1

ck j,Qv
Q
j ,

where t̃k j , ck j,Q are constants.

Proof By a refinement, we may assume that the foliation on Vj is givenWj (h j , v j ) =
cst by holomorphic functions Wj = (Wj,1, . . . ,Wj,d) such that Wj = 0 on Uj and
dWj,1 ∧ · · · ∧ dWj,d �= 0. We have Wk = �̃v

k jW j , where �̃v
k j is a biholomorphism

of (Cd , 0) with �̃v
k j (0) = 0. Then W̃ j = (z j ,Wj ) is a biholomorphism defined on

Vj and fixing C ∩ Vj pointwise, by shrinking Vj if necessary in the vertical direction.
Since W̃ j is invertible, we can define �̃h

k j = zk W̃
−1
j Then we have �̃h

k j W̃ j = zk .
Therefore,

W̃k W̃
−1
j (h j , v j ) = (�̃h

k j (h j , v j ), �̃
v
k j (v j )).

Set Fj = � j W̃
−1
j . We have Fh

j (h j , v j ) = h j . We now get

F−1
k �k�

−1
j Fj = W̃k W̃

−1
j = �̃k j .

��

In this paper, we will approach the horizontal foliation problem via the following
vertical linearization when NC is unitary.
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2.5 TheVertical Linearization

Here we seek new coordinates (h j , v j ) from (z j , w j ) such that the vertical component
of the new�k j agreeswith the vertical component of Nkj . In Lemma2.17wewill show
that if such formal coordinates exist, then the vertical linearization can be achieved by
changing vertical coordinates only, i.e. a coordinate change of the form

wk = Fv
k (hk, vk) := vk + f v

k (hk, vk), zk = hk .

For the vertical linearization, we only need to consider the vertical part of transition
functions so that in the new variables, we have

hk = �̂h
k j (h j , v j ) := ϕk j (h j ) + φ̂h

k j (h j , v j )

vk = tk j (h j )v j .

Here, φ̂h
k j (h j , v j ) vanishes up to order 2 at v j = 0. The vertical equation reads

tk j (h j )(v j + f v
j ) + φv

k j (h j , v j + f v
j ) = wk

= tk j (h j )v j + f v
k (�̂h

k j (h j , v j ), tk j (h j )v j ).

Using the previous notation, we finally obtain the following “conjugacy equations”

Lv
k j ( f

v
j )=φv

k j (h j , v j + f v
j )−

(
f v
k (�̂h

k j (h j , v j ), tk j (h j )v j ) − f v
k (ϕk j (h j ), tk j (h j )v j )

)
.

(2.22)

Having determined the coordinate change, let us find the horizontal component φ̂h
k j

from the horizontal equation

ϕk j (h j ) + φh
k j (h j , v j + f v

j ) = zk = �̂h
k j (h j , v j ) = ϕk j (h j ) + φ̂h

k j (h j , v j ).

We get

φ̂h
k j (h j , v j ) = φh

k j (h j , v j + f v
j ). (2.23)

2.6 An Open Problem on the Horizontal Linearization

In this paper, we will not study this analogous linearization problem which is interest
in its own right. Namely, one could seek coordinate changes so that the new transition
functions of M near C have the form

Ñk j := F−1
k �k j Fj : hk = ϕk j (h j ),

vk = t̃k j (z j , v j ).
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The existence of such a horizontal linearization ensures that a neighborhood of C
in M admits a holomorphic foliation with leaves transversal to C . If one follows
the approach in this paper for t̃k j (z j , h j ) not to be tk j h j where tk j (h j ) are unitary,
constant or non-constant functions in general, it leads to an interesting and new kind
of difficulty.

2.7 Coboundary Operators in Symmetric Powers and Coordinates

In this subsection, we establish the connections between coordinate changes and for-
mal obstructions to the full linearization and vertical linearization via cohomological
groups. In local dynamics, the resonant terms play an important role in the construction
of normal forms at least at the formal level, while non-resonant terms play another
important role in coordinate changes. In all problems, obstructions are described via
the first cohomological groups, while the coordinate changes are described via solu-
tions to the cohomological equations of first order approximation.

Let E ′ be a vector bundle of rank τ over C . Let U = {Ui } be a covering of C as
above. Let e j := {e j,1, . . . , e j,τ } be a basis over Uj and let ξ j := (ξ1j , . . . , ξ

τ
j )

t be
coordinates in e j . Let sk j (z j ) be the transition matrices of E ′ over Uk ∩ Uj . Using
notation in (2.3), we have

ξα
k = sα

k j,β(z j )ξ
β
j , ek;α = sβ

jk,α(zk)e j,β , (2.24)

zk = ϕk j (z j ), ξk = sk j (z j )ξ j , ek = (s−1
k j (z j ))

t e j , (2.25)

where ϕk j are the transition functions of C . For N∗
C , by (2.8) we have

ζk = (t−1
k j )t (z j )ζ j , w∗

k = tk j (z j )w
∗
j , zk = ϕk j (z j ).

The following fact is well-known. We provide a proof for the reader’s convenience.
Let us first introduce

f̃ λ
i0···iq (ziq , ζiq ) :=

∑

|Q|=L

f λ
i0···iq ;Q(ziq )ζ

Q
iq

, (2.26)

for a cochain { f I } ∈ Cq({Uj },O(E ⊗ SL(N∗
C ))) given by

fi0···iq (p) =
τ∑

λ=1

∑

|Q|=L

f λ
i0···iq ;Q(ziq (p))ei0,λ(p) ⊗ (w∗

iq (p))
Q, (2.27)

where each f λ
i0...iq ;Q is a holomorphic function on ϕiq (Ui0···iq ), and Ui0···iq denotes as

usual Ui0 ∩ · · · ∩Uiq . Here we have chosen a representation of cochains in bases that
arise from the linearized equations for the problems described above.

Let fi0···î
···iq+1
denote fi0···i
−1i
+1···iq+1 . Then (δ f )i0···iq+1 = ∑

(−1)
 fi0···î
···iq+1

becomes
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(δ f )i0···iq+1 =
q∑


=1

(−1)

τ∑

λ=1

∑

|Q|=L

f λ

i0···î
···iq+1;Q(ziq+1(p))ei0,λ(p) ⊗ (w∗
iq+1

(p))Q

+
τ∑

λ=1

∑

|Q|=L

f λ
i1···iq+1;Q(ziq+1(p))ei1,λ(p) ⊗ (w∗

iq+1
(p))Q

− (−1)q
τ∑

λ=1

∑

|Q|=L

f λ
i0···iq ;Q(ziq (p))ei0,λ(p) ⊗ (w∗

iq (p))
Q

=:
τ∑

λ=1

∑

|Q|=L

gλ
i0···iq+1

(zq+1)ei0,λ(p) ⊗ (w∗
iq+1

(p))Q .

By (2.24), we have ei1,λ = sμ
i0i1,λ

ei0,μ. In notation (2.26), we can express

g̃λ
i0···iq+1

(ziq+1 , ζiq+1) =
q∑


=1

(−1)
 f̃ λ

i0···î
···iq+1
(ziq+1 , ζiq+1)

+ sλ
i0i1,μ(ϕi1iq+1(zq+1)) f̃

μ
i1···iq+1

(ziq+1 , ζiq+1)

− (−1)q f λ
i0···iq (ϕiq iq+1(ziq+1), tiq iq+1(ziq+1)ζiq+1)).

The above computation especially gives us the following formulae for 0 and 1-
cochains.

Lemma 2.7 Let {Uj } be an open covering of C. Let tk j be the transition matrices for
NC with respect to basis w j and let sk j be the transitions functions of E with respect
to base e j . Let

fi j (p) =
d∑

λ=1

∑

|Q|=L

f λ
i j;Q(z j (p))ei,λ(p) ⊗ (w∗

j (p))
Q , f̃ λ

i j (z j , ζ j ) :=
∑

|Q|=L

f λ
i j;Q(z j )ζ

Q
j ,

u j (p) =
d∑

λ=1

∑

|Q|=L

uλ
j,Q(z j (p))e j,λ(p) ⊗ (w∗

j (p))
Q , ũλ

j (z j , ζ j ) :=
∑

|Q|=L

uλ
j;Q(z j )ζ

Q
j .

The following hold:

(a) f := { fi j } ∈ Z1(U ,O(E ⊗ SL(N∗
C ))) if and only if

f̃ λ
i j (ϕ jk(zk), t jk(zk)ζk) − f̃ λ

ik(zk, ζk) + sλ
i j,
(z j ) f̃

λ
jk(zk, ζk) = 0.

(b) u := {u j } solves the first order cohomological equation δu = f if and only if

sλ
i j,
(z j )ũ



j (z j , ζ j ) − ũλ

i (ϕi j (z j ), ti j (z j )ζ j ) = f̃ λ
i j (z j , ζ j ).
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We notice that according to (2.18) and (2.20), we have

−L( f ) = −(Lh( f h),Lv( f v)) = δ( f ) := (δh( f h), δv( f v)).

2.8 Formal Obstructions in Cohomology Groups

Recall that

Nkj (h j , v j ) := (ϕk j (z j ), tk j (h j )v j ). (2.28)

Let us denote the properties depending on an order m ≥ 1 :
(Lm(U)) : the neighborhood of C matches the neighborhood of zero section of the
normal bundle up to order m.
(Vm(U)) : the vertical components of the transition functions of neighborhoods of C
in M and in NC match up to order m.

That embedding of C has property (Lm) (resp. (Vm)) means that the order along
v j = 0 of (φh

k j (h j , v j ), φ
v
k j (h j , v j )) (resp.φv

k j (h j , v j )) as defined in (2.11) is≥ m+1.

Definition 2.8 We shall say that NC is a flat (resp. unitary flat), if we can find constant
(resp. with values in group of unitary matrices Ud ) transition functions in a possibly
refined covering.

Wewill use the following notation:When NC is flat, we write its transition matrices
tk j (z j ) as tk j , indicating that they are independent of z j .

Definition 2.9 We shall say that a change of coordinates {Fj } preserves the germ of a
neighborhood of the zero section of NC with transitionmaps {Nkj } if FkNkj = Nkj Fj ,
in which case we says that {Fj } preserves {Nkj } for simplicity.

Lemma 2.10 Let the transition functions �k j of a neighborhood of C be given by
(2.11)–(2.12).

(a) Assume that C satisfies Lm. Then the horizontal and vertical components satisfy

[φh
k j ]
 ∈ Z1(U , TC ⊗ S
(N∗

C )), if m < 
 ≤ 2m;
[φv

k j ]
 ∈ Z1(U , NC ⊗ S
(N∗
C )), if 
 = m + 1.

Furthermore, if [φ•
k j ]m+1 = 0 in H1(U , TCM ⊗ Sm+1(N∗

C )), then there exist

{Fj = I d+ f j } such that Fk�k j F
−1
j ∈ Lm+1 and f j are homogeneous of degree

m + 1.
If NC is flat, then the vertical component of �k j further satisfies

[φv
k j ]
 ∈ Z1(U , NC ⊗ S
(N∗

C )), m + 1 < 
 ≤ 2m.

(b) Let C satisfy Vm. Assume that NC is flat. Then

[φv
k j ]
 ∈ Z1(U , NC ⊗ S
(N∗

C )), 
 = m + 1. (2.29)
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Proof When 
 = m + 1, (a) is in Griffiths [16], Morrow–Rossi [32] and (b) is proved
in Ueda [42] for flat line bundle N∗

C over a compact curve C .
(a) The general case can be verified using Lemma 2.7 to compare coefficients of

wα
j on both sides of �i j (z j , w j ) = �ik ◦ �k j (z j , w j ) for |α| ≤ 2m. Indeed, we have

�ik = Nik + (φh
ik, φ

v
ik) and (φh

ik, φ
v
ik)(zk, wk) = O(|wk |m+1) with m ≥ 1. Thus

Nik ◦ �k j (z j , w j )=
{
Nik ◦ Nkj + DNik ◦ Nkj ·(φh

k j , φ
v
k j )
}

(z j , w j )+O(|w j |2m+1)

= Nik ◦ Nkj (z j , w j ) + (sik(ϕk j (z j ))φ
h
k j , tik(ϕk j (z j ))φ

v
k j )

+ (0, Dtik(ϕk j (z j ))φ
h
k j (z j )tk j (z j )w j ) + O(|w j |2m+1).

Here sk j are the transition matrices of TC given by (2.7). Therefore,

�ik ◦ �k j (z j , w j ) = Nik ◦ �k j (z j , w j ) + (φh
ik, φ

v
ik) ◦ �k j (z j , w j )

=
{
Nik ◦ Nkj + (φh

ik, φ
v
ik) ◦ Nkj

}
(z j , w j )

+
(
sik(ϕk j (z j ))φ

h
k j (z j , w j ), tik(ϕk j (z j ))φ

v
k j (z j , w j )

)

+ (0, Dtik(ϕk j (z j ))φ
h
k j (z j )tk j (z j )w j ) + O(|w j |2m+1).

Comparing both sides of �i j (z j , w j ) = �ik ◦ �k j (z j , w j ) for the coefficients in w j

of order 
 = m + 1, we obtain the desired conclusion by Lemma 2.7.
(b) We have �k j (z j , w j ) = (ϕk j (z j ) + φh

k j (z j , w j ), tk jw j + φv
k j (z j , w j )) with

φv
k j (z j , w j ) = O(|w j |m+1). Here tk j are constant. We get from the vertical compo-

nents of �k j = �ki�i j that

φv
k j (z j , w j ) = tkiφ

v
i j (z j , w j ) + φv

ki (�i j (z j , w j ))

= tkiφ
v
i j (z j , w j ) + ϕki (Ni j (z j , w j )) + O(|w j |m+2),

since (�i j − Ni j )(z j , w j ) = O(|w j |2). This shows that {[φv
k j ]
} ∈ Z1(U , NC ⊗ N∗


C )

for 
 = m + 1 by Lemma 2.7 (a). This gives us (2.29). ��

2.9 Automorphisms of Neighborhood of the Zero Section of Flat Vector Bundles

Let φk j defined on Uk ∩ Uj be the transition functions of C . Let �k j , defined on
Vk ∩ Vj , be the transition functions of M , and let Nkj , defined on Ṽk ∩ Ṽ j be the
transition functions of NC , with Ṽk = π−1Uk . We identify (C,Uj ) as subsets of Ṽ j

via the zero-section. Recall �k j , Nkj , and φk j are the same on Uk ∩ Uj . By Cartan-
Serre theorem, for any integerm, the space of global sections, H0(C, TCM⊗ SmN∗

C ),
is finite dimensional.

We say that a vector bundle is flat if its transition matrices are locally constant.
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Definition 2.11 (1) A formal tangent vector fieldY j on Ṽ j vanishing atUj is identified
with Y j =∑
≥1 Y



j with Y



j ∈ �(Uj , TCM ⊗ S
N∗

C ) via

∑

|Q|=


aα
Q(h j )v

Q
j

∂

∂hα
j

+ bλ
Q(h j )v

Q
j

∂

∂vλ
j

�→
∑

|Q|=


aα
Q(z j )(w

∗
j )

Q ∂

∂zαj

+bλ
Q(z j )(w

∗
j )

Q ∂

∂wλ
j

.

Here (h j , v j ) is the coordinate map for vλ
j

∂

∂wλ
j

∈ (NC )p and we identity h j with

z j |Uj and
∂

∂v j
with ∂

∂w j
|Uj .

(2) A formal automorphism of Ṽ j at Uj that is tangent to the identity is an automor-
phism of a formal neighborhood of the 0-section of Ṽ j , fixing Uj pointwise.

Lemma 2.12 Let {Fj } j be a collection of formal automorphisms of Ṽ j fixingU j point-
wise. Let {Y j } j be a collection of formal tangent vector fields of Ṽ j vanishing at U j .
We have

(1) {Fj } j defines an automorphism F of a formal neighborhood of the 0-section in
NC if and only Fk ◦ Nkj = Nkj ◦ Fj for all k, j .

(2) Suppose that NC is flat. Then {Y j } j defines a vector field Y on a formal neigh-
borhood of the 0-section in NC if and only if {Y 


j } ∈ H0(C, TCM ⊗ S
N∗
C ) for

all 
.
(3) Suppose that NC is not flat. Then {Y j } j defines a vector field on a formal neighbor-

hood of the 0-section in NC if and only if {Y j } ∈ H0
twisted(C, TCM ⊗⊕
≥2S
N∗

C )

with respect to the linear operator δn f ({(Y h
j ,Y

v
j )}) = {(Ỹ h

k j , Ỹ
v
k j )} with

Ỹ h
k j = Y h

k (Nkj (h j , v j )) − Dφk j (h j )Y
h
j (h j , v j ),

Ỹ v
k j = Y v

k (Nkj (h j , v j )) − tk j (h j )Y
v
j (h j , v j ) − Dtkj (h j )v j .Y

h
j (h j , v j ).

Proof Let (h j , v j ) be the coordinates in NC over Uj . Note that {Y j } defines a global
tangent vector filed of NC if and only if DNkj (Y j ) = Yk . A homogeneous vector field
of degree 
 on Ṽ j is an element Y 


j ∈ C0(Uj , TCM ⊗ S
N∗
C ) defined by

Y 

j (h j , v j ) =

n∑

m=1

Y 
,h
j,m(h j , v j )

∂

∂h j,m
+

d∑

r=1

Y 
,v
j,r (h j , v j )

∂

∂v j,r
=: Y 
,h

j + Y 
,v
j .

Recall that Nkj (h j , v j ) = (φk j (h j ), tk j (h j )v j ). Thus

DNkj

(
Y 
,h
j + Y 
,v

j

)
= Dφk j (h j )Y


,h
j (h j , v j ) + tk j (h j )Y


,v
j (h j , v j )

+
n∑

j=1

d∑

r ,s=1

∂tk j,rs(h j )

∂h j,m
Y 
,h
j,m(h j , v j )v j,s

∂

∂vk,r
,
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where the last term is in C0(Uk ∩ Uj , NC ⊗ S
+1N∗
C ). When NC is flat, we see that

DNkjY j = Yk if and only if DNkjY 

j = Y 


k for each 
 and that the latter holds if and
only if

Y 
,h
k (φk j (h j ), tk jv j )=Dφk j (h j )Y


,h
j (h j , v j ), Y 
,v

k (φk j (h j ), tk jv j )= tk j Y

,v
j (h j , v j ).

(2.30)

In other words, {Y 

j } j defines a global section of TCM ⊗ S
N∗

C . ��

Lemma 2.13 Let Fj be a formal automorphism of Ṽ j in NC , which is tangent to
identity. Then, Fj is the time-1map of a unique formal vector field Y j in Ṽ j , vanishing
on U j up to order ≥ 2.

Proof Let Fj be given by

h̃ j = h j +
∑

|α|≥2

A j,α(h j )v
α
j , ṽ j = v j +

∑

|β|≥2

Bj,β(h j )v
β
j .

Drop the index j . We want to express it as the time-1 map of a tangent vector field

Y =
∑


≥2

{
n∑

m=1

Y 
,h
m (h, v)

∂

∂hm
+

d∑

r=1

Y 
,v
r (h, v)

∂

∂vr

}

,

where Y 
,h
m (h, v),Y 
,v

r (h, v) are homogeneous polynomials in v of degree 
. The flow
of Y with time θ is given by

hθ
m = hm +

∑

|α|≥2

Aθ
m,α(h)vα, vθ

r = vr +
∑

|α|≥2

Bθ
r ,α(h)vα,

where Aθ , Bθ satisfy A0 = B0 = 0 and

∑

|α|≥2

vα
j

d Aθ
m,α(h j )

dθ
=
∑


≥2

Y 
,h
m (hθ , vθ ),

∑

|α|≥2

vα
j

d Bθ
r ,α(h)

dθ
= Y 
,v

r (hθ , vθ ).

Inductively, we can verify that A1
m,α − Y h

m,α, B1
m,α − Y v

r ,α are uniquely determined by

Y 
,h
m′,β ,Y 
,v

r ′,β with 
 < |α|. ��

Note that the formal time-1 mapping of DNkj (Y j ) on Ṽk ∩ Ṽ j can also be defined
and it equals Nkj Fj N

−1
k j where Fj is the time-1 map of Y j . Thus the uniqueness

assertion in the lemma implies the following.

Proposition 2.14 Any automorphism F of a formal neighborhood of C in NC, which
is tangent to identity, is the time-1 map of a unique vector field defined on a formal
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neighborhood of C in NC and vanishing onC. Assume further that NC is flat. Then any
tangent vector field Y of NC that vanishes on C to order two admits a decomposition

Y =
∑


≥2

Y 
, Y 
 ∈ H0(C, TCM ⊗ S
N∗
C ).

We write δm = (δhm, δv
m) corresponding to the open covering U and the splitting

TCM ⊗ SmN∗
C = (TC ⊗ Sm) ⊕ (NC ⊗ SmN∗

C ). Let us set Gm := Range(δm). We
have a decomposition

Z1(U , TCM ⊗ SmN∗
C ) = Gm ⊕ Nm (2.31)

where Nm � H1(U , T MC ⊗ SmN∗
C ). Let C0(U , T MC ⊗ SmN∗

C ) = Rm ⊕ ker δm
with δm(Rm) = Gm . We emphasize that the decomposition (2.31) is not unique.
For our convergence result, a natural decomposition will be given via a possibly non-
uniqueminimizing solution. Consequently,⊕ is interpreted asmerely a decomposition
suitable for convergence proof.

Lemma 2.15 Suppose that NC is flat. Any formal transformation Fj of Ṽ j which is
tangent to identity can be uniquely factorized as

Fj = G−1
j ◦ Hj

where Hj − I ∈ ∑m≥2 Rm, G j is an automorphism of Ṽ j , and terms of order m in
G j , Hj are uniquely determined by the terms of order at most m in Fj . Furthermore,
Gi Nik = NikGk for all i, k.

Proof We know that Fj = exp
∑

m Cm
j is the time-1 map of

∑
m≥2 C

m
j .

We want to decompose

exp
∑

m

Cm
j =

(

exp
∑

m

Am
j

)(

I +
∑

m

Hm
j

)

.

By Campbell–Hausdorff formula, we are led to the equation

Hm
j = Cm

j − Am
j + Em

j

where Em
j depends only onC


j , A


j for 
 < m. We determine Am

j , Bm
j by decomposing

Cm
j and Em

j as follow : Let π be the (non-canonical) projection from C0(U , T MC ⊗
SmN∗

C ) onto ker δm . Let {Am
j } j := π({Cm

j + Em
j }). Then {Hm

j } ∈ Rm . ��

Next, we study the dependence of cohomology classes of [φh
k j ]
, [φv

k j ]
 in coordi-
nates. We first consider the full set of linear cohomological equations.
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2.10 Formal Coordinates in the Absence of Formal Obstructions

For a power series u(z j , w j ), let u≤m(z j , w j ) be the Taylor polynomial of u about
w j = 0 with degree m. Thus we can define

u = u≤m + u>m, u>m(z j , w j ) = O(|w j |m+1), [u]m = u≤m − u<m,

[u]m
 = u≤m − u<
.

To describe the coboundary operator in next lemma, we define the linear operator D̃
by

((D̃u) f )(h j , v j ) := ∂u

∂h j
(h j , 0) f

h(h j , v j ) + ∂u

∂v j
(h j , 0) f

v(h j , v j ),

for a function u(h j , v j ). The standard differential D is given by

((Du) f )(h j , v j ) = ∂u

∂h j
(h j , v j ) f

h(h j , v j ) + ∂u

∂v j
(h j , v j ) f

v(h j , v j ).

Thus

(Du − D̃u) f (h j , v j ) = (Du(h j , v j ) − Du(h j , 0)) f (h j , v j ). (2.32)

For a multiindex α = (αh, αv), define

(D̃αu)(h j ) =
{

∂ |α|u
∂hαh

j ∂v
αv

j

}

(h j , 0).

Lemma 2.16 Let �k j = Nkj + φk j satisfy condition Lm with m ≥ 1. Suppose that
Fj (h j , v j ) = (h j , v j )+ f j (h j , v j ) with f j (h j , v j ) = O(|v j |2) are formal mappings
such that {F−1

k �k j Fj } ∈ Lm. Then, on U j ∩Uk, l = 2, . . . ,m,

(δ{[ f j ]≤l})k j (h j , v j ) = −
[
Nkj ((I + [ f j ]≤l−2)(h j , v j )) − Nkj (h j , v j )

− DNkj (h j , v j )[ f j ]≤l−2(h j , v j )
]≤l −

(
0, (Dtkj (h j )[ f hj ]≤l−1(h j , v j ))v j

)
.

(2.33)

(a) If f j (h j , v j ) = O(|v j |m+1) for all j , then Nkj+φ̃k j = F−1
k �k j Fj+O(|v j |2m+1)

hold if and only if on U j ∩Uk

(δ{[ fi ]≤2m})k j = [φ̃k j − φk j ]≤2m −
(
0, (Dtkj (h j )[ f hj ]≤2m−1)v j

)
. (2.34)
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(b) If {Fj } defines a germ of biholomorphism of order m at the zero section of the
normal bundle, i.e.

F−1
k Nkj Fj (h j , v j ) = Nkj (h j , v j ) + O(|v j |m+1)

and if f hj (h j , v j ) = O(|v j |m), thenV≤m
j (h j , v j ) := (h j , v j +[ f v

j ]≤m) preserves
{Nkj }.

(c) Suppose F−1
k �k j Fj ∈ L2m. Assume further that either NC is flat or

H0(C, TC ⊗ S pN∗
C ) = 0, 2 ≤ p ≤ 2m. (2.35)

Then there exist F̂j = I + O(|v j |m+1) where [F̂h
j ]2mm+1 are uniquely determined

by [�k j ]2mm+1 such that F̂−1
k �k j F̂ j ∈ L2m. There exists a unique decomposition

{F̂j = H j ◦ V j ◦ F̃j } in the form

H j (h j , v j ) = (h j + Hj (h j , v j ), v j ), (2.36)

V j (h j , v j ) = (h j , v j + Vj (h j , v j )), (2.37)

[F̃j ]i = 0, ∀2 ≤ i ≤ 2m, [Hj ]
 = [Vj ]
 = 0, ∀
 > 2m. (2.38)

Furthermore, [Hj ]
 = [Vj ]
 = 0 for 
 ≤ m, and Hj are uniquely determined by

(δh{Hi })k j = −[φh
k j ]≤2m . (2.39)

Moreover, φ̃k j = H−1
k �k jH j − Nkj satisfy φ̃h

k j (h j , v j ) = O(|v j |2m+1) and

φ̃v
k j (h j , v j ) = O(|v j |m+1), and Vi satisfy

(δv{Vi })k j = −[φ̃v
k j ]≤2m . (2.40)

Proof Let �k j = Nkj + φk j and �̃k j = Nkj + φ̃k j . Suppose that both φk j and φ̃k j are
of order ≥ m + 1 (i.e. O(|v j |m+1)) and Fk�k j = �̃k j Fj . Recall that Fk = I + fk .
To use the coboundary operator, we write

fk(Nkj ) − D̃Nkj f j + φk j − φ̃k j = (
fk(Nkj − fk(Nkj + φk j ))

)

︸ ︷︷ ︸
A

+
(
φ̃k j (I + f j ) − φ̃k j

)

︸ ︷︷ ︸
B

+ (Nkj (I + f j ) − Nkj − D̃Nkj f j
)

︸ ︷︷ ︸
C

.

(2.41)
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Since f j has order≥ 2 at v j = 0, by the Taylor expansion at Nkj and at I , respectively,
both A and B are of order ≥ m + 2 (w.r.t v j ) at the origin. For the same reason, the
C is of order ≥ 4. We recall that, for each 
 ∈ N

∗, the coboundary operator δ sends
C0(U , TCM ⊗ S
(N∗

C )) into C1(U , TCM ⊗ S
(N∗
C )) as sections. It is defined in

coordinates by

(δ f )k j = D̃Nkj f j (h j , v j ) − fk(Nkj (h j , v j ))

onUj ∩Uk when f = { f j } ∈ C0(U , TCM ⊗ S
(N∗
C )). As δ preserves the degree 
 of

f j in v j , we shall omit its dependence in 
. Truncating the Taylor expansion of (2.41)
at v j = 0 up to degree m will lead to the first point.

Since f j (h j , v j ) = O(|v j |2), then A, B are of order ≥ m + 1. Using (2.32), we
obtain

C = Nkj (I + f j (h j , v j )) − Nkj (h j , v j ) − DNkj (h j , v j ) f j (h j , v j )

+ (DNkj (h j , v j ) − DNkj (h j , 0)) f j (h j , v j ).

We have (DNkj (h j , v j ) − DNkj (h j , 0)) f j (h j , v j ) = (0, Dtkj (h j ) f hj (h j , v j )v j ).
Thus,

C = (0, (Dtkj (h j ) f
h
j (h j , v j )v j ) + a(1) − a(0) − a′(0)

with a(λ) = Nkj (h j + λ f hj , v j + λ f v
j ). Note that

a(1) − a(0) − a′(0) =
∫ 1

0
(1 − λ)a′′(λ) dλ

=
∑

|α|=2

|α|!
α!
∫ 1

0
(1 − λ)DαNkj (I + λ f j ) f

α
j dλ

=
∑

|α|=2

|α|!
α!
∫ 1

0
(1 − λ)DαNkj (I + λ[ f j ]≤m−2)([ f j ]≤m−2)α dλ + O(|v j |m+1)

= b(1) − b(0) − b′(0) + O(|v j |m+1)

for b(λ) = Nkj (I + λ[ f j ]≤m−2). This proves (2.33).
For point (a), we use (2.41) again. This time,we have A(h j , v j ) = O(|v j |2m+1) and

B(h j , v j ) = O(|v j |2m+1), while C = (0, DNkj (h j )[ f hj ]≤2m−1v j ) + O(|v j |2m+1).
We have derived (2.34).

For point (b), note that F−1
k Nkj Fj = Nkj + O(|v j |m+1) is equivalent to FkNkj =

Nkj Fj + O(|v j |m+1). From the vertical components, we obtain

tk j (h j )v j + f v
k (ϕk j (h j ), tk j (h j )v j ) = tk j (h j + f hj )(v j + f v

j (h j , v j )) + O(|v j |m+1).
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Since f hj = O(|v j |m) and f v
j = O(|v j |2), the m-jet (w.r.t. v j ) above reads

tk j (h j )v j + [ f v
k ]≤m(ϕk j (h j ), tk j (h j )v j ) = tk j (h j )(v j + [ f v

j ]≤m(h j , v j )).

That is that V≤m
k Nkj = NkjV≤m

j , as V≤m
j (h j , v j ) = (h j , v j + [ f j ]≤m(h j , v j )).

The point (c) follows from Proposition 2.14 when NC is flat. For the remaining
case, it follows from points (a) and (b) as follows.

By (2.34) and H0(C, TC ⊗ S
N∗
C ) = 0, we obtain [ f hj ]m2 = 0. By (b), we know

that [Fj ]≤m preserve Nkj . Then F̂j = Fj ([Fj ]≤m)−1 meet the requirement. The
uniqueness of [F̂h

j ]
 for m < 
 ≤ 2m follows from the assumption on H0 too.

We are seeking a unique decomposition Fj = H j ◦ V j ◦ F̃j . Let us write
F−1
k �k j Fj = Nkj + φ̃k j with φ̃k j = O(|v j |2m+1). From the horizontal component of

(2.34) in which [φ̃h
k j ]≤2m = 0 and condition (2.35), we uniquely determine {[ f hj ]≤2m}.

Take H j (h j , v j ) = (h j + [ f j ]≤2m(h j , v j ), v j ). Then

H−1
k �k jH j (h j , v j ) = (ϕk j (h j ), tk j (h j )v j + φ̃v

k j (h j , v j )) + O(|v j |2m+1).

(2.42)

We still have (H−1
k Fk)−1(H−1

k �k jH j )(H−1
j Fj ) ∈ L2m . We have

H−1
j Fj (h j , v j )=V j (h j , v j ) + O(|v j |2m+1), V j (h j , v j ) = (h j , v j + Vj (h j , v j )),

(2.43)

where φ̃v
k j , Vj contain only terms of orders 
 in v j for m + 1 ≤ 
 ≤ 2m.

Since Fj = H jV j + O(|v j |2m+1), we have

V−1
k (H−1

k �k jH j )V j ∈ L2m .

From the vertical components of (2.42)–(2.43), and (2.34) in which we take
Dtkj [ f hj ]≤2m−1 = 0, we see that (2.34) becomes (2.40), i.e. (δv[V ]
)k j = −[φ̃v

k j ]

for 
 = m + 1, . . . , 2m. To show the uniqueness of [Fj ]≤2m , we may assume that
�k j = Nkj + O(|v j |2m+1). Then the uniqueness follows from the above arguments.

��
The following is in Ueda [42], when both the dimension and codimension of C are

one.

Lemma 2.17 Let �k j satisfy condition Vm with m ≥ 1. Suppose that NC is flat and
H0(C, NC ⊗S
(N∗

C )) = 0 for 1 < 
 ≤ m. Then [φv
k j ]m+1 ∈ H1(U , NC ⊗Sm+1(N∗

C ))

is independent of coordinates of the neighborhoods ofC.Furthermore, there are formal
biholomorphic mappings Fj = I + ( f hj , f v

j ) with f j (h j , v j ) = O(|v j |2) satisfy

{F−1
k �k j Fj } ∈ Vm+1 (2.44)
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if and only if [φv
k j ]m+1 = 0 in H1(U , NC ⊗ Sm+1(N∗

C )). When (2.44) holds,

{F̃−1
k �k j F̃ j } is still in Vm+1, for

F̃j (h j , v j ) = (h j , v j + [ f v
j ]m+1(h j , v j )).

Proof Let �̃k j := F−1
k �k j Fj . We want to show that

[φ̃v
k j ]m+1 = [φv

k j ]m+1 in H1(U , NC ⊗ Sm+1(N∗
C )),

provided that �̃k j (h j , v j ) = Nkj (h j , v j ) + (φ̃h
k j , φ̃

v
k j ), �k j (h j , v j ) = Nkj (h j , v j ) +

(φh
k j , φ

v
k j ), and

φ̃v
k j (h j , v j ) = O(|v j |m+1), φv

k j (h j , v j ) = O(|v j |m+1). (2.45)

First, we have Fj (h j , v j ) = (h j , v j ) + O(|v j |2). Suppose that [ f v
j ]≤m∗−1 = 0 for

2 ≤ m∗ ≤ m. Comparing vertical components of �k j ◦ Fj = Fk ◦ �̃k j , we obtain

[
tk j ·

(
v j + f v

j (h j , v j )
)]≤m∗ = (�v

k j ◦ Fj )
≤m∗(h j , v j )

= (Fv
k ◦ �̃k j )

≤m∗(h j , v j ) = (Fv
k )≤m∗ ◦ Nkj (h j , v j ).

Here the last identity is obtained from �̃k j (h j , v j ) − Nkj (h j , v j ) = O(|v j |2),
[Fv

j ]≤m∗(h j , v j ) = v j + [ f v
j ]m∗ , and (2.45). Looking at terms of order m∗ in w j ,

we see that {[ f v
j ]
} is a global section of NC ⊗ S
(N∗

C ) for 
 = m∗. This shows that
[ f v

j ]≤m∗ = 0 and we can take m∗ = m, i.e. [ f v
j ]≤m = 0.

We also have [�v
k j Fj ]m+1 = tk j [ f v

j ]m+1+[φv
k j ]m+1 and [Fv

k �̃k j ]m+1 = [ f v
k ]m+1◦

Nkj + [φ̃v
k j ]m+1. This shows that

[φ̃v
k j ]m+1 − [φv

k j ]m+1 = tk j [ f v
j ]m+1 − [ f v

k ]m+1 ◦ Nkj . (2.46)

The latter is equivalent to [φ̃v
k j ]m+1 = [φv

k j ]m+1 in H1(U , NC ⊗ Sm+1(N∗
C )), which

follows fromLemma 2.7 (b). The last assertion is equivalent to (2.46) with [φ̃v
k j ]m+1 =

0. ��

3 AMajorant Method for the Vertical Linearization

Let C be an n-dimensional complex compact manifold embedded in an (n + d)-
dimensional complex manifold. We assume that the normal bundle NC is (flat and)
unitary. Let {tk j } be its transition (constant) matrices in a suitable covering U = {Uj }
of C , we have tk j t∗k j = Id. Let K (NC ⊗ Sm(N∗

C )) be the “norm” of the cohomological
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operator acting onC0(U , NC ⊗ Sm(N∗
C )) as defined in Theorem A.12. Let us consider

the sequence of numbers {ηm}m≥1 with η1 = 1 and

ηm = K (NC ⊗ Sm(N∗
C )) max

m1+···+mp+s=m
ηm1 · · · ηmp , m > 1, (3.1)

where 1 ≤ mi < m for all i and s ∈ N.
In this section, we shall prove the following

Theorem 3.1 Let C be a compact complex submanifold in M with TCM = TC ⊕ NC.
Assume that the embedding is vertically linearizable by a formal holomorphicmapping
which is tangent to the identity or that H1(C, NC ⊗ S
(N∗

C )) = 0 for all 
 ≥ 2. We
also assume that NC is unitary flat and that H0(C, NC ⊗ S
(N∗

C )) = 0 for all 
 ≥ 2.
Assume that for the ηm defined above, there are positive constants L0, L such that
ηm ≤ L0Lm for all m. Then the embedding is actually holomorphically vertically
linearizable.

Remark 3.2 In the previous Theorem 3.1, if a neighborhood ofC is formally vertically
linearizable by a minimizing vertical mapping which is tangent to the identity and
preserves the splitting of TCM , then the assumption ”H0(C, NC ⊗ S
(N∗

C )) = 0,

 > 1” is not necessary. Here by a formal minimizing vertical mapping it means a
map of the form (h j , v j + f v

j (h j , v j ))with { f v
j } ∈ C0(C,

⊕

≥2 NC ⊗ S
(N∗

C )) such

that each {[ f v
j ]
} j is a possibly non-unique Donin (minimizing) solution of a suitable

cohomology equation.

Corollary 3.3 Under assumptions of Theorem 3.1, there exists, in a neighborhood of
C in M, a smooth holomorphic d-dimensional foliation having C as a leaf.

Proof According to Theorem 3.1, there is a neighborhood of the C in M with suitable
holomorphic coordinates patches (Vj , (h j , v j ))with (h j , v j ) ∈ C

n×C
d andC∩Vj =

{v j = 0}, such that, on Vj ∩ Vk , we have

vk = tk jv j , hk = ϕ̃k j (h j , v j ).

We then define the foliation in chart Vj by dv j = 0. ��
The rest of the section is devoted to the proof of Theorem 3.1.We follow themethod

of majorant developed by Ueda [42] for 1-dimensional unitary normal bundle over
compact complex curve.

3.1 Conjugacy Equations and Cohomological Equations

Let us first recall (2.23) and (2.22):

Lv
k j ( f

v
j ) = φv

k j (h j , v j + f v
j ) −

(
f v
k (�̂h

k j (h j , v j ), tk jv j ) − f v
k (ϕk j (h j ), tk jv j )

)

(3.2)
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where

�̂h
k j (h j , v j ) = ϕk j (h j ) + φh

k j (h j , v j + f v
j ),

Lv
k j ( f

v
j ) = f v

k (ϕk j (h j ), tk jv j ) − tk j f
v
j .

Let us expand φh
k j (h j , v j + f v

j ) in power of v j by using

φh
k j (h j , w j ) =:

∑

Q∈Nd
2

φh
k j,Q(h j )w

Q
j

φh
k j (h j , v j + f v

j (h j , v j )) =:
∑

Q∈Nd
2

h′
k j,Q(h j )v

Q
j =: h′

k j (h j , v j ).

We have

∑

Q∈Nd
2

h′
k j,Q(h j )v

Q
j =

∑

Q∈Nd
2

φh
k j,Q(h j )(v j + f v

j (h j , v j ))
Q . (3.3)

Let us also set

∑

Q∈Nd
2

h′′
k j,Q(h j )v

Q
j := f v

k (�̂h
k j (h j , v j ), tk jv j ) − f v

k (ϕk j (h j ), tk jv j ).

As we shall see below, the functions [h′]m and [h′′]m are defined by induction on
m ≥ 2 as they depend on [ f ]l , l = 2, . . . ,m − 1.

Therefore, the homogeneous polynomial of degree m ≥ 2 of the Taylor expansion
of solution of the conjugacy equation satisfies

Lv
k j ([ f v

j ]m) = [h′
k j ]m + [h′′

k j ]m . (3.4)

According to Lemma 2.17, there is a solution to the above equation either by the formal
assumption or by the assumption that the cohomology class of [h′

k j ]m + [h′′
k j ]m is 0,

i.e. it is a coboundary. Indeed, since the normal bundle is flat, this class is independent
of the coordinates system and the neighborhood is formally vertically linearizable.

3.2 AModified Fischer Norm for Symmetric Powers

Wedefine a scaler product on the space of polynomialsC[x1, . . . , xd ] as follows. First,
we set

〈
x R, xQ

〉

mf
:=
{

(r1!)···(rd !)
|R|! if R = Q

0 otherwise
,

∣∣∣
∣∣∣

∑

Q

CQx
Q

∣∣∣
∣∣∣

2

mf

:=
∑

Q

|CQ |2 Q!
|Q|! ,

(3.5)
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where R = (r1, . . . , rd) and |R| = r1 + · · ·+ rd , and CQ are constants. The subscript
mf stands for “modified Fischer”. The associated norm will be denoted by |.|k . The
Fischer (resp. modified Fischer) scalar product has been used in [10,24,40] (resp.
[30]). Let ω be an open set on C

n . For a vector of polynomials g = (g1, . . . , gk) ∈
Ok(ω) ⊗ C[x1, . . . , xd ], we set

|g|2mf,ω := sup
z∈ω

|g(z, ·)|2mf := sup
z∈ω

k∑

j=1

∑

Q∈Nd

Q!
|Q|! |g j,Q(z)|2. (3.6)

We now apply the Fischer norm (resp. modified Fischer norm) to f ∈ Cq(U , E ⊗
SL N∗

C ). Returning to notation in (2.27), we write

fi0...iq (p) =
rank E∑

λ=1

∑

|Q|=L

f λ
i0...iq ;Q(ziq (p))ei0,λ(p) ⊗ (w∗

iq (p))
Q,

where ei0 is the base of E over Ui0 and w∗
iq
is the base of N∗

C on Uiq . Define

| f |2mf,U := max
(i0,...,iq )∈Iq+1

sup
ziq ∈ϕiq (Ui0 ...iq )

rank E∑

λ=1

∑

Q

Q!
|Q|!

∣∣
∣ f λ

i0···iq ;Q(ziq )
∣∣
∣
2
. (3.7)

When there is no confusion, we shall in the sequel write “f” instead of “mf”. The
following two propositions are a “version with parameters” of [30, Propositions 3.6–
3.7] (see also [24]). We only give the proof of the last two points of next proposition.

Proposition 3.4 Let On(ω) ⊗ C[x1, . . . , xd ] be the set of polynomials f (x, z) in x
with coefficients holomorphic in z ∈ ω ⊂ C

n.

(a) Let f , g ∈ On(ω) ⊗C[x1, . . . , xd ] be homogeneous polynomials of degree k, k′,
respectively. Then

| f g| f ,ω ≤ | f | f ,ω|g| f ,ω.

(b) Let f ∈ On(ω) ⊗ C[x1, . . . , xd ] and let f̃P (z, x) = 1
P!∂

P
z f (z, x). Then

| f̃ P | f ,ω′ ≤ | f | f ,ω
(dist∗(ω′, ∂ω))|P| , ∀ω′ ⊂ ω, dist∗(ω′, ∂ω) := dist(ω′, ∂ω)/

√
n.

(c) Let T be a d × d unitary matrix. Let f ∈ Od
n (ω) ⊗ C[x1, . . . , xd ]. Then,

|T f | f ,ω = | f | f ,ω.

(d) Let T be a d×d unitary matrix. Let f ∈ On(ω)⊗C[x1, . . . , xd ] and f T (z, x) :=
f (z, T x). Then,

| f T | f ,ω = | f | f ,ω.
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Proof We only prove the last two points. Fix z ∈ ω′. The polydisc center at z with
radius δ := dist(ω′, ∂ω)/

√
n is contained in ω.

By the Cauchy formula, we have

f̃ P (z, x) = 1

δ|P|
∫

[0,2π ]n
f (z + δ(eiθ1 , . . . , eiθn ), x)(eiθ1 , . . . , eiθn )−P dθ1

2π
· · · dθn

2π

= 1

δ|P|
∑

Q∈Nd

xQ
∫

[0,2π ]n
fQ(z + δ(eiθ1 , . . . , eiθn ))(eiθ1 , . . . , eiθn )−P dθ1

2π
· · · dθn

2π
.

We emphasize that the sum is finite. By the Cauchy–Schwarz inequality applied to the
integral, we have

| f̃ P (z, ·)|2mf = 1

δ2|P|
∑

Q∈Nd

|xQ |2mf

×
∣∣∣
∣

∫

[0,2π ]n
fQ(z + δ(eiθ1 , . . . , eiθn ))(eiθ1 , . . . , eiθn )−P dθ1

2π
· · · dθn

2π

∣∣∣
∣

2

≤ 1

δ2|P|
∑

Q∈Nd

|xQ |2mf

∫

[0,2π ]n
| fQ(z + δ(eiθ1 , . . . , eiθn ))|2 dθ1

2π
· · · dθn

2π

= 1

δ2|P|

∫

[0,2π ]n
∑

Q∈Nd

|xQ |2mf| fQ(z + δ(eiθ1 , . . . , eiθn ))|2 dθ1

2π
· · · dθn

2π

≤ 1

δ2|P|

∫

[0,2π ]n
| f |2ω

dθ1

2π
· · · dθn

2π
= 1

δ2|P| | f |2ω.

For the last point, we have, for a homogeneous polynomial f in x of degree m with
holomorphic coefficients in ω the identity:

| fm |2ω = 1

πdm! supz∈ω

∫

Cd
| f (z, x)|2e−|x |2dV (x).

In particular, the integral is invariant under the transformation x → T x when T is
unitary (and constant). ��
Proposition 3.5 For a formal power series f (h, v) =∑k fk(z, v)with fk(z, v) being
a homogeneous polynomial in v of degree k of which the coefficients are functions
holomorphic in z ∈ U , the following properties are equivalent:

(a) f is uniformly convergent for v in a neighborhood of the origin, uniformly in U .

(b) There exist M, R > 0 such that for every k, | fk |mf,U ≤ M
Rk .

For convenience, we will use the following orthonormal Fischer base of SL N∗
C :

e∗
j,Q =

√
|Q|!
Q! (w∗

j )
Q, |Q| = L, Q ∈ Nd .
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The transition matrices t Lk j of S
L N∗

C is then determined in the following way : Let
Fk =∑|P|=L Fk,Pe∗

k,P . We have

(Fk,P )|P|=L = t Lk j (Fj,P )|P|=L .

This can be computed from the transition matrices of N∗
C by expressing the basis

w∗
k,1, . . . , w

∗
k,d in terms of w∗

j,1, . . . , w
∗
j,d . Since t Lk j maps orthonormal basis into

orthonormal basis, by Proposition 3.4 we know that t Lk j are unitary matrices, i.e. in
operator norm defined in (A.4),

|t Lk j | = 1, L = 1, 2, . . . . (3.8)

We will apply results in the appendix to the transition matrices t Lk j .

3.3 AMajorization in theModified Fischer Norm for the Vertical Linearization

Let { f v
j } be the formal solution of (3.2). We use notation (3.7). Let ϕ j (Uj ) = �n and

Ukj := Uk ∩ Uj . Define Ûk j = ϕ j (Ukj ). Then, ϕk j (Ûk j ) = Û jk . Let us first assume
that H0(C, NC ⊗ S
(N∗

C )) = 0 for all 
 ≥ 2. We shall see later on how to get rid of
this assumption to prove the general result.

Let us assume that there exists a vertical formal transformation F := {Fj } fixing
C , being tangent to identity on it, that linearizes vertically a neighborhood of C in M .
Let us write

Fj (h j , v j ) := (h j , v j + f j ), f j =
∑

k≥2

[ f j ]k, {[ f j ]k} ∈ C0(C, NC ⊗ Sk(N∗
C )).

Assume that there is a sequence {Ak}k≥2 of positive numbers such that

∀k < m |[ f j ]k |Û j
≤ ηk Ak . (3.9)

Let us set

A(t) =
∑

k≥2

Akt
k

with t ∈ C. Let us first estimate both |[h′
k j ]m |Ûk j

and |[h′′
k j ]m |Ûk j

as defined in (3.4) in

term of Jm−1A(t) := A2t2 + · · · + Am−1tm−1.
Since φh

k j is holomorphic in h j ∈ Ûk j and v j in a neighborhood of the origin, we
can assume that there is a positive R such that

sup
h j∈Ûk j

|φh
k j,Q(h j )| ≤ R|Q|
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for all Q ∈ N
d
2 , where φh

k j,Q is defined by (3.3) and N
d
k := {Q ∈ N

d : |Q| ≥ k}.
For Q ∈ N

d
2 , we have

[
(v j + f v

j (h j , v j ))
Q
]m =

∑

(m1,1,...,m1,q1 ,...,md,1,...,md,qd )
∑d

i=1 mi,1+···+mi,qi =m

d∏

i=1

[ f j,i ]mi,1 · · · [ f j,i ]mi,qi

where we have set f v
j = ( f j,1, . . . , f j,d), [ f j,i ]1 = v j,i and [ f j,i ]0 = 0. In the

following, all mi, j are positive integers. Hence, by the first point of Proposition 3.4,
we have

∣
∣∣
[
(v j + f v

j (h j , v j ))
Q
]m ∣∣∣

Ûk j
≤

∑

(m1,1,...,m1,q1 ,...,md,1,...,md,qd )
∑d

i=1 mi,1+···+mi,qi =m

d∏

i=1

|[ f j,i ]mi,1 |Û j
· · · |[ f j,i ]mi,qi |Û j

.

(3.10)

Let m ≥ 2, for Q ∈ N
d
2 , |Q| ≤ m, and let us set

EQ,m =
⎧
⎨

⎩
(m1,1, . . . ,m1,q1 , . . . ,md,1, . . . ,md,qd ) ∈ N

|Q|
1 :

d∑

i=1

mi,1 + · · · + mi,qi = m

⎫
⎬

⎭
.

Let Mi = (m(i)
1,1, . . . ,m

(i)

1,q(i)
1

, . . . ,m(i)
d,1, . . . ,m

(i)

d,q(i)
d

) ∈ N
|Q(i)|
1 with |Q(i)| ≤ mi and

mi = ∑d
j=1m

(i)
j,1 + · · · + m(i)

j,q(i)
j

, i = 1, 2. Define the concatenation M1 � M2 to be

(M1, M2). We also have
∑2

j=1
∑d

i=1 m
( j)
i,1 + · · · + m( j)

i,q( j)
i

= m1 + m2. Hence, we

emphasize that the concatenation

⎛

⎝
⋃

2≤|Q1|≤m1

EQ1,m1

⎞

⎠ �
⎛

⎝
⋃

2≤|Q2|≤m2

EQ2,m2

⎞

⎠ ⊂
⋃

2≤|Q|≤m1+m2

EQ,m1+m2 .

(3.11)

As a consequence, according to (3.3) and (4.4), we have

∣
∣∣
∣
∣
∣

⎡

⎣
∑

Q∈Nd ,|Q|=m

h′
k j,Q(h j )v

Q
j

⎤

⎦

m ∣∣∣
∣
∣
∣
Ûk j

≤
m∑

|Q|=2

R|Q| ∑

M∈EQ,m

d∏

i=1

|[ f j,i ]mi,1 |Û j
· · · |[ f j,i ]mi,qi |Û j

≤
m∑

|Q|=2

R|Q| ∑

M∈EQ,m

d∏

i=1

ηmi,1 Ami,1 · · · ηmi,qi
Ami,qi
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≤
⎡

⎣
m∑

|Q|=2

ηQ,m R|Q|(t + Jm−1(A(t))|Q|
⎤

⎦

m

≤ Em [gm(t)]m , (3.12)

where we have set

ηQ,m := max
M∈EQ,m

(
d∏

i=1

ηmi,1 · · · ηmi,qi

)

, Em := max
Q∈Nd

2≤|Q|≤m

ηQ,m,

gm(t) :=
m∑

|Q|=2

R|Q|(t + Jm−1(A(t))|Q|, g(t) :=
∑

|Q|≥2

R|Q|(t + A(t))|Q|.

Hence, as formal power series, we have

g(t) =
(

1

1 − R(t + A(t))

)d

− dR(t + A(t)) − 1. (3.13)

Let U∗ = {U∗
i } be an open covering of C such that U∗

i is relatively compact in Ui .

We shall write Û∗
k := ϕk(U∗

k ). Let us consider the index j as fixed and let us estimate

the Fischer norm of h′′
k j on Û

∗
k j := ϕ j (Uj ∩U∗

k ). We have

⎡

⎣
∑

Q∈Nd ,|Q|=m

h′′
k j,Q(h j )v

Q
j

⎤

⎦

m

=
∑

P∈Nn
1

m1+m2=m

1

P!
[
∂ P
h fk(ϕk j (h j ), tk jv j )

]m1
[(

φh
k j (h j , v j + f v

j )
)P]m2

=
∑

P∈Nn
1

m1+m2=m

1

P!
[
∂ P
h fk(ϕk j (h j ), tk jv j )

]m1
[(

h′
k j (h j , v j )

)P]m2

.

Here, both indices m1 and m2 are ≥ 2. Since the Fischer norm is submultiplicative,
we have

∣∣
∣∣

[(
h′
k j (h j , v j )

)P]m2
∣∣
∣∣
Û∗
k j

≤ Em2

⎡

⎢
⎣

⎛

⎝

m
2∑

|Q|=2

R|Q|(t + Jm−1(A(t))|Q|
⎞

⎠

|P|⎤
⎥
⎦

m2

.

Indeed,
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[(
h′
k j (h j , v j )

)P]m2

=
[

n∏

i=1

(h′
k j,i )

pi

]m2

=
∑

∑
i (mi,1+···+mi,pi )=m2

n∏

i=1

[h′
k j,i ]mi,1 · · · [h′

k j,i ]mi,pi .

According to (3.11) and by (3.12), we have

∣
∣
∣
∣
∣

n∏

i=1

[h′
k j,i ]mi,1 · · · [h′

k j,i ]mi,pi

∣
∣
∣
∣
∣
Û∗
k j

≤
n∏

i=1

Emi,1

[
gmi,1(t)

]mi,1 · · · Emi,pi

[
gmi,pi

(t)
]mi,pi

≤ max
2≤|Q|≤m2

ηQ,m2

n∏

i=1

[
gmi,1(t)

]mi,1 · · ·
[
gmi,pi

(t)
]mi,pi

.

Hence, we have

∑

∑
i (mi,1+···+mi,pi )=m2

∣∣∣
∣∣

n∏

i=1

[h′
k j,i ]mi,1 · · · [h′

k j,i ]mi,pi

∣∣∣
∣∣
Û∗
k j

≤ Em2 [g(t)|P|]m2 .

We have, by definition
[
∂ P
h fk(ϕk j (h j ), tk jv j )

]m1 = ∂ P
h [ fk]m1(ϕk j (h j ), tk jv j ).

Recall that the Fischer norm is unitary invariant and by Proposition 3.4, we have

∣∣
∣∂ P

h [ fk]m1(ϕk j (h j ), tk jv j )

∣∣
∣
2

Û∗
k j

=
∣∣
∣∂ P

h [ fk]m1(ϕk j (h j ), v j )

∣∣
∣
2

Û∗
k j

≤
(

P!
dist∗(Û∗

k , ∂Ûk)|P|

)2

|[ fk]m1 |2
Ûk

.

Let us set M := infk dist(Û∗
k , ∂Ûk). As a consequence, we have

∣
∣∣
∣∣
∣

⎡

⎣
∑

Q∈Nd ,|Q|=m

h′′
k j,Q(h j )v

Q
j

⎤

⎦

m ∣∣∣
∣∣
∣
Û∗
k j

≤
∑

m1+m2=m

∑

P∈Nn

|P|≥1

1

M |P| |[ fk ]m1 |Ûk
Em2 [g(t)|P|]m2

≤
∑

m1+m2=m

|[ fk ]m1 |Ûk

⎡

⎢⎢
⎣Em2

∑

P∈Nn

|P|≥1

(
g(t)

M

)|P|
⎤

⎥⎥
⎦

m2

≤
(

max
m1+m2=m

ηm1 Em2

)[
A(t)

((
M

M − g(t)

)n

− 1

)]m
.

(3.14)
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Collecting estimates (3.12) and (3.14), we obtain

∣∣∣Lv
k j ([ f v

j ]m)

∣∣∣
Û∗
k j

≤
[
Emg(t) +

(
max

m1+m2=m
ηm1Em2

)
A(t)

((
M

M − g(t)

)n

− 1

)]m
.

Let us extend this to an estimate on Ûk j = ϕ j (Uj ∩ Uk). Following again Ueda’s
argument [42] let us express the fact that [h]m := [h′]m + [h′′]m is a 1-cocycle with
values in NC ⊗ Sm(N∗

C ). Let p ∈ Uk ∩ Uj . Then p ∈ Uk ∩ Uj ∩ U∗
i for some i .

According to (3.4) and Lemma 2.7, at p ∈ Uk ∩Uj ∩U∗
i we have

tki
∑

|Q|=m

hik,Q(zk(p))(tk jv j )
Q − tki

∑

|Q|=m

hi j,Q(z j (p))(v j )
Q

+
∑

|Q|=m

hkj,Q(z j (p))(v j )
Q = 0. (3.15)

Here by (3.7) the Fischer norms of hkj on all subdomainsmust be computed in the base
ev
k of NC on Uk and the base w∗

j of N
∗
C on Uj . We can apply the previous estimates

(3.12) and (3.14) to the first two sums, respectively, on Û∗
ik and Û∗

i j . To estimate the
first sum, we need to change coordinates. From Sect. 2, tk j (resp. sk j ) are transition
matrices of NC (resp. TC). Recall that {[hkj ]m} ∈ Z1(Ur∗ , NC ⊗ SmN∗

C ) and

hik(p) =
d∑

λ=1

∑

|Q|=m

hλ
ik;Q(zk(p))e

v
i,λ(p) ⊗ (w∗

k (p))Q

=
d∑

λ′=1

d∑

λ=1

∑

|Q|=m

hλ
ik;Q(zk(p))t

λ′
ki,λ(zk(p))e

v
k,λ′(p) ⊗ (tk jw

∗
j (p))

Q =: h̃k j (zk(p), w∗
j ).

Thus,
∑

|Q|=m hik,Q(zk(p))(tk jv j )
Q = h̃k j (zk(p), v j ). By the unitary invariance by

multiplication and composition of the Fischer norm and by definition (3.7), we have
for fixed zk(p) ∈ Û∗

ik ,

|h̃k j (zk(p), v j )|2mf =
d∑

λ′=1

∣∣∣∣
∣∣

∑

|Q|=m

(
d∑

λ=1

tλ
′

ki,λ(zk)h
λ
ik;Q(zk)

)

(tk jv j )
Q

∣∣∣∣
∣∣

2

mf

=
d∑

λ′=1

∣∣∣
∣∣∣

∑

|Q|=m

(
d∑

λ=1

tλ
′

ki,λ(zk)h
λ
ik;Q(zk)

)

v
Q
j

∣∣∣
∣∣∣

2

mf

=
d∑

λ′=1

∑

|Q|=m

Q!
|Q|!

∣∣∣∣∣

d∑

λ=1

tλ
′

ki,λ(zk)h
λ
ik;Q(zk)

∣∣∣∣∣

2

≤
∑

λ′

∑

|Q|=m

Q!
|Q|!

d∑

λ=1

∣
∣∣hλ

ik;Q(zk)
∣
∣∣
2 ≤ d|hik |2Û∗

ik
,
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where the second last inequality is obtained by the Cauchy-Schwarz inequality. In a
similar way, we have a similar estimate for the second sum in (3.15) on ϕ j (Uk ∩Uj ∩
U∗
i ). For the third sum in (3.15), we note that the entries of the unitary matrix tki have

modulus at most one. Thus, there exist constants M ′, M̃ such that the third sum in
(3.15) satisfies

|hkj |Ûk j
≤ M ′ max

i
(|hik |Û∗

ik
+ |hi j |Û∗

i j
)

≤ M̃ max

⎛

⎝Em, max
m1+m2=m
m1,m2≥2

ηm1Em2

⎞

⎠
[
g(t) + A(t)

((
M

M − g(t)

)n

− 1

)]m
.

We now adapt the estimate in Lemma A.2 (see also Theorem A.12). Recall that
[hkj ]≤m depends only on [ f ]≤m−1 and the hypothesis (3.9). By the formal assumption,
we have a solution to (3.4):

Lk j ([ f v
j ]m) = [hkj ]m .

By assumptions, H0(C, NC ⊗ S
(N∗
C )) = 0, for all 
 ≥ 2. Hence, the solution of the

previous equation is unique. By Lemma A.2, (A.5) and (3.8), the solution satisfies the
estimate:

|{[ f v
j ]m}|U ≤ C(1 + K∗(NC ⊗ SmN∗

C )|){[hkj ]m}|U .

Here, C depends neither on NC nor on SmN∗
C . Therefore, we have

|[ f v
j ]m |Û j

≤ K (NC ⊗ Sm(N∗
C ))max

k

∣∣
∣Lv

k j ([ f v
j ]m)

∣∣
∣
Û∗
k j

.

By definition (3.1), we have

K (NC ⊗ Sm(N∗
C ))max

⎛

⎝Em, max
m1+m2=m
m1,m2≥2

ηm1Em2

⎞

⎠ ≤ ηm .

Hence, we have

|[{ f v}]m |Û ≤ M̃ηm

[
g(t) + A(t)

((
M

M − g(t)

)n

− 1

)]m
. (3.16)

Let us consider the functional equation

A(t) = F(t, A(t)) := M̃

(
g(t) + A(t)

((
M

M − g(t)

)n

− 1

))
,

where g(t) is a function of A by (3.13). This equation has a unique analytic solution
vanishing at the origin at order 2.
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We now can prove the theorem. Indeed by assumption, there are positive constants
M, L such that ηm ≤ MLm for all m ≥ 2. Since A(t) converges at the origin, then
Am ≤ Dm for some positive D. According to (3.16), we have also proved

|[{ f v}]m |Û ≤ ηm Am,

so that, finally, |[{ f v}]m |Û ≤ M(DL)m for all m ≥ 2. Hence, f v = ∑
m≥2[{ f v}]m

converges at the origin and this proves the theorem.
Let us see how we can prove Remark 3.2. The issue is that, when considering a

solution [ f v
j ]m of the cohomological equation Lk j ([ f v

j ]m) = Rm , the estimate given
by Lemma A.2 and Proposition A.4 might be obtained by another solution. Hence, the
formal solution might not be the good one for the estimate. Furthermore, we cannot
replace a solution at degree m as we wish to ensure that higher order terms in the
vertical component can be eliminated formally. We now explain the general result as
formulated in the theorem. We will assume that there are formal mappings

F̃j (h j , v j ) = (h j , v j ) +
(

0,
∑


>2

f̃ v
j,
(h j , v j )

)

satisfying the following

(a) {F̃−1
k �k j F̃ j − Nkj }v = 0 for all k, j . In other words, {F̃j } formally linearizes

�k j vertically. In particular,

{(F̃m
k )−1�k j F̃

m
j − Nkj }v = [φv

k j ]m + Rm
kj ({[φk j ]
, [ f̃ v

k ]
}2≤
<m) + O(|v j |m+1)

for

F̃m
j = (h j , v j ) +

⎛

⎝0,
∑

2≤
≤m

f̃ v
j,
(h j , v j )

⎞

⎠ .

(The last assertion can be check easily since (F̃m
j )−1 F̃j (h j , v j ) = (h j , v j ) +

O(|v j |m+1)).
(b) Each { f̃ v

j,m} j is a “minimizer” in the sense that it satisfies the equation

{δv f̃ v
m}k j = [φv

k j ]m + [Rm({[φk j ]
, [ f̃ v
k ]
}2≤
<m)]m

and the estimate

| f̃ v
m | ≤ K (NC ⊗ Sm(N∗

C ))|[φv]m + [Rm
kj ({[φk j ]
, [ f̃ v

k ]
}2≤
<m)]m |.

As a consequence, the scheme of convergence applies to that formal solution {F̃j }
and we are done.
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4 AMajorant Method for the Full Linearization with a Unitary Normal
Bundle

In this section, we shall devise a proof of Theorem 1.4, that is of the linearization of
the neighborhood problem in the case NC is unitary (and flat) following a majorant
method scheme.

Let us recall the horizontal cohomological operator

Lh
k j ( f

h
j ) := f hk (ϕk j (h j ), tk jv j ) − sk j (h j ) f

h
j (h j , v j ),

where sk j (h j ) = Dϕk j (h j ). We then have the horizontal equation (2.19)

Lh
k j ( f

h
j ) = φh

k j (h j + f hj , v j + f v
j )

+ ϕk j (h j + f hj (h j , v j )) − ϕk j (h j ) − Dϕk j (h j ) f
h
j (h j , v j ). (4.1)

Let us recall the vertical cohomological operator

Lv
k j ( f

v
j ) := f v

k (ϕk j (h j ), tk jv j ) − tk j f
v
j ,

and vertical Eq. (2.21) (recall that NC is flat)

Lv
k j ( f

v
j ) = ϕv

k j (h j + f hj , v j + f v
j ). (4.2)

By assumption, there exists a formal solution f j = ( f hj , f v
j ) = ∑

k≥2[ f j ]k with

{[ f j ]k} ∈ C0(C, TCM⊗Sk(N∗
C )). In casewe assume H1(C, TCM⊗Sk(N∗

C )) = 0, for
all k ≥ 2, this follows fromLemma2.10.We nowuse the “norm” of the cohomological
operator acting on C0(U , TCM ⊗ Sm(N∗

C )) as defined by Theorem A.12. We have,
for m ≥ 2

K̃m := max
(
K (NC ⊗ Sm(N∗

C )), K (TC ⊗ Sm(N∗
C ))
)
.

As in the foliation problem,we consider the sequence of numbers {ηm}m≥1 withη1 = 1
and, if m ≥ 2

ηm := K̃m max
m1+···+mp+s=m

ηm1 · · · ηmp , (4.3)

where, in the maximum, 1 ≤ mi < m for all i and s ∈ N. In what follows, f •
j (resp.

φ•
k j ) stands for either f hj or f v

j (resp. φh
k j or φv

k j ). As in the previous section, let us

expand φ•
k j (h j + f hj , v j + f v

j ) appeared in (4.1) and (4.2) in power series of v j and
let us define

φ•
k j (z j , w j ) =:

∑

Q∈Nd
2

φ•
k j,Q(z j )w

Q
j
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φ•
k j (h j + f hj (h j , v j ), v j + f v

j (h j , v j )) =:
∑

Q∈Nd
2

h•
k j,Q(h j )v

Q
j =: h•

k j (h j , v j ).

Then we obtain

∑

Q∈Nd
2

h•
k j,Q(h j )v

Q
j =

∑

Q∈Nd
2

φ•
k j,Q(h j + f hj (h j , v j ))(v j + f v

j (h j , v j ))
Q .

We further expand the first expression on the right-hand side as

h̃•
k j,Q := φ•

k j,Q(h j + f hj (h j , v j )) =
∑

P∈Nn

1

P!∂
P
h φ•

k j,Q(h j )( f
h
j (h j , v j ))

P .

Hence, for any m ≥ 2,

[h•
k j ]m =

∑

m1+m2=m

∑

Q∈Nd
2

∑

P∈Nn

1

P!∂
P
h φ•

k j,Q(h j )
[
( f hj (h j , v j ))

P
]m1

[
(v j + f v

j (h j , v j ))
Q
]m2

.

Let { f •
j } be the formal solution of (4.1) and (4.2). Let us first assume that

H0(C, TCM ⊗ S
(N∗
C )) = 0 for all 
 ≥ 2. We shall see later on how to replace

this assumption with suitable minimizing solutions. Assume that there is a sequence
{Ak}k≥2 of positive numbers such that

∀k < m |[ f j ]k |Û j
≤ ηk Ak .

Let us set

A(t) =
∑

k≥2

Akt
k

with t ∈ C.
Since φ•

k j is holomorphic in h j ∈ Ûk j and v j in a neighborhood of the origin, we
can assume that there is a positive R such that

sup
h j∈Ûk j

|φ•
k j,Q(h j )| ≤ R|Q|. (4.4)

According to (3.10) and the proof of (3.12), we obtain

∣
∣∣
[
(v j + f v

j (h j , v j ))
Q
]m2
∣
∣∣
Ûk j

≤
∑

(m1,1,...,m1,q1 ,...,md,1,...,md,qd )
∑d

i=1 mi,1+···+mi,qi =m2

d∏

i=1

|[ f j,i ]mi,1 |Û j
· · · |[ f j,i ]mi,qi |Û j
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≤
∑

M∈EQ,m2

d∏

i=1

ηmi,1 Ami,1 · · · ηmi,qi
Ami,qi

≤ ηQ,m2

[(
t + Jm2−1A(t)

)|Q|]m2
.

On the other hand, let U∗ = {U∗
i } be an open covering of C such that U∗

i is relatively

compact in Ui . We shall write Û∗
k := ϕk(U∗

k ). Let us set

M := min
k

dist(Û∗
k , ∂Ûk).

Let us consider the index j as fixed and let us estimate the Fischer norm of [h̃•
k j ]m1

on Û∗
k j := ϕ j (Uj ∩U∗

k ). We get

∣∣
∣[h̃•

k j ]m1

∣∣
∣
Û∗
k j

=
∑

P∈Nn

1

P!
∣∣
∣∂ P

h φ•
k j,Q(h j )

[
( f hj (h j , v j ))

P
]m1
∣∣
∣
Û∗
k j

≤
∑

P∈Nn

(
1

dist(Û∗
k , ∂Ûk)

)|P| ∣∣∣φ•
k j,Q

∣∣∣
Ûk j

∣∣∣
[
( f hj (h j , v j ))

P
]m1
∣∣∣
Û∗
k j

≤
∑

P∈Nn

(
1

M

)|P|
R|Q|

∣∣
∣
[
( f hj (h j , v j ))

P
]m1
∣∣
∣
Û∗
k j

.

Since f j is of order ≥ 2 at v j = 0, we have |P| ≤ m1
2 in the above sum. According

to estimate (3.10) and following the proof of (3.12), we obtain

∣∣∣[h̃•
k j,Q]m1

∣∣∣
Û∗
k j

≤
m1
2∑

P∈Nn ,|P|=0

(
1

dist(Û∗
k , ∂Ûk)

)|P|
R|Q|ηP,m1

[
A(t)|P|]m1

.

(4.5)

Combining inequalities (4.5) and (4.5), we obtain

∣
∣
∣[h•

k j ]m
∣
∣
∣
Û∗
k j

≤
∑

m1+m2=m

∑

Q∈Nd
2

∑

P∈Nn

1

P!
∣
∣
∣∂P
h φ•

k j,Q(h j )
[
( f hj (h j , v j ))

P
]m1

[
(v j + f v

j (h j , v j ))
Q
]m2
∣
∣
∣
Û∗
k j

≤
∑

m1+m2=m

m2∑

Q∈Nd

|Q|=2

m1
2∑

P∈Nn

|P|=0

(
1

M

)|P|
R|Q|ηP,m1

[
A(t)|P|]m1

ηQ,m2

[(
t + Jm2−1A(t)

)|Q|]m2
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≤
∑

m1+m2=m

m2∑

Q∈Nd

|Q|=2

m1
2∑

P∈Nn

|P|=0

[(
A(t)

M

)|P|]m1

ηP,m1ηQ,m2

[(
Rt + RJm2−1A(t)

)|Q|]m2

≤ Ẽm

[(
1

1 − A(t)
M

)n ((
1

1 − (Rt + RA(t))

)d
− 1 − d(Rt + RA(t))

)]m
.

Here, we have set

Ẽm = max
m1+m2=m

max
P∈Nn ,Q∈Nd

|P|≤m1
2 ,2≤|Q|≤m2,

ηP,m1ηQ,m2 .

It remains to estimate the rest of terms in (4.1). We define

Bm : =
[
ϕk j (h j + f hj (h j , v j )) − ϕk j (h j ) − Dϕk j (h j ) f

h
j (h j , v j )

]m

=
m
2∑

l=2

∑

|P|=l

1

P!∂
P
h ϕk j (h j )

[
( f hj )P

]m
.

Hence, as above, we have

|Bm |Û∗
k j

≤ |ϕk j |Ûk j

m
2∑

l=2

∑

|P|=l

(
1

M

)|P| [
(A(t))|P|]m

≤ |ϕk j |Ûk j

[(
1

1 − A(t)
M

)n

− 1 − n
A(t)

M

]m

.

By the same reasoning as in the foliation section, the previous estimates on Û∗
k j

extend to estimates on Ûk j , by multiplication by a constant M̃ .
Let us define constant C0 := maxk j |ϕk j |Ûk j

Since we have

|[ f •
j ]m |Û j

≤ K̃m max
k

∣∣∣Lk j ([ f •
j ]m)

∣∣∣
Ûk j

,

then

|[ f •
j ]m |Û j

≤ M̃ K̃m

(

C0

[(
1

1 − A(t)
M

)n
− 1 − n

A(t)

M

]m

+ Ẽm

[(
1

1 − A(t)
M

)n ((
1

1 − (Rt + RA(t))

)d
− 1 − d(Rt + RA(t))

)]m)

.
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We emphasize that due to the vanishing assumption of the spaces H0(U , TCM ⊗
Sm(N∗

C )),m ≥ 2, the solution of cohomological equationLk j ([ f •
j ]m) = Rm is unique

and is equal to the minimizing solution obtained in Lemma A.2 and Proposition A.4.
Consider the following analytic functional equation :

A(t) = M̃

(

C0

[(
1

1 − A(t)
M

)n

− 1 − n
A(t)

M

]

+
(

1

1 − A(t)
M

)n ((
1

1 − (Rt + RA(t))

)d

− 1 − d(Rt + RA(t))

))

.

It has a unique analytic solution A of order ≥ 2 at the origin. Since we have

K̃m max(1, Ẽm) ≤ ηm, |[ f •
j ]m |Û j

≤ Amηm, m ≥ 2

then
∑

m≥2[ f •
j ]m converges in a neighborhood of the origin.

Let us see how the general case is reduced to the previous one. The issue is that,
when considering a solution [ f •

j ]m of the cohomological equation Lk j ([ f •
j ]m) = Rm ,

the estimate given by Lemma A.2 and Proposition A.4 might be obtained by another
solution. Hence, the formal solution might not be the good one for the estimates. So
we will need to correct it. As we already emphasized, Eqs. (4.1) and (4.2) read

Lk j ({[ f ]
i }) = Rk j,
([ f ]
′
, 
′ < 
; [�]l , l ≤ 
)

where Rk j,
 is an analytic function of its arguments. Let us start at 
 = 2.

(1) Rk j,2 is just a function of the [�k j ]2’s and we have Lk j ([ f ]2) = Rk j,2. Let
{[ f̃ j,2]2} be the minimizer solution of this equation obtained by Lemma A.2 and
PropositionA.4 and let [k j ]2 := [ f j ]2−[ f̃ j,2]2.Wehave {[k j ]2} ∈ H0(U , TCM⊗
S2(N∗

C )).
(2) According to Lemma 2.14, Fj,2 := Fj exp(−[k j ]2) linearizes �k j since

F−1
j,2�k j Fj,2 = exp(−[k j ]2)−1Nkj exp(−[k j ]2) = Nkj .

Fj,2 is tangent to identity and its 2nd order term is the minimizer [ f̃ j ]2.
(3) Assume that Fj,
 linearizes �k j , is tangent to identity at the origin and has the

minimizers solution up to degree 
 as Taylor expansion at 0. This means that
Fj,
 = I d +∑


l=2[ f̃ j,l ]l +∑l≥
+1[ f j,
]l . Let us write the conjugacy equation.
By induction we have, for all 2 ≤ l ≤ 
,

Lk j ({[ f̃i,l ]l}) = Rk j,l({[ f̃i,l ′ ]l ′ }i , l ′ < l; [�]m,m ≤ l).

Furthermore, it satisfies at degree 
 + 1

Lk j ({[ fi,
+1]
+1}) = Rk j,
+1({[ f̃i,
′ ]
′ }i , 
′ ≤ 
; [�]m,m ≤ 
 + 1).
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Let [ f̃i,
+1]
+1 be the minimizer solution of the above cohomological equation.
Let [ki,
+1]
+1 = [ fi,
+1]
+1 − [ f̃i,
+1]
+1. As above, it defines an element of
H0(U , TCM ⊗ S
+1(N∗

C )). Let us set Fj,
+1 = Fj,
 exp([k j,
+1]
+1)−1. Then
it linearizes �k j and has the minimizers solution up to degree 
 + 1 as Taylor
expansion at 0: Fj,
+1 = I d +∑
+1

l=2 [ f̃ j,l ]l +∑l≥
+2[ f j,
+1]l .
(4) Since Fj,
+1F

−1
j,
 = I + O(
 + 1), the sequence {Fj,
}
 converges in the space

of formal power series to F̃j . Furthermore, {F̃j } linearizes {�k j } as each {Fj,
} j
does. The Taylor expansion of F̃j at the origin is

F̃j = I d +
∑

l≥2

[ f̃ j,l ]l .

(5) We can estimate the [ f̃ j,l ]l as we did above in the case of vanishing cohomology
since the Taylor coefficient are minimizer solutions of the same equations.

Hence, we are done.
In summary, we have proved the following theorem.

Theorem 4.1 Let C be an embedded compact manifold in M. Assume that the embed-
ding is linearizable by a formal holomorphic mapping which is tangent to the identity
and NC is unitary. Suppose that {ηm}m≥1 defined by (4.3) satisfy ηm ≤ L0Lm, for some
positive numbers L0, L and for all m. Then the embedding is actually holomorphically
linearizable.

We remark that in general there is a rigidity theory on deformations in an analytic
family of complex manifolds due to Kodaira [25]. Strengthening Corollary 3.3, we
finish the section with the following corollary. This may be regarded as a rigidity for a

simply connected manifold.

Corollary 4.2 Keep the assumptions in Theorem 4.1. Assume further that C is simply
connected. Then a neighborhood of C in M is biholomorphic to C × Bd where Bd is
the unit ball in Cd .

Proof We already know thatM admits a horizontal foliation by Corollary 3.3. To show
that each leaf is biholomorphic to C , we may assume that M = NC and we will use
the projection π : NC → C . We fix x0 ∈ C . We take a point p ∈ π−1(x0) close to
C . Let L be the (connected) leaf of the foliation containing p. Then L intersects each
fiber of NC at a unique point. To verify this, we connect a point in x ∈ C to x0 by a
continuous path γ in C with γ (0) = x0 and γ (1) = x . By continuation along leaves,
we can find a lifted continuous path γ̃ and the germ L∗

γ (t) at γ̃ (t) of a leaf Lγ (t) such
that π(γ̃ (t)) = γ (t). Note that L∗

γ (t ′), L∗
γ (t) are contained in the same leaf on which

π is injective, when t ′ is sufficiently close to t . The lifting γ̃ (1) is independent of γ .
Indeed if γ θ (a ≤ θ ≤ b) is a continuous family of paths connecting x0 to x . Let Lγ θ

be the leaf associated to γ θ . Then γ̃ θ (t) ∈ Lγ θ0 (t) when θ is sufficiently close to θ0,
as Lγ θ (0) = Lγ a (0) as a leaf near p.

Obviously, x �→ γ̃ (1) gives a biholomorphism from C onto the leaf through p.
And (x, v) → γ̃ (1) defines a biholomorphisms from C × B into NC , where B is a
small neighborhood of 0 ∈ π−1(x0). ��
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5 The Full Linearization

The main purpose of this section is to solve the linearization problem in the general
setting (i.e. NC not necessarily being flat) under general hypotheses on the existence
of bounds to the cohomology equations. At the end of the section we will illustrate
the results with Arnold’s examples [2], following computations by Arnol’d [3].

We shall devise a Newton scheme to solve the linearization of the neighborhood
problem. Let us recall the condition.
(Lm) : The neighborhood of C agrees with the neighborhood of the zero section of
the normal bundle up to order m.
That embeddingofC has property (Lm)means that the order of (φh

k j (h j , v j ), φ
v
k j (h j , v j ))

along v j = 0 as defined in (5.16) is ≥ m + 1.
Assume that (Lm) holds. We shall assume either that H0(C, TC ⊗ S pN∗

C ) = 0,
2 ≤ p ≤ 2m or that NC is flat. According to Lemma 2.16 (c) and (d), the following
linearization step in the Newton method is fulfilled :
(Nm) : If {�k j } ∈ Lm , then {F−1

k �k j Fj } ∈ L2m for some {Fj = I + f j } with
f j (h j , v j ) = O(|v j |m+1).

5.1 Domains for Iteration and the Donin Condition

Following Lemma A.6 and Proposition A.19, we shall consider a family of nested
coverings Ur = {Ur

i }i∈I ofC with r∗ ≤ r ≤ r∗. Let us fix a trivialization of N∗
C (resp.

TC) over Ur∗
i by fixing a holomorphic basis ei = (ei,1, . . . , ei,n+d) of TCM on Ur∗

i .

We first define various domains. Let Ûr
j := ϕ j (Ur

j ) = �r
n and Ur

kj := Ur
k ∩ Ur

j .

We have Ur
kj = Ur

jk . Define Û
r
k j = ϕ j (Ur

kj ). Then

ϕk j (U
r
kj ) = Ûr

jk .

Donin Condition. Let Ur be a family of nested covering of C for r∗ < r < r∗. Let
E ′ = TC or NC . Suppose that there are constants D(E ′ ⊗ SmN∗

C ) for m = 2, 3, . . .
such that for all r ′, r ′′ with r∗ < r ′′ < r ′ < r < r∗ and r ′ − r ′′ ≤ r∗ − r , and all
f ∈ Z1(Ur ′

, E ′ ⊗ SmN∗
C ) with f = 0 in H1(Ur ′

, E ′ ⊗ SmN∗
C ), there is a solution

u ∈ C0(Ur ′′
, E ′ ⊗ SmN∗

C ) to δu = f such that

max
j

sup |u j |L∞(Ûr ′′
j )

≤ D(E ′ ⊗ SmN∗
C )

(r ′ − r ′′)τ
max
k, j

| fk j |L∞(Ûr ′
k j )

, (5.1)

where D(E ′ ⊗ SmN∗
C ) is independent of r ′, r ′′ and f and τ = τ(N∗

C ) is independent
of m.

Inwhat follows, we shall express sections of bundles in coordinates. For the purpose
of estimates, we need to choose suitable domains for trivialization of the vector bundle
NC . Recall that the NC has trivializations N j and transition functions Nkj . Let Br

d be
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the ball of radius r in Cd centered at the origin. Thus, we define

V̂ r
j = N j (V

r
j ) = Ûr

j × Br
d , V r

i0···iq := Vr
i0 ∩ · · · ∩ V r

iq ,

V̂ r
i0···iq := Niq (V

r
i0···iq ) ⊂ ϕiq (U

r
i0···iq ) × Cd , (5.2)

V̂ r
jk = Nkj (V̂

r
k j ), Nkj = N−1

jk on V̂ r
k j , (5.3)

Nki Ni j = Nkj on V̂ r
ki j . (5.4)

Denote the corresponding domains by Ṽ r
j , Ṽ

r
k j when N j are replaced by � j . Then we

still have the above relations when N j , Nkj are replaced by � j ,�k j . We know that
�k j are perturbations of the transition functions Nkj of the normal bundle of C in M ,
which are defined on different domains but in the same space. We will, however, work
on domains V̂ r

k j for �k j , instead of Ṽ r
k j .

With notation of Sect. 2.7, for L ≥ 1 and for r∗ ≤ r ≤ r∗, we consider a cochain
{ f I } ∈ Cq+1(Ur ,O(TCM ⊗ SL(N∗

C ))), given by

f I := fi0···iq (p) =
n+d∑

λ=1

∑

|Q|=L

f λ
i0···iq ;Q(ziq (p))ei0,λ(p) ⊗ (w∗

iq (p))
Q

where I = (i0, . . . , iq) ∈ Iq+1. Recall that V̂ r
I = Niq (V

r
i0

∩ · · · ∩ V r
iq

). Define

| f I |r = sup
(hiq ,viq )∈V̂ r

I

|
∑

Q

fI ,Q(hiq )v
Q
iq

|.

We also set |{ f I }|r = maxI | f I |r .
Note that V̂ r

j = Û j × Br
d are product domains. Also,

Ûr
k j × Bc∗r

d ⊂ V̂ r
k j ⊂ Ûr

k j × Bc∗r
d , c∗ ≤ 1 ≤ c∗.

Define Br
k j (h j ) to be {v j ∈ Br

d : tk j (h j )v j ∈ Br
d}. The skewed domain V̂ r

k j can be
described as follows:

(h j , v j ) ∈ V̂ r
k j if and only if h j ∈ Ûr

k j , v j ∈ Br
k j (h j ).

Next, we note that the d-torus action (h j , v j ) → (h j , (ζ1v1, . . . , ζdvd)) with ζ ∈
(S1)d does not preserve V̂ r

k j when tk j (h j ) is not diagonal. Nevertheless, the V̂ r
k j has a

disc structure :

(h j , ζv j ) ∈ V̂ r
k j , ∀(h j , v j ) ∈ V̂ r

k j , ∀ζ ∈ �.

Indeed, suppose that (h j , v j ) ∈ V̂ r
k j . Then h j ∈ Ûr

k j and (h j , v j ) = N j (p) with

p ∈ Vr
k ∩ V r

j and Nk(p) = (hk, vk) ∈ V̂ r
k . By definition, V̂ r

j = Û j × Br
d . Take
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p̃ = N−1
j (h j , ζv j ). We have p̃ ∈ Vr

j and Nk( p̃) = (hk, tk j (ζv j )) = (hk, ζ tk j (v j )) ∈
Ûr
k j × Br

d .
Throughout this section, we use

|u j |ρ = sup
(h j ,v j )∈V̂ ρ

j

|u j (h j , v j )|, |ukj |ρ = sup
(h j ,v j )∈V̂ ρ

k j

|ukj (h j , v j )|

where u j , ukj are functions on V̂ r
j and V̂ r

k j , respectively. We also define |{uI }|ρ =
maxI |uI |ρ .

With the above disc structure, we now prove the following.

Lemma 5.1 Let uk j be a holomorphic function on V̂ r
k j with r∗ < r < r̃ < r∗. Suppose

that

V̂ r∗
k j �= ∅. (5.5)

For 0 < θ < 1 with θr > r∗, we have

|ukj |θr ≤ θm |ukj |r , if uk j (h j , v j ) = O(|v j |m); |[ukj ]
|r ≤ |ukj |r ;
∞∑


=i

|[ukj ]
|θr ≤ θ i

1 − θ
|ukj |r .

Proof Let u = ukj . The first inequality follows from the Schwarz lemma applied to
the holomorphic function ζ → u(h j , ζv j ) on the unit disk for fixed (h j , v j ) ∈ V̂ r

k j .

Note that [u]i (h j , ζv j ) = ζ i [u]i (h j , v j ). Thus the second inequality follows directly
by averaging,

[u]
(h j , v j ) = 1

2π i

∫

ζ∈∂�

u(h j , ζv j )
dζ

ζ 
+1 , (h j , v j ) ∈ V̂ r
k j .

The last inequality follows from the first two inequalities. ��
For the rest of this section, we rename r in the Donin Condition by r̃ which is fixed

now. We will let r vary in (r∗, r̃).
Lemma 5.2 Let r∗ < θr < r < r̃ < r∗ < 1. Fix k, j ∈ I. Suppose that (1 − θ4)r <

r∗ − r̃ and (5.5) holds.

(a) We have

dist(V̂ θr
j , ∂ V̂ r

j ) ≥ r(1 − θ)/C0, dist(V̂ θr
k j , ∂ V̂ r

k j ) ≥ r(1 − θ)/C0, (5.6)

for some constant C0.
(b) Assume further that θ4r > r∗. There exists a constant C∗

0 such that if Fj = I + f j
satisfy

| f j |θ2r ≤ (1 − θ)r/C∗
0 , (5.7)
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then we have

Fj (V̂
θ2r
j ) ⊂ V̂ θr

j , Fj (V̂
θ2r
k j ) ⊂ V̂ θr

k j , (5.8)

F−1
j (V̂ θ4r

j ) ⊂ V̂ θ3r
j , Fj F

−1
j = I on V̂ θ4r

j . (5.9)

Proof (a) The V̂ r
j is the product domain Ûr

j × Br
d . Thus the first inequality in

(5.6) holds trivially since Ûr
j is a polydisc. Note that V̂ r

k j are open sets. Then

δ := dist((h, v), (h̃, ṽ)) = dist(V̂ θr
k j , ∂ V̂ r

k j ) is attained by

(h, v) ∈ ∂ V̂ θr
k j , (h̃, ṽ) ∈ ∂ V̂ r

k j . (5.10)

If h̃ ∈ ∂Ûr
k j , we immediately get δ ≥ dist(Û θr

k j , ∂Û
r
k j ) ≥ (1− θ)r/C by Lemma A.6.

Assume that h̃ ∈ Ûr
k j . Then by the continuity of the function tk j , ṽ must be in ∂Br

k j (h̃).

Otherwise, both h̃ ∈ Ûr
k j and ṽ ∈ Br

k j (h̃) are interior points of the two sets, then any

small perturbation of (h̃, ṽ) still satisfies the second condition in (5.10). The last
assertion implies that (h̃, ṽ) cannot be a boundary point and we get a contradiction.
Therefore, we have

ṽ ∈ ∂Br
d or tk j (h̃)ṽ ∈ ∂Br

d .

The first case yields |ṽ−v| ≥ dist(Bθr
d , ∂Br

d) = (1−θ)r .We now consider the second

case. By assumption tk j is holomorphic in ω for a neighborhood ω of Ûk j . Thus there
is δ∗ > 0 depending only on Ûk j such that if h ∈ Ûk j and |h̃ − h| < δ∗, then the line
segment γ connecting h to h̃ is contained in ω. Suppose that |h̃ − h| < (1 − θ)r/C1
for C1 to be determined so that (1− θ)r/C1 < δ∗. Applying the mean-value-theorem
to tk j (γ ) and using tk j (h)v ∈ Bθr

d , we get

C4|ṽ − v| ≥ |tk j (h̃)(ṽ − v)| ≥
∣∣∣|tk j (h̃)ṽ − tk j (h)v)| − |(tk j (h̃) − tk j (h))v|

∣∣∣

≥ (1 − θ)r − C5|h̃ − h||v| ≥ (1 − θ)r/2,

when C1 is sufficiently large. Thus we get dist(Û θr
k j , ∂Û

r
k j ) ≥ (1 − θ)r/C as in the

first case. If |h̃ − h| ≥ (1 − θ)r/C1, the required estimate is immediate.
(b) Note that θ > r∗. By choosing a largerC∗

0 , (5.8) follows from (5.6) immediately.
We want to find F−1. By (5.7) and the Cauchy estimate, we know that

|∂h j f j (h j , v j )| + |∂v j f j (h j , v j )| ≤ C6/C
∗
0 , ∀(h j , v j ) ∈ V̂ θ3r

j . (5.11)

Note that V r
j = Ûr

j ×Br
d is convex. By (5.11) and the fundamental theorem of calculus,

we have

| f j (p1) − f j (p0)| ≤ C7|p1 − p0|/C∗
0 , ∀p0, p1 ∈ V̂ θ3r

j .
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Suppose that C∗
0 > 2C7. Then Fj : V̂ θ3r

j → V̂ θ2r
j is injective, and T (h j , v j ) =

(h̃ j , ṽ j ) − f j (h j , v j ) defines a contraction mapping on V̂ θ3r
j , if (h̃ j , ṽ j ) ∈ V̂ θ4r

j and
C∗
0 is sufficiently large. This gives us (5.9). ��
In this section, we change notation and let

f •
j = ( f hj , f v

j ), φ•
k j = (φh

k j , φ
v
k j ).

Lemma 5.3 Let r∗ < θr < r < r̃ < r∗ < 1. Suppose that V̂k j satisfies (5.5). There
exists a constant C∗

1 > 1 such that if

|φ•
k j |r ≤ (1 − θ)r/C∗

1 (5.12)

then we have

�k j (V̂
θr
k j ) ⊂ V̂ r

jk .

Proof Note that θ > r∗. Since �k j − Nkj = φ•
k j and Nkj (V̂ θr

k j ) = V̂ θr
jk , the assertion

follows from (5.6) and (5.12) for sufficiently large C∗
1 . ��

Proposition 5.4 Let r∗ < θ7r < r < r̃ < r∗ < 1. Assume that V̂k j satisfies (5.5).
Suppose that �k j = Nkj + φ•

k j satisfy (5.12). Let Fj = I + f j satisfy f j (h j , v j ) =
O(|v j |2).

Suppose �̃k j = F−1
k �k j Fj = Nkj + φ̃•

k j . There exists a constant C
∗
2 such that if

|{ f j }|θ2r ≤ (1 − θ)r/C∗
2 , (5.13)

and φ̃•
k j (h j , v j ) = O(|v j |m̃), then

|{φ̃•
k j }|θ7r ≤ C2θ

m̃(|{ f j }|θ2r + |{φ•
k j }|r , (5.14)

|{φ̃•
k j }|θ7r ≤ C2θ

m̃(1 − θ)r . (5.15)

Proof Let us write �̃k j = Nkj + φ̃•
k j and F−1

k = I + gk . Thus

φ̃h
k j = ghk ◦ �k j ◦ Fj + φh

k j ◦ Fj + (ϕk j (I + f hj ) − ϕk j ),

φ̃v
k j = gv

k ◦ �k j ◦ Fj + φv
k j ◦ Fj

+ (tk j (h j + f hj ) − tk j (h j )) × (v j + f v
j ) + tk j (h j ) × f v

j (h j , v j ).

According to (5.9), we have Fk(I + gk) = I on V̂ θ4r
k . Thus gk = − fk ◦ F−1

k implies
that

|gk |θ4r ≤ | fk |θ3r .
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For (h j , v j ) ∈ V̂ θ6r
k j , using dist(Û θ6r

k j , ∂Û θ5r
k j ) ≥ (1 − θ)θ5r/C0, we can obtain

|tk j (h j + f hj (h j , v j )) − tk j (h j )| ≤ C3| f h(h j , v j )| and | ϕk j (h j + f hj (h j , v j )) −
ϕk j (h j , v j )| ≤ C3| f j (h j , v j )|. Nesting domains and using (5.12), (5.13) and hence
(5.7), we obtain by Lemma 5.2 in which r is replaced by θ5r :

|{φ̃•
k j }|θ6r ≤ C4(|{ f j }|θr + |{φ•

k j }|r ,
|{φ̃•

k j }|θ6r ≤ C4(1 − θ)r .

Applying Schwarz inequality, we get (5.14)–(5.15). ��

When we apply the above to iteration, the new �k j in the sequence of iteration is
defined by

(F (m)
k )−1(· · · ((F (1)

k )−1�k j F
(1)
j ) · · · )F (m)

j

on V̂ rm+1
k j with F (m)

j (V̂ rm+1
k j ) ⊂ V̂ rm

k j .

Let us find [ f j ]2mm+1(h j , v j ), a polynomial of order ≥ m + 1 and of degree ≤ 2m

in v j (holomorphic in h j ), such that {F−1
k �k j Fj } ∈ L2m holds for some {Fj =

I + [ f j ]2mm+1}.
Let us consider the neighborhood written in the new coordinates {Fj }. We obtain

for (hk, vk) = �̂k j (h j , v j ):

hk = �̂h
k j (h j , v j ) := ϕk j (h j ) + φ̂h

k j (h j , v j ),

vk = �̂v
k j (h j , v j ) := tk j (h j )v j + φ̂v

k j (h j , v j ). (5.16)

We assume that φ̂•
k j := (φ̂h

k j , φ̂
v
k j ) has order ≥ 2m + 1 at v j = 0.

Let uswrite down thehorizontal andvertical equations for the linearizationproblem:
Fk�̂k j = �k j Fj . We obtain the horizontal equation

ϕk j (h j ) + φ̂h
k j (h j , v j ) + f hk (ϕk j + φ̂h

k j , tk j (h j )v j + φ̂v
k j )

= ϕk j (h j + f hj (h j , v j )) + φh
k j (h j + f hj , v j + f v

j ).

The vertical equation reads

tk j (h j )v j + φ̂v
k j (h j , v j ) + f v

k (ϕk j + φ̂h
k j , tk j (h j )v j + φ̂v

k j )

= tk j (h j + f hj )(v j + f v
j ) + φv

k j (h j + f hj , v j + f v
j ).

Wewill interpret the above identity as power series in v j with coefficients being holo-
morphic in ϕ j (Uk ∩Uj ). In what follows, degrees or orders of sections are considered
w.r.t. v j at v j = 0.
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5.2 A NewtonMethod for the Full Linearization

For this problem, the two previous equations can be written as

Lk j ( f j ) =
(
0, Dtkj (h j ) f

h
j v j

)
+ Fk j ( f j ), (5.17)

where Lk j ( f j ) stands for (Lh
k j ( f

h
j ),Lv

k j ( f
v
j )) as defined by (2.18), (2.20):

Lh
k j ( f

h
j ) := f hk (ϕk j (h j ), tk j (h j )v j ) − sk j (h j ) f

h
j (h j , v j ), (5.18)

Lv
k j ( f

v
j ) := f v

k (ϕk j (h j ), tk j (h j )v j ) − tk j (h j ) f
v
j (h j , v j ). (5.19)

Recall that sk j (h j ) = Dϕk j (h j ) is the Jacobian matrix of ϕk j . Furthermore, we have
the horizontal error term

Fh
k j ( f j ) := φh

k j (h j + f hj , v j + f v
j ) − φ̂h

k j

+
(
f hk (ϕk j , tk j (h j )v j ) − f hk (ϕk j + φ̂h

k j , tk j (h j )v j + φ̂v
k j )
)

+ ϕk j (h j + f hj (h j , v j )) − ϕk j (h j ) − Dϕk j (h j ) f
h
j (h j , v j ),

(5.20)

as well as the vertical error term

Fv
k j ( f j ) := φv

k j (h j + f hj , v j + f v
j ) − φ̂v

k j + Dtkj (h j ) f
h
j f v

j

+
(
f v
k (ϕk j , tk j (h j )v j ) − f v

k (ϕk j + φ̂h
k j , tk j (h j )v j + φ̂v

k j )
)

+
(
tk j (h j + f hj (h j , v j )) − tk j (h j ) − Dtkj (h j ) f

h
j

)
(v j + f v

j ).

(5.21)

We collect 2m jets from (5.17), (5.20), (5.21). Since f j = O(m + 1) and φ̂•
k j =

O(2m + 1), this gives us

[(δh f h)k j ]≤2m = −[φh
k j ]≤2m, (5.22)

[(δv f v)k j ]≤2m = −Dtkj (h j )[ f hj ]≤2m−1v j − [φv
k j ]≤2m . (5.23)

Under formal assumptions, according to Lemma 2.16 (c), Eqs. (5.22)–(5.23) have a
solution ([ f hj ]2mm+1, [ f v

j ]2mm+1).

We first consider the case that H0(C,⊕2m
k=2TC ⊗ Sk(N∗

C )) = 0. Then, for any
r∗ < r ′′ < r ′ < r̃ < r∗ with

r ′′ = θr ′ = θ2r , r ′ − r ′′ < r∗ − r̃ ,
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the solution to (5.22) is unique and by Theorem A.12 that unique solution satisfies the
estimate

|{[ f hk ]l}|r ′ ≤ D(TC ⊗ Sl(N∗
C ))

(r − r ′)τ
|{[φh

k j ]l}|r , l = m + 1, . . . , 2m. (5.24)

In particular, {[ f hk ]2mm+1} has been determined. The solvability of (5.23) and Theo-
remA.12 imply that we can find a solution {[ f v

k ]2mm+1} such that for l = m+1, . . . , 2m,

|{[ f v
k ]l}|r ′′ ≤ D(NC ⊗ Sl(N∗

C ))

(r ′ − r ′′)τ

{

c
D(TC ⊗ Sl−1(N∗

C ))

(r − r ′)τ
|{[φh

k j ]l−1}|r + |{[φv
k j ]l}|r

}

.

(5.25)

Here c depends only on the Dtkj over the initial covering.
If H0(C,⊕2m

k=m+1TC ⊗ Sk(N∗
C )) �= 0, we are in the flat case, that is Dtkj = 0.

Thus, we can find a solution {[ f v
k ]2mm+1} such that for l = m + 1, . . . , 2m,

|{[ f v
k ]l}|r ′′ ≤ D(NC ⊗ Sl(N∗

C ))

(r ′ − r ′′)τ
|{[φv

k j ]l}|r . (5.26)

Let us set

D∗(2m) := 1 + max
2≤l≤2m

{
(1 + cK (TC ⊗ Sl−1(N∗

C )))D(NC ⊗ Sl(N∗
C )
}

. (5.27)

Hence, in any case, estimates (5.24)-(5.26) lead to

|{[ f •
k ]l}|θ2r ≤ C1D∗(2m)

(r − θ2r)2τ
|{[φ•

k j ]l}|r

for all θ and r satisfying r∗ ≤ θ2r < r < r̃ < r∗ and all m + 1 ≤ l ≤ 2m. Assume
further that θ6r > r∗ and (1 − θ7)r < r∗ − r̃ . We obtain, by Proposition 5.4 with
m̃ = 2m + 1

|φ̂•
k j |θ7r ≤ C1D∗(2m)θ2m+1

(r − θ2r)2τ
|φ•

k j |r ≤ θ2m+1(1 − θ)r/C0,

provided

|{φ•
k j }|r ≤ (1 − θ)r/C0, (5.28)

D∗(2m)

(r − θ2r)2τ
|{φ•

k j }|r ≤ (1 − θ)r/C0. (5.29)

Note that condition (5.28) follows from (5.29) as D∗(
) ≥ 1.
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Rename�k j , φ
•
k j , Fj , f •

j , �̂k j , φ̂
•
k j , respectively as�

(0)
k j , φ

(0)
k j , F (0)

j , f (0)
j ,�

(1)
k j , φ

(1)
k j .

Thus �
(1)
k j = (F (0)

k )−1�
(0)
k j F

(0)
j . Repeating this formally, we obtain

�
(
+1)
k j = (F (
)

k )−1�
(
)
k j F

(
)
j , F (
)

j = I + f (
)
j , �

(
+1)
k j = Nkj + φ

(
+1)
k j .

Set r
+1 = θ7
 r
 and m
 = 2
. We also have

F (
)
j (V̂ r
+1

j ) ⊂ V̂ r

j , (5.30)

|φ(
+1)
k j |r
+1 ≤ θ

2m
+1

 (1 − θ
)r
/C0 (5.31)

provided

r∗ ≤ θ7
 rk < 1, 0 < θk < 1; (5.32)
C1D∗(2m
)

(r
 − θ2
 r
)
2τ

|{φ(
)
k j }|r
 ≤ (1 − θ
)r
/C0. (5.33)

To set parameters, we follow Russmann [37]; see [4,5,41] for different choices of
parameters. As in [37], we now use an addition assumption that

D∗

 ≥ 
, 
 ≥ 1. (5.34)

Indeed, when D̃∗(k) = max(D∗(k), k) replaces with D∗(k), the sequence D∗(k) still
increases and

∑
2−k log D∗(2k) converges. For a constant C∗ ≥ 1 to be determined

later, define

m
 = 2
0+
, r
+1 = θ7
 r
, r0 = 1,

1 − θ
 = δ
, δ
 = C∗
log D∗(m
+2)

m
+2
.

Note that in [37, Lemma 6.2] and [4,5,41], ω(m
+1) is used to define δ
. Shifting the
index by 1, we use D∗(m
+2) to simplify the argument. We can find 
0 = 
0(C∗) such
that 0 < θ
 < 1 for all 
 and furthermore

∞∏


=0

θ7
 =
∞∏


=0

(1 − δ
)
7 ≥ exp

{

−
∞∑


=0

7C∗
2

log D∗(m
+2)

m
+2

}

.

Since
∑

2−k log D∗(2k) < ∞, the latter is larger than r∗, provided 
0 > 
0(C∗).
Inductively, we want to show that if (5.33)
 holds, then (5.33)
+1 also holds. Indeed,
with (5.33)
, we can use (5.31)
+1 to obtain

C1D∗(m
+2)

(r
+1 − θ2
+1r
+1)2τ
|{φ
+1

k j }|r
+1 × C0

(1 − θ
+1)r
+1
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≤ D∗(m
+2)θ
2m
−6



(r
+1 − θ2
+1r
+1)2τ
× 1 − θ


1 − θ
+1
(by (5.31))

≤ C2D∗(m
+2)θ
2m
−6



(1 − θ
+1)2τ+1 = C2D∗(m
+2)(1 − δ
)
2m
−6

δ2τ+1

+1

.

We need to check that the last expression is less than one using logarithm. Note that

log(1 − δ) < −δ, ∀δ ∈ (0, 1).

Therefore,

log
C2D∗(m
+2)(1 − δ
)

2m
−6

δ2τ+1

+1

< logC2 − (2m
 − 6)δ
 + log D∗(m
+2) − (2τ + 1) log δ
+3

= logC2 − (2m
 − 6)C∗
log D∗(m
+2)

m
+2
+ log D∗(m
+2) − (2τ + 1) log

(
C∗

log D∗(m
+3)

m
+3

)

=
{
logC2 − (2m
 − 6)C∗

3

log D∗(m
+2)

m
+2

}
+
{
log D∗(m
+2) − (2m
 − 6)C∗

3

log D∗(m
+2)

m
+2

}

+
{
− (2m
 − 6)C∗

3

log D∗(m
+2)

m
+2
− (2τ + 1) log

(
C∗

log D∗(m
+3

m
+3

)}
.

When 
0 is sufficiently large, then m
+2 > 24. This implies that if C∗ > 12, the sum
in each of first two braces is negative. Since log increases, we have by (5.34)

− log D∗(m
+3) ≤ log
1

m
+3
,

− log

(
C∗

log D∗(m
+3)

m
+3

)
≤ − log

(

−C∗
log 1

m
+3

m
+3

)

.

With m
 > 6, the difference in the last brace is bounded above by

(2m
 − 6)C∗
3

log 1
m
+2

m
+2
− (2τ + 1) log

(
C∗

logm
+3

m
+3

)
≤
(

− 1

12
C∗ + 2τ + 1

)
logm
+2,

which is negative when C∗ > 24τ + 12. We have determined C∗. This allows us to
determine 
0(C∗) so that 0 < θ
 < 1 and

∏∞

=0 θ7
 > r∗. Therefore, (5.33)
 holds if

it holds for initial value 
 = 0. Using a dilation v j → εv j for ε > 0, we may replace
�k j (h j , v j ) by (ϕk j (h j ) + φh

k j (h j , εv j ), tk j (h j )v j + ε−1φv
k j (h j , εv j )). This yields

(5.33)0 when ε is sufficiently small, as φ•
k j (h j , v j ) = O(|v j |2).

To finish the proof, we set �(
)
j := F (0)

j ◦ · · · ◦ F (
)
j . We have

�
(
)
j (V̂ r
+1

j ) ⊂ V̂ r

j , �

(
+1)
j (h j , v j ) − �

(
)
j (h j , v j ) = O(|v j |
).

123



X. Gong, L. Stolovitch

Consequently, the sequence �
(
)
j is bounded in V̂ r∞

j . Fix 0 < θ < 1. By the Schwarz
lemma, we get

sup
Ûr∞

j ×Bθr∞
d

|�(
+1)
j − �

(
)
j | ≤ Cθ
.

Therefore, of �
(
)
j converges uniformly on Ûr∞

j × Bθr∞
d to a holomorphic mapping

�∞
j . Then F := N−1

j �∞
j � j is well defined. Indeed, N

−1
k �∞

k �k = N−1
j �∞

j � j is

equivalent to �∞
k (�k�

−1
j ) = (NkN

−1
j )�∞

j . Since �∞
j are tangent to the identity,

they are germs of biholomorphisms. Therefore, F linearizes a small neighborhood of
C in M .

Therefore, we have proved the following full linearization result.

Theorem 5.5 Let a neighborhood of the compact manifold C in M be equivalent to
a neighborhood of the zero section of normal bundle NC of C in M by a formal
holomorphic mapping which is tangent to the identity. Assume that H0(C, TC ⊗
S
(N∗

C )) = 0 for all 
 > 1 or that the normal bundle NC is flat. If {D∗(2k)} defined
by (5.1) and (5.27) satisfies

∑

k≥1

log D∗(2k+1)

2k
< +∞, (5.35)

there is a neighborhood of the compact manifold C in M that is biholomorphic to a
neighborhood of the zero section of normal bundle of C in M.

When the transition functions of C are affine and NC is flat, the formal equivalence
assumption can be relaxed by assuming that the neighborhoods are equivalent under
a formal biholomorphisms fixing C pointwise. This follows from Lemma 2.4 (c).

We now present two examples to illustrate the results in this paper.

5.3 An Example of Arnol’d

This is originally studied by Arnold [2], [3, §27] for linearization of a neighborhood.
See also Ilyashenko–Pyartli [23] for linearization for flat tori in higher dimensions.

Example 5.6 [3, §27]. Let C be defined by identifying points in C via

h = 0 mod (2π, 2ω), h ∈ C,

where ω = a + ib with b > 0 and a ≥ 0. Consider domains in C defined by
parallelograms

U1 = P(−rπ − rω, (1 + r)π − rω, (1 + r)π + (1 + r)ω,−rπ + (1 + r)ω)

U4 = U1 + π, U3 = U4 + ω, U2 = U3 − π.
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Suppose that r > 0 is sufficiently small. ThenUi ∩Uj has two connected components
Ui j,0 and Ui j,1 with

U14,1 = U14,0 − π, U34,1 = U34,0 − ω, U23,1 = U23,0 − π, U12,1 = U12,0 − ω.

Let Û j = Uj and V̂ j = Û j × �δ . Define M = ∪V̂ j/ ∼, Vj = {[x] : x ∈ V̂ j },
� j : Vj → V̂ j and the transition functions �k j on Vkj = Vk ∩ Vj of M as follows.
Let

f (h, v) = (h + 2ω + vb(h, v), λv(1 + va(h, v))), | Im h| < δ

where a, b are 2π periodic holomorphic functions in h. Define

�12,0 = I, �43,0 = I, �12,1 = f |V̂12 , �43,1 = f |V̂43 , (5.36)

�14 = I, �23 = I, (5.37)

�13,0 = I, �13,1 = f |V̂13,1 , �42,0 = I, �42,1 = f |V̂42,1 . (5.38)

The linearization of a neighborhood of C in M is equivalent to G−1
k �k jG j = �̂k j

where �̂k j are constructed as above by replacing f with f̂ defined by

f̂ (h, v) = (h + 2ω, λv).

Thus T M has transition functions:

�̂14 = I, �̂23 = I, �̂12,0 = I, �̂43,0 = I, �̂12,1 = f̂ |V̂12 , �̂43,1 = f̂ |V̂43 .

Then we have g := G1 = G4 on V̂1 ∩ V̂4, g := G2 = G3 on V̂2 ∩ V̂3, g := G1 =
G2 on V̂12,0 and g := G3 = G4 on V̂34,0. In other words, g is 2π periodic and
defined on −δ Imω < Im h < 2(1 + δ) Imω. The cohomology equation is reduced
to G−1

1 �12G2 = �̂12 and G−1
4 �43G3 = �̂43. Equivalently, we need to solve

g−1 f g = f̂ . (5.39)

Assume that f has been normalized so that

va(h, v) = vnan(h) + O(n + 1), vb(h, v) = vnbn(h) + O(n + 1), n = 1, 2, . . . .

For the purpose of illustration, we will only restrict to a special unitary line bundle
case where |λ| = 1. Then by the non-resonance condition that λ is not a root of unity,
we may assume that as in [3, p. 211]

g(h, v) = (h + vn Bn(h), v(1 + vn An(h)) + O(n + 1).
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This leads to decoupled equations of the form

λn An(h + 2ω) − An(h) = −an(h),

λn Bn(h + 2ω) − Bn(h) = −bn(h). (5.40)

Note that an, bn are holomorphic in | Im h| < δ and we are seeking a solution on a
large strip

−δ′ < Im h < Imω + δ′.

In Fourier coefficients an,
 and a non-resonant condition, the Fourier coefficients of
An are given by

An, j = an, j

λne2ω j
√−1 − 1

.

Assume that an are holomorphic and 2π periodic in h for Sδ : | Im h| < δ. Suppose
that

|λne2 jω
√−1 − 1| ≥ c|λn − 1|.

Then

|An, j | ≤ C

|λn − 1| |an|L2(Sδ)
e−| j |δ,

|An, j e
jh | ≤ C

|λn − 1| |an|L2(Sδ)
e−| j |(δ−δ′), −δ′ < Im h < Imω + δ′.

Furthermore, we can verify that

|An|L2(Sδ′ ) ≤ C

(δ − δ′)|λn − 1| |an|L2(Sδ)
.

Note that tk j are locally constant with values 1, λ, λ−1.
Therefore, we have verified

D((TC ⊕ NC ) ⊗ SnN∗
C ) ≤ C

|λn − 1| .

By Lemma A.2, we get an estimate with equivalent bounds (up to a scalar) but in the
original domain, i.e. without shrinking domains.

Strictly speaking, the above covering {Ur
j } has non smooth boundary. The inter-

section is non-transversal either. However, this covering can be easily modified to get
a generic covering defined early, replacing Û j by smooth strictly convex domains Û j

and then replacing Û j by Û j + c j for suitable small constants.
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5.4 Counter-Examples

We now show that a certain small-condition is necessary to ensure the vertical and full
linearizations. We will achieve this by establishing a connection between the classical
linearization problem for germs of one-dimensional holomorphic mappings and the
vertical linearization of foliated neighborhood of an elliptic curve.

We keep the notation in subsecton 5.3. Let us start with a power series

a(h, v) =
∑

n≥2

anv
n := a(v). (5.41)

Set b(h, v) = 0. Then we have a neighborhood of C associated to

f (h, v) = (h + 2ω, λv + a(v)). (5.42)

Since the vertical part of the transition functions depends only on v, then M already
admits a horizontal foliation with center C being compact.

Proposition 5.7 Let Mλ,ω,a be neighborhood of C defined by transition functions �k j

given by (5.36)–(5.38) where f is given by (5.41)–(5.42). Suppose that λ, ω satisfy
the nonresonance condition

λne2 jω
√−1 − 1 �= 0, n = 2, 3, . . . , j ∈ Z. (5.43)

Then Mλ,ω,a is vertically (resp. formally) linearizable by a mapping tangent to the
identity if and only if the germ of holomorphic mapping ϕ(v) = λv + a(v) is holo-
morphically (resp. formally) linearizable.

Proof Suppose that M is vertically linearizable by a holomorphic mapping that is
tangent to the identity. By Proposition 2.6, it is vertically linearization by a mapping
G j such that

G j (h j , v j ) = (h j , v j + O(|v j |2)).

By the non-resonance condition (5.43), we can verify that (5.39) is equivalent to that
the g in (5.39) has the form g(h, v) = (h, ψ(v)) and ϕ is linearized by ψ . ��

The existence of non-holomorphically linearizable ϕ is well-known. By theorems
of Bruno [4,5] and Yoccoz [43], Proposition 5.7 shows that Mλ,ω,â with â(v) = v2 is
vertically linearizable and hence linearizable if and only if λ is a Bruno number, that
is

∑

k≥1

logmax2≤ j≤2k |λ j − 1|−1

2k
< +∞.
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5.5 A Foliation Example

Here we specialize Ueda’s theory for elliptic curves. Let us first discuss the Fischer
norms and Bergman norm when the NC is unitary. Let us recall two formulae from
Zhu [44, p. 22]:

∫

∂Bd
r

|zQ |2 dσd = (d − 1)!Q!
(|Q| + d − 1)!r

2d−1+2|Q|,
∫

Bd
r

|zQ |2 dVd = d!Q!
(|Q| + d)!r

2|Q|+d .

Therefore, there is a precise asymptotic behavior of Fischer norm and the Bergman
norm:

cd‖g‖2L2(Bd
r )

≤ |g|2f ,r ≤ Cd‖g‖2L2(Bd
r )

, 1/4 < r < 4. (5.44)

We also have Bergman’s inequality for L2 holomorphic functions [15, p. 189]:

| f |∞,V̂ (1−θ)r
j

≤ Cd

(θr)d
sup
h j

| f (h j , ·)|L2(Bd
r ), (5.45)

sup
h j

| f (h j , ·)|L2(Bd
r ) ≤ Cd | f |∞,Bd

r
, 1/4 < r < 4. (5.46)

In general, we get

|φ•
k j |L∞(V̂k j,(1−θ)r )

≤ Cd

(θr)d
sup
h j

|φ•
k j (h j , ·)|L2(Bd

k j,r (h j ))
, (5.47)

sup
h j

|φ•
k j |L2(Bd

k j,r (h j ))
≤ Cd |φ•

k j |L∞(V̂ r
k j )

, 1/4 < r < 4. (5.48)

Note that when tk j are unitary, the skewed domain V̂ r
k j defined in (5.2) are actually

product domains

V̂ r
k j = Ûr

k j × Br
d .

Therefore, the Fischer norm and Bergman norm bound each other with constants
depending only on θ and d. We can fix θ too by applying Lemma A.2 as we did in
Sects. 3 and 4. Therefore, any estimate of cohomology equations in Fischer norms has
a counter part in super norm on the unit ball in Cd and vice versa.

Note that the small divisors condition

|λn − 1| ≥ Cn−τ , n = 1, 2, . . . (5.49)

for some constantsC, τ is equivalent toUeda’s condition in terms of dist(Nn
C , 1) for the

foliation problemwhenC is an elliptic curve of type zero. In this case the corresponding
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linearized equation is equation (5.40) for which the small divisor 1/K∗(NC ⊗ SnN∗
C )

can be chosen to be |λn − 1|.
Finally, we should mention that the assumption ηm ≤ L0Lm is satisfied under

Siegel’s small divisor condition |λn−1| ≥ Cn−τ by amethod of Siegel; see Ueda [42]
for the vertical linearization problem. It is also satisfied under theBruno condition [4,5]
which is a condition weaker than (5.49). For the details, we refer to [4,5,36].

Appendix A. L2 Bounds of Cohomology Solutions and Small Divisors

A.1 A Question of Donin

Let E be a holomorphic vector bundle on a compact complex manifold C . The main
purpose of this section is to obtain L2 and sup-norm bounds for the cohomology
equation

δu = f (A.1)

where f ∈ Z1(U ,O(E)) and U is a suitable covering of C . Our goal is to show that
if f = 0 in H1(C,O(E)), then there is a solution u such that

‖u‖U ≤ K (E)‖ f ‖U . (A.2)

Here ‖ · ‖U is the L2-norm for cochains of the covering U . The main assertion is
that the solution u admits estimate on the original covering U without any refinement,
which is important to the application in this paper. For this purpose, we will choose the
covering U which consists of biholomorphic images of the unit polydisc and which
are in the general position. The question on the existence of such an estimate and
solutions was raised by Donin who asked the general question ifO(E) is replaced by
a coherent analytic sheaf F on C and f is any p-cocycle, with p > 0, of a covering
U [9]. The result in this appendix provides an affirmative answer to Donin’s question
for p = 1 and the sheaf of holomorphic sections of a holomorphic vector bundle.
Furthermore, we will introduce the small divisor for (A.1) in (A.2). Although some
of results in this appendix can be further developed for a general setting, we limit to
the case of H1(C,O(E ′ ⊗ E ′′)); this suffices applications in this paper. One may take
E ′′ to be the trivial bundle to deal with a general vector bundle E . In the applications
we have in mind, C is embedded into a complex manifold M and we will take E ′′ to
be symmetric powers Sym
 N∗

C of N∗
C , the dual of the normal bundle of C in M . In

this paper, S
E denotes the symmetric power Sym
 E of a vector bundle E over C .
We are mainly concerned with how various bounds depend on 
 as 
 → ∞ when we
employ the important Fisher metric on S
N∗

C for unitary the normal bundle NC . This
will be crucial in our applications.

To prove (A.2), we will first use the original estimate of Donin [9], without solving
the cohomology equation. This serves as a smoothing decomposition in the sense of
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Grauert [15] by expressing

f = g + δu (A.3)

where g is defined on a larger covering while u is defined on a shrinking covering. We
will then combine it with the proof of finiteness theorem of cohomology groups from
Grauert–Remmert [15] to refine the decomposition (A.3) by expressing g in a base
of cocycles. Finally, we will obtain (A.2) by avoiding shrinking of covering. This last
step is motivated by a method of Kodaira–Spencer and Ueda [42]. We take a different
approach by an essential use of the uniqueness theorem. This allows us to introduce
the small divisors in (A.2) to the cohomology equation (A.1).

A.2 Bounds of Solutions of Cohomology Equations

We now start to introduce nested coverings of C . This will be an essential ingredient
of the small divisors for the cohomology equation. We cover C by finitely many open
sets Ui , i ∈ I such that there are open sets Vi in M with Vi ∩ C = Ui . We also
assume that there are biholomorphic mappings �i from Vi onto the polydisc �r∗

n+d of
radius r∗, where n is the dimension of C and n + d is the dimension of M . Assume
further that �i (Ur∗

i ) = �r∗
n × {0} for ϕi × {0} = �i |Ui . Set Ur = {Ur

i : i ∈ I} with
Ur
i = ϕ−1

i (�r
n). We assume that r∗ < 1 and Ur∗ with r∗ < r∗, remains a covering of

C . When Ur
I := Ur

i0
∩ · · ·Ur

iq
is non-empty, it is still Stein [15, p. 127].

Definition A.1 Let {Ur
j } be an open covering of C for each r ∈ [r∗, r∗]. We say that

the family of coverings {Ur
j } is nested, if each connected component of Uρ

k ∩ Ur∗
j

intersects Ur∗
k ∩Ur∗

j when r∗ ≤ ρ ≤ r∗. In particular, Ur∗
k ∩Ur∗

j is non-empty if and

only if Uρ
k ∩Ur∗

j is non-empty.

Let N (Ur∗
i ) be the union of all Ur∗

k that intersect Ur∗
i ; as in [9] we will call the

union the star of Ur∗
i . Refining Ur∗

if necessary, we may assume that there is a
biholomorphism ϕi from a neighborhood of the star onto an open set in Cn . If E ′, E ′′
are holomorphic vector bundles over C , we will fix a trivialization of E ′ over Ui by

fixing a holomorphic basis e′
k = {e′

k,1, . . . , e
′
k,m} in Ur∗

k . We also fix a holomorphic

base e′′
j = {e′′

j,1, . . . , e
′′
j,d} of E ′′ in Ur∗

j . On Ur∗
I = Ur∗

i0
∩ · · · ∩ Ur∗

iq
, it will be

convenient to use the base

ei0...iq := e′
i0 ⊗ e′′

iq := {e′
i0,k ⊗ e′′

iq , j : 1 ≤ k ≤ m, 1 ≤ j ≤ d}.

Throughout the paper ‖ · ‖D and | · |D denote, respectively, the L2 and sup norms
of a function in D, when D is a domain in Cn . If f = ( f1, . . . , fd) is a vector of
functions, we define the L2 norm, metric, and sup norms as follows:

‖ f ‖2D := ‖ f ‖2L2(D)
:= ‖ f1‖2D + · · · + ‖ fd‖2D,
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| f |2D := sup
z∈D

| f1(z)|2 + · · · + | fd(z)|2,
| f |∞,D := sup

z∈D
max{| f1(z)|, . . . , | fd(z)|}.

For a d ×d matrix t of functions on D, denote by |t |D, ‖t‖D , |t |∞,D , respectively, the
operator norms defined by

|t |D = sup
| f |D=1

|t f |D, ‖t‖D = sup
‖ f ‖D=1

‖t f ‖D, |t |∞,D = sup
| f |∞,D=1

|t f |∞,D.

Therefore, ‖t‖D ≤ |t |D as ‖t f ‖D ≤ (supz∈D |t(z)|)‖ f ‖D = |t |D‖ f ‖D .
Then we define the L2 norm for f ∈ Cq(Ur ,O(E ′ ⊗ E ′′)) by

aI eI :=
md∑

μ=1

aμ
I eI ,μ,

‖ f ‖Ur := max
I=(i0,...,iq )∈Iq+1

{
‖aI ◦ ϕ−1

iq
‖ϕiq (UI ) : fi = aI eI inUI

}
.

Sometimes we denote ‖ f ‖Ur∗ by ‖ f ‖ for abbreviation. We define similarly the metric
norm | f |Ur∗ , or | f |, and the sup-norm | f |∞,Ur∗ or sup | f |. It is obvious that

|| f || ≤ C | f |, sup | f | ≤ ‖ f ‖ ≤ C
√
rank(E ′ ⊗ E ′′) sup | f |,

|t |∞ ≤ |t | ≤ C rank(E ′ ⊗ E ′′)|t |∞,

where C does not depend on E ′, E ′′.
The first result of this appendix is to find a way to obtain solutions to (A.1) that

have certain bounds on the original covering, if a solution with a bound exists on a
shrinking covering. This relies on the nested coverings defined above. We first study
the L2 norms case.

Lemma A.2 Let Ur = {Ur
i : i ∈ I} with r∗ ≤ r ≤ r∗ be a family of nested finite

coverings of C. Suppose that f ∈ C1(Ur∗
, E ′ ⊗ E ′′) and f = 0 in H1(Ur∗

, E ′ ⊗ E ′′).
Assume that there is a solution v ∈ C0(Ur∗) such that

δv = f , ‖v‖Ur∗ ≤ K‖ f ‖Ur∗ . (A.4)

Then there exists a solution u ∈ C0(Ur∗
) such that δu = f on Ur∗

and

‖u‖Ur∗ ≤ C(|{t ′k j }|Ur∗ + K |{t ′k j }|Ur∗ |{t ′′k j }|Ur∗ )‖ f ‖Ur∗ , (A.5)

where t ′k j , t ′′k j are the transition matrices of E ′, E ′′, respectively, and C depends only

on the number |I| of open sets in Ur∗
and transition functions of C. In particular, C

does not depend on E ′, E ′′.
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Proof By assumptions, we have

f jk = (δv) jk, Ur∗
j ∩Ur∗

k , (A.6)

‖v‖Ur∗ ≤ K‖ f ‖Ur∗ . (A.7)

Take any v∗ ∈ C0(Ur∗
, E ′ ⊗ E ′′) such that δv∗ = f . Then (δv∗ − δv) jk = 0 in

Ur∗
j ∩ Ur∗

k , because (δv∗) jk = f jk on the larger set Ur∗
j ∩ Ur∗

k . Since {Ur∗
j } is a

covering of C then w := v j − v∗
j is a global section of E ′ ⊗ E ′′. This shows that

v j , via v∗
j , extends to a holomorphic section in Ur∗

j . In fact, v j is the restriction of

u j = v∗
j + w defined on Ur∗

j .

We now derive the bound for u j . Suppose that Ur∗
j ∩ Ur∗

k is non-empty. By the

assumptions, each component ofUr∗
j ∩Ur∗

k intersectsUr∗
j ∩Ur∗

k .Wehaveu j = uk+ f jk
on Ur∗

j ∩ Ur∗
k and hence the uniqueness theorem implies that it holds on Ur∗

j ∩ Ur∗
k

too. And on Ur∗
j ∩Ur∗

k , we have uk = vk and u j = vk − fk j . We express the identity
in coordinates

u j = ũ j e j , vk = ṽkek = v̂k j e j , fk j = f̃k j ek j = f̂k j e j j .

Let t ′k j , t ′′k j , respectively, be the transition matrices of e′
j , e

′′
j for E

′, E ′′. Then t̃k j =
t ′k j ⊗ t ′′k j are the transition matrices of ek j for E ′ ⊗ E ′′. Then we have

v̂k j = t ′jk ⊗ t ′′jk ṽk, f̂k j = t ′jk ⊗ Id f̃k j .

Thus, ũ j = v̂k j − f̂k j = t ′jk ⊗ t ′′jk ṽk − t ′jk ⊗ Id f̃k j . We have

‖ũ j‖L2(Ur∗
j ∩Ur∗

k )
= ‖ũ j ◦ ϕ−1

j ‖L2(ϕ j (Ur∗
j ∩Ur∗

k ))

≤ ‖(t ′jk ⊗ t ′′jk ṽk) ◦ ϕ−1
j ‖L2(ϕ j (Ur∗

j ∩Ur∗
k ))

+ ‖(t ′jk ⊗ Id f̃k j ) ◦ ϕ−1
j ‖L2(ϕ j (Ur∗

j ∩Ur∗
k ))

.

Here t jk ◦ϕ−1
j = t jk ◦ϕ−1

k ◦ϕk j . By the properties of operator norm and ‖t ′k j ⊗t ′′k j‖D ≤
|t ′k j ⊗ t ′′k j |D ≤ |t ′k j |D|t ′′k j |D for D = ϕ j (Ur∗

j ∩Ur∗
k ), we have

‖(t ′jk ⊗ t ′′jk ṽk) ◦ ϕ−1
j ‖2D ≤ C∗|t ′jk |2D × |t ′′jk |2D × ‖ṽk‖2

ϕk (Ur∗
j ∩Ur∗

k )
,

where the constant C∗ comes from the Jacobian of zk = ϕk j (z j ). By (A.7), we have

‖ṽk ◦ ϕ−1
k ‖2L2 ≤ K 2‖ f ‖2L2 .
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We also have

‖(t ′jk ⊗ Id f̃k j ) ◦ ϕ−1
j ‖

ϕ j (Ur∗
j ∩Ur∗

k )
≤ |t ′jk ◦ ϕ−1

j |
ϕ j (Ur∗

j ∩Ur∗
k )

× ‖ f ‖
ϕ j (Ur∗

j ∩Ur∗
k )

.

Since Ur∗
j is covered by {Ur∗

j ∩Ur∗
k }, we get the desired bound from

‖ũ j‖L2(Ur∗
j )

≤
∑

k

‖ũ j‖L2(Ur∗
j ∩Ur∗

k )
.

��

The argument for the norm | · | is verbatim and we can take the above constant C∗
to be one.

Corollary A.3 With notations and assumptions in Lemma A.2, the solution u also sat-
isfies

|u|∞,Ur∗ ≤ C(|{t ′k j }|Ur∗ + K |{t ′k j }|Ur∗ |{t ′′k j }|Ur∗ )
√
rank(E ′ ⊗ E ′′)| f |∞,Ur∗ ,

where C does not depend on E ′, E ′′.

The above lemma leads us to the following proposition and definition.

Proposition A.4 Let Ur = {Ur
i : i ∈ I} with r∗ ≤ r ≤ r∗ be a family of nested

coverings of a compact complex manifold C. Let E ′ (resp. E ′′) be a holomorphic
vector bundle over C with bases {e′

j } (resp. {e′′
j }) and transition matrices t ′k j (resp.

{t ′′k j }). Suppose that there is a finite number K such that for any f ∈ C1(Ur∗
, E ′⊗E ′′)

with f = 0 in H1(Ur∗
, E ′ ⊗ E ′′), there is a solution v ∈ C0(Ur∗ , E ′ ⊗ E ′′) satisfying

(A.4). Then there is a possible different solution v ∈ C0(Ur∗ , E ′ ⊗E ′′) satisfying (A.4)
in which K is replaced by

K∗(E ′ ⊗ E ′′) = sup
u1

inf
u0

{‖u0‖Ur∗ : δu0 = δu1 onUr∗ ,

‖δu1‖Ur∗ = 1, ui ∈ C0(Uri , E ′ ⊗ E ′′)
}
. (A.8)

Proof By the assumption, K∗ = K∗(E ′ ⊗ E ′′) is well-defined and K∗ ≤ K . Fix
u1 ∈ C0(Uri , E ′ ⊗ E ′′). Suppose that δu1 = f and ‖ f ‖Ur∗ = 1. By the definition

(A.8), there exists u j
0 such that δum0 = f on Ur∗ and ‖um0 ‖Ur∗ ≤ K∗ + 1/m. By the

Cauchy formula on polydiscs, (um0 ) j ◦ϕ−1
j is locally bounded in ϕ j (Uj ) in sup-norm.

We may assume that as m → ∞, (um0 ) j converges uniformly to u∞
0 on each compact

subset of Uj for all j . This shows that ‖(u∞
0 ) j ◦ ϕ−1

j ‖L2(E) ≤ K∗ for any compact
subset E of ϕ j (Uj ). Since E is arbitrary, we obtain ‖u∞

0 ‖Ur∗ ≤ K∗. By the uniform
convergence, we also have δu∞

0 = f on Ur∗ . ��
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Definition A.5 Let E ′, E ′′, e′
j , e

′′
j , t

′
k j , t

′′
k j be as in Proposition A.4. Let t ′′k j (SmE ′′) be

the transitionmatrices of the symmetric power SmE ′′ inducedby t ′′k j . Form = 2, 3, . . . ,
we shall call

K (E ′ ⊗ SmE ′′) = |{t ′k j (E ′)}|Ur∗

+ K∗(E ′ ⊗ SmE ′′)|{t ′k j (E ′)}|Ur∗ |{t ′′k j (SmE ′′)}|Ur∗

the generalized small divisors of E ′ ⊗ E ′′ with respect to e′′
j , t

′′
k j .

A.3 Donin’s Smoothing Decomposition

Grauert’s smoothing decomposition for cochains of analytic sheaves is an important
tool. Here we will follow an approach of Donin [9], by specializing for vector bundles.

We first need to introduce coverings by analytic polydiscs.

Lemma A.6 Let C be a compact complex manifold. Let {Ur∗
i : i ∈ I} be a finite open

covering of C, and let ϕ j map Ur
j biholomorphically onto �n

r for r∗ < r < r∗ < 1.
Assume further that ϕi is a biholomorphism defined in a neighborhood of the star
N (Ur∗

i ) onto a domain in Cn. Suppose that r∗ < r ′
i < ri < r∗, and

Ur ′
I := U

r ′
0

i0
∩ · · · ∩U

r ′
q

iq
�= ∅.

Then for constant cn ∈ (0, 1) depending only on n,

dist
(
∂(ϕiq (U

r
I )), ∂(ϕiq (U

r ′
I ))
)

≥ cnκ min
j

(r j − r ′
j ), (A.9)

κ := inf

{

1,
|ϕiq ◦ ϕ−1

i

(z′) − ϕiq ◦ ϕ−1

i

(z)|

|z′ − z| : z, z′ ∈ �n
r∗ ,∀Ur∗

i0...iq �= ∅
}

.

(A.10)

Proof Note that for sets in Cn , if A ⊂ A′, B ⊂ B ′, and A, B are non-empty, then

dist(A, B) ≥ dist(A′, B ′).

Recall that ϕiq is a diffeomorphism from a neighborhood V of the star N (Uiq ) onto a

subset V̂ of Cn . We have ∂ϕiq (U
r
I ) ⊂ ∪ j∂ϕiq (U

r
i j
). Thus

dist(∂ϕiq (U
r
I ), ϕiq (U

r ′
I )) ≥ min

j
dist(∂ ϕiq (U

r
i j ), ϕiq (U

r ′
I ))

≥ min
j

dist(∂ϕiq (U
r
i j ), ϕiq (U

r ′
i j )).
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We have dist(∂(ϕiq (U
r
i j
), ϕiq (U

r ′
i j

)) = dist(∂(ϕiq ◦ϕ−1
i j

(�n
r )), ϕiq ◦ϕ−1

i j
(�n

r ′)). Recall

that ϕiq is defined on N (Uiq ) ⊃ Ur∗
i j
. Then the distance is attained for some z′ ∈ ∂�n

r ′
and z ∈ ∂�n

r . By the definition of κ , we get the desired estimate. ��
Wewill recall the following smoothing decomposition ofDonin [9].Herewe restrict

to the case of H1 and the holomorphic vector bundle to indicate the specific bounds
in the estimates.

Theorem A.7 (Donin [9]). Let C be a compact complex manifold and let Ur (r∗ <

r < r∗ < 1) be a family of open coverings of C as in Lemma A.6. Let E ′ ⊗ E ′′ be a
holomorphic vector bundle of rank m over C and fix a holomorphic base e′

j (resp. e′′
j )

for E ′ (resp. E ′′) over U j . Let r∗ < r ′′ < r ′ < r < r∗, and

r ′ − r ′′ ≤ r∗ − r .

Assume that

Ur∗
k j �= ∅, wheneverUr∗

k j �= ∅. (A.11)

Let { f jk} ∈ Z1(Ur ′
,O(E ′ ⊗ E ′′)). Then there exist g ∈ Z1(Ur ,O(E ′ ⊗ E ′′)) and

u ∈ C0(Ur ′′
,O(E ′ ⊗ E ′′)) such that

f = g + δu, in C1(Ur ′′
,O(E ′ ⊗ E ′′)), (A.12)

‖u‖Ur ′′ + ‖g‖Ur ≤ Cn|{t ′k j }||{t ′′k j }|
(r ′ − r ′′)κ

‖ f ‖Ur ′ , (A.13)

where κ is defined (A.10). The constant Cn is independent of E ′, E ′′. Furthermore,
f �→ g = L f and f �→ u = S f are C-linear.

Proof With f r
′

i j = fi j we are given a cocycle { f r ′
i j } of holomorphic sections of E ′⊗E ′′

over the covering Ur ′
. Recall that r∗ < r ′′ < r ′ < r < r∗ and Ur ′′

is an open covering
of C .

As in [9], we will apply L2-theory for (0, 1)-forms on a bounded pseudoconvex
domain in Cn . In our case the domain is actually a polydisc. Fix a holomorphic base
e′
k = (e′

k,1, . . . , e
′
k,m) for the vector bundle E ′ inUr∗

k with transition functions t ′k j (z j ).
Analogously, let t ′′k j (z j ) be the transition matrices for basis e′′

k of E ′′ for Ur∗
. For

brevity, we write tk j for tk j (z j ).
We can write

f r
′

i j = f̃ r
′

i j ei j = t ′ki ⊗ t ′′k j f̃ r
′

i j ekk := f̂ r
′;r∗

i j;k ekk, onUr ′
i ∩Ur ′

j ∩Ur∗
k . (A.14)

TheUr∗
k is covered byUr ′;r∗

k := {Ur ′
i ∩Ur∗

k }i , while { f̂ r ′;r∗
i j;k } ∈ Z1(Ur ′;r∗

k ,Omd). Now

{ f̂ r ′;r∗
i j;k ◦ ϕ−1

k } ∈ Z1(ϕk(Ur ′;r∗
k ),Omd), where ϕk(Ur ′;r∗

k ) is a covering of the polydisc
�n

r∗ . By Lemma A.6, we have
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ci;k := dist(∂(ϕk(U
r ′
i ∩Ur∗

k )), ϕk(U
r ′′
i ∩Ur

k )) ≥ cnκ(r ′ − r ′′). (A.15)

Let di;k(z) be the distance to ϕk(Ur ′′
i ∩ Ur

k ) from z ∈ Cn . Let χ be a non-negative
smooth function in R so that χ(t) = 1 for t < 3/4 and χ(t) = 0 for t > 7/8.
By smoothing the Lipschitz function χ( 1

ci;k di;k(z)), we obtain a non-negative smooth

function z → φ̃
r ′′;r ′
i;k (z) that equals 1 when di;k(z) ≤ 1

2ci;k and by (A.15) it has

compact support in ϕk(Ur ′
i ∩Ur∗

k ). Note that we can achieve

|∇φ̃
r ′′;r ′
i;k | < Cnc

−1
i;k ≤ cnCnκ

−1/(r ′ − r ′′). (A.16)

Then φ̃
r ′′;r ′
i;k ◦ ϕk is a non negative function with compact support in Ur ′

i ∩ Ur∗
k such

that for φ̃
r ′′;r ′
k := ∑

φ̃
r ′′;r ′
i;k , we have φ̃

r ′′;r ′
k ◦ ϕk > 1/2 in Ur

k = ⋃
i (U

r ′′
i ∩ Ur

k ) since

χ( 1
ci;k di;k) = 1 on ϕk(Ur ′′

i ∩ Ur
k ). Then by the mean-value theorem and the first

inequality of (A.16), we get

φ̃
r ′′;r ′
k (ϕk(x)) > 1/4, if dist(ϕk(x), ϕk(U

r
k )) < min

i
ci,k/C∗, (A.17)

for some suitableC∗. Recall that cn ≤ 1 and κn ≤ 1. Since dist(ϕk(Ur
k ), ϕk(∂Ur∗

k )) =
r∗ − r ′ ≥ cnκ(r ′ − r ′′), there is a smooth function φ̂

r;r∗
k : ϕk(Ur∗

k ) → [0, 1] with
compact support such that φ̂r;r∗

k = 1 in ϕk(Ur
k ), and

φ̂
r;r∗
k (x) < 3/4, if dist(ϕk(x), ϕk(U

r
k )) > min

i
ci,k/C∗. (A.18)

Note that the latter can be achieved with

|∇φ̂
r;r∗
k | < C̃1/min

i
ci,k ≤ C2κ

−1/(r ′ − r ′′).

In Ur∗
k , define a non-negative smooth function

φ
r ′′;r ′
i;k =

⎧
⎨

⎩

φ̃
r ′′;r ′
i;k

1 − φ̂
r;r∗
k + φ̃

r ′′;r ′
k

⎫
⎬

⎭
◦ ϕk,

where the smoothness follows from the denominator being bigger than 1/4 by (A.17)
and (A.18). Thus, φ

r ′′;r ′
i;k has compact support in Ur ′

i ∩ Ur∗
k and

∑
i φ

r ′′;r ′
i;k = 1 in

Ur
k =⋃i (U

r ′′
i ∩Ur

k ), as φ̂
r;r∗
k = 1 on Ur

k . We can verify that

|∇(φ
r ′′;r ′
i;k ◦ ϕ−1

k )| < C ′κ−1/(r ′ − r ′′). (A.19)
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Consider the expression

w j;k =
∑




φ
r ′′;r ′

;k f̂ r

′;r∗

 j;k . (A.20)

Recall that φ
r ′′;r ′

;k has compact support in Ur ′


 ∩ Ur∗
k . Thus it is smooth on ω :=

Ur ′
j ∩ Ur∗

k ∩ Ur ′

 and vanishes on an open set D containing Ur ′

j ∩ Ur∗
k \ω. On the

other hand, f̂ r
′;r∗


 j;k is holomorphic in ω. Hence the product φ
r ′′;r ′

;k f̂ r

′;r∗

 j;k is smooth in

Ur ′
j ∩Ur∗

k . Then v j;k = ∂w j;k is a smooth (0, 1) form in Ur ′
j ∩Ur∗

k .
LetA denote the sheaf of smooth functions onC . We now pull back the forms from

the polydisc �n via ϕk . For each fixed k, we have {w j;k} j ∈ C0(Ur ′;r∗
k ,Am). Let us

denote t ′k j ⊗ I by t ′k j . By fi j = fik − f jk and (A.14), we have

t ′ki ⊗ t ′′k j f̃ r
′

i j = t ′ki f̃ r
′

ik − t ′k j f̃ r
′

jk .

Since
∑

i φ
r ′′;r ′
i;k = 1 = φ̂

r;r∗
k ◦ ϕk on Ur

k , then by δ f = 0 and (A.14), we get on

Ur ′
i ∩Ur

k ∩Ur ′
j

wi;k − w j;k =
∑




φ
r ′′;r ′

;k ( f̂ r

′;r∗

i;k − f̂ r

′;r∗

 j;k ) =

∑




φ
r ′′;r ′

;k (t ′k
 ⊗ t ′′ki f̃ r

′

i − t ′k
 ⊗ t ′′k j f̃ r

′

 j )

=
∑




φ
r ′′;r ′

;k (t ′k j f̃ r

′
jk − t ′ki f̃ r

′
ik ) = t ′k j f̃ r

′
jk − t ′ki f̃ r

′
ik .

The latter is holomorphic. Thus (δv)i j;k = ∂(δw)i j;k = 0 on Ur ′
i ∩ Ur∗

k ∩ Ur ′
j . This

shows that

vk := v j;k

is actually a ∂-closed (0, 1) form in Ur∗
k . Thus (ϕ−1

k )∗vk is a ∂-closed (0, 1)-form
on the polydisk �n

r∗ . By the L2 theory [21, Thm. 4.4.3] applied to each component
of vk = ∑m


=1 ṽ

kekk,
, we have a bounded linear operator S : vk → uk such that

∂((ϕ−1
k )∗uk) = (ϕ−1

k )∗vk . Returning to the complex manifold via ϕk , we have

‖uk‖Ur∗
k

= ‖uk ◦ ϕ−1
k ‖L2(�n

r∗ ) ≤ C‖vk ◦ ϕ−1
k ‖L2(�n

r∗ )

≤ C̃κ−1|{t ′k j }||{t ′′k j }|
r ′ − r ′′ ‖ f ‖L2(Ur∗ ).

Here we have used (A.20), estimate (A.19) and the definition of norm (A.4). Note that
the C̃ is independent of the rank since we applied the L2 norm componentwise. Set
ĝr

′;r
j;k = w j;k − uk on Ur ′

j ∩Ur
k . We obtain

ĝr
′,r

i;k − ĝr
′,r
j;k = f̂ r

′;r∗
i j;k , Ur ′

i ∩Ur
k ∩Ur ′

j , (A.21)
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max
j

‖ĝr ′;r
j;k ‖Ur ′

j ∩Ur
k

≤ Cκ−1|{t ′k j }||{t ′′k j }|
r ′ − r ′′ ‖ f ‖Ur ′ . (A.22)

We have obtained (A.13).
To verify (A.12), we will use the same base ek and take the product of (A.21) with

ek to obtain on Ur ′′
i ∩Ur ′′

j ∩Ur
k ∩Ur




gr
′;r

i;k − gr
′;r
j;k = f̂ r

′;r∗
i j;k ek = f r

′
i j = f̂ r

′;r∗
i j;
 e
 = gr

′;r
i;
 − gr

′;r
j;


and thus

gr
′;r
j;
 − gr

′;r
j;k = gr

′;r
i;
 − gr

′;r
i;k , onUr ′′

i ∩Ur ′′
j ∩Ur

k ∩Ur

 . (A.23)

Then we have a (well-defined) holomorphic section

grk
 := gr
′;r

i;
 − gr
′;r

i;k , Ur
k ∩Ur


 .

We verify that {grk
} ∈ Z1(Ur ,Om). Set ur
′′
i := gr

′′;r
i;i . Since r ′ ≤ r we actually have

{ur ′′
i } ∈ C0(Ur ′

, E ′ ⊗ E ′′). However, only on Ur ′′
i ∩ Ur ′′

j , we can verify via (A.23)
that

gri j − f r
′

i j = (gr
′′;r

i; j − gr
′′;r
j; j ) − (gr

′′;r
i; j − gr

′′;r
i;i ) = ur

′′
i − ur

′′
j .

��
The above result is a type of Grauert’s smoothing decomposition, which can also

be obtained by open mapping theorem. See for instance [15, p. 200]. However, this
yields an unknown bound in the estimates.

A.4 Finiteness Theoremwith Bounds

The above smoothing decomposition does not provide a solution to the cohomology
equations, i.e. if f = 0 in H1(Ur ′

,O(E ′⊗E ′′)), then there exists u ∈ C0(Ur ′′
,O(E ′⊗

E ′′)) such that δu = f on Ur ′′
, for some r ′′ ≤ r ′. We will follow [15] to derive the

finiteness theorem with explicit bounds. In particular, this provides solutions of first
cohomology equations with bounds on shrinking domains.

We first recall the resolution atlases from [15, p. 194], specializing them for the
vector bundles. Assume that we have coordinate charts

ϕk : Ur∗
k → Pk := ϕk(U

r∗
k ) = �r∗

n .

Define Ur∗
I = Ur∗

i0
∩ · · · ∩Ur∗

iq
for I ∈ Iq+1. Then ϕI = (ϕi0 , . . . , ϕiq ) is defined on

Ur∗
I with range Ûr∗

I . Unless otherwise stated, we omit the superscript r∗ in Ur∗
I . We
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can define a proper embedding

ϕI : UI → ÛI ↪→ PI := �r∗
nq , nq = n(q + 1).

Then the push-forward of the vector bundle E ′ ⊗ E ′′|UI defines a coherent analytic
sheaf (ϕI )∗(E ′ ⊗ E ′′) over PI by trivial zero extension; see [15, p. 5, p. 195] and [14,
p. 239]. A section f ∈ �(UI , E ′ ⊗ E ′′) yields a section f̂ I of (ϕI )∗(E ′ ⊗ E ′′) over
PI by

f̂ I ◦ ϕI (x) = ( f I (x), . . . , f I (x)), f̂ I |PI \ÛI
= 0.

Note that Ur∗ has a Stein neighborhood. Then following notation in [15, p. 196] we
have an epimorphism by Cartan’s Theorem A:

εI : O
|�r∗
nq

→ (ϕI )∗(E ′ ⊗ E ′′)|UI , 
 ≥ rank(E ′ ⊗ E ′′),

where εI is defined by finitely many global sections defined in a neighborhood of PI .
When E ′ ⊗ E ′′ is a vector bundle, we take 
 to be the minimal value, the rank of
E ′ ⊗ E ′′, and specify the above εI by taking

εI : gI → g̃I := (ϕI )∗{gI ◦ ϕI eI }.

Here we want to obtain a more general description without restricting to a vector
bundle. Define

Cq(U) :=
∏

I∈Iq+1

O
(PI ).

(Set O
(PI ) = 0 when Ur∗
I is empty.) We recall that PI = �r∗

nq is independent of the
order of multi-indices. Thus

Cq(U) ∼= (O(�r∗
nq ))

L := OL(�r∗
nq ).

Here L ≤ |Iq+1|
. Let Oh(�
r
nq ) be the space of holomorphic functions on �r

nq with

finite L2 norm on �r
nq . Set P

r
I = �r

nq for I ∈ Iq+1. We define a Hilbert space

Cq
h (Ur ) :=

∏

I∈Iq+1

O

h(P

r
I ) := OL

h (�r
nq ),

which is a subspace of Cq(Ur ).
Using the collection ε = {εI : I ∈ Iq+1}, we define

Cqh (Ur , E ′ ⊗ E ′′) := ε(Cq
h (Ur )) ∼= Cq

h (Ur )/(ker ε ∩ Cq
h (Ur )),
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which is the vector space of q-cochains, equipped with the standard coboundary oper-
ator δ.

Remark A.8 Our cochains are not necessary alternating. As in [15, p. 35], we let
Cqa (U , E ′ ⊗ E ′′) denote alternating cochains. For the isomorphism of the two kinds of
Cečh cohomology groups; see [15, p. 35] and Serre [39]. Since we are interested in
the cohomological solutions with bounds, we fix our notation without requiring that
the cochains be alternating.

Let ‖ · ‖�r
nq

be the Hilbert space norm on Cqh (Ur ) and set

‖ζ‖•
Ur = inf{‖v‖�r

nq
: v ∈ Cq

h (Ur ), ε(v) = ζ }, ζ ∈ Cq
h (Ur , E ′ ⊗ E ′′).

The inclusion Cqh (Ur , E ′ ⊗ E ′′) ↪→ Cq(Ur , E ′ ⊗ E ′′) is continuous and compact ([15,
Thm. 3, p. 197]). We also define

Zq
h (Ur ) := ε−1(Zq

h (Ur , E ′ ⊗ E ′′)),
‖ζ‖Ur := inf{‖v‖

�
nq
r

: v ∈ Zq
h (Ur ), ε(v) = ζ }, ∀ζ ∈ Zq

h (Ur , E ′ ⊗ E ′′),
v := ε(v).

Then Zq
h (Ur , E ′ ⊗ E ′′) is an isometric subspace of Cqh (Ur , E ′ ⊗ E ′′) via inclusion.

Let {g0, g1, . . . } be a monotone orthogonal base of Z1
h(Ur ) ([15, p. 141, p. 201]). An

important feature of the monotone base is that the vanishing orders of g j at the origin
satisfy

ord0 g0 ≤ ord0 g1 ≤ · · · , lim
i→∞ ord0 gi = ∞.

By [15, Thm. 1, p. 192 and p. 201], for a given ν there is an μ such that

gi (Z) = O(|Z |ν), i > μ, Z ∈ �
nq
r . (A.24)

In fact, let the index set beI = {1, . . . , L}. Setω(( f1, . . . , fL)) = min{(α, Q) : fα,Q �=
0}byusing order<onI×Nm definedby (α, P) < (β, Q) if |P| < |Q|, or if |P| = |Q|
and there is an 
 such that p
 < q
 and p
′ = q
′ for all 
′ > 
, or if P = Q and
α < β. Then the basis {g j } satisfies

ω(g j ) < ω(g j+1).

We now return to the case q = 1 with nq = 2n. In the sequel, {|t ′k j |} = {|t ′k j |}Ur∗

and {|t ′′k j }| = {|t ′′k j |}Ur∗ .

Theorem A.9 (Donin-Grauert-Remmert). Let C be a compact complex manifold and
let Ur (r∗ < r < r∗ < 1) be a family of open coverings of C as in Lemma A.6 such
that (A.11) holds for all k, j . Let E = E ′ ⊗ E ′′ be a holomorphic vector bundle of
positive rank m over C and fix a holomorphic base e′

j (resp. e′′
j ) for E

′ (resp. E ′′) over
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Ur∗
j . Suppose that r∗ < r ′′ < r ′ < r < r∗ and r ′ − r ′′ ≤ r∗ − r . Let θ = r ′/r . Let

{g0, g1, . . . } be a monotone orthogonal base of Z1
h(Ur ) as above. Assume that μ, ν

satisfy (A.24) and

t := Cnκ
−1

(r ′ − r ′′)(r − r ′)2n
θν < 1/2. (A.25)

There exist gm0 , . . . , gmμ∗ such that their equivalence classes in H1(Ur , E) form

a C-linear basis of subspace spanned by g0, · · · , gμ in H1(Ur , E). For any f ∈
Z1
h(Ur ′

, E) there exists v ∈ C0
h(Ur ′′

, E) satisfying f = δv +∑μ∗
0 ci gmi with

|ci | ≤ Cnκ
−1Ar (E)

r − r ′ ‖ f ‖Ur ′ , (A.26)

‖v‖Ur ′′ ≤ Cnκ
−1Br−(E)

r − r ′ ‖ f ‖Ur ′ , ∀r− ∈ [r ′, r), (A.27)

g j =
μ∗
∑

i=0

c ji gmi + δη∗
j , η∗

j ∈ C0(Ur , E), (A.28)

Ar (E) = |{t ′k j }||{t ′′k j }| max
0≤i≤μ∗

μ∑

j=0

|c ji |, Br−(E) = |{t ′k j }||{t ′′k j }|
μ∑

j=0

‖{η∗
j }‖Ur− .

(A.29)

Furthermore, all c j = 0 when f = 0 in H1(C, E).

Remark A.10 The solution operator f → v may not be linear. See a proof byDonin [9]
to get a linear solution operator for which the constant C∗ results from a lemma of
Schwartz.

Remark A.11 The previous theorem gives a solution v, defined on a smaller domain,
to the equation f = δv (i.e cohomological equations) whenever f is 0 in the first
cohomology group. It also provides a bound of the solution in terms of the data. We
emphasize that this bound depends on the bundle E ′ ⊗ E ′′. In the applications we
have in mind, we will have to consider a sequence of bundles {SmE ′′}m , and we will
need to control the growth of these bounds as m goes to infinite, similarly to the small
divisors appearing in local dynamical systems.

Proof Recall that q = 1 and n1 = 2n. We may assume that ‖g j‖�r
2n

= 1. By the

definition of μ, ν and the monotone basis, we have for any v ∈ Z1
h(Ur ),

‖v −
μ∑

j=0

(v, g j )g j‖�r ′
2n

≤ Cn

(r − r ′)2n
(r ′/r)ν‖v‖�r

2n
(A.30)

where Cn(r − r ′)−2n is the constant M in [15, Thm. 6, p. 191].
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Replacing the smoothing lemma in [15, p. 200] by Theorem A.7, we derive some
estimates following the proof of the finiteness lemma in [15, p. 201]. By assumption,
we have

t = Cnκ
−1

(r ′ − r ′′)(r − r ′)2n
θν < 1/2, θ = r ′

r
< 1.

Let ζ0 := f ∈ Z1
h(Ur ′

, E ′ ⊗ E ′′). By Theorem A.7, we have for some ξ0 ∈
Z1
h(Ur , E ′ ⊗ E ′′)

ζ0 = ξ0 + δη0,

‖ξ0‖Ur ≤ t ′‖ζ0‖Ur ′ , ‖η0‖Ur ′′ ≤ t ′‖ζ0‖Ur ′ ,

with t ′ := Cn |{t ′k j }||{t ′′k j }|
κ(r ′−r ′′) . Let v denote ε(v). Then ξ0 = v0 for some v0 satisfying

‖v0‖�r
2n

= ‖ξ0‖Ur ; see [15, p. 198]. Consider

w1 = v0 −
μ∑

j=0

(v0, g j )�r
2n
g j , ζ1 = w1.

According to (A.30), we have

‖ζ1‖Ur ′ ≤ ‖w1‖Ur ′ ≤ Cn

(r − r ′)2n
(r ′/r)ν‖v0‖�r

2n
≤ t‖ζ0‖Ur ′ .

Therefore,

ζ0 =
μ∑

j=0

(v0, g j )�r
2n
g j + δη0 + ζ1.

In general, we have

ζ
 =
μ∑

j=0

(v
, g j )�r
2n
g j + δη
 + ζ
+1,

‖v
‖�r
2n

= ‖ξ
‖Ur ≤ t ′t
‖ζ0‖Ur ′ ,

‖ζ
+1‖Ur ′ ≤ t‖ζ
‖Ur ′ ≤ t
+1‖ζ0‖Ur ′ ,

‖η
‖Ur ′′ ≤ t ′t
‖ζ0‖Ur ′ .

Then we have

f = ζ0 =
μ∑

j=0

∞∑


=0

(v
, g j )�r
2n
g j + δ

∞∑


=0

η
,

123



Equivalence of Neighborhoods of Embedded Compact Complex...

∞∑


=0

|(v
, g j )| ≤
∞∑


=0

‖v
‖�r
2n

≤ t ′

1 − t
‖ζ0‖Ur ′ ,

∞∑


=0

‖η
‖Ur ′′ ≤ t ′

1 − t
‖ζ0‖Ur ′ .

So far we have followed the proof of the finiteness lemma in [15, p. 201]. We
now finish the proof of the theorem. Let us first find the linearly independent elements
gi0 , . . . , giμ∗ . Assume first that all gi = 0 in H1 := H1(Ur , E ′ ⊗E ′′). Then δη j = g j

with η j ∈ C0(Ur , E). Assume now that gm0 �= 0 in H1 for some m0. Then we have
two cases again: either gi = ci0gm0 + δηi on Ur for all i ∈ {0, . . . , μ} \m0, or it fails
for some m1. We repeat this to exhaust all elements so that

g j = δη∗
j +

μ∗∑

i=0

c ji gmi , η∗
j ∈ C0(Ur , E), 0 ≤ j ≤ μ (A.31)

while gm0 , . . . , gmμ∗ are linearly independent in H1. (Note that the above expression
means the trivial identity g j = g j when j is not in {m0, . . . ,mμ∗}.) We have obtained
(A.28) with the decomposition

f =
μ∗
∑

j=0

c j gm j + δv,

c j =
∞∑


=0

(v
, g j )�r
2n

+
μ∑

i=0

ci j

∞∑


=0

(v
, gi )�r
2n

,

v =
μ∑

i=0

∞∑


=0

(v
, gi )�r
2n

η∗
i +

∞∑


=0

η
.

The solution η∗
j in (A.31) can be bounded in Ur− for any r− < r . Of course we

need to estimate η∗
j on Ur ′

. Thus, r− ≥ r ′. We have

μ∑

j=0

∞∑


=0

|(v
, g j )�r
2n
c ji | ≤ t ′

1 − t

μ∑

j=0

|c ji |‖ζ0‖Ur ′ ,

∥∥
∥∥∥∥

⎧
⎨

⎩

∞∑


=0

η
 +
∞∑


=0

μ∑

j=1

(v
, g j )�r
2n

η∗
j

⎫
⎬

⎭

∥∥
∥∥∥∥Ur−

≤ t ′

1 − t

⎧
⎨

⎩
1 +

μ∑

j=0

‖η∗
j‖Ur−

⎫
⎬

⎭
‖ζ0‖Ur ′ .

Set Ar (E) = |{t ′k j }||{t ′′k j }|maxμ∗
i=0

∑μ
j=0 |c ji | and Br−(E) = |{t ′k j }||{t ′′k j }|(1 +

∑μ
j=0 ‖η∗

j‖Ur− ). We have obtained the required estimates.

Finally, let us assume that f = 0 in H1(C, E) to show that all c j = 0 and thus
f = δv. Since each Ur ′′

is Stein, we also have f = 0 in H1(Ur , E). Thus f = δṽ
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with ṽ ∈ C0(Ur ′′
, E). We get δ(ṽ − v) = ∑μ∗

j=0 c j gm j . By the linear independence,
we conclude that c j = 0. We are done. ��
Theorem A.12 Let C be a compact complex manifold and let Ur (r∗ ≤ r ≤ r∗ < 1)
be nested coverings of C as in Proposition A.19. Let μ, ν, r , r ′, r ′′, r∗, r∗ be given in
Theorem A.9, which satisfy (A.25). Let f ∈ Z1(Ur ′

, E ′ ⊗ E ′′). Suppose that f = 0
in H1(C, E ′ ⊗ E ′′). Then there exists a solution {u j } ∈ C0(Ur ′

, E ′ ⊗ E ′′) such that
δu = f and

‖u‖Ur ′ ≤ K (E ′ ⊗ E ′′)‖ f ‖Ur ′ , (A.32)

K (E ′ ⊗ E ′′) := C(|{t ′k j }|Ur ′ + K∗(E ′ ⊗ E ′′)|{t ′k j }|Ur ′ |{t ′′k j }|Ur ′ ), (A.33)

where K∗(E ′ ⊗ E ′′), defined by (A.8), satisfies

K∗(E ′ ⊗ E ′′) ≤ CnBr−(E ′ ⊗ E ′′)
(r − r ′)κ

, (A.34)

where κ and Br− are defined by (A.10) and (A.29). The same conclusion holds if both
sides are in sup norms | · |Ur ′ , when (r − r ′)κ is replaced by ((r − r ′)κ)n.

Remark A.13 The main conclusion is that (A.32) holds without shrinking the covering
{Ur ′

i } on which f is defined. The solution operator f �→ u may not be linear. The
small divisor conditions are carried by Br− which is determined by (A.25) and (A.29),
while the bounds in Theorem A.7 as smoothing lemma do not involve small divisors.

Proof By the Leray theorem, we know that [ f ] = 0 in H1(Ur ′
, E). By Theorem A.9,

we have a solution u ∈ C0(Ur ′′
, E) so that

f jk = (δu) jk, Ur ′′
j ∩Ur ′′

k ,

‖u‖Ur ′′ ≤ K‖ f ‖Ur ′ .

Then the conclusion follows from Lemma A.2.
When the super norm is used, we first obtain a solution u = {uk} for Ur∗

for
r∗ = (r ′′ + r ′)/2, while (A.34) takes the form

‖u‖Ur∗ ≤ K‖ f ‖Ur ′ ≤ (
√

πr ′)nK | f |Ur ′ .

By dist(ϕk(Ur ′′
k ), ∂ϕk(Ur∗

k )) = r∗ −r ′′ and power series expansion, we have |u|Ur ′′ ≤
(
√

π(r∗ − r ′′))−n‖u‖Ur∗ . Then the conclusion follows from Lemma A.2 again. ��

A.5 Existence of Nested Coverings

In this subsection, our main goal is to construct nested coverings using transversality
theorems and analytic polyhedrons. We recall that Cn is an n-dimensional compact
complex manifold. We shall omit to mention its dimension in what follows.
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We first deal with the transversality for a piecewise smooth boundary of an ana-
lytic polyhedron and we then define the general position property of several analytic
polyhedrons.

Definition A.14 (a) Let Mj be a C1 real hypersurface defined by r j = 0, where r j is
a C1 function in an open set ω j of a complex manifold C and dr j �= 0 on Mj .
We say that M1, . . . , MN are in the general position, if dri0 ∧ · · · ∧ driq �= 0 at
each point of Mi0 ∩ · · · ∩ Miq for any 1 ≤ i0 < · · · < iq ≤ N .

(b) Let ω be a proper open set of a complex manifold C and let f ∈ ON (ω). We say
that

Q := QN ( f , ω) := {z ∈ ω | | f (z)| := max{| f1(z)|, . . . , | fN (z)|} < 1}
(A.35)

is an analytic N -polyhedron in ω if Q is non-empty and relatively compact in
ω, and Q does not contain any compact connected component. We say that Q is
generic, if

(d| fi1 | ∧ · · · ∧ d| fi
 |)(x) �= 0 ∀x ∈ {| fi1 | = · · · = | fi
 | = 1} ∩ ∂Q

(A.36)

for all i1 < · · · < i
 and 1 ≤ 
 ≤ N .

We will apply transversality theorems. This requires us to use open submanifolds in
Cn which may not be closed inCn . Since QN = QN ( f , ω) does not contain compact
connected component, the closure of each connected component of QN must intersect
some Qi

N := {| fi | = 1} ∩ ω. We will call Qi
N a face of QN . Removing each Qi

N
from ω if it does not intersect QN , we get a new ω such that QN intersects each Qi

N .

Applying the same procedure to Qi1...ik
N := Qi1

N ∩ · · · ∩ Qik
N , we may assume that the

non-empty intersection of any number of Q1
N , . . . QN

N intersects QN . By (A.36), the
closed set QN does not intersect the closed subset of ω defined by

(d| fi1 | ∧ · · · ∧ d| fi
 |)(x) = 0 | fi1 |(x) = · · · = | fi
 |(x) = 1.

Removing the above sets fromω, we find a neighborhoodω∗ of QN such that if Qi1...ik
N

with i1 < i2 < · · · < ik intersects ω∗, then it intersects QN and it is a codimension
k smooth submanifold in ω∗. For brevity we will call ω∗ a neat neighborhood of Q.
We will take ω = ω∗ without specifying ω∗.

Definition A.15 Letωi be open sets inC . For i = 0, . . . , p, assume that φi ∈ ONi (ωi )

and QNi := QNi (φi , ωi ) is an analytic polyhedron in ωi . We say that they are in the

general position, if all faces Q j
Ni

of QNi for 1 ≤ j ≤ Ni and 0 ≤ i ≤ p are in general

position. More precisely, ω∗
Ni

∩ Q j
Ni

are in the general position, where each ω∗
i is a

neat neighborhood of QNi .
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Let us describe some elementary properties of generic analytic polyhedrons. If
QN ( f , ω) is defined in ω by (A.35), we denote for ρ = (ρ1, . . . , ρN )

Qρ
N ( f , ω) := {z ∈ ω : | f j (z)| < ρ j , j = 1, . . . , N }.

Lemma A.16 Let QNi = QNi (φi , ωi ) be generic polyhedrons in C for 0 ≤ i ≤ p.
Suppose that QN0 , · · · , QNp are in the general position. Then

QN0+···+Np ((φ0, . . . , φp), ω0 ∩ · · · ∩ ωp) = QN0 ∩ · · · ∩ QNp ,

if non-empty, is a generic N0+· · ·+Np analytic polyhedron inω0···p := ω0∩· · ·∩ωp.

Proof Let N = N0 + · · · + Np. It is clear that Q := QN0 ∩ · · · ∩ QNp =
QN ((φ0, . . . , φp), ωi0···i p ). Since Q ⊂ ∩QNi , then Q is compact in ω0···p. Write
(φ0, . . . , φp) = (ψ1, · · · , ψN ). Suppose that x ∈ ∂Q. Since Q is compact in ω, then
there exist μ1 < · · · < μm with m ≥ 1 such that |ψμi (x)| = 1 and |ψ j (x)| < 1 for
j �= μ
. By the assumption of the general position, we see that the faces of Q are in
the general position. ��

Let X ,Y be smooth real manifolds without boundary andW a smooth submanifold
of Y . Following [11, p. 50], we say that a smooth mapping h : X → Y is transversal
to W at x ∈ X , denoted by h �− W at x , if either h(x) /∈ W or

Th(x)W + dh(Tx X) = Th(x)Y .

Denote h �− W on A if h �− W at each x ∈ A ⊂ X . When h is the inclusion, we
denote h �− W on A by X �− W on A. Finally, extending Definition A.14 (a), we say
that smooth real submanifolds W0, . . . ,Wk in Y are in the general position if for any
0 ≤ i1 < · · · < im ≤ k we have

k∧


=1

di
∧

j=1

dri
, j (y) �= 0, ∀y ∈ Wi1 ∩ · · · ∩ Wim , (A.37)

where Wi ⊂ ωi is defined by ri,1 = · · · = ri,di = 0 with dri,1 ∧ · · · ∧ dri,di �= 0 at
each point of Wi . Thus di is the codimension of Wi in ωi . It is clear that (A.37) holds
if and only if

Wi j �− (Wi1 ∩ · · · ∩ Wi j−1) at y, ∀y ∈ Wi1 ∩ · · · ∩ Wik , 0 < j ≤ m. (A.38)

For an analytic N -polyhedron QN in ω with faces Q1
N , . . . , QN

N , we call Q
i1···ik
N =

Qi1
N ∩ · · · ∩ Qik

N with i1 < · · · < ik and k ≥ 1 an edge of Q. When QN is generic, a

nonempty edge Qi1···ik
N is a codimension k submanifold in ω. Let {Q1

N · · · , QN ′
N } be

the set of all edges, with the first N edges being the faces.
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Proposition A.17 Let QNi = QNi (φi , ωi ) be generic polyhedrons in C for 0 ≤ i ≤ p
with ωi being a neat neighborhood of QNi

. Then QN0 , . . . , QNp are in the general
position if and only if for all 0 ≤ i1 < · · · < ik ≤ p and 1 ≤ j
 ≤ N ′

i

, the edges

Q j1
Ni1

, · · · , Q jk
Nik

are in the general position. Equivalently, each edge Qs
N


intersects

transversally with each edge of the intersection of any number of QN0 , . . . , QN
−1 ,
for 
 = 1, . . . , p.

Proof Since each edge of a polyhedron is the intersection of its faces, it is clear that if
QN0 , . . . , QNp are in the general position, then the edges Q j1

Ni1
, · · · , Q jk

Nik
are in the

general position for 0 ≤ i1 < · · · < ik ≤ p.
Conversely, let φi = (φi,1, . . . , φi,Ni ) and let ψ1, . . . , ψm be a subset of φ0,1, . . . ,

φ0,N0 , . . . , φp,1, . . . , φp,Np . We emphasize that we do not assume that the latter are
distinct functions, althoughφi,1, . . . , φi,Ni are distinct by the general position property
of the faces of QNi . Suppose that ψ
 is in {φi
,1, . . . , φi
,Ni


}. We need to show that

d|ψ1| ∧ · · · ∧ d|ψm |(x) �= 0 (A.39)

if for all 
, |ψ
|(x) = 1 and x ∈ QNi

. Without loss of generality, we may assume that

i1 ≤ i2 ≤ · · · ≤ im . Thus

(ψ1, . . . , ψm) = (ψ̃α1 , . . . , ψ̃α

), α1 < α2 < · · · < α


with ψ̃αβ being a non-empty subset of components of φαβ . Without loss of generality,

we may assume that ψ̃αβ = (φαβ,1, . . . , φαβ,γβ ) with γβ > 0. Thus |φαβ,1| = · · · =
|φαβ,γβ | = 1 define an edge Wαβ of Qαβ . Then (A.39) is equivalent to

(
γ
∧

δ=1

d|φα
,δ|
)

∧
(


−1∧


′=1

γ
′∧

δ=1

d|φα
′ ,δ|
)

(x) �= 0.

The equivalence of (A.37) and (A.38) implies that (A.39) follows from the assumption
that Wα
 �− (Wα1 ∩ · · · ∩ Wα
−1), for α1 < α2 < · · · < α
. ��
Lemma A.18 (Golubitsky-Guillemin [11, p. 53]). Let X , B, and Y be smooth man-
ifolds with W a submanifold of Y . Let ψ : B → C∞(X ,Y ) be a mapping (not
necessarily continuous) and define � : X × B → Y by �(x, b) = ψ(b)(x). Assume
that � is smooth and that � �− W. Then the set {b ∈ B | ψ(b) �− W } is dense in B.

Proposition A.19 Let C be a compact complex manifold of dimension n. Let {Ui : i =
1, . . . ,m} be a finite open covering of C. Assume that ϕ j is a biholomorphism from a
neighborhood ω j of the star N (Uj ) of U j onto ω̂ j ⊂ Cn such that U j = ϕ−1

j (�n) =
Qn(ϕ j , ω j ). There exists δ > 0 satisfying the following:

(a) For each j , there are a relatively compact open set ω̃ j (resp. Ũ j ) in ω j (resp.
ω̃ j ) and a dense open set A j of �δ

n such that if c j ∈ A j , then ϕ̃ j := ϕ j − c j
is a biholomorphic mapping from Ũ j onto �n, and Ũ1 := Qn(ϕ̃1, ω̃1), . . . ,
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Ũm := Qn(ϕ̃m, ω̃m) are generic n-polyhedrons in the general position, where
{Ũ1, . . . Ũm} remains an open covering of C and ω̃ j is a neighborhood of N (Ũ j ).
In particular each ϕ̃ j , a translation of ϕ j , is injective on ω̃ j .

(b) There is 0 < r∗ < 1 such that if r∗ ≤ ρi ≤ 1, then Ũρ0
i0

, . . . , Ũ
ρq
iq

are generic

n-polyhedrons in the general position, where Ũρ
i := ϕ̃−1

i (�
ρ
n ).

Proof (a)Wewill apply the transversality theorem for real submanifolds inCn . There-
fore, we will use old coordinate charts ϕ j to map edges of polyhedrons Q j (ϕ j , ω j )

into Cn . Set c1 = 0, ϕ̃1 = ϕ1, Ũ1 = U1. Let Ŵ1, . . . , ŴL0 be all edges of �n . Let
Ũ 1
1 , . . . , Ũ N ′

1 be all edges of Ũ1. Set W̃ 

1 = ϕ2(ω2 ∩ Ũ 


1 ). Define

� : Cn × �δ
n → Y := Cn

with �(x, b) = x + b and ψb(x) = �(x, b). Let ψb|Ŵ
′ be the restriction of ψb to

Ŵ
′ . Applying Lemma A.18, mainly the density assertion in the lemma, finitely many
times in which W = W̃ 


1 , we can find b2 ∈ �δ
n such that

ψb2 |Ŵ
′ �− W̃ 

1 onϕ2(Ũ1 ∩ ω′

2), ∀
, 
′

where ω′
2 is a relatively compact open subset of ω2 which is independent of δ, and

U2 ⊂ ω′
2. We also remark that (A.18) can be applied for finitely many times since

ϕ2(Ũ1 ∩ ω′
2) is compact. Since Ũ1 ∩U2 is compact, then

ψc2 |Ŵ
′ �− W̃ 

1 onϕ2(Ũ1 ∩ ω′

2), ∀
, 
′ (A.40)

when |c2 − b2| is sufficiently small. Applying ϕ−1
2 to (A.40) yields

ϕ−1
2 (ψc2 |Ŵ
′ ) �− (ω2 ∩ Ũ 


1 ) on Ũ1 ∩ ω′
2, ∀
, 
′. (A.41)

With c2 being determined, set

ϕ̃−1
2 = ϕ−1

2 (I+c2).

Thus ϕ̃2 = ϕ2 − c2. When δ and |c2 − b2| are sufficiently small, we have Ũ2 =
ϕ̃−1
2 (�n) ⊂ ω′

2. Therefore, (A.41) implies that every edge of Ũ2 intersects each edge
of Ũ1. We have determined Ũ2 = ϕ̃−1

2 (�n).
We have verified (a) when m = 2. Let us assume that it also holds for m ≥ j . By

Lemma A.16, each edge of a non-empty intersection of any number of Ũ1, . . . , Ũ j is
a smooth submanifold. We remark the above transversality argument mainly uses the
fact that ϕ2 is a biholomorphism, while each edge of Ũ1 is a smooth submanifold.

To repeat the above argument for m = 2 in details, we list all edges of all possi-
ble intersections of Ũ1, . . . , Ũ j as W ′

1, . . . ,W
′
L so that each Wj is an edge of some

analytic polyhedron U ′
j , where U

′
j is the intersection of some of Ũ1, . . . , Ũ j ′ which
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are in general position by the induction hypothesis as mentioned above. Therefore, by
Lemma A.16, each U ′


 is generic. Now we are in the situation of m = 2 by consid-
ering the sets of two analytic polyhedrons {U ′


,Uj+1} one by one for 
 = 1, . . . , j ′.
HereUj+1 = ϕ−1

j+1(�n) with ϕ j+1 being biholomorphic in a neighborhood N (Uj+1)

of Uj+1. Therefore, we can find ϕ̃ j+1 = ϕ j+1 − c j+1 such that each edge of Ũ j+1

intersects each W ′

 transversally on Ũ j+1 ∩U ′


.
The above argument shows the existence of c1, . . . , cN in�δ

n when δ is sufficiently
small. The openness property on A j is clear, since by shrinking ω̃ j slightly the general
position and generic properties are preserved under small perturbation of c j . Then
density of A j when δ is sufficiently small can also be achieved; indeed when c j
is sufficiently small, we may shrink ω j slightly and apply the above argument by
replacing ϕ j − c j with ϕ j . Finally, {Ũ1, . . . , ŨN } still covers C when δ is sufficiently
small. We have verified (a).

The assertion (b) follows from (a) and Proposition A.17. Indeed, we first note that
when r∗ is less than 1, but it is sufficiently close to 1, the ∂Qρ(ϕ̃ j ) is in a given
neighborhood of ∂Q(ϕ̃ j , ω̃ j ), as Qρ(ϕ̃ j , ω̃ j ) does not have any compact connected
component. By the relative compactness of Qn(ϕ̃i , ω̃i ), the condition (A.36) with f j
being replaced by f j/ρ j and the general position condition remain true when ρ j are
in [r∗, 1] when r∗ < 1 is sufficiently close to 1. The proof is complete. ��

The following is a basic property of a generic analytic polyhedron.

Proposition A.20 Let C be a compact complexmanifold of dimension n. Let QN ( f , ω)

be a generic analytic N-polyhedron C defined by (A.35) and (A.36). There exists
r∗ ∈ (0, 1) satisfying the following.

(a) If ρ = (ρ1, . . . , ρN ) and ρ′ = (ρ′
1, . . . , ρ

′
N ) satisfy r∗ ≤ ρ′

i ≤ ρi ≤ 1, every

connected component of Qρ
N ( f , ω) intersects Qρ′

N ( f , ω) and the latter is non-
empty.

(b) There are finitely many open setsω′′
j in C and smooth diffeomorphisms φ j sending

ω′′
j onto ω̂′′

j in R2n such that {ω′′
j } covers ∂QN ( f , ω), and for any p0, p1 ∈

φ j (ω
′′
j ∩ Qρ

N ( f , ω)) there is a smooth curve γ in φ j (ω
′′
j ∩ Qρ

N ( f , ω)) connecting
p0 and p1 with length |γ | ≤ C |p1 − p0|, where C depends only on φ j and ω′′

j .

Proof (a) Set Q = QN ( f , ω) and Qρ = Qρ
N ( f , ω). For each x ∈ ∂Q, we find

μ1 < · · · < μm with m ≤ N such that

| fμi (x)| = 1, i ≤ m; | f j (x)| < 1, j �= μ1, . . . , μm . (A.42)

Note that {μ1, . . . , μm} is uniquely determined by x . By the transversality condition
(A.36), we have m ≤ 2n. Choose an open set ω′ such that x ∈ ω′ ⊂ ω and

| fi (z)| < 1, ∀z ∈ ω′, i �= μ1, . . . , μm .

In particular, we have

Q ∩ ω′ = {z ∈ ω′ : | fμi (z)| < 1, i = 1, . . . ,m}.
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By (A.36), we can take (| fμ1 |, . . . , | fμm |) to be the first m components of a smooth
diffeomorphism ϕ : ω′ → ω̂, shrinking ω′ if necessary. Taking a smaller open subset
ω′′ of ω′ with x ∈ ω′′, we may assume that

tζ ∈ ω̂, ∀ζ ∈ ω̂′′ := ϕ(ω′′), 1 − δ ≤ t ≤ 1,

for some δ ∈ (0, 1].
Since ∂Q is compact, there exists {x j , ω′′

j , ω
′
j : j = 1, . . . , k} satisfying the fol-

lowing:

(a) The k is finite. For each j , we have that x j ∈ ω′′
j ⊂ ω′

j ⊂ ω, x j ∈ ∂Q, and ω′
j is

an open subset of ω. For each j , we have m j and μ j,1 < . . . < μ j,m j , which are
the numbers associated to x j , so that (A.42) holds for x = x j . {ω′′

1 , . . . ω
′′
k } is an

open covering of ∂Q.
(b) | fμ j,
 (x j )| = 1 for 
 = 1, . . . ,m j and

Mj := sup
z∈ω′

j

{| fi (z)| : i �= μ j,1, . . . , μ j,m j } < 1,

ω′
j ∩ Q = {z ∈ ω′

j : | fμ j,
 (z)| < 1, 
 = 1, . . . ,m j }.

Here we set Mj = 0 if m j = N .
(c) The (| fμ j,1 |, . . . , | fμ j,m j

|) are the first m j components of a smooth diffeomor-

phism φ j from ω j onto a subset ω̂ j of Cn . There exists δ∗ > 0 such that
ω̂′′

j := φ j (ω
′′
j ) satisfies

{tζ : ζ ∈ ω̂′′
j } ⊂ ω̂ j , ∀ j,∀t ∈ [1 − δ∗, 1]. (A.43)

Indeed, let φ j (x j ) = (1, . . . , 1, x̃ j ) with x̃ j ∈ R2n−m j . We can take

ω̂′′
j = (1 − δ∗, 1 + δ∗)m j × Bδ′′

2n−m j
(x̃ j ) (A.44)

where Bδ′′
2n−m j

(x̃ j ) is the ball inR2n−m j centered at x̃ j with a sufficiently small radius

δ′′. Note that

φ j (Q
ρ ∩ ω′′

j ) = (1 − δ∗, ρ1) × · · · × (1 − δ∗, ρm j ) × Bδ′′
2n−m j

(x̃ j ). (A.45)

Define

M∗ = sup{| f (z)| : z ∈ Q \ ∪k
j=1ω

′′
j }.

Then M∗ < 1. By the maximum principle, we have | f | ≤ M∗ on Q \ ∪k
j=1ω

′′
j . Fix r∗

so that

1 > r∗ > max{1 − δ∗, M∗, M1, . . . , Mk}.
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Suppose that r∗ ≤ ρ′
i ≤ ρi ≤ 1 for i = 1, . . . , N . Let� be a connected component

of Qρ
N . Since � does not have a compact connected component, there exists z∗ ∈

∂� satisfying | fi (z∗)| = ρi for some i . Since ρi > M∗, then z∗ ∈ ω′′
j for some

j . Let us assume that z∗ ∈ ω′′
1 , and (μ1,1, . . . , μ1,m1) = (1, . . . ,m1). Thus φ1 =

(| f1|, . . . , | fm1 |, f̃m1+1, . . . , f̃2n). We now replace z∗ by some z∗ ∈ � ∩ ω′′
1 . We

consider a path defined by

t → γ (t) := φ−1
1 (tφ1(z∗)), 1 − δ∗ ≤ t ≤ 1.

Note that by (A.43), γ is well defined and is contained in ω1. We now have

| f
(γ (t))| = t | f
(z∗)| ≤ tρ
, 
 ≤ m1. (A.46)

Since γ (t) ∈ ω1, we also have

| f
(γ (t))| ≤ M1 < r∗, 
 > m1. (A.47)

This shows that γ (t) ∈ Qρ
N . Since � is a connected component of Qρ

N and γ (1) =
z∗ ∈ �, we must have γ (t) ∈ �. By the definition of Mj , at t = 1 − δ∗ we have

tρ
 ≤ 1 − δ∗ < ρ′

. Combining with (A.46)–(A.47), we get γ (1 − δ∗) ∈ Qρ′

N .
(b) Since p0, p1 are in the same ω̂′′

j , the assertion also follows from the above
construction of ω̂′′

j via (A.44)–(A.45) and the convexity of ω̂′′
j . ��

In summary, by Proposition A.19 we cover C by generic analytic n-polyhedrons
Ui = ϕ−1

i (�n) (i = 1, . . . ,m), which are in the general position. By Lemma A.16,
each Ui ∩ Uj , if non-empty, is a generic analytic polyhedron. Applying Proposi-
tion A.20 (a) to all non-emptyUi ∩Uj , we know that {Ur

i = ϕ−1
i (�r

n) : i = 1, . . . ,m}
for r∗ ≤ r ≤ 1 is a family of nested coverings. Therefore, we can apply Theorem A.9
and Theorem A.12.
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