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Summability of divergent power 
series
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1. Introduction

In his 1907 paper [32], H. Poincaré made the fundamental discovery that real-analytic 
hypersurfaces in complex Euclidean spaces possess nontrivial local invariants under the 
action of the pseudogroup of (local) biholomorphisms. Poincaré looked at local biholo-
morphisms as complex power series maps

(z, w) −→

⎛
⎝z +

∑
k+l≥2

aklz
kwl, w +

∑
k+l≥2

bklz
kwl

⎞
⎠ , (z, w) ∈ C2, (1.1)

which in a natural sense act on real-analytic hypersurfaces. (Poincaré was not concerned 
with convergence of such maps, that is, he dealt with formal biholomorphic transforma-
tions of hypersurfaces.) He then showed that the action of formal biholomorphisms on 
the space of k-jets of defining functions of hypersurfaces is not transitive for sufficiently 
large k, and it implies the existence of the above biholomorphic invariants. This work of 
Poincaré is often considered as the starting point for studying the holomorphic geometry 
of real submanifolds in complex space, which (in an a bit more general setting) is referred 
to as Cauchy-Riemann geometry (shortly: CR-geometry).

The cited work of Poincaré led to numerous developments in the subject of CR-
geometry and raised a large number of interesting problems, some of which are open 
till present. The main result of this paper completes one of those: precisely, it solves 
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the long standing problem of constructing a geometric realization for formal biholo-
morphic transformations (1.1) between arbitrary real-analytic hypersurfaces in C2. The 
main tool which made such a realization of formal maps of arbitrary real-analytic 
hypersurfaces possible is the modern theory of summability for formal power series 
transformations of dynamical systems, developed in the work of Ramis, Sibuya, Ecale, 
Malgrange, Braaksma, and Balser in the 1990’s and referred to as the multisummability 
theory.

Before stating our main result in detail, we shall briefly outline basics of CR-geometry. 
A hypersurface M ⊂ CN gets endowed with a Cauchy-Riemann (CR) structure by its 
complex tangent bundle T cM , whose fibers are the complex tangent planes T c

pM =
TpM ∩ iTpM , p ∈ M . This is a complex vector bundle over M whose structure operator 
J : T cM → T cM is just multiplication by i in CN . The CR structure bundle is the 
subbundle V ⊂ CTM whose fibers Vp consist of vectors of the form Xp + iJXp with 
Xp ∈ T c

pM . A function f is said to satisfy the tangential Cauchy-Riemann equation or 
simply said to be CR if L̄f = 0 for every section L̄ of V. Holomorphic functions in a 
neighborhood of a manifold give basic examples of CR-functions. For more on these, we 
refer the reader to [5].

Given two hypersurfaces M, M∗ ⊂ CN , we say that a smooth map H : M → M∗ is 
CR if the natural extension of its differential dH : CTM → CT (M∗) restricts to the 
CR-structure bundle: dH : V → V∗. It turns out that this first-order system of PDEs on 
M is equivalent to requiring that if H = (H1, . . . , HN ), then the components Hj satisfy 
the tangential Cauchy-Riemann equations, i.e. L̄Hj = 0 for every section L̄ of V and 
j = 1, . . . , N . Biholomorphisms of the ambient space transforming two hypersurfaces 
into each other are basic examples of CR-maps.

Let us, for the rest of this paper, consider only C∞ smooth CR-functions and CR-
maps. Then, after a choice of holomorphic coordinates Z ∈ CN , the Taylor series Tpf of a 
CR-function f at a point p can be identified with a formal power series Tpf ∈ C�z−p�N

(see e.g. [14,5]), and therefore a CR-map H : M → M∗ gives rise to a formal power 
series map TpH = (TpH1, . . . , TpHN ) ∈ C�Z − p�N for every p ∈ M . (Here and below 
C�z − p�N denotes the ring of formal power series centered at p).

On the other hand, if M = {� = 0} and M∗ = {�∗ = 0} are given as the vanishing 
sets of real-analytic defining functions �, �∗, and p ∈ M , we define a formal CR-map 
Ĥ : (M, p) → M∗ as a formal power series map Ĥ ∈ C�Z − p�N which in addition 
satisfies the formal condition �∗ ◦ Ĥ = A� for some A ∈ C�Z − p, Z − p�. Formal CR-
maps Ĥ : (M, p) → M∗ whose Jacobian matrix is invertible therefore encode the above 
mentioned formal obstructions to finding a smooth CR-diffeomorphism H between the 
real hypersurfaces M ⊂ CN and M∗ ⊂ CN satisfying H(p) = Ĥ(p). We are going to say 
that M and M∗ are formally equivalent at p ∈ M and p∗ = H(p) ∈ M∗ if there exists 
an invertible formal CR map Ĥ : (M, p) → M∗, and that they are CR equivalent if there 
exists a CR diffeomorphism H : (M, p) → M∗. In short our discussion up to this point 
can be summarized as follows: if M and M∗ are CR equivalent, they are also formally 
equivalent (at every point).
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We therefore have the following natural problem: does every formal CR-diffeomorphism 
Ĥ : (M, p) → (M∗, p∗) arise as the Taylor series TpH of a smooth CR map H : M → M∗? 
Or more generally: if M and M∗ are formally equivalent at some point, are they CR 
equivalent?

Note that both questions make sense to ask even in the category of merely smooth
hypersurfaces. However, the answer is then trivially negative: for example, the flat at 
the origin perturbation M = {Imw = |z|2 + e−1/|z|2} of the quadric Q = {Imw = |z|2}
is formally equivalent to the quadric at the origin (their Taylor series simply coincide), 
however, it is not difficult to compute that M has a generically non-vanishing CR-
curvature (e.g. [13]) and hence is not CR-diffeomorphic to Q.

Our main theorem answers both questions under discussion (in the real-analytic cat-
egory) in the affirmative in C2. In order to state it, we also need to recall the notion 
of being Levi-flat: we say that a hypersurface M ⊂ C2 is Levi-flat if it is foliated by 
complex curves. Equivalently, we can either require that the distribution T cM ⊂ TM

is integrable. If M is real-analytic, another equivalent condition is that in suitable local 
holomorphic coordinates (z, w) at p, M can (locally) be written as {Imw = 0}.

Theorem 1. Let M, M∗ ⊂ C2 be two real-analytic hypersurfaces. Assume that M and 
M∗ are formally equivalent at their reference points p ∈ M, p∗ ∈ M∗. Then M and M∗

are (C∞) CR-equivalent at the respective points p, p∗. If M, M∗ are in addition Levi-
nonflat, then the given formal equivalence Ĥ between them can be realized by a (C∞) 
CR-diffeomorphism H : M → M∗, H(p) = p∗, whose Taylor series at p is Ĥ.

We shall particularly emphasize here that the proof of Theorem 1 exhibits an ex-
citing and surprising application to CR-geometry of the multisummability theory from 
Dynamical Systems mentioned above (see Section 2.6 for details and references here).

We shall further note that the regularity asserted in Theorem 1 cannot be improved 
further! This is discussed below.

Finally, we shall explain that in the Levi-flat case a smooth realization of an arbi-
trary formal CR-diffeomorphism is not possible: for example, any map z �→ f(z), w �→
w, f(0) = 0, f ′(0) �= 0 with a formal and divergent f(z) is a formal CR-automorphism 
of the Levi-flat model Π = {Imw = 0} at the origin, which can not be realized by 
a smooth CR-automorphism. Indeed, a smooth CR-automorphism of Π has the form 
(z, u) �→ H(z, u) = (F (z, u), g(u)) with F, G smooth and F holomorphic in z. Thus F
can be expanded as 

∑
Fk(u)zk, and the series converges in z for each fixed u. But the 

Taylor series of H at 0 equals (f(z), u), thus the series 
∑

Fk(0)zk and f(z) coincide. 
Since the latter series is divergent, we arrive to a contradiction and this proves the desired 
claim.

The content of Theorem 1 is the endpoint (in C2) of a long development. The starting 
point was the case of Levi-nondegenerate hypersurfaces M, M∗ ⊂ C2. We recall that 
Levi-nondegeneracy refers to the lowest order obstruction to being Levi-nonflat, i.e. T cM

being nonintegrable: one says that M is Levi-nondegenerate at p if for any two sections 
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X, Y of T cM with Xp and Yp (real) linearly independent in T cM , the commutator 
[X, Y ]p /∈ T c

pM . Levi-nondegenerate hypersurfaces in C2 have been classified up to local 
holomorphic equivalence, i.e. up to agreeing in suitable local holomorphic coordinates, by 
E. Cartan [12] (this was later generalized for Levi-nondegenerate hypersurfaces in CN , 
N > 2, by Tanaka [43] and Chern-Moser [13]). It turns out that the only obstruction to 
holomorphic equivalence of two Levi-nondegenerate hypersurfaces M and M∗ in C2 is 
that they are formally equivalent, and that in fact every formal CR-equivalence between 
Levi-nondegenerate hypersurfaces converges.

Later on, it was shown by Baouendi, Ebenfelt, and Rothschild [6] that this conver-
gence phenomenon persists in the case where the hypersurfaces are of finite type. Here 
one says that a hypersurface M ⊂ C2 is of finite type at p if for any two sections 
X, Y of T cM with Xp and Yp (real) linearly independent in T cM , some commutator 
[X, [X, . . . , [X, Y ] . . . ]]p /∈ T c

pM .
The situation is quite different in the Levi-flat case: here, there are plenty of non-

convergent formal maps, as any map of the form H(z, w) = (f(z, w), g(w)) ∈ C�z, w�2

which satisfies g(w) = g(w) maps Imw = 0 into itself.
The question what actually happens in the case of a Levi-nonflat, but infinite type

hypersurface, has long remained open. We say that a hypersurface M ⊂ C2 is of infinite 
type at the point p if the distribution T cM has an integral submanifold through the point 
p (see e.g. [5]). It turns out that if M is real-analytic, then any such integral manifold 
necessarily is a nonsingular complex curve (contained in M). This complex curve is called 
the complex locus of (M, p).

Contrary to the finite type case, in the infinite type case, there can be divergent formal 
CR maps. To be exact, the first author and Shafikov [23] showed that there exist Levi-
nonflat hypersurfaces M, M∗ ⊂ C2 with M of infinite type at p such that M and M∗

are formally equivalent at p, and such that every formal equivalence Ĥ : (M, p) → M∗

diverges. On the other hand, the first and the second author showed [21] that there exist 
hypersurfaces M, M∗ ⊂ C2, and a point p ∈ M of infinite type, such that M and M∗ are 
CR equivalent, but not holomorphically equivalent. These phenomena came as a surprise 
to many specialists, and made the question of whether formal equivalence implies CR 
equivalence an interesting one.

We therefore see that the assertion of Theorem 1 cannot be further strengthened. In 
fact, Theorem 1 gives a complete answer to the nature of obstructions to CR equivalence 
of real-analytic hypersurfaces in C2: they are all purely formal.

Let us again emphasize that even though we are dealing with real-analytic hyper-
surfaces, we establish the existence of merely smooth CR-diffeomorphisms whose Taylor 
series agree with a given formal CR equivalence. The results of [23,21] mentioned above 
actually show that this is the best we can hope for. We also emphasize that our re-
sult does not require any assumptions besides analyticity of the manifolds. It contrasts 
with similar results in Dynamical Systems such as Chen-Sternberg theorem [40] concern-
ing smooth classification of germs of vector fields at a fixed point, which require some 
hyperbolicity assumptions on the linear part of the vector field at the fixed point.
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A nice application of Theorem 1 was observed by Nordine Mir, resolving a conjecture 
(by Mir) stated in [29]. Before we state this result, let us recall that a power series 
map Ĥ ∈ C�z − p�N is algebraic if there exist nontrivial polynomials pj(z, w) such that 
pj(z, Ĥj(z)) = 0 for every j = 1, . . . , N . Every algebraic power series map is actually 
convergent (one can see this from Artin’s Approximation Theorem [1], see e.g. [38]). Let 
us also recall that a real-analytic hypersurface M ⊂ CN is said to be real-algebraic if it 
is contained in the vanishing locus of a nontrivial real polynomial in the underlying real 
variables in R2N = CN .

Theorem 2. Let M, M∗ ⊂ C2 be two real-algebraic Levi-nonflat hypersurfaces, and Ĥ :
(M, p) �→ (M∗, p∗) a formal invertible CR-map. Then Ĥ is algebraic, and in particular, 
Ĥ is convergent.

Proof of Theorem 2. By Theorem 1, we can find a CR-diffeomorphism H : (M, p) →
(M∗, p∗), whose Taylor expansion at p coincides with Ĥ. We can now apply the al-
gebraicity theorem of Baouendi, Huang and Rothschild [7] (see also Webster [46]) to 
conclude that H is an algebraic map (in particular, it is holomorphic). Since, again, Ĥ
is the Taylor expansion of H at p, this implies the assertion of the theorem. �

As follows from the above mentioned theorem of Shafikov and the first author, the 
convergence phenomenon in Theorem 2 is a specific feature of algebraic (but not general 
analytic!) hypersurfaces, similarly to the theorem of Baouendi-Huang-Rothschild.

Before we describe our approach to the problem in more detail, we will state an 
additional result which our main theorem actually relies on. This result, furthermore, 
emphasizes the very analytic nature of Theorem 1. To formulate it, for a real-analytic 
Levi-nonflat hypersurface M ⊂ C2 of infinite type at a point p, we use coordinates of 
the kind

Imw = (Rew)mΦ(z, z̄,Rew), Φ(z, 0,Rew) = Φ(0, z̄,Rew) = 0, Φ �≡ 0 (1.2)

(see Meylan [28]). The invariant integer m ≥ 1 here is the nonminimality order of M at 
p, and Φ is holomorphic in all its variables.

Theorem 3. Let M, M∗ ⊂ C2 be two hypersurfaces (1.2), and Ĥ : (M, 0) �→ (M∗, 0) a 
formal invertible CR-map. Then, there exist a disc Δ ⊂ C , sectors S± ⊂ (C , 0) with 
vertex at 0 containing the directions R±, respectively, and holomorphic maps H± : Δ ×
S± → C2 such that Ĥ is the asymptotic expansion of H± in Δ ×S± and H±(M ∩ (Δ ×
S±)) ⊂ M∗; in particular, H±|M defines a CR diffeomorphism H of M onto M∗.

An expanded version of Theorem 3 is given in the end of Section 4 (Theorem 5).

Remark 1.1. In fact, the proof of Theorem 3 shows that the formal map Ĥ in Theorem 3
has actually a finite (multi) Gevrey order (0, s) and, furthermore, has the multisummabil-
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ity property, as stated in Theorem 5 below (see Section 2.6 for details of both concepts). 
The multisummability of Ĥ plays the central role in the proof of the main result, as it 
gives the uniqueness of a holomorphic sectorial realization for the formal map Ĥ.

Remark 1.2. As follows from the counter-examples given in [23,21], the properties of 
formal CR-maps stated in Theorem 3 and Remark 1.1 are in general optimal and can’t 
be strengthened further.

Remark 1.3. It can be verified from the proof of Theorem 3 that, for m ≥ 2, the opening 
of the sectors S± in Theorem 3 can be chosen to be π

m−1 for a generic hypersurface M
under consideration, and the Gevrey order s can be chosen to be s = 1

m−1 . For m = 1
one can take s = 0 (i.e., Ĥ is convergent), as follows from the result of Juhlin and the 
second author [20].

We end this introduction by giving a short guide to the proof of Theorem 1. As 
discussed above, the main tool of the paper is the multisummability theory from Dy-
namical Systems, which meets CR-geometry via the recent CR −→ DS (Cauchy-Riemann 
manifolds −→ Dynamical Systems) technique developed by Shafikov and the first two 
authors in the recent works [23,24,21,22]. In this framework, we study maps of CR-
submanifolds M, M∗ with prescribed properties (such as being of infinite type) through 
symmetries of an associated holomorphic dynamical system E(M). The possibility to 
replace a real-analytic CR-manifold by a complex dynamical system is based on the 
fundamental parallel between CR-geometry and the geometry of completely integrable 
PDE systems. This parallel was first observed by E. Cartan and Segre [12,39] and was 
revisited and further developed in a recent series of publications by Sukhov ([41,42]). The 
“mediator” between a CR-manifold and the associated PDE system is the Segre family of 
the CR-manifold. Unlike the Levi-nondegenerate setting in the cited work [12,39,41,42], 
the CR - DS technique deals specifically with the Levi-degenerate setting, providing sort 
of a dictionary between CR-geometry and Dynamical Systems.

For the proof of Theorem 3 we need to develop the CR - DS technique further, extend-
ing it to the entire class of real-analytic hypersurfaces in C2. In Section 3, infinite type 
hypersurfaces satisfying a certain nondegeneracy assumption (generic infinite type case) 
are studied. To do so, we follow the approach in [24,22] and consider complex meromor-
phic differential equations associated with these hypersurfaces. Any formal map between 
real hypersurfaces has to transform the associated ODEs into each other, and working 
out the latter condition gives a certain singular Cauchy problem for the components of 
the map. We then apply the multisummability theory for formal power series solutions 
of nonlinear systems of ODE at an irregular singularity [10,37]. First, we show that 
the singular Cauchy problem has solutions, holomorphic in certain sectorial domains 
with Gevrey asymptotic expansion. Second, we show that these solutions have certain 
uniqueness properties giving the condition H(M) ⊂ M∗ for the arising CR-map defined 
on M .
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In Section 4, we have to extend the scheme in Section 3 to the exceptional (non-
generic) case. For doing so, we introduce a new tool: associated differential equations 
of high order. In turns out that any Levi-nonflat real-analytic hypersurface M (in par-
ticular, a finite type hypersurface!) can be associated, in appropriate local holomorphic 
coordinates, with a system of singular ODEs of the kind (4.16). We achieve this by a 
sequence of coordinate changes and appropriate blow-ups (both in the initial space and 
in the space of parameters for Segre families). In this regard, the blow-up procedure of 
Mir and the second author from [25] is a key tool. The initial formal CR map is shown 
to be a transformation between the associated systems of singular ODE again. Working 
out the transformation rule here brings significant new difficulties, since we deal with jet 
prolongations of arbitrarily high order. After overcoming these difficulties, we are again 
able to apply the multisummability theory and obtain the desired regularity property 
for the formal CR map.

2. Preliminaries

2.1. Segre varieties

Let M be a generic smooth real-analytic submanifold in Cn+k of CR-dimension n
and CR-codimension k, n, k > 0, 0 ∈ M , and U a neighborhood of the origin where 
M ∩U admits a real-analytic defining function φ(Z, Z) with the property that φ(Z, ζ) is 
a holomorphic function for (Z, ζ) ∈ U × Ū . For every point ζ ∈ U we associate its Segre 
variety in U by

Qζ = {Z ∈ U : φ(Z, ζ) = 0}.

Segre varieties depend holomorphically on the variable ζ, and for small enough neigh-
borhoods U of 0, they are actually holomorphic submanifolds of U of codimension k.

One can choose coordinates Z = (z, w) ∈ Cn × Ck and a neighborhood U = Uz ×
Uw ⊂ Cn ×Ck such that, for any ζ ∈ U ,

Qζ =
{
(z, w) ∈ Uz × Uw : w = h(z, ζ)

}
is a closed complex analytic graph. h is a holomorphic function on Uz × Ū . The anti-
holomorphic (n + k)-parameter family of complex submanifolds {Qζ}ζ∈U1 is called the 
Segre family of M at the origin. The following basic properties of Segre varieties follow 
from the definition and the reality condition on the defining function:

Z ∈ Qζ ⇔ ζ ∈ QZ ,

Z ∈ QZ ⇔ Z ∈ M,

ζ ∈ M ⇔ {Z ∈ U : Q = Q } ⊂ M.

(2.1)
ζ Z
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The fundamental role of Segre varieties for holomorphic maps is due to their invariance 
property: If f : U → U ′ is a holomorphic map which sends a smooth real-analytic 
submanifold M ⊂ U into another such submanifold M ′ ⊂ U ′, and U is chosen as above 
(with the analogous choices and notations for M ′), then

f(QZ) ⊂ Q′
f(Z).

For more details and other properties of Segre varieties we refer the reader to e.g. [46], 
[15], or [5].

The space of Segre varieties {QZ : Z ∈ U}, for appropriately chosen U , can be 
identified with a subset of CK for some K > 0 in such a way that the so-called Segre 
map λ : Z → QZ is antiholomorphic. This can be seen from the fact that if we write

h(z, ζ̄) =
∑

α∈Nn

hα(ζ̄)zα,

then λ(Z) can be identified with 
(
hα(Z̄)

)
α∈Nn . After that the desired fact follows from 

the Noetherian property.
If M is a hypersurface, then its Segre map is one-to-one in a neighborhood of every 

point p where M is Levi nondegenerate. When such a real hypersurface M contains a 
complex hypersurface X, for any point p ∈ X we have Qp = X and Qp∩X �= ∅ ⇔ p ∈ X, 
so that the Segre map λ sends the entire X to a unique point in CN and, accordingly, λ
is not even finite-to-one near each p ∈ X, i.e. M is not essentially finite at points p ∈ X. 
For the notion of essential finiteness, see e.g. [5].

2.2. Nonminimal real hypersurfaces

We recall that given a real-analytic Levi-nonflat hypersurface M ⊂ C2, for every p ∈
M there exist so-called normal coordinates (z, w) centered at p, i.e. a local holomorphic 
coordinate system near p in which p = 0 and near 0, M is defined by an equation of the 
form

v = F (z, z̄, u)

for some germ F of a holomorphic function on C3 which satisfies

F (z, 0, u) = F (0, z̄, u) = 0

and the reality condition F (z, ̄z, u) ∈ R for (z, u) ∈ C ×R close to 0 (see e.g. [5]).
We say that M is nonminimal at p if there exists a germ of a nontrivial complex curve 

X ⊂ M through p. It turns out that in normal coordinates, such a curve X is necessarily 
defined by w = 0; in particular, any such X is nonsingular.
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Thus a Levi-nonflat hypersurface M is nonminimal if and only if with normal co-
ordinates (z, w) and a defining function F as above, we have that F (z, ̄z, 0) = 0, or 
equivalently, if M can defined by an equation of the form (1.2). It turns out that the 
integer m ≥ 1 in (1.2) is independent of the choice of normal coordinates (see [28]), and 
actually also of the choice of p ∈ X; we refer to m as the nonminimality order of a 
Levi-nonflat hypersurface M on X (or at p) and say that M is m-nonminimal along X
(or at p).

Several other variants of defining functions for M are useful. Throughout this paper, 
we use the complex defining function Θ in which M is defined by

w = Θ(z, z̄, w̄);

it is obtained from F by solving the equation

w − w̄

2i = F

(
z, z̄,

w + w̄

2

)

for w. The complex defining function satisfies the conditions

Θ(z, 0, η) = Θ(0, ξ, η) = τ, Θ(z, ξ, Θ̄(ξ, z, w)) = w.

If M is m-nonminimal at p, then Θ(z, ξ, η) = ηθ(z, ξ, η) and thus M is defined by

w = w̄θ(z, z̄, w̄) = w̄(1 + w̄m−1θ̃(z, z̄, w̄)),

where θ̃(z, 0, η) = θ̃(0, ξ, η) = 0 and θ̃(z, ξ, 0) �= 0.

The Segre family of M , where M is given in normal coordinates as above, with the 
complex defining function Θ: Uz × Ūz × Ūw = Uz × Ū → Uw consists of the complex 
hypersurfaces Qζ ⊂ U , defined for ζ ∈ U by

Qζ = {(z, w) : w = Θ(z, ζ̄)}.

The real line

Γ = {(z, w) ∈ M : z = 0} = {(0, u) ∈ M : u ∈ R} ⊂ M (2.2)

has the property that

Q(0,u) = {w = u}, (0, u) ∈ Γ

for u ∈ R, a property which actually is equivalent to the normality of the coordinates 
(z, w). More exactly, for any real-analytic curve γ through p one can find normal coor-
dinates (z, w) in which γ corresponds to Γ in (2.2) (see e.g. [25]).
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We finally have to point out that a real-analytic Levi-nonflat hypersurface M ⊂ C2

can exhibit nonminimal points of two kinds, which can be referred to as generic and 
exceptional nonminimal points, respectively. A generic point p ∈ M is characterized by 
the condition that the minimality locus M \X of M is Levi-nondegenerate locally near p. 
At a generic nonminimal point, (1.2) is supplemented by the condition ψzz̄(0, 0, 0, ) �= 0. 
In terms of the complex defining function, it gives the following useful representation 
for M :

w = Θ(z, z̄, w̄) = w̄ + w̄m
∑
k,l≥1

Θkl(w̄)zkz̄l, Θ11(0) �= 0 (2.3)

(see, e.g., [24]).
If, otherwise, the intersection of the minimal locus M \X of M with any neighborhood 

of p in M contains Levi-degenerate points, then such a point p is referred to as exceptional.

2.3. Real hypersurfaces and second order differential equations

To every Levi nondegenerate real hypersurface M ⊂ CN we can associate a system 
of second order holomorphic PDEs with 1 dependent and N − 1 independent variables, 
using the Segre family of the hypersurface. This remarkable construction goes back to 
E. Cartan [12] and Segre [39] (see also a remark by Webster [46]), and was recently 
revisited in the work of Sukhov [41], [42] in the nondegenerate setting, and in the work 
of Shafikov and the first two authors in the degenerate setting (see [23], [24], [21], [22]). 
We describe this procedure in the case N = 2 relevant for our purposes.

Let M ⊂ C2 be a smooth real-analytic hypersurface, passing through the origin, and 
U = Uz × Uw a sufficiently small neighborhood of the origin. In this case we associate 
a second order holomorphic ODE to M , which is uniquely determined by the condition 
that the equation is satisfied by all the graphing functions h(z, ζ) = w(z) of the Segre 
family {Qζ}ζ∈U of M in a neighborhood of the origin.

More precisely, since M is Levi-nondegenerate near the origin, the Segre map ζ −→ Qζ

is injective and the Segre family has the so-called transversality property: if two distinct 
Segre varieties intersect at a point q ∈ U , then their intersection at q is transverse. Thus, 
{Qζ}ζ∈U is a 2-parameter family of holomorphic curves in U with the transversality 
property, depending holomorphically on ζ̄. It follows from the holomorphic version of 
the fundamental ODE theorem (see, e.g., [19]) that there exists a unique second order 
holomorphic ODE w′′ = Φ(z, w, w′), satisfied by all the graphing functions of {Qζ}ζ∈U .

To be more explicit we consider the complex defining equation w = ρ(z, ̄z, w̄), as 
introduced above. The Segre variety Qζ of a point ζ = (a, b) ∈ U is now given as the 
graph

w(z) = ρ(z, ā, b̄). (2.4)

Differentiating (2.4) once, we obtain
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w′ = ρz(z, ā, b̄). (2.5)

Considering (2.4) and (2.5) as a holomorphic system of equations with the unknowns 
ā, ̄b, an application of the implicit function theorem yields holomorphic functions A, B
such that

ā = A(z, w,w′), b̄ = B(z, w,w′).

The implicit function theorem applies here because the Jacobian of the system coincides 
with the Levi determinant of M for (z, w) ∈ M ([5]). Differentiating (2.5) once more and 
substituting for ā, ̄b finally yields

w′′ = ρzz(z,A(z, w,w′), B(z, w,w′)) =: Φ(z, w,w′). (2.6)

Now (2.6) is the desired holomorphic second order ODE E = E(M).
More generally, the association of a completely integrable PDE with a CR-manifold is 

possible for a wide range of CR-submanifolds (see [41,42]). The correspondence M −→
E(M) has the following fundamental properties:

(1) Every local holomorphic equivalence F : (M, 0) −→ (M ′, 0) between CR-
submanifolds is an equivalence between the corresponding PDE systems E(M), E(M ′)
(see subsection 2.4);

(2) The complexification of the infinitesimal automorphism algebra holω(M, 0) of M at 
the origin coincides with the Lie symmetry algebra of the associated PDE system 
E(M) (see, e.g., [30] for the details of the concept).

Even though for a real hypersurface M ⊂ C2 which is nonminimal at the origin there 
is no a priori way to associate to M a second order ODE or even a more general PDE sys-
tem near the origin, the Shafikov and the first author found an injective correspondence 
between nonminimal hypersurfaces M ⊂ C2 which are spherical outside the complex lo-
cus hypersurfaces and certain singular complex ODEs E(M) with an isolated singularity 
at the origin in [24]. It is possible to extend this construction to the non-spherical case, 
which we do in Section 3.

2.4. Equivalences and symmetries of ODEs

We start with a description of the jet prolongation approach to the equivalence prob-
lem (which is a simple interpretation of a more general approach in the context of jet 
bundles). We refer to the excellent sources [30], [8] for more details and collect the nec-
essary prerequisites here. In what follows all variables are assumed to be complex, all 
mappings biholomorphic, and all ODEs to be defined near their zero solution y(x) = 0.

Consider two ODEs, E given by y(k) = Φ(x, y, y′, ..., y(k−1)) and Ẽ given by y(k) =
Φ̃(x, y, y′, ..., y(k−1)), where the functions Φ and Φ̃ are holomorphic in some neighborhood
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of the origin in Ck+1. We say that a germ of a biholomorphism H : (C2, 0) −→ (C2, 0)
transforms E into Ẽ , if it sends (locally) graphs of solutions of E into graphs of solutions 
of Ẽ . We define the k-jet space Jk(C , C) to be the (k+ 2)-dimensional linear space with 
coordinates x, y, y1, ..., yk, which correspond to the independent variable x, the dependent 
variable y and its derivatives up to order k, so that we can naturally consider E and Ẽ
as complex submanifolds of Jk(C , C).

For any biholomorphism H as above one may consider its k-jet prolongation H(k), 
which is defined on a neighborhood of the origin in Ck+2 as follows. The first two 
components of the mapping H(k) coincide with those of H. To obtain the remaining 
components we denote the coordinates in the preimage by (x, y) and in the target domain 
by (X, Y ). Then the derivative dY

dX can be symbolically recalculated, using the chain 
rule, in terms of x, y, y′, so that the third coordinate Y1 in the target jet space becomes 
a function of x, y, y1. In the same manner one obtains the remaining components of the 
prolongation of the mapping H. Thus, for differential equations of order k, a mapping 
H transforms the ODE E into Ẽ if and only if the prolonged mapping H(k) transforms 
(E , 0) into (Ẽ , 0) as submanifolds in the jet space Jk(C , C). A similar statement can be 
formulated for systems of differential equations, as well as for certain singular differential 
equations, for example, the ones considered in the next subsection.

Some further details and properties of the jet prolongations H(k) are given in Section 4.

2.5. Tangential sectorial domains and smooth CR-mappings

Let M ⊂ C2 be a real-analytic Levi nonflat hypersurface, which is nonminimal at 
a point p ∈ M , and X 
 p its complex locus. We choose for M local holomorphic 
coordinates (1.2) so that p = 0, X = {w = 0}. We next recall the following definition 
(see [22, Section 1.2]).

Definition 2.1. A set Dp ⊂ C2, Dp 
 p is called a tangential sectorial domain for M at 
p if, in some local holomorphic coordinates (z, w) for M as above, the set Dp looks as

Δ ×
(
S+ ∪ {0} ∪ S−

)
. (2.7)

Here Δ ⊂ C is a disc of radius r > 0, centered at the origin, and S± ⊂ C are sectors

S+ =
{
|w| < R, α+ < argw < β+}, S− =

{
|w| < R, α− < argw < β−} (2.8)

for appropriate R > 0 and such that S± contains the direction R±. We also denote by 
D±

p the domains Δ × S± ⊂ C2 respectively.

As discussed in [22], for any tangential sectorial domain Dp for M at p, the intersec-
tion of M with a sufficiently small neighborhood Up of p in C2 is contained in Dp.

Next, we recall the following classical notion.
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Definition 2.2. Let f(w) be a function holomorphic in a sector S ⊂ C . We say that a 
formal power series f̂(w) =

∑
j≥0 cjz

j is the Poincaré asymptotic expansion of f in S, 
if for any n ≥ 0 we have:

1
wn

⎛
⎝f(w) −

n∑
j=0

cjw
j

⎞
⎠ → 0 when w → 0, w ∈ S.

In the latter case, we write: f(w) ∼ f̂(w).

For basic properties of the asymptotic expansion we refer to [45]. In particular, we 
recall that asymptotic expansion in a full punctured neighborhood of a point means the 
usual holomorphicity of a function.

The notion of Poincaré asymptotic expansion can be naturally extended to function 
holomorphic in products of sectors and the respective formal power series in several 
variables. This allows us to formulate the following

Definition 2.3. We say that a C∞ CR-function f in a neighborhood of p in M is sectorially 
extendable, if for some (and then any sufficiently small) tangential sectorial domain Dp

for M at p, there exist functions f± ∈ O(D±
p ) such that

(i) each f± coincides with f on D±
p ∩M , and

(ii) both f± admit the same Poincaré asymptotic representation

f± ∼
∑
k,l≥0

aklz
kwl ∈ C�z, w�

in the respective domains D±
p .

We can similarly define the sectorial extendability of CR-mappings or infinitesimal 
CR-automorphisms of real-analytic hypersurfaces. Crucially, it is not difficult to see (as 
discussed in [22]) that restricting two holomorphic functions f±, as in Definition 2.3, 
onto a nonminimal hypersurface M as above defines a C∞ CR-function on M near 0, 
sectorially extendable into the initial tangential sectorial domain. This observation will 
be the final ingredient for the proof of Theorem 1.

2.6. Summability of formal power series

In this section, we shall recall some known facts about multisummability of formal 
power series and we shall recall a key theorem due to Braaksma that says that any 
formal solution of a system of nonlinear differential equations at an irregular singularity 
is multisummable in any direction but a finite number of them. This means there are 
holomorphic solutions in some sectors with vertex at the singularity and having the 
formal solution as asymptotic power series. This has a long although recent history and 
we refer to [33,34,3,18,36] for more information.
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Definition 2.4. Let s > 0. A formal power series f̂ =
∑

n≥0 fnz
n is said to be a Gevrey 

series of order s if there exist A, B > 0 such that |fn| ≤ ABnΓ(1 + sn) for all n. The 
space of such power series is denoted by C�z�s.

In other words, we have |fn| ≤ ÃB̃n(n!)s for some appropriate constants.
This notion can be in fact extended to functions of several variables, and then the 

Gevrey order is replaced by the Gevrey (multi) order. For example, a formal power series 
Ĥ(z, w) =

∑
k,l≥0 cklz

kwl in the variables z, w (centered at the origin) is said to be of 
the (r, s) Gevrey (multi) order, r, s > 0, if there exist appropriate constants A, B, C > 0
such that the Taylor coefficients ckl, k, l ≥ 0 satisfy the bounds:

|ckl| ≤ A ·Bk · Cl · (k!)r(l!)s. (2.9)

Let I =]a, b[ be an open interval of R and let r > 0. We denote by Sr(I) the open 
sector of C (or the Riemann surface of the Logarithm):

Sr(I) := {z ∈ C| a < arg z < b, 0 < |z| < r}.

Now, we give

Definition 2.5. A holomorphic function f ∈ O(Sr(I)) is said to have an s-Gevrey asymp-
totic expansion at 0 if there exists a formal power series f̂ =

∑
j≥0 fjz

j such that, for 
all I ′ ⊂⊂ I, there exist C > 0 and 0 < r′ ≤ r such that for all integer n > 0

∣∣∣∣∣f(z) −
n−1∑
k=0

fjz
j

∣∣∣∣∣ ≤ CnΓ(1 + sn)|z|n, ∀z ∈ Sr′(I ′).

We shall write f ∼s f̂ . The space of these functions will be denoted by As(I).

Note that the above Gevrey asymptotic property strengthens the Poincaré asymptotic 
property introduced in the previous section. We also remark that asymptotic series f̂ of 
such a function belongs to C�z�s.

Definition 2.6. Let k be a positive real number. A formal power series f̂ ∈ C�z� 1
k

is said 
to be k-summable in the direction d if there exists a sector Sr(I), bisected by d and of 
opening |I| > π

k , and a holomorphic function f ∈ O(Sr(I)) such that f ∼ 1
k
f̂ . We also 

say that f̂ is k-summable on I.

Such a holomorphic function f is unique (this is a consequence of Watson Lemma [26]) 
and called the k-sum of f̂ . We emphasize that a k-summable power series is 1

k -Gevrey. 
In order to describe the properties of solutions of differential equations with irregular 
singularity, we need the more general notion of multi-summability.
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Definition 2.7. Let r ≥ 1 be an integer and let k := (k1, . . . , kr) ∈ (R)r with 0 <
k1 < · · · < kr. For any 1 ≤ j ≤ r, let Ij :=]aj , bj [ be an open interval of length 
|Ij | = bj − aj > π

kj
such that Ij ⊂ Ij−1, 2 ≤ j ≤ r. A formal power series f̂ ∈ C�z� is 

said to be k-multisummable on I = (I1, . . . , Ir) if there exist formal power series f̂j such 
that f̂ :=

∑r
j=1 f̂j and such that each f̂j is kj-summable on Ij with sum fj , 1 ≤ j ≤ r. 

We shall also say that f̂ is k-multisummable in the multidirection d = (d1, . . . , dr) where 
dj bisects the sector {aj < arg z < bj}.

In that case, we say that f = (f1, . . . , fr) is the multisum of f̂ . Such a multisum is 
unique according the relative Watson lemma [26, Théorème 2.2.1.1]. From it, one can 
build the (unique) k-sum of f̂ on I, denoted by fk,I, that satisfies fk,I ∼ 1

k1
f̂ on I1 [10, 

p. 524]. Here we have used the definition of W. Balser [2] but there are other equivalent 
definitions due to Ecalle [16,27] and Malgrange-Ramis [35].

Next, we shall emphasize the following important property:

Proposition 2.8. [35, Proposition 3.2,p. 358], [26, Théorème 2.2.3.1] Let Φ be a germ of 
holomorphic function at 0 of Cp+1. Let f̂i ∈ C�z� be a formal power series such that 
f̂i(0) = 0, i = 1, . . . , p. Assume that f̂i is k-multisummable on I = (I1, . . . , Ir) with 
multisum fi = (fi,1, . . . , fi,r). Then, Φ(z, f̂1(z), . . . , f̂p(z)) is also k-multisummable on 
I = (I1, . . . , Ir) with multisum Φ(z, f) = (Φ(z, f1,1, . . . , fp,1), . . . , Φ(z, f1,r, . . . , fp,r)).

In particular, we conclude that the class of multisummable functions forms an algebra 
and is closed under the division operation, provided the denominator has no constant 
terms in its expansion.

The reason for introducing these notions is that these are the natural spaces to which 
solutions of nonlinear differential equations with irregular singularity must belong.

Let r ∈ N, kj ∈ N, j = 1, . . . , r, 0 < k1 < . . . < kr. We set k := (k1, . . . , kr). Let 
I = (I1, . . . , Ir) where Ij =]αj , βj [ is an open interval with βj − αj > π/kj . We also 
assume that Ij ⊂ Ij−1, j = 1, . . . , r where I0 = R. Consider

diag{xk1I(1), . . . , xkrI(r)}xdy
dx

= Λy + xg(x, y) (2.10)

where I(j) denotes the identity matrix of dimension nj ∈ N and n = n1 + . . . nr, y ∈ Cn, 
Λ = diag{λ1, . . . , λn}, Λ is invertible and g is a k-sum of some ĝ(x, y) ∈ C[[x, y]] on I
uniformly in a neighborhood of 0 ∈ Cn (g analytic at (0, 0) in C×Cn is a special case). 
Let ŷ =

∑∞
h=1 chx

h be a formal solution of (2.10). This means that

diag{xk1I(1), . . . , xkrI(r)}xdŷ(x)
dx

= Λy + xĝ(x, ŷ(x)).

Then the following holds (cf. [37,10,4]).
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Theorem 4. [11] The formal solution ŷ of (2.10) is k-multisummable on I = (I1, . . . , Ir)
if arg λh /∈]αj + π/(2kj), βj − π/(2kj)[ for all h ∈ [n1 + . . . + nj−1 + 1, n1 + . . . + nj ], 
1 ≤ j ≤ r.

Corollary 2.9. [10, Corollary, p. 525] Consider an analytic nonlinear differential equation 
of the form

zν+1 dy

dz
= F (z, y) (2.11)

where z ∈ C, y ∈ Cn, and F is analytic in a neighborhood of the origin in C × Cn, 
ν > 0. Then, there exist positive integers q and 0 < k1 < . . . < kr such that every formal 
power series solution ŷ of (2.11) is (k1

q , . . . , kr

q )-multisummable.

As shown in [9, p. 60], there exists an analytic transformation and a ramification 
x = z1/q which transforms (2.11) into (2.10). As a consequence, we can also apply 
Theorem 4 in the situation when the righthand side F is a (k1

q , . . . , kr

q )-sum, uniformly 
in a neighborhood of 0 ∈ Cn. The point for not stating this directly in the theorem is 
that both k and q need to be known and cannot be read off immediately on (2.11).

Remark 2.10. Let ŷ be a formal power series solution of (2.11). Let k/q := (k1
q , . . . , kr

q ) as 
above. Then ŷ has a k/q-sum y± defined in a sector containing the direction R±. Indeed, 
having done an appropriate analytic transformation and a ramification x = z1/q, we 
consider (2.10). Let εj > 0 and let Ĩ := ∪j∪h∈[n1+...+nj−1+1,n1+...+nj ]] arg λh−εj , arg λh+
εj [. It is always possible to choose the εj’s small enough so that the exists a τ+ /∈ Ĩ and 
so that |τ+| < π

2kr
+ 1

2 min εj
2 . Therefore, for all j, −τ+ − π

2kj
− εj

2 < 0 < −τ+ + π
2kj

+ εj
2 . 

This means that R+ belongs to the sector I+
j bisected by τ+ and of opening π

kj
+ εj , 

for all j. Setting τ− = τ+ + π, then R− belongs to the sector I−j bisected by τ− and of 
opening π

kj
+ εj , for all j. According to Theorem 4, ŷ is k-multisummable on I± and its 

k-sum yk,I± is defined on R±. To obtain the same result for (2.11), one has to divide τ+
by q and set τ− = τ+ + π/q.

3. Complete system for a generic nonminimal hypersurface

We start with the proof of Theorem 1. We assume both reference points p, p∗ to be 
the origin. As was discussed in the Introduction, in the finite type case the assertion 
of Theorem 1 follows from [6]. In the Levi-flat case the assertion is obvious. Hence, we 
assume in what follows that both M, M∗ are nonminimal at the reference point 0 but are 
Levi-nonflat.

In this section, we prove Theorem 1 for the class of m-nonminimal at the origin 
hypersurfaces, satisfying the generic assumption that the minimal part M \X of M is 
Levi-nondegenerate (thus the origin is a generic nonminimal points, in the terminology 
of Section 2). As was explained in Section 2, any such hypersurface can be written in 
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appropriate local holomorphic coordinates by an equation (2.3). For the convenience of 
the reader, we shall first show how the individual results proved in this section combine 
to yield the proof of Theorem 1.

3.1. Outline of the results and conclusion of the proof in the generic case

In order to state the (technical) results needed, we first need a convenient prenor-
malization of formal power series maps. Let us observe that given two hypersurfaces 
M, M∗ ⊂ C2, given near the origin by (2.3) then any formal power series map

H = (F,G) : (M, 0) �→ (M∗, 0)

between them has the following specific form.

Lemma 3.1. Any formal power series map

(z, w) �→
(
F (z, w), G(z, w)

)
between germs at the origin of two hypersurfaces of the form (2.3) satisfies:

G = O(w), Gz = O(wm+1). (3.1)

Proof. We interpret (2.3) as:

w = w̄ + w̄m · zz̄ ·O(1).

Then the basic identity gives:

G(z, w) = Ḡ(z̄, w̄) + Ḡm(z̄, w̄) · F̄ (z̄, w̄) · F (z, w) ·O(1), where w = w̄ + w̄m · zz̄ ·O(1).

Putting in the latter identity z̄ = w̄ = 0, we get G(z, 0) ≡ 0. Further, differentiating 
with respect to z, evaluating at z̄ = 0 at which one has w = w̄, we get:

Gz(z, w̄) = Ḡ(0, w̄)m · F̄ (0, w̄) ·O(1),

which already implies the assertion of the lemma. �
Lemma 3.1 immediately implies that, when considering formal invertible mappings 

between hypersurfaces of the form (2.3), we can restrict to transformations of the form:

z �→ z + f(z, w), w �→ w + wg0(w) + wmg(z, w)

with
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fz(0, 0) = 0, g0(0) = 0, g(z, w) = O(zw) (3.2)

(normalizing the coefficients of z, w for F, G respectively is possible by means of a linear 
scaling applied to the source hypersurface). We now expand f, g as:

f(z, w) =
∞∑
j=0

fj(w)zj , g(z, w) =
∞∑
j=1

gj(w)zj (3.3)

(we point out that the function g0(w), as in (3.2), is not present in the expansion (3.3)!). 
In view of (3.2) we have

f1(0) = g1(0) = 0. (3.4)

We also introduce the new functions

y1 := f0, y2 := g0, y3 := f1, y4 := g1, y5 := wmf ′
0,

y6 := wg′0, y7 := wmf ′
1, y8 := wmg′1.

(3.5)

It is important that all the yj do not have a constant term, as follows from (3.2), (3.4)
and the fact that our transformation maps the origin to itself. We clearly have

wmy′1 = y5, wy′2 = y6, wmy′3 = y7, wmy′4 = y8. (3.6)

We can now state the first main technical result of this section:

Proposition 3.2. The formal vector function Y0(w) := (y1(w), ..., y8(w)) satisfies a mero-
morphic differential equation

wm dY

dw
= A(w, Y ), (3.7)

where A(w, Y ) is a holomorphic at the origin function.

Applying now the fundamental Theorem 4 on the multisummability of formal solutions 
of nonlinear differential equation at an irregular singularity, as well as Remark 2.10 (see 
Section 2.6), we immediately obtain

Corollary 3.3. There exist sectors S+, S− ⊂ C, containing the positive and the nega-
tive real lines, directions d±, functions f±

0 (w), g±0 (w), f±
1 (w), g±1 (w) holomorphic in the 

respective sectors, and a multi-order k = (k1, ..., kl) such that the following holds.
(i) The functions f±

0 (w), g±0 (w), f±
1 (w), g±1 (w) are the k-multisums of f0, g0, f1, g1 in 

the directions d±, respectively;
(ii) The holomorphic in respectively S± functions Y ±(w), constructed via f±

0 (w),
g±0 (w), f±

1 (w), g±1 (w) by using formulas (3.5), satisfy the ODE (3.7).
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The last point is a consequence of uniqueness of multisummable functions. Since Y is
k-multisommable on some multisectors, so are functions wmf ′

0, wg
′
0, w

mf ′
1, w

mg′1. Thus 
equalities (3.5) hold. We will also need that Corollary 3.3 also holds with f0, f1, g0, g1
replaced by their conjugates, with the same multi-order k:

Corollary 3.4. There exist functions

f±
0 (w), g±0 (w), f±

1 (w), g±1 (w), (3.8)

holomorphic in the respective sectors S±, which are the k-multisums in the directions 
d± of f̄0(w), ̄g0(w), f̄1(w), ̄g1(w). Furthermore, the corresponding maps Y ± defined as in 
(3.5), satisfy the meromorphic ODE wmY ± = Ā(w, Y ±).

The second main technical result of this section shows that f and g can be reproduced 
from f0, f1, g0, g1.

Proposition 3.5. There exist holomorphic functions ϕ and ψ defined in a neighborhood
of the origin in C7 such that the equality

f(z, w) = ϕ
(
z, w, g0(w), wg′0(w), f0(w), f1(w), g1(w)

)
,

g(z, w) = ψ
(
z, w, g0(w), wg′0(w), f0(w), f1(w), g1(w)

) (3.9)

holds for every (f, g) as above.

Before we turn to the proofs of the technical statements above, we show how these 
statements imply Theorem 1 in the generic case.

Proof of Theorem 1 in the generic setting. Let us introduce the functions

f±(z, w) = ϕ
(
z, w, g±0 (w), w · (g±0 )′(w), f±

0 (w), f±
1 (w), g±1 (w)

)
,

g±(z, w) = ψ
(
z, w, g±0 (w), w · (g±0 )′(w), f±

0 (w), f±
1 (w), g±1 (w)),

(3.10)

well defined in the product of a disc Δ in z centered at the origin and the sec-
tors S± in w (this product forms a tangential sectorial domain, as described in 
Section 2. f±(z, w), g±(z, w) are asymptotically represented in their domains by 
f(z, w), g(z, w) respectively, as follows from (3.9). Based on (3.8), we similarly intro-
duce f±(z, w), g±(z, w), asymptotically representing f̄(z, w), ̄g(z, w), respectively.

Let us now consider the (complexified) basic identity

G(z, w) − ρ∗
(
F (z, w), F (ξ, η), G(ξ, η)

)
|w=ρ(z,ξ,η) = 0 (3.11)

for the map (F, G) between the germs at the origin of the initial hypersurfaces M ={
w = ρ(z, ̄z, w̄)

}
and M∗ =

{
w = ρ∗(z, ̄z, w̄)

}
. We claim that the sectorial map 
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(F±(z, w), G±(z, w)) constructed via f±, g± by the formula (3.2) satisfies the basic iden-
tity (3.11) as well, i.e.

G±(z, w) − ρ∗
(
F±(z, w), F±(ξ, η), G±(ξ, η)

)
|w=ρ(z,ξ,η) = 0, (z, ξ, η) ∈ Δ × Δ × S±.

(3.12)
To prove the claim, let us analyze the identity (3.12). The left hand side of it, which 

we denote by

χ(z, ξ, η),

is holomorphic in Δ ×Δ ×S±, respectively. Accordingly, the identity (3.12) holds if and 
only if we have:

∂p+q

∂zp∂ξq
χ(z, ξ, η)

∣∣∣∣
z=ξ=0

≡ 0, p, q ≥ 0. (3.13)

However, it is not difficult to verify (by applying the chain rule) that for each fixed 
p, q ≥ 0 the left hand side in (3.13) is an analytic function Rp,q in η, the sectorial 
functions

f±
0 (η), g±0 (η), f±

1 (η), g±1 (η), f±
0 (η), g±0 (η), f±

1 (η), g±1 (η),

and their derivatives of order ≤ p + q. Hence, each left hand side in (3.13) is 
the k-multisum of the identical analytic expressions Rp,q in formal series, where 
f±
0 (η), g±0 (η), f±

1 (η), g±1 (η) are replaced by the asymptotic expansions f0, g0, f1, g1, re-
spectively, and f±

0 (η), g±0 (η), f±
1 (η), g±1 (η) by their asymptotic expansions f̄0(η), ̄g0(η),

f̄1(η), ̄g1(η), respectively. In view of the (valid!) formal basic identity (3.11), the latter 
formal series in η vanish identically for any p, q ≥ 0. The uniqueness property within the 
class of k-multisummable series in the directions d± implies now that all the left hand 
sides in (3.13) all vanish identically.

As was explained in Section 2, the property (3.12) for a sectorial map defined in 
a tangential sectorial domain implies that the restriction of the map onto the source 
manifold is a C∞ CR-map onto the target. Thus, the claim under discussion implies the 
assertion of the theorem. �

The rest of this section is devoted to the proofs of the Propositions above.

3.2. Associated complete system

We show the following:

Proposition 3.6. Associated with a hypersurface (2.3) is a second order singular holomor-
phic ODE E(M) given by
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w′′ = wmΦ
(
z, w,

w′

wm

)
, (3.14)

where Φ(z, w, ζ) is a holomorphic near the origin in C3 function with Φ = O(ζ). The 
latter means that all Segre varieties of M (besides the complex locus X = {w = 0} itself), 
considered as graphs w = wp(z), satisfy the ODE (3.14).

Proof. The argument of the proof very closely follows the one given in the proof of an 
analogues statement in [24], [22] for the case of m-admissible hypersurfaces, and we leave 
the details of the proof to the reader. �

Based on the connection between mappings of hypersurfaces and that of the associ-
ated ODEs discussed in Section 2 and Lemma 3.1, we come to the consideration of ODEs 
(3.14) and formal power series mappings (3.2) between them. We further recall that the 
fact that a mapping (F (z, w), G(z, w)) transforms an ODE E into an ODE E∗ is equiva-
lent to the fact that the second jet prolongation (F (2), G(2)) transforms the ODEs E , E∗

into each other, where the ODEs are considered as submanifolds in J2(C , C). Applying 
this to two nonsingular ODEs E =

{
w′′ = Ψ(z, w, w′)

}
, E∗ =

{
w′′ = Ψ∗(z, w, w′)

}
and 

employing the classical jet prolongation formulas (e.g., [8]), we obtain:

Ψ(z, w,w′) = 1
J

(
(Fz + w′Fw)3Ψ∗

(
F (z, w), G(z, w), Gz + w′Gw

Fz + w′Fw

)
+

+ I0(z, w) + I1(z, w)w′ + I2(z, w)(w′)2 + I3(z, w)(w′)3
)
, (3.15)

where J := FzGw − FwGz is the Jacobian determinant of the transformation and

I0 = GzFzz − FzGzz

I1 = GwFzz − FwGzz − 2FzGzw + 2GzFzw

I2 = GzFww − FzGww − 2FwGzw + 2GwFzw

I3 = GwFww − FwGww.

(3.16)

Setting then Ψ(z, w, w′) := wmΦ 
(
z, w, w′

wm

)
(and similarly for Φ∗) and switching to the 

notations in (3.2), we obtain the transformation rule for the class of ODEs (3.14) and 
mappings (3.2) between them:

wmΦ
(
z, w,

w′

wm

)
= 1

J

[(
1 + fz + w′fw)3(1 + g0(w) + wm−1g

)m·

· wmΦ∗
(
z + f, w + wg0(w) + wmg,

wmgz + w′(1 + wg′0 + g0 + mwm−1g + wmgw)
wm(1 + g0(w) + wm−1g)m(1 + fz + w′fw)

)
+

+ I0(z, w) + I1(z, w)w′ + I2(z, w)(w′)2 + I3(z, w)(w′)3
]
, (3.17)
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where

J = (1 + fz)(1 + g0 + wg′0 + wmgw + mwm−1g) − wmfwgz,

I0 = wm
(
gzfzz − (1 + fz)gzz

)
,

I1 =
(
1 + wg′0 + g0 + mwm−1g + wmgw

)
fzz − wmfwgzz−

− 2(1 + fz)(mwm−1gz + wmgzw) + 2wmgzfzw,

I2 = wmgzfww − (1 + fz)(wg′′0 + 2g′0 + m(m− 1)wm−2g + 2mwm−1gw + wmgww)−

− 2fw(mwm−1gz + wmgzw) + 2(1 + wg′0 + g0 + mwm−1g + wmgw)fzw,

I3 = (1 + wg′0 + g0 + mwm−1g + wmgw)fww−

− fw(wg′′0 + 2g′0 + m(m− 1)wm−2g + 2mwm−1gw + wmgww). (3.18)

Importantly, after putting w′ = ζwm, (3.17) becomes an identity of formal power series 
in the independent variables z, w, ζ.

We now extract from (3.18) four identities of power series in z, w only, in the following 
way. For the first identity, we extract in (3.18) terms with (w′)0 and divide the resulting 
identity by wm. For the second identity, we extract in (3.18) terms with (w′)1. For the 
third identity, we extract in (3.18) terms with (w′)2 and multiply the resulting identity 
(which has a pole in w of order m) by wm. For the last identity, we extract in (3.18)
terms with (w′)3 and multiply the resulting identity (which has a pole in w of order 2m) 
by w2m. The four resulting identities of formal power series in z, w can be written as:

I0 = wmT0(z, w, j1(f, g, g0)), I1 = T1(z, w, j1(f, g, g0)),

wmI2 = T2(z, w, j1(f, g, g0)), w2mI3 = T3(z, w, j1(f, g, g0)),
(3.19)

where j1(f, g.g0) denotes the 1-jet of f, g, g0 (the collection of derivatives of order ≤ 1), 
and Tk(·, z, w) are four precise holomorphic at the origin functions, exact form of which 
is of no interest to us. We though emphasize two important properties of the identities 
(3.19):

(a) the derivatives fw, gw come in each Tk with the factor wm, and the derivative g′0
comes in each Tk with the factor w;

(b) the derivatives fw, gw, fzw, gzw all come in all the left hand sides in (3.19) with 
the factor wm, the derivatives fww, gww all come in all the left hand sides in (3.19) with 
the factor w2m, and the derivatives g′0, g′′0 come in all the left hand sides in (3.19) with 
the factor w.

It is also not difficult to verify that the identities (3.19) are well defined, i.e. the formal 
power series under considerations all come into the right hand side in (3.19) with the 
zero constant term.

We can now prove Proposition 3.2.
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Proof of Proposition 3.2. We consider in the last two identities in (3.19) terms with 
z0, z1, respectively. This gives us four second order singular ODEs for the functions 
f0, f1, g0, g1. In the two identities with z0, only the second order derivatives f ′′

0 , g
′′
0 par-

ticipate (the other derivatives have order ≤ 1). It is not difficult to solve the latter 
identities for w2mf ′′

0 , w
m+1g′′0 (by applying the Cramer rule to the nondegenerate linear 

system). We obtain, by combining the information in (3.18), (3.6) and the observations 
(a), (b) above:

w2mf ′′
0 = U(y1, y2, ..., y8, w), wm+1g′′0 = U(y1, y2, ..., y8, w), (3.20)

where U and V are two holomorphic at the origin functions in all their variables, exact 
form of which is of no interest to us. Using the y-notations and (3.6), the equations (3.20)
give:

wmy′5 = Ũ(y1, y2, ..., y8, w), wmy′6 = Ṽ (y1, y2, ..., y8, w), (3.21)

where, again, Ũ and Ṽ are two holomorphic at the origin functions in all their variables, 
exact form of which is of no interest to us.

To obtain the missing conditions for y′7, y′8, we use the system of two second order 
ODEs obtained by collecting in the last two identities of (3.19) terms with z1. Considering 
this system as a (nondegenerate) linear system in w2mf ′′

1 , w
2mg′′1 and solving by Cramer 

rule, we get:

w2mf ′′
1 = X(y1, y2, ..., y8, w

2mf ′′
0 , w), w2mg′′1 = Y (y1, y2, ..., y8, w

m+1g′′0 , w), (3.22)

where X and Y are two holomorphic at the origin functions in all their variables, exact 
form of which is of no interest to us. Combining this with (3.20) and using (3.6), we 
finally obtain

wmy′7 = X̃(y1, y2, ..., y8, w), wmy′8 = Ỹ (y1, y2, ..., y8, w). (3.23)

By putting (3.6), (3.21), (3.23) together, we obtain the Proposition. �
We now turn to the proof of Corollary 3.4.

Proof of Corollary 3.4. We first want to show that the “barred” power series f̄0(w),
ḡ0(w), f̄1(w), ̄g1(w) belong to the same summability class as the original series. For doing 
so, let us consider the associated with (3.7) ODE

wm dZ

dw
= Ā(w,Z), (3.24)

where A(w, Y ) is as in (3.7). We first note that the “barred” power series Ȳ0(w) satisfies 
the ODE (3.24). Now, let us write Y := (Y, Z) and
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A(w,Y) :=
(
A(w, Y ) 0

0 Ā(w,Z)

)
,

and then consider the system

wm dY
dw

= A(w,Y). (3.25)

Applying Theorem 4 and Remark 2.10 for the “decoupled” system (3.25), we find sectors 
S+, S− ⊂ C containing the positive and the negative real lines (which we without loss 
of generality assume to be equal to the ones in Corollary 3.3), direction d± (which we 
without loss of generality assume to be equal to the ones in Corollary 3.3), and functions

f±
0 (w), g±0 (w), f±

1 (w), g±1 (w), (3.26)

holomorphic in the respective sectors S±, which are the k-multisums in the directions d±
of f̄0(w), ̄g0(w), f̄1(w), ̄g1(w), respectively (we, again, assume without loss of generality 
that the multi-order k equals to the one in Corollary 3.3). In addition, the holomorphic in 
respectively S± function Y ±(w), constructed via f±

0 (w), g±0 (w), f±
1 (w), g±1 (w) by using 

formulas (3.5), satisfies the ODE (3.7). �
The last remaining piece is now the proof of Proposition 3.5.

Proof of Proposition 3.5. We now consider the first two equations in (3.19). Read to-
gether, they can be treated as a system of linear equations in fzz, gzz determinant of 
which at the origin is non-vanishing. Applying the Cramer rule, we obtain the following 
system of equations:

fzz = P (z, w, j1(f, g), g0, wg
′
0, fzw, gzw), gzz = Q(z, w, j1(f, g), g0, wg

′
0, fzw, gzw),

(3.27)
where P, Q are appropriate functions holomorphic in their arguments. We now consider 
the intimately related Cauchy problem

fzz = P (z, w, j1(f, g), α0, α1, fzw, gzw), gzz = Q(z, w, j1(f, g), α0, α1, fzw, gzw) (3.28)

with the Cauchy data

f(0, w) = β0, fz(0, w) = β1, g(0, w) = 0, gz(0, w) = β2, (3.29)

where αi, βj are additional parameters. By the parametric version of the Cauchy-
Kowalevski theorem, namely the Ovcyannikov’s theorem [31,44], the latter Cauchy 
problem has a unique analytic solutions

f = ϕ(z, w, α0, α1, β0, β1, β2), g = ψ(z, w, α0, α1, β0, β1, β2),
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where ϕ and ψ depend analytically on all their arguments. Hence, taking into account 
(3.2), (3.3), we finally have the identities (3.9). (we emphasize that the substitution 
of formal power series into ϕ, ψ is well defined here, since all the formal data being 
substituted has no constant term!). �
4. The exceptional case

In this section, we prove Theorem 1 in full generality. For that, we have to consider 
the case when, for an m-nonminimal at the origin hypersurface M ⊂ C2, the minimal 
part M \X contains Levi degenerate points. In this case, M can not be associated to an 
ODE (3.14). We overcome this difficulty by introducing associated ODEs of high order.

The proof of Theorem 1 in the general case has several ingredients, each of which we 
put in a separate subsection below. While we follow closely the structure of Section 3, 
the tools which we need to introduce in this section are considerably harder: We treat 
the multisummability of what will later be “initial terms” in certain Cauchy problems 
in 4.1, then discuss the associated ODEs of higher order in 4.2. We can then prove 
Theorem 1 under an additional technical condition in 4.3, and in 4.4 introduce the 
necessary geometrical concept to use this technical condition in full generality to complete 
the proof in 4.5.

4.1. k-Summability of initial terms

In what follows, for hypersurfaces under consideration we consider the defining equa-
tion (1.2). Since M is strictly pseudoconvex at generic points, a generic real-analytic 
curve Γ ⊂ M through 0, transverse to T c

0M , will not contain any Levi-degenerate point 
except for 0. If we choose normal coordinates for which Γ = {(z, w) ∈ M : z = 0} (which 
is possible, see e.g. [25, Lemma 4.1], then its the complex defining equation

w = Θ(z, z̄, w̄) Θ(z, z̄, w̄) = w̄ +
∑
j,k≥1

Θjk(w̄)zkz̄l, Θ �≡ 0 (4.1)

satisfies the additional condition

Θ11(w̄) �≡ 0. (4.2)

The fact that the minimal part M \X contains Levi degenerate points reads as

ord0 Θ11(w̄) > m. (4.3)

We start by considering for a formal power series map (F, G) between germs at the 
origin of hypersurfaces (4.1) the expansion:

F =
∑

Fj(w)zj , G =
∑

Gj(w)zj . (4.4)

j≥0 j≥0
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Arguing similarly to the proof of Lemma 3.1, it is not difficult to prove

Lemma 4.1. The components of the formal map (F, G) satisfy:

Fz(0, 0) = F1(0) �= 0, Gw(0, 0) = G′
0(0) �= 0, G(z, w) = O(w), Gz(z, w) = O(wm).

(4.5)
Thus, in suitable coordinates, we may assume

Fz(0, 0) = F1(0) = 1, Gw(0, 0) = G′
0(0) = 1.

Our goal in this subsection is to prove the following

Proposition 4.2. There exist sectors S+, S− ⊂ C , containing the positive and the negative 
real lines respectively, directions d± ⊂ S±, a multi-order k = (k1, ..., kl), and functions 
F±
j (w), G±

j (w) holomorphic in the respective sectors, such that for each j ≥ 0, the func-
tions F±

j (w), G±
j (w) are the k-multisums of Fj , Gj in the directions d±, respectively.

Proposition 4.2 is proved in several steps.

Step I. We first observe that the assertion of Proposition 4.2 is invariant under biholo-
morphic transformations of the target. Indeed, a holomorphic coordinate change

z �→ U(z, w), w �→ V (z, w)

in the target changes the components of the map as follows:

F̃ = U(F (z, w), G(z, w)), G̃ = V ((F (z, w), G(z, w)). (4.6)

The new coefficient functions F̃j, G̃j can be computed by differentiating (4.6) in z suffi-
ciently many times and evaluating at z = 0, i.e. for some germs of holomorphic functions 
Cj1...jr,�1...�s(z, w), Dj1...jr,�1...�s(z, w) we can write

F̃j(w) =
∑

j1+···+�s=j

Cj1...jr,�1...�s(F0(w), G0(w))Fj1 . . . FjrG�1 . . . G�s ,

G̃j(w) =
∑

j1+···+�s=j

Dj1...jr,�1...�s(F0(w), G0(w))Fj1 . . . FjrG�1 . . . G�s .

Thus the desired invariance property follows from an application of Corollary 2.8 (see 
the discussion of the properties of multisummable functions in Section 2).

Step II. In this step, we make use of the following efficient blow-up procedure introduced 
in [25] by Mir and the second author.
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Lemma 4.3 (Blow-up Lemma, see [25]). Let M ⊂ C2 be a real-analytic hypersurface, 
which is Levi-degenerate at the origin and Levi-nonflat. Assume that M is given in 
coordinates (4.1) and that the distinguished curve

Γ = {(z, w) ∈ M : z = 0} ⊂ M (4.7)

does not contain Levi-degenerate points of M other than the origin. Then there exists a 
blow-down map

B(ξ, η) : (C2, 0) −→ (C2, 0), B(ξ, η) = (ξηs, η), s ∈ Z, s ≥ 2, (4.8)

and a real-analytic nonminimal at the origin hypersurface MB ⊂ C2
(ξ,η) with the complex 

locus X = {η = 0} such that:
(i) B(MB) ⊂ M, B(X) = {0};
(ii) MB \X is Levi-nondegenerate, and MB is given by an equation of the kind (2.3).

We note at this point that the condition for Γ in Lemma 4.3 is precisely equivalent 
to (4.2).

We will need some control of the integer s from the proof of the Blow-up Lemma. We 
quickly recall the needed details. For an m-nonminimal hypersurface, transformations 
bringing to coordinates of the kind (4.1) are associated with curves γ ⊂ M passing 
through 0 and transverse to the complex tangent at 0. Such a curve γ is being transformed 
into the distinguished (2.2) in the new coordinates (1.2).

We then choose γ in such a way that γ ∩Σ = {0} for the Levi degeneracy set Σ ⊂ M , 
and bring to coordinates (4.1). This means that for the resulting hypersurface (4.1) we 
have Θ11 �≡ 0. For each k ≥ 2, let us denote

m(k) := minp+q=k ord0Θpq.

We have m(j) ≥ m for all j ≥ 2. After that, an integer s in (4.8) is determined as any 
integer satisfying all the inequalities

2s + m(2) ≤ ks + m(k), k ≥ 3. (4.9)

In fact, one can require the unique (stronger) inequality

m(2) < s, (4.10)

and thus avoid considering m(k), k ≥ 3.
We now proceed as follows. We may assume that both M and M∗ are given by 

coordinates (1.2) with Θ11 �≡ 0. We then fix an integer s, which satisfies (4.10) for both 
M and M∗. Next, we consider the formal curve γ ⊂ M - the pre-image of (2.2) under 
the given formal map H = (F, G). Let us choose an analytic curve γ̃ ⊂ M tangent to 
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γ to order s + 1, and a biholomorphic map H1 transforming γ̃ into (2.2) and M into a 
hypersurface M̃ of the kind (1.2). Put H2 := H ◦ H−1

1 , so that H = H2 ◦ H1. Finally, 
put

Γ̃ := H(γ̃).

Note that, since γ and γ̃ are tangent to order s + 1, the same is true for (2.2) and Γ̃.
We then can decompose H−1 as a product

H−1 = H−1
1 ◦H−1

2 , (4.11)

where H−1
1 is a biholomorphic map transforming (2.2) into γ̃ and M̃ into M , and H−1

2
is a formal invertible map transforming Γ̃ into (2.2) and M∗ into the real-analytic hy-
persurface M̃ . Importantly, in view of the tangency condition, the formal map H−1

2
satisfies

ord0 F0(w) ≥ s + 1, (4.12)

where F0 is as in (4.4). Moreover, the blow up integer s can be kept the same as before 
for the hypersurface M̃ as well. Indeed, a transformation satisfying (4.12) clearly pre-
serves the corresponding integer m∗(2) in (4.10) (as we choose s > m∗(2)), so that the 
inequalities (4.10) still hold true for the same s and the hypersurface M̃ .

Finally, we recall that, in view of the considerations of Step I, the assertion of Propo-
sition 4.2 applied for H−1

2 is equivalent to that for H−1.
We summarize the considerations of Step II as follows: in view of the decomposition 

(4.11) and the subsequent properties of H−1
2 ,

it is sufficient to prove Proposition 4.2 for maps (F, G) satisfying, in addition, the 
inequality (4.12).

Step III. In this step, we are finally able to reduce Proposition 4.2 to the results already 
proved in the generic case. For that, we use the above blow up procedure.

In accordance with the outcome of the previous step, we consider a map (F, G) :
(M, 0) �→ (M∗, 0) satisfying, in addition, (4.12). Here the integer s in (4.12) is an ad-
missible integer for the blow down map (4.8) both in the source and in the target. After 
performing the blow ups (with the integer s in (4.8)), we obtain real-analytic hypersur-
faces MB , M∗

B , respectively.
Re-calculating the map (F, G) in the “blown up” coordinates (ξ, η) gives:

GB(ξ, η) = G(ξηs, η), FB(ξ, η) = F0(η)
ηs

+ F1(η)ξ + · · · , (4.13)

where dots stand for a power series in ξ, η of the kind O(ξ2). In view of (4.12), 
FB(ξ, η), GB(ξ, η) are well defined power series. It is immediate then that the formal 
map
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HB(ξ, η) :=
(
FB(ξ, η), GB(ξ, η)

)
transforms (MB, 0) into (M∗

B, 0). Furthermore, in view of (4.5), the formal map HB(ξ, η)
is invertible, so that the results of Section 3 are applicable to it. Expanding now

FB(ξ, η) =
∑
j≥0

FB
j (η)ξj , GB(ξ, η) =

∑
j≥0

GB
j (η)ξj ,

and applying to HB the assertion of Corollary 3.3 and the formulas (3.9), we immediately 
obtain for the components FB

j , GB
j the desired k-summability property (identical to the 

one stated in Proposition 4.2). At the same time, the relations (4.13) show that

GB
j (η) = ηsjGj(η). (4.14)

We immediately obtain from (4.14) the assertion of Proposition 4.2 for the components 
Gj (with the same sectors, multi-directions and multi-order k as for FB , GB). Finally, 
since we have

F (ξηs, η) =
(
G(ξη2, η)

)s · FB(ξ, η),

the chain rule and the multisummability property for FB
j , Gj imply the assertion of 

Proposition 4.2 for the components Fj . This finally proves Proposition 4.2. �
4.2. Associated ODEs of high order

In this section we consider the case when the source and the target m-nonminimal 
hypersurfaces satisfy the additional k-nondegeneracy condition. The latter means that 
for some k ≥ 1 we have

ord0 Θk1 = m (4.15)

for the defining function (4.1). As a well known fact (e.g. [28]) the property of being 
m-nonminimal k-nondegenerate is invariant under (formal) invertible transformations. 
In view of (4.3), we may assume that k ≥ 2 in our setting.

The main goal of this section is to show that we can associate a system E(M) of k
singular ODEs of orders ≤ k+1 to an m-nonminimal k-nondegenerate hypersurface M . 
By the latter we mean (as in the generic case) that all the Segre varieties Qp of M for 
p /∈ X considered as graphs w = wp(z) satisfy the system of ODEs E(M) as follows:

Proposition 4.4. Let M ⊂ C2 be an m-nonminimal k-nondegenerate hypersurface. Then 
there exists a system of holomorphic ODEs E(M), called the associated system to M , of 
the form

w′ = Φ1

(
z, w,

w(k)

wm

)
, · · · , w(k−1) = Φk−1

(
z, w,

w(k)

wm

)
, w(k+1) = Φ

(
z, w,

w(k)

wm

)
(4.16)
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such that w = wp(z) is a solution of E(M) for p /∈ X and

Φj = O(wmζ), j = 1, . . . , k. (4.17)

Furthermore, we can assume that Φ1(z, w, ζ) satisfies

Property (∗) : ∂k+sΦ1

∂wmζk
(0) = k!s!(±i).

If M∗ is another such hypersurface, than any formal map (F, G) taking M into M∗

satisfies (4.5) and transforms the system E(M) into E(M∗).

For producing the associated ODEs, we consider the Segre family of an m-nonminimal 
hypersurface (4.1) satisfying the additional k-nondegeneracy condition, and produce for 
it an elimination procedure, in the spirit of that discussed in Section 2. This Segre family 
looks as:

w = b + O(abmz) (4.18)

(we use the notation p = (ā, ̄b)). Differentiating (4.18) k times in z and using (4.15), we 
obtain:

w(k) = abm(α + o(1)), α �= 0 (4.19)

(here α is a fixed constant). Dividing (4.19) by the m-th power of (4.18) gives:

w(k)

wm
= αa + o(a). (4.20)

Solving the system (4.20), (4.18) for a, b by the implicit function theorem yields

a = A

(
z, w,

w(k)

wm

)
, b = B

(
z, w,

w(k)

wm

)
(4.21)

for two holomorphic near the origin in C3 functions A(z, w, ζ), B(z, w, ζ) with A =
O(ζ) and B = O(w). Differentiating then (4.18) j times for each j = 1, ..., k −
1, k + 1 and substituting (4.21) into the results finally gives us (4.16). Note that 
Φ1(z, w, ζ), ..., Φk−1(z, w, ζ), Φ(z, w, ζ) are all holomorphic near the origin in C3 func-
tions which satisfy (4.17) (as follows from the elimination procedure). It is immediate, 
in the same way as in the nondegenerate case, that all the Segre varieties Qp of M for 
p /∈ X considered as graphs w = wp(z) satisfy the system of ODEs E(M).

We now turn to property (*) for the ODE system (4.16). For obtaining it, let us recall 
that defining equations (4.1) of hypersurfaces under consideration satisfy the reality 
condition:
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w ≡ Θ(z, z̄, Θ̄(z̄, z, w)) ∀z, z̄, w (4.22)

(see, e.g., [5]). Gathering in (4.22) terms with zkz̄1 and using (4.1), we obtain

0 = Θk1(w) + Θ̄1k(w).

Hence we have, in view of (4.15):

ord0 Θ1k = m. (4.23)

It immediately follows then from the above elimination procedure that the term with 
z0wmζk in the expansion of the function Φ1 in (4.16) is non-zero, and without loss of 
generality, we assume its coefficient in what follows to be equal to ±i (even though its 
exact value is of no special interest to us) and hence Property (*) holds.

4.3. Proof of the main theorem under the k-nondegeneracy assumption

The main technical difficulty of this subsection is to provide an analogue of (3.27)
for mappings between hypersurfaces which satisfy the m-nonminimal k-nondegeneracy 
assumptions. We will expand such a map H = (F, G) in this section as

F = z + S(z, w) +
k∑

j=0
fj(w)zj + f(z, w),

G = T (w) + wmR(z, w) + wg0(w) + wm
k∑

j=1
gj(w)zj + wmg(z, w),

Sz(0, 0) = 0, f(z, w) = O(zk+1), g(z, w) = O(zk+1),

(4.24)

where fj , gj , f, g are formal power series, fj , gj all vanish to order k + 1, and 
T (w), S(z, w), R(z, w) are certain fixed polynomials in their variables, exact form of 
which is of no interest to us (the desired representation of g is possible in view of (4.5)). 
We think about fj , gj and their derivatives as “additional parameters”, and for this 
purpose, we write

αij := f
(j)
i (w), βij := g

(j)
i (w), α = {αij}, β = {βij}, 0 ≤ i ≤ k, 0 ≤ j ≤ k + 1.

We will see (through a careful analysis of the transformation rules for the associated 
systems) that we can find holomorphic functions U , V , such that

fzk+1 = U
(
z, w, jk(f, g), {fzk+1−jwj}k+1

j=1 , {gzk+1−jwj}k+1
j=1 , α, β

)
,

gzk+1 = V
(
z, w, jk(f, g), {fzk+1−jwj}k+1

j=1 , {gzk+1−jwj}k+1
j=1 , α, β

)
.

(4.25)
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Let us first show how Theorem 1 follows (in the k-nondegenerate case) from (4.25).

Proof of Theorem 1 under the k-nondegeneracy assumption. Solving (4.25) by the Ov-
cyannikov theorem (see Section 3) as a Cauchy problem with the initial data

fzj (0, w) = gzj (0, w) = 0, 0 ≤ j ≤ k

and the additional parameters α, β, we obtain:

f(z, w) = ϕ
(
z, w, α, β

)
, g(z, w) = ψ

(
z, w, α, β

)
(4.26)

for two functions ϕ, ψ, holomorphic in all their arguments. We recall now that, by defi-
nition, α and β stand for formal power series without constant term, so that substituting 
back f (j)

i (w) for αij and g(j)
i (w) for βij is well defined.

Let us note finally that, combining Proposition 4.2 and the expansion (4.24), we may 
apply the assertion of Proposition 4.2 to the functions f0, ..., fk, g0, ..., gk. Substituting 
the arising sectorial functions f±

j , g±j into (4.26), we obtain sectorial holomorphic trans-
formations (F±, G±). Then, arguing identically to the proof of Theorem 1 in the generic 
case (end of Section 3), we obtain the assertion of Theorem 1 in the k-nondegenerate 
case. �

In what follows, we have to take into consideration the space Jk+1(C , C) of (k+1)-jets 
of holomorphic maps from C into itself. We use the notations

(z, w,w1, ..., wk+1)

for the coordinates in the jet space (here wj corresponds to the derivative w(j)(z)). A 
system (4.16) shall be regarded then as a submanifold in Jk+1(C , C) of dimension 3
(with the local coordinates z, w, wk):

w1 = Φ1

(
z, w,

wk

wm

)
, · · · , wk−1 = Φk−1

(
z, w,

wk

wm

)
, wk+1 = Φ

(
z, w,

wk

wm

)
. (4.27)

Next, we consider the (k + 1)-jet prolongation

H(k+1)(z, w,w1, ..., wk+1) =

=
(
F (z, w), G(z, w), G(1)(z, w,w1), G(2)(z, w,w1, w2), ..., G(k+1)(z, w,w1, ..., wk+1)

)
(4.28)

of the map H = (F, G). Introducing the total derivation operator

D := ∂z + w1∂w +
∑

wj+1∂wj
, (4.29)
j≥1
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we can inductively compute the components of the prolonged map (see [8, (3.96d) of 
section 2.3.1]) as

G(j) = DG(j−1)

DF
, j ≥ 1, where G(0) := G. (4.30)

Note that, in fact,

DF = Fz + w1Gw.

As follows from (4.30), each G(j)(z, w, w1, ..., wj) is an expression, rational in the first 
jet variable w1 and polynomial in the remaining jet variables w2, ..., wj ; its coefficients 
are universal polynomials in the j-jet of (F, G). For certain precise values of j (e.g. 
j = 1, 2, 3), the j-jet prolongation formulas can be written explicitly. For example, we 
have:

G(1)(z, w,w1) = Gz + w1Gw

Fz + w1Fw
,

G(2)(z, w,w1, w2) = 1
(Fz + w1Fw)3

[
(Fz + w1Fw)(Gzz + 2w1Gzw + (w1)2Gww + w2Gw)−

− (Gz + w1Gw)(Fzz + 2w1Fzw + (w1)2Fww + w2Fw)
]
.

(4.31)
For some higher orders see, e.g., [8]. However, for a general j, only certain summation 
formulas exist, which can not always be worked out. That is why we will use only a few 
properties of the prolonged maps, which are useful for our consideration. For example, 
we can claim that, for maps of the kind (4.5), the denominator of it is non-vanishing at 
z = w = w1 = ... = wj = 0. This can be easily proved by induction, by using (4.30) and 
the fact that Fz(0, 0) = 1.

According to the outcome of the previous section and the discussion in Section 2, the 
prolonged map H(k+1) transforms the submanifolds E(M), E(M∗) ⊂ Jk+1(C , C) into 
each other. That is, we have the following basic identity (we set Wk := (w1, ..., wk)):

G(1)(z, w,w1) = Φ∗
1

(
F (z, w), G(z, w), G

(k)(z, w,Wk)
Gm(z, w)

)
,

· · ·

G(k−1)(z, w,w1, . . . , wk−1) = Φ∗
k−1

(
F (z, w), G(z, w), G

(k)(z, w,Wk)
Gm(z, w)

)
,

G(k+1)(z, w,w1, . . . , wk+1) = Φ∗
(
F (z, w), G(z, w), G

(k)(z, w,Wk)
Gm(z, w)

)
,

(4.32)

subject to the restriction
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w1 = Φ1

(
z, w,

wk

wm

)
, · · · , wk−1 = Φk−1

(
z, w,

wk

wm

)
, wk+1 = Φ

(
z, w,

wk

wm

)
(4.33)

(here we used the star notation for the target ODE system). We claim that, by setting

ζ := wk

wm
, (4.34)

we can understand (4.32) as an identity of formal power series in the independent vari-
ables z, w, ζ.

Indeed, we first note that the substitution wk = wmζ makes all expressions in 
(4.33) power series in z, w, ζ (divisible by ζ, in view of (4.17)). Further, we consider 
the singular expression G(k)(z,w,w1,..,wk)

Gm(z,w) in (4.32) as a ratio of two formal power series 
P (z, w, w1, ..., wk), Q(z, w, w1, ..., wk), each of which is polynomial in w1, ..., wk. The de-
nominator Q can be factorized as wm · Q̃(z, w) with Q̃(0, 0) �= 0 (as follows from (3.2)). 
Next, the “constant” term of the polynomial P obtained by setting wj = 0 for all j, can 
be inductively computed using the scheme

c1 = Gz

Fz
, cj = ∂z(cj−1)

Fz
, 2 ≤ j ≤ k + 1 (4.35)

(as follows from (4.30)), and it follows then from (4.5) that the desired constant term 
ck(z, w) is divisible by wm. All the other terms in P are (i) either divisible by wk, hence 
the substitution wk = wmζ makes them divisible by wm, or (ii) divisible by some wj , 
j = 1, ..., k−1, and hence the substitution wj = Φj(z, w, w1, ..., wj) makes them divisible 
by wm (in view of (4.17)). We conclude that P subject to the restriction (4.33) is divisible 
by wm (after the substitution wk = wmζ), and this proves the claim.

We use the following

Convention. In what follows,

hzkwl

denotes the partial derivative ∂k+l

∂zk∂zl for a function h(z, w).

We then consider the last equation in (4.32) subject to (4.33) as an identity in z, w, ζ
and collect within it all terms with ζ0. Then:

(i) in the left hand side, we obtain the expression ck+1(z, w) from (4.35); it is easy to 
see that this expression can be written as

1
(Fz)k+1

(
Gzk+1 · Fz − Fzk+1 ·Gz + · · ·

)
,

where dots stand for a polynomial in Fz, Fzz, ..., Fzk , Gz, gzz, ..., Gzk ; substituting (4.24), 
we obtain
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wm
(
gzk+1 · (1 + A) + fzk+1 ·B + C

)
,

where A, B, C are holomorphic expressions in jkf, jkg, z, w, α, β, and A, B vanish at 
the origin. (In fact, A, B, C have more specific form, but we do not need these further 
details);

(ii) for the right hand side, we argue as above and conclude that, for the singular 
argument G

(k)(z,w,w1,..,wk)
Gm(z,w) , evaluating ζ = 0 and substituting (4.24) makes the numerator 

divisible by wm. Taking further (4.17) into account, we conclude that the right hand side 
in the identity under consideration as well has the form

wmC̃,

where C̃ is an expression, holomorphic in jkf, jkg, z, w, α, β.
We summarize that, gathering in the last identity in (4.32) terms with ζ0 gives:

gzk+1 · (1 + A) + fzk+1 ·B = Ĉ, (4.36)

where A, B, Ĉ are holomorphic expressions as above, and A, B vanish at the origin.
It remains for us to obtain one more identity of the kind (4.36), solvable already in 

fzk+1 . For doing so, we consider in the last identity in (4.32) (subject to restriction (4.33)) 
terms with ζk.

Claim. The result of collecting terms with ζk in (4.32) (subject to restriction (4.33)) can 
be written in the form

−fzk+1 ·
(
±i + L0

)
+

k+1∑
j=1

Lj · fzk+1−jwj +
k+1∑
j=0

Mj · gzk+1−jwj + N = Ñ , (4.37)

where the expressions Lj , Mj , N, Ñ are described identically to the expressions A, B, Ĉ
in (4.36) and, moreover, L0 vanishes at the origin.

To prove the claim, we have to analyze the jet prolonged component G(k+1) with more 
details. Recall that G(k+1) is a rational in w1 and polynomial in w2, ..., wk+1 expression, 
coefficients of which are certain universal polynomials in jk+1(F, G). Its denominator is 
nonvanishing for z = w = w1 = ... = wk+1, as discussed above. Hence, we may expand

G(k+1) =
∑

l1,...,lk+1≥0

El1,...,lk+1(w1)l1 · · · (wk+1)lk+1 , (4.38)

where El1,...,lk+1 are all certain universal polynomials in jk+1(F, G) and the ratio 1
Fz

(the 
latter fact can be seen from (4.30), induction in k and the chain rule). Recall that the 
constant term E0,...,0 can be computed via (4.35). For all the other terms, we have to 
distinguish El1,...,lk+1 depending on the highest order derivatives Fzpwq , Gzpwq , p + q =
k + 1. In this regard, we have
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Lemma 4.5. The only coefficients El1,...,lk+1 in (4.38) depending on the highest order 
derivatives Fzpwq , Gzpwq , p + q = k + 1 are El,0,...,0, l ≥ 0. Moreover, E1,0,...,0 has the 
form identical to the left hand side of (4.37), where the expressions Lj , Mj , N are certain 
universal polynomials in jk(F, G) and 1

Fz
, and, in addition, L0 vanishes when jk(F, G)

is evaluated at z = w = 0.

Proof. For k = 0, the assertion follows from the formula (4.31) and the chain rule. For 
k > 0, we apply the iterative formula (4.30), induction in k and the chain rule. Then the 
assertion of the lemma follows by a straightforward inspection. �

We immediately conclude that, when collecting terms with ζk in the left hand side 
of the last identity in (4.32), highest order derivatives may arise only from terms with 
(w1)l, l ≥ 1. Next, we note that the term E1,0,...,0 · w1, subject to constraint (4.33), 
contributes

wm(±i + o(1)) · E1,0,...,0

(as follows from the Property (∗) of Φ1). Substituting the expansions (4.24) for F, G, 
we obtain an expression of the kind (4.37) multiplied by wm. Further, the constant 
term E0,...,0 does not contribute to ζk (as it doesn’t depend on the wj ’s). All terms 
with (w1)l, l ≥ 2 may contribute to ζk, however, in view of the factorization property 
(4.17) their contribution gives at least the factor O(w2m) in front of the highest order 
derivatives. All other terms do not contribute to ζk with the highest order derivatives, 
as follows from Lemma 4.5. They, however, necessarily give the factor wm, in view of 
(4.17), (4.34).

We finally conclude that the left hand side of the identity under discussion has the 
form identical to the left hand side in (4.37) multiplied by wm.

To study the right hand side of the last identity in (4.32) subject to (4.33), we recall 
that

(i) the denominator of the singular argument G(k)(z,w,w1,..,wk)
Gm(z,w) has the form wm ·

G̃(z, w), G̃(0, 0) �= 0;
(ii) the constant term in the numerator of the same expression is divisible by wm, 

after substituting (4.24) (as discussed above);
(iii) the substitutions (4.34), (4.33) together with the factorization (4.17) make the

rest of the numerator divisible by wm;
(iv) the factorization (4.17) applied to Φ∗ makes the right hand side under consider-

ation in addition divisible by wm (after substituting (4.24)).
In this way, we conclude that the right hand side of the identity under discussion has 

the form identical to the right hand side in (4.37) multiplied by wm. Dividing the latter 
identity by wm finally proves the claim. �

We can now consider the identities (4.36), (4.37) as a linear system in fzk+1 , gzk+1 . 
Solving it by the Cramer rule, we finally obtain (4.25). �
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4.4. Pure order of a nonminimal hypersurface

It might still happen that an m-nonminimal hypersurface (4.1) does not satisfy the 
k-nondegeneracy assumption. To deal with this case, we do (in appropriate coordinates) 
a blow up in the space of parameters of the Segre family. Related to this procedure is an 
important invariant of real hypersurface which we call the pure order. From the point of 
view of our method, the pure order replaces, in a certain sense, the nonminimality order.

Definition 4.6. Let M ⊂ C2 be a real-analytic Levi-nonflat hypersurface given by (4.1). 
The pure order of M at 0 is the integer p such that

p + 1 = mink,l≥1 {l + ord0 Θkl(w̄)}. (4.39)

In other words, p + 1 is the minimal possible l + s such that for some k > 0 the term 
with zk z̄lw̄s in the expansion of Θ does not vanish.

Note that:
(i) for a Levi-nonflat hypersurface p is well defined and nonnegative;
(ii) for a Levi-nondegenerate hypersurface we have p = 0;
(iii) for an m-nonminimal hypersurface we have p ≥ m;
(iv) for an m-nonminimal hypersurface with M \X Levi-nondegenerate (the generic 

case from Section 3) we have p = m.
We start with showing that the integer p is a (formal) invariant of a real-analytic 

hypersurface.

Proposition 4.7. The pure order of a Levi-nonflat hypersurface is invariant under (for-
mal) invertible transformations of hypersurfaces (4.1).

Proof. We note that the pure type introduced above actually comes from an invariant 
pair as introduced in [17]; the invariance of those is proved in that paper. �

We now apply the notion of the pure type to prove the following factorization property 
for CR-maps.

Proposition 4.8. Let M, M∗ ⊂ C2 be two real-analytic nonminimal at the origin hyper-
surfaces, and H = (F, G) : (M, 0) �→ (M∗, 0) a formal map. Then

Fz(0, 0) �= 0, Gw(0, 0) = G′
0(0) �= 0, G(z, w) = O(w), Gz(z, w) = O(wp+1),

(4.40)

where p is the pure order of M, M∗ at 0.
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Proof. The proof of all the assertions except the last one goes identically to the proof of 
(3.2). For the property Gz(z, w) = O(wp+1), we consider the basic identity

G(z, w) = Θ∗(F (z, w), F̄ (z̄, w̄), Ḡ(z̄, w̄))|w=Θ(z,z̄,w̄). (4.41)

Putting z̄ = 0, we get w = w̄, and further differentiating in z gives:

Gz(z, w̄) = ∂

∂z

[
Θ∗(F (z, w̄), F̄ (0, w̄), Ḡ(0, w̄))

]
. (4.42)

We note now that every non-zero term in the expansion of Θ∗ in z, ̄z, w̄ has total degree 
at least p + 1 in z̄, w̄ (by the definition of p). At the same time, since (F, G) preserves 
the origin, we have g(0, w̄) = O(w̄), F (0, w̄) = O(w̄), so that the whole expression in 
the square brackets in (4.42) becomes divisible by w̄p+1. This property persists after 
differentiating in z, and this proves the proposition. �

Next, we prove

Proposition 4.9. Let M ⊂ C2 be a real-analytic Levi-nonflat hypersurface, and p is its 
pure type at 0. Then there exist local holomorphic coordinates (4.1) for M at the origin 
with (4.2), such that for certain k ≥ 1 we have:

ord0 Θk1(w̄) = p. (4.43)

Proof. Let us choose any coordinates (4.1) for M at 0 with (4.2). As was discussed above, 
change of coordinates (4.1) corresponds to choosing a curve γ ⊂ M being transformed 
to the canonical curve (2.2). Let us choose γ ⊂ M of the kind

z = αu, w = u + iq(u), u ∈ R

for an appropriate real-valued q(u) and a generic α ∈ C . Then there exists a biholomor-
phic transformation of the form,

z �→ z − αw, w �→ g(z, w), g(0, 0) = 0, (4.44)

mapping M into another hypersurface M∗ of the form (4.1) and γ into the curve (2.2)
(e.g., [13][25]). If we now fix in the expansion (4.1) of M the non-zero term zkz̄jw̄l, j+l =
p + 1 with the minimal k ≥ 1, then it is easy to verify from the basic identity that the 
substitution (4.44) creates, for a generic α, a non-zero term zkz̄w̄p in the expansion (4.1)
for M∗. In view of the invariance of the pure order this means the validity of (4.43) for 
M∗. Moreover, for a generic α in (4.44) the condition (4.2) persists as well, and this 
proves the proposition. �
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4.5. Proof of the main theorem

Having Theorem 1 proved in the k-nondegenerate case (subsection 4.3) and having 
the relations (4.40), (4.43), we are now in the position to prove Theorem 1 in its full 
generality.

Proof of Theorem 1. According to the outcome of subsection 4.3, it remains to prove 
the theorem in the case when M is m-nonminimal at 0 but is not k-nondegenerate 
for any k ≥ 1. Let us choose for M, M∗ local holomorphic coordinates according to 
Proposition 4.9. Then we have the identity (4.43), for both the source and the target. 
Let us then consider the Segre family S = {Qp}p=(ā,b̄) of M as a 2-parameter holomorphic 
family in a, b. Next, let us perform the following blow up in the space of parameters:

a = ãb̃, b = b̃. (4.45)

Let us denote the new parameterized family by S̃, and keep denoting for simplicity 
the new parameters by a, b. Then, considering an element of the family S as a graph 
w = w(z) and expanding in z, a, b, we see that terms λzkajbl get transformed (after 
the blow up (4.45)) into λzkajbj+l. We obtain from here the crucial corollary that all 
terms in the expansion of w(z, a, b) except the very first term z0a0b1 are divisible by bp+1. 
Furthermore, the non-zero (in view of (4.43)) term λzkabp, k ≥ 1 gets transformed into 
zkabp+1. We conclude that the transformed family S̃ has the form identical to (4.18)
with the nondegeneracy property (4.19), with the only difference that m is replaced by 
p + 1. Hence, arguing identically to subsection 4.2, we conclude that the family S̃ (and 
hence the family S!) satisfy a system of ODEs, identical to (4.16) with the only difference 
that, again, m is replaced by p + 1. The same statement applies for the target M∗, and 
we conclude that the given formal map (F, G) between (M, 0) and (M∗, 0) satisfies an 
identity similar to (4.32) with m replaced by p + 1.

We finally recall that (F, G) satisfies the factorization (4.40), which is identical to (4.5)
with, again, m replaced by p +1. This allows to repeat the proof in the k-nondegenerate 
case word-by-word (we recall that the crucial Proposition 4.2 is valid without any further 
assumptions and thus is applicable to the map (F, G)). Theorem 1 is proved. �

In the end of the paper, we are able to finally formulate and prove the following 
expanded version of Theorem 3, which is also a much stronger version of the main 
result.

Theorem 5. Let M, M∗ ⊂ C2 be two real-analytic Levi-nonflat hypersurfaces, both of 
infinite type at 0, and let Ĥ : (M, 0) �→ (M∗, 0) be a formal CR equivalence. Then 
there exist a constant s > 0, local holomorphic coordinates (z, w) for M, M∗ at 0 at 
which the complex locus of both M and M∗ is {w = 0}, a disc Δ ⊂ C , sectors S± ⊂
(C , 0) with vertex at 0 containing the directions R±, respectively, and holomorphic maps 
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H± : Δ × S± → C2 such that Ĥ is the (0, s) multi Gevrey asymptotic expansion of 
H± and H±(M ∩ (Δ × S±)) ⊂ M∗; in particular, Ĥ(z, w) belongs to the (0, s) multi 
Gevrey class, and H±|M defines a CR diffeomorphism H of M onto M∗. Furthermore, 
the formal power series Ĥ has the multisummability property.

Proof of Theorem 5. The assertion of the theorem immediately follows from the crucial 
Corollary 3.3 and Proposition 4.2, and the representations (3.9), (4.26). �
Acknowledgments

The authors would like to thank Nordine Mir for his valuable remark on the possibility 
to obtain the assertion of Theorem 2 from Theorem 1.

References

[1] M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968) 277–291.
[2] W. Balser, A different characterization of multi-summable power series, Analysis 12 (1–2) (1992) 

57–65.
[3] W. Balser, Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equa-

tions, Universitext, Springer-Verlag, 2000.
[4] W. Balser, B.L.J. Braaksma, J.-P. Ramis, Y. Sibuya, Multisummability of formal power series 

solutions of linear ordinary differential equations, Asymptot. Anal. 5 (1991) 27–45.
[5] M.S. Baouendi, P. Ebenfelt, L.P. Rothschild, Real Submanifolds in Complex Space and Their Map-

pings, Princeton Math. Ser., vol. 47, Princeton University Press, Princeton, NJ, 1999.
[6] S. Baouendi, P. Ebenfelt, L. Rothschild, Convergence and finite determination of formal CR map-

pings, J. Am. Math. Soc. 13 (4) (2000) 697–723.
[7] S. Baouendi, X. Huang, L.P. Rothschild, Regularity of CR mappings between algebraic hypersur-

faces, Invent. Math. 125 (1996) 13–36.
[8] G. Bluman, S. Kumei, Symmetries and Differential Equations, Applied Mathematical Sciences, 

vol. 81, Springer-Verlag, New York, 1989.
[9] B.L.J. Braaksma, Multisummability and Stokes multipliers of linear meromorphic differential equa-

tions, J. Differ. Equ. 92 (1991) 45–75.
[10] B.L.J. Braaksma, Multisummability of formal power series solutions of nonlinear meromorphic dif-

ferential equations, Ann. Inst. Fourier (Grenoble) 42 (3) (1992) 517–540.
[11] B.J. Braaksma, Multisummability and ordinary meromorphic differential equations, in: Formal and 

Analytic Solutions of Differential and Difference Equations, in: Banach Center Publ., vol. 97, Polish 
Acad. Sci. Inst. Math., Warsaw, 2012, pp. 29–38.

[12] E. Cartan, Sur la geometrie pseudo-conforme des hypersurfaces de l’espace de deux variables com-
plexes II, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (2) 1 (4) (1932) 333–354.

[13] S.S. Chern, J.K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974) 219–271.
[14] G. Della Sala, B. Lamel, Asymptotic approximations and a Borel-type result for CR functions, Int. 

J. Math. 24 (11) (2013).
[15] K. Diederich, S. Pinchuk, Regularity of continuous CR-maps in arbitrary dimension, Mich. Math. 

J. 51 (1) (2003) 111–140.
[16] J. Ecalle, Sur les fonctions résurgentes, I, II, III, Publ. Math. d’Orsay.
[17] P. Ebenfelt, B. Lamel, D. Zaitsev, Degenerate real hypersurfaces in C2 with few automorphisms, 

Trans. Am. Math. Soc. 361 (6) (2009) 3241–3267.
[18] P. Hsieh, Y. Sibuya, Basic Theory of Ordinary Differential Equations, Universitext, Springer-Verlag, 

New York, 1999.
[19] Y. Ilyashenko, S. Yakovenko, Lectures on Analytic Differential Equations, Graduate Studies in 

Mathematics, vol. 86, American Mathematical Society, Providence, RI, 2008.
[20] R. Juhlin, B. Lamel, On maps between nonminimal hypersurfaces, Math. Z. 273 (1–2) (2013) 

515–537.

http://refhub.elsevier.com/S0001-8708(21)00556-9/bibCF6D82BD7B0173B9DCB39294B35C5A36s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib5C02B2C58ED562923F9BD1EBE999221As1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib5C02B2C58ED562923F9BD1EBE999221As1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib285E54B65D19EEA785C5381C787A59C9s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib285E54B65D19EEA785C5381C787A59C9s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib17D3DCCBD8205733E64639F51E389AE5s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib17D3DCCBD8205733E64639F51E389AE5s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibC9FEDF43460997594C3CD56C47CDD6EEs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibC9FEDF43460997594C3CD56C47CDD6EEs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibB71BAD0B42C68FE6A099CE1E6C90376Es1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibB71BAD0B42C68FE6A099CE1E6C90376Es1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib4C26C97AB3405728E4518B11E6D235C1s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib4C26C97AB3405728E4518B11E6D235C1s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib497336B78D9DCE1C5AE9A405943518A4s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib497336B78D9DCE1C5AE9A405943518A4s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib62BB2A072CA601460B0EC323E7DC3B93s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib62BB2A072CA601460B0EC323E7DC3B93s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibEB283E013B8D55D30ABC7BD4AC099AC1s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibEB283E013B8D55D30ABC7BD4AC099AC1s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib6A8AA663D1531B4B3176BB448487F144s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib6A8AA663D1531B4B3176BB448487F144s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib6A8AA663D1531B4B3176BB448487F144s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib41EBCC55C94F0864AB748CF88F1F38F5s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib41EBCC55C94F0864AB748CF88F1F38F5s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib98351B48E05B39B9FED24A184D6B122Es1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib6E6EFA223C764DFD821113CBDDA763CBs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib6E6EFA223C764DFD821113CBDDA763CBs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibDA264C5B24D19176D5789458E147481Fs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibDA264C5B24D19176D5789458E147481Fs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibA807DA4CD55EE3049595FBE898364737s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibA807DA4CD55EE3049595FBE898364737s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibA95ED10570E1DA4EBC38AA5DF710F0BBs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibA95ED10570E1DA4EBC38AA5DF710F0BBs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibF74D9C46D02582E6F69D643200067CC4s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibF74D9C46D02582E6F69D643200067CC4s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib44F97DEC1BF00316469674577212BC21s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib44F97DEC1BF00316469674577212BC21s1


JID:YAIMA AID:108117 /FLA [m1L; v1.311] P.42 (1-42)
42 I. Kossovskiy et al. / Advances in Mathematics ••• (••••) ••••••
[21] I. Kossovskiy, B. Lamel, On the analyticity of CR-diffeomorphisms, Am. J. Math. (AJM) (1) (2018) 
139–188.

[22] I. Kossovskiy, B. Lamel, New extension phenomena for solutions of tangential Cauchy-Riemann 
PDEs, Commun. Partial Differ. Equ. (CPDE) 41 (6) (2016) 925–951.

[23] I. Kossovskiy, R. Shafikov, Divergent CR-equivalences and meromorphic differential equations, J. 
Eur. Math. Soc. (JEMS) 13 (2016) 2785–2819.

[24] I. Kossovskiy, R. Shafikov, Analytic differential equations and spherical real hypersurfaces, J. Differ. 
Geom. (JDG) 102 (1) (2016) 67–126.

[25] B. Lamel, N. Mir, Finite jet determination of local CR automorphisms through resolution of degen-
eracies, Asian J. Math. 11 (2) (2007) 201–216.

[26] B. Malgrange, Sommation des séries divergentes, Expo. Math. 13 (2–3) (1995) 163–222.
[27] J. Martinet, J.-P. Ramis, Elementary acceleration and multisummability, Ann. Inst. Henri Poincaré 

54 (4) (1991) 331–401.
[28] F. Meylan, A reflection principle in complex space for a class of hypersurfaces and mappings, Pac. 

J. Math. 169 (1995) 135–160.
[29] Midwest SCV Conference – 2016 problem list, available at https://sites .google .com /a /umich .edu /

mw -scv -16 /problem -session.
[30] P. Olver, Applications of Lie Groups to Differential Equations, second edition, Graduate Texts in 

Mathematics, vol. 107, Springer-Verlag, New York, 1993.
[31] L.V. Ovsjannikov, Singular operator in the scale of Banach spaces, Dokl. Akad. Nauk SSSR 163 

(1965) 819–822.
[32] H. Poincaré, Les fonctions analytiques de deux variables et la representation conforme, Rend. Circ. 

Mat. Palermo 23 (1907) 185–220.
[33] J.-P. Ramis, Les séries k-sommables et leurs applications, in: Complex Analysis, Microlocal Calculus 

and Relativistic Quantum Theory, Proc. Internat. Colloq., Centre Phys., Les Houches, 1979, in: 
Lecture Notes in Phys., vol. 126, Springer, 1980, pp. 178–199.

[34] J.-P. Ramis, Séries divergentes et théories asymptotiques, Bull. Soc. Math. Fr. 121 (Panoramas et 
Syntheses, suppl.) (1993).

[35] J.-P. Ramis, B. Malgrange, Fonctions multisommables, Ann. Inst. Fourier 42 (1–2) (1992) 353–368.
[36] J.-P. Ramis, L. Stolovitch, Divergent series and holomorphic dynamical systems, Unpublished lec-

ture notes from J.-P. Ramis lecture at the SMS Bifurcations et orbites périodiques des champs de 
vecteurs, Montréal 1992, 57 pp., http://math .unice .fr /~stolo /pdf /cours .dvi, 1993.

[37] J.-P. Ramis, Y. Sibuya, A new proof of multisummability of formal solutions of nonlinear meromor-
phic differential equations, Ann. Inst. Fourier (Grenoble) 44 (3) (1994) 811–848.

[38] G. Rond, Artin approximation, J. Singul. 17 (2018) 108–192.
[39] B. Segre, Questioni geometriche legate colla teoria delle funzioni di due variabili complesse, Ren. 

Sem. Mat. Roma, II, Ser. 7 (2) (1932) 59–107.
[40] S. Sternberg, On the structure of local homeomorphisms of Euclidean n-space. II, Am. J. Math. 80 

(1958) 623–631.
[41] A. Sukhov, Segre varieties and Lie symmetries, Math. Z. 238 (3) (2001) 483–492.
[42] A. Sukhov, On transformations of analytic CR-structures, Izv. Math. 67 (2) (2003) 303–332.
[43] N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, 

J. Math. Soc. Jpn. 14 (1962) 397–429.
[44] F. Trèves, Ovcyannikov Theorem and Hyperdifferential Operators, Notas de Matemática, vol. 46, 

Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.
[45] W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Pure and Applied Math-

ematics, vol. XIV, Interscience Publishers John Wiley and Sons, Inc., New York-London-Sydney, 
1965.

[46] S. Webster, On the mappings problem for algebraic real hypersurfaces, Invent. Math. 43 (1977) 
53–68.

http://refhub.elsevier.com/S0001-8708(21)00556-9/bib93347ED59034AFAECE98802C8C2C2FA6s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib93347ED59034AFAECE98802C8C2C2FA6s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib0747FFD2EC4A506EE2B993A044B370C9s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib0747FFD2EC4A506EE2B993A044B370C9s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib1F064262EE7A1D63D490D9880AEB4AA0s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib1F064262EE7A1D63D490D9880AEB4AA0s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibDD5D38EEACCEDB61CB2F721979E8E391s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibDD5D38EEACCEDB61CB2F721979E8E391s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib537F24B27C654A4159B826C774FDCFA5s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib537F24B27C654A4159B826C774FDCFA5s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibB166F53CAE3464DEC8D9B2EB5D581A36s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib4A99AEC6512E017385FAC0F7404C5786s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib4A99AEC6512E017385FAC0F7404C5786s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib0BDAC17DDD5C175E10FD26B812FDE7EEs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib0BDAC17DDD5C175E10FD26B812FDE7EEs1
https://sites.google.com/a/umich.edu/mw-scv-16/problem-session
https://sites.google.com/a/umich.edu/mw-scv-16/problem-session
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib4F236037548CC91D80D5D3EFBE306035s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib4F236037548CC91D80D5D3EFBE306035s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibB80E5F587B9039191D8EE29E926C9D60s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibB80E5F587B9039191D8EE29E926C9D60s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib2ACFFB70649C35DD80D70A129BB4827Cs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib2ACFFB70649C35DD80D70A129BB4827Cs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib9B12DE1828DB835CD44D8C2D47DB4AA2s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib9B12DE1828DB835CD44D8C2D47DB4AA2s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib9B12DE1828DB835CD44D8C2D47DB4AA2s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib52399248AB6C6B901C4ADC4E0D38DC3Es1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib52399248AB6C6B901C4ADC4E0D38DC3Es1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibABB016F673FBFB5AACD2E197C55A07A9s1
http://math.unice.fr/~stolo/pdf/cours.dvi
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib957D9A017A8FC5FC53CEE1DBC1A50189s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib957D9A017A8FC5FC53CEE1DBC1A50189s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib7A94153BB3BE92C40FBDDF1BE5D5D9E9s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib41C5236A3D6C3B360D76BE19C87E060As1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib41C5236A3D6C3B360D76BE19C87E060As1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibCF0D62FA2F5AC359C2DA7BE0A1BE2AABs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibCF0D62FA2F5AC359C2DA7BE0A1BE2AABs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib2E7878D026031FA49526B6907E124974s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibBE60529C0119E465929C7D13D14AE5E7s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib0292E031195CA50FED149B421C7DF329s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib0292E031195CA50FED149B421C7DF329s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibF89A1AC6603E07CE3607040F2CFE035Fs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibF89A1AC6603E07CE3607040F2CFE035Fs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibAC60D2AC0506DC2071B691F8E4D190D5s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibAC60D2AC0506DC2071B691F8E4D190D5s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bibAC60D2AC0506DC2071B691F8E4D190D5s1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib90CEF87A29EFC802FF057A84115E5CFAs1
http://refhub.elsevier.com/S0001-8708(21)00556-9/bib90CEF87A29EFC802FF057A84115E5CFAs1

	Equivalence of three-dimensional Cauchy-Riemann manifolds and multisummability theory
	1 Introduction
	2 Preliminaries
	2.1 Segre varieties
	2.2 Nonminimal real hypersurfaces
	2.3 Real hypersurfaces and second order differential equations
	2.4 Equivalences and symmetries of ODEs
	2.5 Tangential sectorial domains and smooth CR-mappings
	2.6 Summability of formal power series

	3 Complete system for a generic nonminimal hypersurface
	3.1 Outline of the results and conclusion of the proof in the generic case
	3.2 Associated complete system

	4 The exceptional case
	4.1 k-Summability of initial terms
	4.2 Associated ODEs of high order
	4.3 Proof of the main theorem under the k-nondegeneracy assumption
	4.4 Pure order of a nonminimal hypersurface
	4.5 Proof of the main theorem

	Acknowledgments
	References


