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Abstract: This article is concerned with analytic Hamiltonian dynamical systems in
infinite dimension in a neighborhood of an elliptic fixed point. Given a quadratic Hamil-
tonian, we consider the set of its analytic higher order perturbations. We first define the
subset of elements which are formally symplectically conjugated to a (formal) Birkhoff
normal form.Weprove that if the quadraticHamiltonian satisfies aDiophantine-like con-
dition and if such a perturbation is formally symplectically conjugated to the quadratic
Hamiltonian, then it is also analytically symplectically conjugated to it. Of course what
is an analytic symplectic change of variables depends strongly on the choice of the phase
space. Here we work on periodic functions with Gevrey regularity.

1. Introduction

In finite dimension, studying the behavior of the orbits of a vector field (or of diffeo-
morphism) nearby a fixed point is a fundamental and classical problem. The very first
natural step into this understanding is to compare the dynamical system with its lin-
earization at the fixed point. This is done by trying to transform the dynamical system
into its linear part by a change of coordinates. There are formal obstructions to do so,
called resonances. Hence, in general, one can merely expect the dynamical system to be
transformed into a normal form, that is supposed to capture effect the very nonlinearities,
through a formal change of coordinates. It was understood by the end of the 19th century
that if the convex hull of the eigenvalues of the linear part does not contain the origin
(one says then that the linear part is in the “Poincaré domain”), and if an higher order
analytic perturbation is formally conjugate to the linear part, then it is also analytically
so. When the linear part does not satisfy this property, then one has so-called “small
divisors” that may forbid the transformation to be analytic. It was a major step forward
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made by C.L. Siegel [Sie42], followed by H. Rüssmann [Rue77] (for diffeomorphisms)
and by A.D. Brjuno [Bru72] (for vector fields) who devised a sufficient “small divisors
condition” ensuring the analyticity of a linearizing transformation as soon as there ex-
ists a formal one. Linearizing (resp. Normalizing) problems for diffeomorphisms were
devised by J. Pöschel [Pös86] and for commuting families by the second author [Sto15]
(resp. [Sto00]). By the end of the 70’s, it became clear to few people that some PDE’s
problems could be translated into an infinite dimensional dynamical systems to which
one would have tried to apply methods of finite dimension. In particular, we mention the
work by E. Zehnder [Zeh77] and V. Nikolenko [Nik86] who gave results similar to finite
dimensional ones. It happens that the “small divisors condition” they required are too
strong and are rarely satisfied. Furthermore, in general, the notion of formal normal form
and formal change of variables should be clarified (for instance if one defines formal
polynomials and formal power series it is not in general true that this space has a Poisson
algebra structure). Nevertheless, in some very peculiar situation, this problem can be
handled [BS20].

Starting from the mid 80’, there has been a lot of interest in studying long time
behavior of solutions of PDEs. For those PDEs which can be considered as Hamiltonian
(infinite dimensional) dynamical systems related to a symplectic structure, one natural
way to proceed is to prove the existence of finite dimensional invariant tori in the phase
space. This usually implies the existence of quasi-periodic solutions, which are defined
for all time. Lot of progresses has been done on the problem of extending KAM theory
to PDEs. This circle of problems are very related, though distinct, to the ones solved
in this article. Indeed, here one considers a dynamical system close to an elliptic fixed
point with the purpose of conjugating it to its most simple normal form : its linear part
at the fixed point. On the other hand, in KAM theory, one looks for the existence of a
finite dimensional invariant flat torus on which the dynamics is the linear translation by
a diophantine frequency. There is by now a wide literature dealing the subject related
to semi-linear PDEs, starting from [K88,Pös90,KP96,Way90,CW93], (for instance,
see [EK10,GYX,PP16,BKM18,Y21] for more recent treatments). It has been early
understood that these resultsmight be seen through elaborated versions of “Nash–Moser”
theorem see for instance [Bou98,BB15,BCP,CM18].Wefinallymention [FGPr,BBHM,
BM21,FG] for the case of fully-nonlinear PDEs. See also [BMP21,CY21] and references
therein for infinite-dimensional tori.

Birkhoff normal form (BNF) methods have been used in order to prove long time
existence results and control of Sobolev norms for many classes of evolution PDEs
close to an elliptic fixed point. Loosely speaking the point is to canonically transform
H into a Hamiltonian Normal form which depends only on the actions plus a remainder
term whose the Taylor polynomial, at the origin is of degree N + 1. If one achieves this
then initial data which are δ-small (with respect to the norm on the phase space) stay
small (in the same norm) for times of order δ−N. A more precise formulation is given
in the Strategy section below. Of course in the infinite dimensional setting this stability
time depends strongly on the choice of the phase space as well as on the nature of the
non-linear terms. A further problem is that in general it is not obvious that one can
perform even one step of this procedure, indeed the generating function of the desired
change of variables is a formal polynomial which in infinite dimension is not necessarily
analytic. This is a particularly difficult problem in the case of PDEs with derivatives in
the nonlinearity.

Let us briefly describe some of the literature. Regarding applications to PDEs (and
particularly the NLS) the first results were given in [Bou96a] by Bourgain, who proved
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that for any N there exists p = p(N) such that small initial data in the H p′+p norm
stay small in the H p′

norm, for times of order δ−N. Afterwards, Bambusi in [Bam99b]
proved that super-analytic initial data stay small in analytic norm for sub-exponentially
long times. Following the strategy proposed in [Bam03] for the Klein–Gordon equa-
tion Bambusi and Grébert in [BG03] first considered NLS equations on T

d and then,
in [BG06], proved polynomial bounds for a class of tame-modulus PDEs. Similar re-
sults were also proved for the Klein Gordon equation on tori and Zoll manifolds in
[DS04,DS06,BDGS07]. Successively Faou and Grébert in [FG13] considered the case
of analytic initial data and proved sub-exponential bounds on the stability time for classes
of NLS equations in T

d . In [BMP18] the first author with Biasco and Massetti studied
an abstract Birkhoff normal form on sequence spaces proving sub-exponential stability
times for Gevrey regular initial data. A similar result was proved in [CMW]. An inter-
esting feature of the last three papers is that instead on relying on tameness properties
they use the fact that the equations they study have some symmetries, namely they are
gauge and translation invariant (actually in [BMP18] the translation invariance condition
is weakened).

All the preceding results regard semi-linear PDEs. Regarding equations with deriva-
tives in the nonlinearity, the first results were in [YZ14] for the semi-linear case. Then
we mention [Del12,D15] for the Klein–Gordon equation, [BD18] for the water waves
and [FI18] for the reversible NLS equation. Recently, Feola and Iandoli, [FI20] prove
polynomial lower bounds for the stability times of Hamiltonian NLS equations with
two derivatives in the nonlinearity. In the context of infinite chains with a finite range
coupling, similar considerations can be done and we mention [BFG88].

1.1. Statements. WestudyHamiltonians on infinite dimensional sequence spaces,which
are higher order (M-regular) analytic perturbations of quadratic Hamiltonians nearby
an elliptic fixed point (i.e a zero) and satisfying the Momentum conservation property,
namely they are formally translation invariant, see Definition 9.

We first show that the space F of formal Hamiltonians in infinite variables u =(
u j
)
j∈Z satisfying this Momentum conservation property is well defined and closed

w.r.t Poisson brackets, then we define a scaling degree (which is the homogeneity de-
gree minus two, see Definition 2.3, so that the degree of the Poisson bracket of two
functions is the sum of the respective degrees) so that F has a natural filtered Lie alge-
bra structure. Thus F is decomposed in homogeneous components Fd and we define
F≥d := ⊕̂h≥dFh .

Given a rationally independentω ∈ R
Z, namely such that all non-trivial finite rational

combinations of ω are non zero, we consider the affine space Dω + F≥1 of formal
Hamiltonians of the form

H = Dω + P , Dω =
∑

j∈Z
ω j |u j |2 , P = O(u3) , (1)

and acting on this space we define the group of formal symplectic (i.e canonical) trans-
formations e

{F≥1,·}. Finally we define the space of normal forms as those formal Hamil-
tonians which Poisson commute with Dω. We prove the following

Theorem. All Hamiltonians H as above are formally symplectically conjugated to
normal form. Moreover the normal form Hamiltonian associated to H is unique.
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Having properly developed the formal framework, we consider the question of formal
vs. analytic linearization in the infinite dimensional setting on the phase space of Gevrey
regular functions.

In order to keep technical difficulties to aminimum,weworkonNonlinearSchrödinger
like Hamiltonians with the standard symplectic structure on �2 = �2(Z,C). As phase
space we consider the sequences ofGevrey regularity, namely we consider the weighted
space

hs,p,θ :=
⎧
⎨

⎩
u ∈ �2(Z,C) : |u|2s :=

∑

j∈Z
〈 j〉2pe2s〈 j〉θ |u j |2 < ∞

⎫
⎬

⎭
(2)

where 〈 j〉 := max(| j |, 1), s > 0, p ≥ 1
2 and 0 < θ < 1. Then, given r > 0, we consider

the space of M-regular Hamiltonians P ∈ Hr (hs,p,θ ), such that the Cauchy majorant
of the map u → XP (u) is analytic from the ball Br (hs,p,θ ), centered at the origin and
of radius r into hs,p,θ .

Now we consider a Hamiltonian as in (1), with the additional condition that P ∈
Hr0(hs0,p,θ ) and the frequency ω is “Diophantine” in the following sense introduced by
Bourgain [Bou05]. We set

� :=
{

ω = (
ω j
)
j∈Z ∈ R

Z, sup
j

|ω j − j2| < 1/2

}

(3)

Definition 1.1. Given γ > 0 , we denote by Dγ the set of Diophantine frequencies

Dγ :=
{

ω ∈ � : |ω · �| > γ
∏

n∈Z

1

(1 + |�n|2〈n〉2) , ∀� ∈ Z
Z

f \ {0}
}

. (4)

Themap
(
ω j
)
j∈Z → (

j2 − ω j
)
j∈Z identifies�with [−1/2, 1/2]Z. Hence we endow�

with the product topology and with the corresponding probability measure. With respect
to such measure Diophantine frequencies are typical,1 namely � \ Dγ has measure
proportionally bounded by γ (see for instance [BMP18] [Lemma 4.1]).

Then we prove:

Theorem. If H = Dω + P with P ∈ Hr0(hs0,p,θ ) is formally conjugated to Dω, then
there exists r1 < r0, s1 > s0 and a close to identity analytic symplectic change of
variables � : Br1(hs1,p,θ ) → hs1,p,θ such that H ◦ � = ∑

j∈Z ω j |u j |2.
Remark 1.2. We have formulated our result for frequencies close to j2, however the
proof holds, essentially verbatim, in the more general case of Hamiltonian perturbations
of Dω when the frequency ω ∼ jα with α > 1. More precisely our main result holds
for all Hamiltonians H = Dω + P with P ∈ Hr0(hs0,p,θ ) provided that

Dγ,α :=
{

ω = (
ω j
)
j∈Z ∈ R

Z : sup
j

|ω j − jα | < 1/2 , |ω · �| > γ
∏

n∈Z

1

(1 + |�n |2〈n〉2) , ∀� ∈ Z
Z

f \ {0}
}

.

(5)

Note that the measure of Dγ,α may be estimated uniformly in α, however in the proof
of Lemma 3.8 (precisely in Lemma A.10) we need the condition α > 1, and one gets
r1 → 0 as α → 1+.

1 If we fix any point ω0 ∈ R
Z, then the set of Diophantine frequencies ω such that |ω − ω(0)|∞ < 1/2 is

again typical.
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Remark 1.3. The requirement θ < 1 in the definition of the phase space comes from
dependence of the constant C1 in Lemma 3.8. Indeed (see Lemma A.10) one can verify
that r1 → 0 (or equivalently s1 → ∞) as θ → 1−. Similarly the requirement s1 > s0 >

0 comes form Lemma 3.8 and again r1 → 0 in the limit s1, s0 → 0+.

As we have explained above our result does not cover the Sobolev case, because if
s = 0 we are not able to control the small divisors sufficiently well. If we assume that
Dω has no small divisors, that is

inf
�∈ZZ

f : |ω·�|=0
|ω · �| ≥ γ > 0.

then we have the following result.

Theorem. Assume that s = 0 (Sobolev case) and that Dω has no small divisors. If
H is formally conjugated to Dω, then there exists r1 < r0, and a close to identity
analytic symplectic change of variables � : Br1(h0,p,θ ) → h0,p,θ such that H ◦ � =∑

j∈Z ω j |u j |2.

1.1.1. Examples Although we have stated and proved our results in the context of
weighted sequence spaces, our statements are written with the PDE context in mind.
Indeed it is not difficult to produce (non-local) Pseudo-Differential Equations which
satisfy the hypotheses of our main result. The simplest way of course is to start from
a linear equation and then perform a non-linear change of variables which puts it in
the form Dω + P discussed above. For instance one can start with a linear Schrödinger
equation with a convolution potential on the circle

iwt − wxx + V 
 w = 0 , V 

∑

j∈Z
w j e

i j x =
∑

j∈Z
Vjw j e

i j x ,

it is well known that this is a Hamiltonian PDE whose Hamiltonian in the Fourier basis
is Dω with ω j = j2 +Vj . If we take V = (

Vj
)
j∈Z ∈ �∞(R) as a set of parameters, then

for typical V ’s the corresponding ω is Diophantine. On the other hand if V = 0 then we
are in the case without small divisors.

Now consider the change of variables generated by the time one Hamiltonian flow
�K of

K :=
∫

T

dx |〈∂x 〉−2u|4

=
∑

j1− j2+ j3− j4=0

u j1 ū j2u j3 ū j4

〈 j1〉2〈 j2〉2〈 j3〉2〈 j4〉2 , here 〈∂x 〉ei j x = 〈 j〉ei j x .

One can easily verify that (here �0 is the projection on zero-mean functions)

Dω ◦ �K = e{K ,·}
∫

T

dx |∂xu|2

=
∫

T

dx |∂xu|2 + 2Im
∫

T

ū�0(|〈∂x 〉−2u|2〈∂x 〉−2u) + h.o.t. ,

satisfies all the hypotheses of our theorem.
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1.2. Strategy. In order to describe our strategy consider a finite dimensional Hamilto-
nian system with a non-degenerate elliptic fixed point, which in the standard complex
symplectic coordinates u j = 1√

2
(q j + ip j ) is described by the Hamiltonian

H =
n∑

j=1

ω j |u j |2 + O(u3) , where ω j ∈ R are the linear frequencies. (6)

Here if the frequencies ω are rationally independent, then one can perform the so-called
Birkhoff normal form procedure: for N ≥ 1 Hamiltonian (6) is transformed into

n∑

j=1

ω j |u j |2 + Z + R , (7)

where Z depends only on the actions (|ui |2)ni=1 while R = O(|u|N+3) has a zero of order
at least N + 3 in |u|. At each step, the generating function of the change of variables is a
polynomial, so it is analytic and generates a flow in a sufficiently small ball Bδ around
the origin. It is well known that this procedure generically diverges in N, but assuming
that ω is appropriately non resonant, say diophantine2 one can control R and hence find
N = N(δ)whichminimizes the size of the remainder R. It can be shown that it is bounded
by an exponentially flat function of δ, of order related to τ (for a general treatment, see
instance, [IoL05,LS10]). This phenomenon is also related to Nekhoroshev kind of result
[Pös99,BGG85,N77,Ni04,BCG].

If H in (6) is “formally linearizable”, namely there exists a formal symplectic change
of variables which conjugates H to

∑n
j=1 ω j |u j |2, and ω is Diophantine, then at each

step of the procedure described above, uwe find Z = 0 and one can prove convergence.
In order to apply this general scheme in the infinite dimensional setting we first discuss
the BNF procedure at the level of formal power series. Here the fundamental difference
w.r.t. the finite dimensional case is that even polynomials can be just formal power series,
so it is not a priori obvious that the space of formal power series is well defined and has
a Poisson algebra structure (which coincides with the usual one on finite dimensional
subspaces). As a simple example consider the formal power series H = ∑

j u j , then

{H, H̄} =
∑

i

∑

j

{u j , ūi } = ∞ .

We show that for translation invariant formal Hamiltonians the Poisson brackets are well
defined (see also [FGP]), and that formal Hamiltonians are a filtered Lie algebra with
respect to a scaling degree. Then we define a group of formal symplectic changes of
variables, and prove our BNF result. In order to define our changes of variables and
prove the group structure we strongly rely on the properties of the scaling degree as well
as on the Baker Campbell Hausdorff formula.

Then we restrict to functions on the sequence space hs,p,θ , introduce the space of
regular Hamiltonians and state the main relevant properties. All properties were proved
in [BMP18] in the more restrictive case of Gauge invariant Hamiltonians, generalizing
the results to our case requires some tedious case analysis but follows very closely the
approach of [BMP18]; for completeness we give all the proofs in the appendix. Once we

2 A vector ω ∈ R
n is called diophantine when it is badly approximated by rationals, i.e. it satisfies, for

some γ, τ > 0, |k · ω| ≥ γ |k|−τ , ∀k ∈ Z
n \ {0} .
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have all the basic properties needed to perform Birkhoff Normal Form, proving that for-
mal linearizability implies analytic linearizability becomes a relatively straightforward
induction.

2. Formal Birkhoff Normal on Sequence Spaces

As usual given a vector k ∈ Z
Z, |k| := ∑

j∈Z |k j |. We denoteNZ

f to be the set of finitely

supported sequences of non negative integers, similarly for ZZ

f . If j ∈ Z then e j ∈ Z
Z

f
denotes the vector the j-coordinate of which is 1, while the others are zero.

Definition 2.1 (Formal power series). We consider the space F of formal power series
expansions in u ∈ C

Z:

H(u) =
∑

α,β∈NZ

f

Hα,βu
α ūβ , u ∈ C

Z, uα :=
∏

j∈Z
u

α j
j |v| :=

∑

i

|vi |

with the following properties:

(1) H0,0 = 0, He0,0 = H0,e0 = 0
(2) Reality condition:

Hα,β = Hβ,α ; (8)

(3) Momentum conservation:

Hα,β = 0 if π(α, β) :=
∑

j∈Z
j (α j − β j ) = 0 (9)

Remark 2.2. The condition (3) means that the formal Hamiltonian is invariant w.r.t. the
symmetry u j → ei jτu j , τ ∈ R.

We shall denote

M := {(α, β) ∈ N
Z

f : π(α, β) = 0}
so that H ∈ F can be written as

∑

(α,β)∈M
Hα,βu

α ūβ

Finally we define

K :=

⎧
⎪⎨

⎪⎩
Z ∈ F : Z(u) =

∑

α∈NZ

f

Zα,α|u|2α
⎫
⎪⎬

⎪⎭
,

R :=
⎧
⎨

⎩
R ∈ F : R(u) =

∑

α,β∈M:α =β

Rα,βu
α ūβ

⎫
⎬

⎭
(10)

and we can decompose F = K⊕R as each element of F can uniquely be expressed in
term of monomials the coefficients of which is either zero or not zero.
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Definition 2.3 (Scaling degree). For d ∈ N, we denote by Fd ⊂ F the vector space of
homogeneous formal polynomials of degree d + 2, and define

F≤d = ⊕h≤dFh , F>d := ⊕̂h>dFh , F≥d := F>d ⊕ Fd ,F = F≤d ⊕ F>d , . . .

We define the projections associated to these direct sum decompositions

�(d)H =
∑

|α|+|β|=d+2

Hα,βu
α ūβ , �(>d)H =

∑

|α|+|β|>d+2

Hα,βu
α ūβ , . . .

Elements of F≥d (resp. F>d ) are said to be of scaling order ≥ d + 2 (resp. > d + 2).
In the sequel, for simplicity, we shall just say that an element of f ∈ F≥d is of “order
d” and we shall say that f is “exactly of order d” if it has a non vanishing component
�(d)) f in Fd . Finally we define

�KH =
∑

α

Hα,α|u|2α , �RH =
∑

α =β

Hα,βu
α ūβ.

We denote by Kd := Fd ∩K and similarly forR and ≥ d,≤ d. Note that F = ⊕̂dFd .

Remark 2.4. Of course, since we are in infinite dimension, even if the Fd are homo-
geneous they are only formal polynomials. However if we restrict to monomials uα ūβ

with |α j | + |β j | = 0 for all j > N we are working on the usual space of polynomials
on which we have the standard symplectic structure i

∑
j≤N du j ∧ dū j . We now show

that such structure extends to F .

Proposition 2.5. The following Formula (11) is well defined and endows F with a Pois-
son algebra structure which is a filtered Lie algebra w.r.t. the F≥d’s.

{F,G}:=i
∑

(α(i),β(i))∈M
Fα1,β1Gα2,β2

∑

j

(
α

(1)
j β

(2)
j −β

(1)
j α

(2)
j

)
uα(1)+α(2)−e j ūβ(1)+β(2)−e j

(11)

Before proving our assertion we need a technical lemma. Let e j ∈ N
Z

f be the j th
vector of the standard basis.

Lemma 2.6. (1) Given α ∈ N
Z

f there is only a finite number of pairs α(1), α(2) ∈ N
Z

f

with α = α(1) + α(2). (2) Given (α, β) ∈ M there is only a finite number of pairs
(α(1), β(1)), (α(2), β(2)) ∈ M and indices j ∈ Z such that:

(i) (α, β) = (α(1), β(1)) + (α(2), β(2)) − (e j , e j )
(ii) one has α

(1)
j β

(2)
j + α

(2)
j β

(1)
j = 0.

Proof. (1) is clear since for all j one has 0 ≤ (α1) j ≤ α j .
(2) By item (1) we may divide (α, β) = (a(1), b(1)) + (a(2), b(2)) in a finite number

ofways. Then the pairs (α(1), β(1)), (α(2), β(2)) can only have one of the following forms
(up to exchanging the indices)

(A) (α(1), β(1)) = (a(1), b(1)) + (e j , e j ) , (α(2), β(2)) = (a(2), b(2))

(B) (α(1), β(1)) = (a(1), b(1)) + (e j , 0) , (α(2), β(2)) = (a(2), b(2)) + (0, e j ),
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for some index j ∈ Z.
Ifwe are in case (A) thenby condition (ii)wehave j ∈Supp(a(2)+b(2)),which restricts

to a finite number of possible j ′s. Otherwise in case B) by momentum conservation e
have j = −π(a(1), b(1)) = π(a(2), b(2)) and again j is restricted to a finite number of
possible choices. ��
Proof of Proposition 2.5. The fact that the Poisson bracket is well defined follows im-
mediately from the previous Lemma. Indeed by construction

{F,G} =
∑

α,β

Pα,βu
α ūβ ∈ F

where Pα,β = 0 if π(α, β) = 0 and otherwise

Pα,β = i
∑

j

∑

α(i),β(i)∈NZ

f : π(α(i),β(i))=0

α=α(1)+α(2)−e j ,β=β(1)+β(2)−e j

Fα1,β1Gα2,β2

(
α

(1)
j β

(2)
j − β

(1)
j α

(2)
j

)
. (12)

Then item 2 of the previous Lemma implies that Pα,β above is given by a finite sum.
The fact that it endows F with a Poisson algebra structure follows from the fact that

the infinitely many identities defining such a structure involve only a finite number of
elements ui , ūi and then we are in the canonical Poisson algebra.

The filtered Lie algebra property comes from the fact that in (12) we get |α| + |β| =
|α(1)| + |α(2)| + |β(1)| + |β(2)| − 2, this shows that if F ∈ F≥d1 , and G ∈ F≥d2 then

|α| + |β| ≥ d1 + 2 + d2 + 2 − 2 = d1 + d2 + 2. (13)

so {F,G} ∈ F≥d1+d2 . ��
Remark 2.7. Let Hi ∈ F≥di be a sequence of formal Hamiltonians with di+1 ≥ di for
all i ≥ 1. Then the series

H =
∞∑

i=1

Hi ∈ F≥d1

is well defined since for any d ≥ d0 the projection

�(d)H = �(d)
∑

i :di≤d

Hi

is a finite sum.

We say that a linear operator L : F → F is of order (or increase the order by) d if for
all h

L : F≥h → F≥h+d .
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Lemma 2.8. Let Ln be a sequence of linear operators on F and let dn be the order of
Ln. If the sequence dn increases to infinity then

L :=
∞∑

n=1

Ln , T =
∞∏

n=1

(id +Ln) − id

are linear operators on F of order d1.

Proof. For the first statement, for all d ∈ N let N (d) be the largest N such that dN ≤ d.
By construction �(≤d)LnK = 0 for all n > N (d) and for any K ∈ F . Then for all
K ∈ F and N > N (d) one has

�(≤d)
N∑

n=1

LnK = �(≤d)

N (d)∑

n=1

LnK ,

and the claim follows.
Regarding the second statement we proceed similarly

N∏

n=1

(id +Ln) =
N−1∏

n=1

(id +Ln) + LN

N−1∏

n=1

(id +Ln) ,

hence, for all d ≥ 0 and all N > N (d)

�(≤d)
N∏

n=1

(id +Ln) = �(≤d)

N (d)∏

n=1

(id +Ln) .

��
As a direct consequence we have the following.

Corollary 2.9. Given G ∈ F≥d, with d ≥ 1 we define

adG := {G, ·} , �G := exp({G, ·}) =
∑

k≥0

adkG
k! , (14)

then adG and �G − id are operators of order d, namely

adG,�G − id : F≥h → F≥h+d .

Similarly for any sequence bk one has that
∑

k≥n

bkad
k
G : F≥h → F≥h+dn .

Definition 2.10. Given G ∈ F≥1 we call the operator �G defined in (14) a formal
symplectic change of variables on F .

The following Lemma ensures the group structure of the formal symplectic changes of
variables
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Lemma 2.11 (Baker–Campbell–Hausdorff). Given F ∈ F≥d1 and G ∈ F≥d2 , with
di ≥ 1, then there exists K ∈ F≥1, such that

e{G,}e{F,} = e{K ,} , K − F − G ∈ F≥d1+d2

Proof. By the Baker–Campbell–Hausdorff formula ([Se92] [p. 29]) one has

K :=
∞∑

n=1

(−1)n−1

n

∑

ri+si>0

[Gr1Fs1 . . .Grn Fsn ]
(∑n

i=1(ri + si )
)∏n

i=1 ri !si !
where

[Gr1Fs1 . . .Grn Fsn ] :=

⎧
⎪⎨

⎪⎩

adr1G ads1F . . . adrnG F if sn = 1
adr1G ads1F . . . adsn−1

F G if sn = 0 , and rn = 1
0 otherwise

(15)

Recalling that F ∈ F≥d1 and G ∈ F≥d2 , each term adr1G ads1F . . . adrnG F (resp. adr1G ads1F
. . . adsn−1

F G)
is of order

(∑n
i=1 ri

)
d2 + (

∑n
i=1 si )d1 ≥ nmin(d1,d2).

Hence setting N (d) to be the largest N such that N min(d1,d2) ≤ dn

�≤dK = �≤d
N (d)∑

n=1

(−1)n−1

n

∑

ri+si>0

[Gr1Fs1 . . .Grn Fsn ]
(∑n

i=1(ri + si )
)∏n

i=1 ri !si !
Moreover if n ≥ 2 then the Hamiltonian in (15) is of order≥ d1+d2, so K −F−G ∈

F≥d1+d2 . ��
Lemma 2.12. Given a sequence of generating functions Gi ∈ F≥di with di+1 > di ≥ 1
then there exists G ∈ F≥d1 such that the composition

∏

i

e{Gi ,} = e{G,}

Proof. By Lemma 2.8 with Ln = e{Gn ,} − id we know that
∏

i e
{Gi ,} is a well defined

operator of F . Using Lemma 2.11 we can define Fk ∈ F≥1 iteratively so that

e{Fk ,·} = e{Gk ,·}e{Fk−1,·}

since e{Gk ,·} − id is of order dk there exists N (d) such that if k > N (d) then

�(≤d)Fk = �(≤d)FN (d)

Then G = limk→∞ Fk is well defined. ��
For any vector ω ∈ R

Z such that

ω · � = 0 , ∀� ∈ Z
Z

f \ {0} ,

we define the non-resonant quadratic Hamiltonian

Dω :=
∑

j

ω j |u j |2 .
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Lemma 2.13. The operator adDω is invertible on R(d) for all d.

Proof. Given F ∈ R(d), we have

{Dω,G} = i
∑

α(2),β(2)∈NZ ,

|α(2)|+|β(2)|<∞ , π(α(2),β(2))=0

Gα2,β2

⎛

⎝
∑

j

ω j

(
β

(2)
j − α

(2)
j

)
⎞

⎠ uα(2)
ūβ(2) = F

Hence, we have G := ad−1
Dω

(F) with for all α(2), β(2) ∈ N
Z, α(2) = β(2) with |α(2)| +

|β(2)| < ∞ and π(α(2), β(2)) = 0,

Gα2,β2 := Fα2,β2

⎛

⎝
∑

j

iω j

(
β

(2)
j − α

(2)
j

)
⎞

⎠

−1

, Gα2,α2 = 0.

��
Proposition 2.14. (Birkhoff Normal Form) Given any formal Hamiltonian of the form

H = Dω + Z + R (16)

where Z ∈ K≥2 and R ∈ F≥d with d ≥ 1, then

(1) Formal Normal Form: there exists S ∈ F≥d such that

e{S,·}H = Dω + Z̃ , Z̃ − Z ∈ K≥d .

(2) Uniqueness: if G ∈ F≥1 is such that e{G,·}H ∈ K then e{G,·}H = e{S,·}H. Hence to
each H as above we can associate a unique ZH ∈ K≥2 such that e{S,·}H = Dω+ZH .

Proof. For item (1) Let us first consider the case d ≥ 2. we start with a Hamiltonian
H0 ∈ F of the form Dω+Z0+P0 with P0 ∈ F≥d and we iteratively construct a sequence
of generating functions Si ∈ R≥2i+d and Hamiltonians Hi by setting

{Dω, Si } = �RHi , Hi+1 = e{Si ,·}Hi .

We now show inductively that for each i

�(<2i+d)�RHi = 0 , Si ∈ R≥2i+d

so in other words

Hi = Dω + Zi + Pi , Zi ∈ K ∩ F≤2i+d−1 , Pi ∈ F≥2i+d .

For i = 0 we just set Z0 = �<d Z and P0 = R + �≥d Z . By induction we assume that
Pi ∈ F≥2i+d . Then by Lemma 2.13, Si ∈ F≥2i+d .

e{Si ,·}Hi = Dω + Zi + Pi + {Si , Dω} +
∞∑

h=2

adh−1
Si

h! {Si , Dω} +
∞∑

k=1

adkSi
k! (Zi + Pi )

= Dω + Zi + �KPi −
∞∑

k=1

adkSi
(k + 1)!�

RPi +
∞∑

k=1

adkSi
k! (Zi + Pi ) .
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So we may set

Zi+1 := Zi + �(<2i+d+2)�KPi , Pi+1 = e{Si ,·}Hi − Dω − Zi+1

and verify that Pi+1 ∈ F≥2i+d+2 by applying Proposition 2.5 and noticing that, since
4i + 2d ≥ 2i + d + 2, the term of lowest degree is {Si , Z}.

Then we set

Z̃ = lim
i→∞ Zi = Z0 +

∞∑

i=0

�≤2i+d+1�KPi = Z0 + �K
∞∑

i=0

�(<2i+d+2)�(≥2i+d)Pi ,

which is well defined by Remark 2.7. Finally by Lemma 2.12 we can define S ∈ F≥d

so that

e{S,·} =
∞∏

i=0

e{Si ,·} .

If d = 1 we perform a preliminary step in order to increase the degree by one and then
we start the procedure explained above. We start with H = Dω + P , with P := R + Z .
As before we fix S ∈ R≥1 so that {Dω, S} = �RH we set

H0 := e{S,·}H = Dω + �KP −
∞∑

k=1

adkS
(k + 1)!�

RP +
∞∑

k=1

adkS
k! P .

then fixing Z0 := �≤2�KP and P0 := H0 − Dω − Z0 we are in the setting of the
previous case.

Regarding item (2) we remark that If e{S1,·} transforms a normal form Dω + K1 into
a normal form Dω + K2, then

e{S1,·}(Dω + K1) = Dω + K1 +
∞∑

h=1

adh−1
S1

h! {S1, Dω + K1} = Dω + K2.

Since K = K≥2 and S ∈ H≥1, comparing homogeneous terms of degree 1 we get
{S1, Dω} = 0 so we should have S(1)

1 ∈ K which can only be possible if S(1)
1 = 0.

Comparing homogeneous terms of degree 2, we obtain K (2)
1 − K (2)

2 + {S(2)
1 , Dω} = 0.

Recalling that {S(2)
1 , Dω} ∈ R we have K (2)

1 − K (2)
2 ∈ K ∩ R is zero and S(2)

1 ∈ K.

Assuming that K ( j)
1 = K ( j)

2 ∈ K and S( j)
1 ∈ K for 2 ≤ j ≤ m. Then we have

K (m+1)
1 − K (m+1)

2 + {S(m+1)
1 , Dω} +

∞∑

h=2

1

h!

⎛

⎝
∑

j1+···+ jl=m+1

{S( j1)
1 , {S( j2)

1 , · · · {S( jh)
1 , Dω}}}

+
∑

j1+···+ jh+ jh+1=m+1

{S( j1)
1 , {S( j2)

1 , · · · {S( jh)
1 , K ( jh+1)

1 }}}
⎞

⎠ = 0 (17)

By induction and since Dω is non resonant, then both sums above are zero. Hence, we
the same reasoning as above, we obtain K (m+1)

1 = K (m+1)
2 ∈ K and S(m+1)

1 ∈ K. The
result follows from Proposition 2.12.

��



M. Procesi, L. Stolovitch

Corollary 2.15. For any H as in (16), if for G ∈ F≥1 one has e{G,·}H = Dω + Z + R
with R ∈ F≥d1 then Z − ZH ∈ K≥d1 .

Proof. By Proposition 2.15 (1) there exists S ∈ F≥d1 which normalizes Dω + Z + R
to Dω + Z̃ with Z̃ − Z ∈ F≥d1 . By Lemma 2.12 there exists G1 ∈ F such that
e{G1,·} = e{S,·}e{G,·}. SinceG1 puts H in normal form, by Proposition 2.15 (2), Z̃ = ZH
and the result follows. ��
Definition 2.16. We say that H is formally linearizable if ZH = 0.

Corollary 2.17. If H is formally linearizable and there exists a formal symplectic change
of variables with e{S,·}H = Dω + Z + R with R ∈ F≥d and Z ∈ K<d (this last condition
does not imply any loss of generality) then Z = 0.

Proof. This follows directly from Corollary 2.15. ��

2.1. Resonant Hamiltonians. In this section we do not assume Dω to be non-resonant.
Instead, we consider

K :=
⎧
⎨

⎩
Z ∈ F : Z(u) =

∑

α,β∈M:ω·(α−β)=0

Zα,βu
α ūβ

⎫
⎬

⎭
,

R :=
⎧
⎨

⎩
R ∈ F : R(u) =

∑

α,β∈M:ω·(α−β) =0

Rα,βu
α ūβ

⎫
⎬

⎭
(18)

and we can decompose F = K⊕R as each element of F can uniquely be expressed in
term of monomials the coefficients of which is either zero or not zero.

Proposition 2.18. Given any formal Hamiltonian of the form H = Dω + Z + R, where
Z ∈ K≥1 and R ∈ F≥d with d ≥ 1. Here Dω is not assumed to be non resonant.

(1) Formal Normal Form: there exists S ∈ F≥d such that

e{S,·}H = Dω + Z̃ , Z̃ − Z ∈ K≥d .

(2) Transformation from normal form to normal form : if H ∈ K and if G ∈ F≥1 is
such that e{G,·}H ∈ K then G ∈ K

(3) All normal forms of a formally linearizable Hamiltonian are the same : If H is
formally linearizable, then all its normal form are equal to Dω.

Proof. The proof of the second point follows verbatim the proof of the second point of
Proposition 2.15. Indeed, let us assume that

e{S1,·}(Dω + K1) = Dω + K1 +
∞∑

h=1

adh−1
S1

h! {S1, Dω + K1} = Dω + K2.

Therefore, we have S(1)
1 ∈ K, and K (2)

1 − K (2)
2 + {S(2)

1 , Dω} + {S(1)
1 , K (1)

1 } = 0. Let
K1, K2 ∈ K2. By Jacobi identity, we have {Dω, {K1, K2}} = −{K1, {K2, Dω}} −
{K2, {Dω, K1}} = 0.Hence {K1, K2} ∈ K.Hence, {S(1)

1 , K (1)
1 } ∈ K so that {S(2)

1 , Dω} =
0, that is S(2)

1 ∈ K. Assuming that S( j)
1 ∈ K for j = 1, . . . ,m, collecting terms of
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degree m + 1 leads to (17). By assumption, its first sum is zero. We show by induc-
tion, using Jacobi identity, that {S( j1)

1 , {· · · {S( jh)
1 , K ( jh+1)

1 }}} ∈ K. From (17), we obtain

{S(m+1)
1 , Dω} = 0 since it also belongs to K. Hence, S(m+1)

1 ∈ K.

As to the last point, if K1 = 0 and S1 ∈ K, then K (1)
2 = 0 and the two sums in (17)

are zero by induction. Therefore, from K (m+1)
1 − K (m+1)

2 + {S(m+1)
1 , Dω} = 0 we obtain

K (m+1)
2 = 0 for all m ≥ 1. ��
If we know a priori that H is formally linearizable then we get a faster growth of the

degree of Pi .

Lemma 2.19. . If H0 ∈ F of the form Dω + P0 with P0 ∈ F≥1 is formally linearizable
then the sequence of generating functions

{Dω, Si } = �RHi , Hi+1 = e{Si ,·}Hi .

satisfies

Hi = Dω + Pi , Pi ∈ F≥2i .

Proof. By induction we assume that Pi ∈ F≥2i . Then by construction Si ∈ F≥2i .

e{Si ,·}Hi = Dω + Pi + {Si , Dω} +
∞∑

h=2

adh−1
Si

h! {Si , Dω} +
∞∑

k=1

adkS
k! Pi

= Dω + �KPi −
∞∑

k=1

adkSi
(k + 1)!�

RPi +
∞∑

k=1

adkSi
k! Pi

=: Dω + �<2i+1�KPi + Pi+1 .

By Proposition 2.5 the two series in the formula above are inF2i+1 so to prove our claim
we only need to show �K�<2i+1 Pi = 0. This is a consequence of Corollary 2.17. ��

3. Regular Hamiltonians

We now revisit the formal Birkhoff normal form in the case of analytic Hamiltonians.
We start by introducing an appropriate functional setting.

3.1. Spaces of Hamiltonians. Let us consider the weighted space

hs = hs,p,θ :=
⎧
⎨

⎩
u ∈ �2(Z,C) : |u|2s :=

∑

j∈Z
〈 j〉2pe2s〈 j〉θ |u j |2 < ∞

⎫
⎬

⎭

where 〈 j〉 := max(| j |, 1), p ≥ 1
2 and 0 < θ ≤ 1. The spaces hs,p,θ are contained

in �2(C), so we endow them with the standard symplectic structure coming from the
Hermitian product on �2(C).
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We identify �2(C) with �2(R) × �2(R) through u j = (
x j + iy j

)
/
√
2 and induce on

�2(C) the structure of a real symplectic Hilbert space3 by setting, for any (u(1), u(2)) ∈
�2(C) × �2(C),

〈u(1), u(2)〉 =
∑

j

(
x (1)
j x (2)

j + y(1)
j y(2)

j

)
, ω(u(1), u(2)) =

∑

j

(
y(1)
j x (2)

j − x (1)
j y(2)

j

)
,

which are the standard scalar product and symplectic form � = ∑
j dy j ∧ dx j .

Given H ∈ F , we define its majorant as

H(u) =
∑

α,β∈NZ ,
|α|+|β|<∞

|Hα,β |uα ūβ . (19)

Definition 3.1 (M-regular Hamiltonians.) For r > 0, let Hr,s be the subspace of F of
formal power series H such that H is point-wise absolutely convergent on Br (hs), the
ball of radius r centered at the origin of hs , and

|H |Br (hs ) ≡ ‖H‖r,s := r−1

(

sup
|u|hs≤r

∣∣XH
∣∣
hs

)

< ∞ .

Note that in F one has H(0) = 0 so this is actually a norm.
We shall show in the next subsection that H ∈ Hr,s guarantees that the Hamiltonian

flow of H exists at least locally and generates a symplectic transformation on hs , i.e. hs
is an invariant subspace for the dynamics.

Theorem 3.2 (Main). Consider a Hamiltonian of the form

∑

j∈Z
ω j |u j |2 + P0 , P0 ∈ Hr,s0 ∩ F≥1

where ω ∈ Dγ . Assume that there exists G ∈ F≥1 such that

e{G,.}H =
∑

j∈Z
ω j |u j |2 ,

then there exists r1 < r, s1 > s0 and a close to identity change of variables �

� : Br1(hs1) → hs1

such that H ◦ � = ∑
j∈Z ω j |u j |2.

Let us state a result which is valid in Sobolev spaces.

3 We recall that given a complex Hilbert space H with a Hermitian product (·, ·), its realification is a real
symplectic Hilbert space with scalar product and symplectic form given by

〈u, v〉 = 2Re(u, v) , ω(u, v) = 2Im(u, v) .
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Theorem 3.3. Consider a Hamiltonian of the form
∑

j∈Z
ω j |u j |2 + P0 , P0 ∈ Hr,0 ∩ F≥1

where Dω might be resonant but without small divisors, namely

inf
�∈ZZ

f : |ω·�|=0
|ω · �| ≥ γ > 0.

Assume that there exists G ∈ F≥1 such that

e{G,.}H =
∑

j∈Z
ω j |u j |2 ,

then there exists r1 < r, and a close to identity change of variables �

� : Br1(h0) → h0

such that H ◦ � = ∑
j∈Z ω j |u j |2.

Remark 3.4. The main result of [BS20] concerns the simultaneous normalization of an
infinite family of commuting vector fields in infinite dimension. One of its main feature
is that the natural condition to consider is a small divisors of the family of linear parts
and not of individual members of the family. It happens that families considered in
the aforementioned article do not have small divisors. If such a family were formally
linearizable despite resonances, it would be also holomorphically so in the same spirit
as the previous theorem.

3.2. Poisson structure and homological equation. The following Lemmata are proved
in [BMP18] under the extra assumption of mass conservation, we discuss the proof in
our slightly more general setting in the appendix.

Lemma 3.5. If H ∈ Hr,s ∩ F≥d, then for all r∗ ≤ r one has

‖H‖r∗,s ≤
(
r∗

r

)d

‖H‖r,s .

Lemma 3.6. If H ∈ Hr,s , then for all s1 ≥ s one has

‖H‖r,s1 ≤ ‖H‖r,s .

Lemma 3.7. (Poisson brackets and Hamiltonian flow) Let 0 < ρ < r , and F,G ∈
Hr+ρ,η(hs), then

‖{F,G}‖r,s ≤ 4

(
1 +

r

ρ

)
‖F‖r+ρ,s‖G‖r+ρ,s . (20)

For S ∈ Hr+ρ,η(hs) with

‖S‖r+ρ,s ≤ δ := ρ

8e(r + ρ)
. (21)
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Then the time 1-Hamiltonian flow �1
S : Br (hs) → Br+ρ(hs) is well defined, analytic,

symplectic with

sup
u∈Br (hs )

∥∥∥�1
S(u) − u

∥∥∥
hs

≤ (r + ρ)‖S‖r+ρ,s ≤ ρ

8e
. (22)

For any H ∈ Hr+ρ,s we have that H ◦ �1
S = e{S,·}H ∈ Hr,s and

∥∥
∥e{S,·}H

∥∥
∥
r,s

≤ 2‖H‖r+ρ,s , (23)
∥∥∥
(
e{S,·} − id

)
H
∥∥∥
r,s

≤ δ−1‖S‖r+ρ,s‖H‖r+ρ,s , (24)

∥∥∥
(
e{S,·} − id−{S, ·}

)
H
∥∥∥
r,s

≤ 1

2
δ−2‖S‖2r+ρ,s‖H‖r+ρ,s (25)

More generally for any h ∈ N and any sequence (ck)k∈N with |ck | ≤ 1/k!, we have
∥∥∥
∥∥∥

∑

k≥h

ck ad
k
S (H)

∥∥∥
∥∥∥
r,s

≤ 2‖H‖r+ρ,s
(‖S‖r+ρ,s/2δ

)h
, (26)

where adS (·) := {S, ·}.
Lemma 3.8. Fix s ≥ 0 and σ > 0 and ω ∈ Dγ . For any R ∈ Hd

r,s with d ≥ 1
and such that �KR = 0, the Homological equation LωS = R has a unique solution
S = L−1

ω R ∈ Hd
r,s+σ such that �KS = 0 and moreover

∥∥∥L−1
ω R

∥∥∥
r,s+σ

≤ γ −1eC1σ
− 3

θ ‖R‖r,s (27)

3.3. Poof of the main Theorem. The theorem follows by the following holomorphic
version of Lemma 2.19. If H0 ∈ F ∩ Hr,s0 of the form Dω + P0 with P0 ∈ F≥1 is
formally linearizable.

Fix 0 < r0 < r and s0 > 0 so that

ε0 := γ −1‖P0‖r0,s0 ≤ γ −1 r0
r

‖P0‖r,s0

is appropriately small. More precisely, fix C = 1 + π2/6 and assume

ε−1
0 ≥ K sup

n
eC2(s0)n

6
θ n2 max(en−χn

, e−(2−χ)χn
). (28)

where K is an appropriately large absolute constant while C2(s0) = C1C 3
θ s0− 3

θ .
Let

ri = ri−1 − ρi−1 , si = si−1 + σi−1 , di = 2i , ρi = r0
2C〈i〉2 , σi = s0

C〈i〉2
so that ri → r0/2 and si → 2s0.

Fix 1 < χ < 2 such that4

sup
n≥0

2n+1 ln(1 − 1

2Cn2
) + χn(χ − 1) ≤ −0.1 (29)

4 for example if χ = 15/14 the sup on the left hand side is smaller than −0, 2.
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Lemma 3.9. The sequence of generating functions and Hamiltonians of Lemma 2.19.

{Dω, Si } = �RHi , Hi = e{Si−1,·}Hi−1 .

satisfies

Hi = Dω + Pi , Pi ∈ F≥di ∩ Hri ,si .

with the bounds

‖Si−1‖ri−1,si ≤ γ −1eC1σ
− 3

θ
i−1 ‖Pi−1‖ri−1,si−1 , ‖Pi‖ri ,si ≤ ‖P0‖r0,s0e−χ i

.

Moreover each Si−1 defines a symplectic analytic change of variables�i−1 : Bri (hs) →
Bri−1(hs) for all s ≥ si satisfying

sup
|u|s≤ri

|�i (u) − u|s ≤ 2−i r0 (30)

Finally setting

�i = �1 ◦ �2 ◦ . . . �i

we have that �i → �∞ where �∞ is an invertible symplectic map Br0/2(h2s0) →
Br0(h2s0) such that

H0 ◦ �∞ = Dω

Proof. By induction. Let us denote γ −1‖P0‖r0,s0 := ε0. Fix k ≥ 0 and assume that for
all i ≤ k the Lemma holds. By definition

Sk = ad−1
Dω

�RPk .

For all s ≥ sk + σk ≡ sk+1, by Lemma 3.8 and (28)

‖Sk‖rk ,s ≤ ‖Sk‖rk ,sk+1 ≤ γ −1eC1σ
− 3

θ
k ‖Pk‖rk ,sk ≤ ε0e

C2(s0)k
6
θ e−χk ≤ 1

16e2Ck2
≤ ρk

8erk

so, by Lemma 3.7 the time one flow �1
Sk

: Brk+1(hs) → Brk (hs) is well defined
analytic, symplectic and, by (22) satisfies

sup
u∈Brk+1 (hs )

∣∣∣�1
Sk (u) − u

∣∣∣
hs

≤ rk‖Sk‖rk ,s ≤ Cε0r0k
−2eC2(s0)k

6
θ e−χk (28)≤ 2−kr0 .

(31)

Recalling that

Hk+1 := e{Sk ,·}Hk = Dω + Pk + {Sk, Dω} +
∞∑

h=2

adh−1
Sk

h! {Sk, Dω} +
∞∑

h=1

adhS
h! Pk

= Dω + �KPk −
∞∑

h=1

adhSk
(h + 1)!�

RPk +
∞∑

h=1

adhSk
h! Pk

=: Dω + �<2k+1�KPk + Pk+1 .
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and that in Lemma 2.19 we have proved that �<2k+1�KPk = 0, we get

Pk+1 = �≥2k+1�KPk −
∞∑

h=1

adhSk
(h + 1)!�

RPk +
∞∑

h=1

adhSk
h! Pk

Now

‖�≥2k+1�KPk‖rk+1,sk+1 ≤
(
rk+1
rk

)dk+1

‖Pk‖rk ,sk ≤ ε0(1 − 1

2Ck2
)2

k+1
e−χk

‖
∞∑

h=1

adhSk
(h + 1)!�

RPk +
∞∑

h=1

adhSk
h! Pk‖rk+1,sk+1 ≤ 16erk

ρk
‖Pk‖rk ,sk‖Sk‖rk+1,sk+1

≤ Cε20e
C2(s0)k

6
θ e−2χk

k2

The bound on Pk+1 follows from (28) and (29) which imply

ε0(1 − 1

2Ck2
)2

k+1
e−χk

+ Cε20e
C2(s0)k

6
θ e−2χk

k2 ≤ ε0e
−χk+1

In order to prove the convergencewe remark that all the�i map Bri (h2s0) → Bri−1(h2s0),
consequently �i maps Bri (h2s0) → Br0(h2s0) and, by (30), it is a Cauchy sequence. ��
Proof of Theorem 3.3. Since there are no small divisors, in Lemma 3.8 one can take
σ = 0 and one has

∥
∥L−1

ω R
∥
∥
r,s+σ

≤ γ −1‖R‖r,s . Then the proof is essentially identical
to the previous one except that we take s0 = 0 and C2 = 0; one follows the procedure of
Lemma 3.9 (where of course all the σi = 0) with the only difference that in the estimates
on the generating functions one has the better bound ‖Si‖ri ,0 ≤ γ −1‖Ri‖ri ,0. ��

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Appendix A. Technical Lemmata

In the following, we adapt material from [BMP18] to non mass conservation situation.
There are no new conceptual difficulties w.r.to [BMP18] but the proofs require a bit
more care and some further case analysis. For the readers convenience, we have written
also the proofs of a couple of technical lemmata from [BMP18] on which we rely.

A.1. Proof of Lemmata 3.5 and 3.6. We follow here [BMP18] [Appendix B. Proof of
lemma 3.1]. For any H ∈ Hr,s (we recall that this space depends on two extra parameters
p ≥ 1

2 and 0 < θ ≤ 1) we define a map

B1(�
2) → �2 , y = (

y j
)
j∈Z �→

(
Y ( j)
H (y; r, s)

)

j∈Z
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by setting

Y ( j)
H (y; r, s) :=

∑

∗
|Hα,β | (α j + β j )

2
c( j)
r,s (α, β)yα+β−e j (32)

where e j is the j-th basis vector in NZ, while the coefficient

c( j)
r,s (α, β) = r |α|+|β|−2

( 〈 j〉2
∏

i 〈i〉αi+βi

)p

e−s(
∑

i 〈i〉θ (αi+βi )−2〈 j〉θ ) (33)

For brevity, we set
∑

∗
:=

∑

α,β: π(α,β)=0

.

The vector field YH is a majorant analytic function on �2 which has the same norm as
H . Since the majorant analytic functions on a given space have a natural ordering this
gives us a natural criterion for immersions, as formalized in the following Lemma.

Lemma A.1. Let r, r∗ > 0, s, s′ ≥ 0. The following properties hold.

(1) The norm of H can be expressed as

‖H‖r,s = sup
|y|

�2≤1
|YH (y; r, s)|�2 (34)

(2) Given H (1) ∈ Hr∗,s′ and H (2) ∈ Hr,s ,

such that for all α, β ∈ N
Z

f and j ∈ Z with α j + β j = 0 one has

|H (1)
α,β |c( j)

r∗,s′(α, β) ≤ c|H (2)
α,β |c( j)

r,s (α, β),

for some c > 0, then
∥∥∥H (1)

∥∥∥
r∗,s′

≤ c
∥∥∥H (2)

∥∥∥
r,s

.

Proof of Lemma 3.5. Recalling (33), we have

c( j)
r∗,s(α, β)

c( j)
r,s (α, β)

=
(
r∗

r

)|α|+|β|−2

.

Since |α| + |β| − 2 ≥ d, the inequality follows by Lemma A.1 with H (1) = H (2) and
s = s′. ��
In order to prove Lemma 3.6 we need some notations and results proven in [Bou05] and
[CLSY].

Definition A.2. Given a vector v = (vi )i∈Z ∈ N
Z

f with |v| ≥ 2 we denote by n̂ = n̂(v)

the vector (̂nl)l∈I (where I ⊂ N is finite) which is the decreasing rearrangement of

{N � h > 1 repeated vh + v−h times} ∪ {1 repeated v1 + v−1 + v0 times}
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Remark A.3. A good way of envisioning this list is as follows. Given an infinite set of
variables (xi )i∈Z and a vector v = (vi )i∈Z ∈ N

Z

f consider the monomial xv := ∏
i x

vi
i .

We can write

xv =
∏

i

xvi
i = x j1x j2 · · · x j|v| , with jk ∈ Z

then n̂(v) is the decreasing rearrangement of the list
(〈 j1〉, . . . , 〈 j|v|〉

)
.

Example A.4. Let us set

v−1 = 2, v0 = 3, v1 = 1, v3 = 1, v4 = 2.

Hence, 1 is repeated 6 times, 3 is repeated 1 time, and 4 is repeated 2 times :

n̂1 = 4, n̂2 = 4, n̂3 = 3, n̂4 = · · · = n̂9 = 1

Given α, β ∈ N
Z

f with |α| + |β| ≥ 2 from now on we define

n̂ = n̂(α + β) and set N := |α| + |β|
which is the cardinality of n̂. We observe that, N ≥ 2 and since

0 =
∑

i∈Z
i(αi − βi ) =

∑

h>0

h(αh − βh − α−h + β−h) , (35)

there exists a choice of σi = ±1, 0 such that5

∑

l

σl n̂l = 0. (36)

with σl = 0 if n̂l = 1. Hence,

n̂1 ≤
∑

l≥2

n̂l . (37)

Indeed, if σ1 = ±1, the inequality follows directly from (36); if σ1 = 0, then n̂1 = 1
and consequently n̂l = 1∀l. Since |α| + |β| ≥ 2, the list n̂ has at least two elements, so
the inequality is achieved.

Lemma A.5. Given α, β such that
∑

i i(αi − βi ) = 0, and |α| + |β| ≥ 2, we have that
setting n̂ = n̂(α + β)

∑

i

〈i〉θ (αi + βi ) =
∑

l≥1

n̂θ
l ≥ 2n̂θ

1 + (2 − 2θ )
∑

l≥3

n̂θ
l . (38)

5 A given h > 1 appears αh + βh + α−h + β−h times in the list n̂. Thus in order to get the sum-
mand h

(
αh − βh − α−h + β−h

)
we assign to the n̂l with n̂l = h the sign σl = +, αh + β−h

times and the sign σl = −, α−h + βh times. Let us now consider the case h = 1. By construc-
tion, 1 appears α(1) + β(1) + α−1 + β−1 + α0 + β0 times in n̂. Thus in order to obtain the summand(
α(1) − β(1) − α−1 + β−1

)
we assign to the n̂l with n̂l = 1 the sign σl = +, α1 + β−1 times, the sign

σl = −, α−1 + β1 times and σl = 0 the remaining α0 + β0 times.
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Proof. The lemma above was proved in [Bou05] for θ = 1
2 and for general 0 < θ < 1 in

[CLSY][Lemma 2.1], in the case of zero mass and momentum. Below we give a proof,
using only momentum conservation.
We start by noticing that if |α| + |β| = 2 then n̂ has cardinality equal to two and (38)
becomes n̂1 + n̂2 ≥ 2n̂1. Now, by (37), momentum conservation implies that n̂1 = n̂2
and hence (38).
If |α| + |β| ≥ 3 we write

∑

i

〈i〉θ (αi + βi ) − 2n̂θ
1 =

∑

l≥2

n̂θ
l − n̂θ

1 ≥
∑

l≥2

n̂θ
l − (

∑

l≥2

n̂l)
θ

since the cardinality of n̂ is at least three we may write

∑

l≥2

n̂θ
l − (

∑

l≥2

n̂l)
θ = n̂θ

2 +
∑

l≥3

n̂θ
l − (̂n2 +

∑

l≥3

n̂l)
θ

Now setting, for xi ≥ 1, i = 2, . . . , N ,

f (x2, . . . , xN ) := xθ
2 + (2θ − 1)

∑

l≥3

xθ
l − (x2 +

∑

l≥3

xl)
θ .

Hence, we have ∂x2 f ≥ 0 for x2 ≥ x3 ≥ 1. Then

f (x2, . . . , xN ) ≥ f (x3, x3, x4, . . . , xN ) =: f3(x3, . . . , xN ) .

Now we set

fn(xn, . . . , xN ) := f (xn, . . . , xn︸ ︷︷ ︸
n−1

, xn+1, . . . , xN )

= (1 + (2θ − 1)(n − 2))xθ
n +

∑

�≥n+1

x� − ((n − 1)xn +
∑

�≥n+1

x�)
θ

so that f (x2, . . . , xN ) ≥ f3(x3, . . . , xN ). Assume inductively that for some 3 ≤ n < N ,
one has f (x2, . . . , xN ) ≥ f3(x3, . . . , xN ) ≥ · · · ≥ fn(xn, . . . , xN ). By direct compu-
tation 6

∂xn fn = θ
[ (1 + (2θ − 1)(n − 2))

x1−θ
n

− n − 1

((n − 1)xn +
∑

�≥n+1 x�)1−θ

]

≥ θxθ−1
n

[
(1 + (2θ − 1)(n + 2)) − (n − 1)θ

]
≥ 0 ,

so that the minimum is attained in xn = xn+1 and f (x2, . . . , xN ) ≥ fn+1(xn+1, . . . , xN ).
In conclusion

f (x2, . . . , xN ) ≥ f (xN , . . . , xN ) ≥ 0

where the last inequality follows by recalling that 1+ (2θ −1)k− (k +1)θ ≥ 0 for k ≥ 1.
��

6 recalling that the x� > 0 and that 1 + (2θ − 1)k − (k + 1)θ ≥ 0, with k = n + 2 > 1.
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The Lemma proved above, is fundamental in discussing the properties of Hr (hp,s,a)

with s > 0, indeed it implies

∑

i

〈i〉θ (αi + βi ) − 2〈 j〉θ ≥ (2 − 2θ )

⎛

⎝
∑

l≥3

n̂θ
l

⎞

⎠ ≥ 0 (39)

for all α, β such that α j + β j = 0. Indeed, this follows from the fact that 〈 j〉 ≤ n̂1.

Proof of Lemma 3.6. In all that follows we shall use systematically the fact that our
Hamiltonians are momentum preserving, are zero at the origin and have no linear term
so that |α| + |β| ≥ 2.
We need to show that

c( j)
r,s+σ (α, β)

c( j)
r,s (α, β)

= exp(−σ(
∑

i

〈i〉θ (αi + βi ) − 2〈 j〉θ ) ≤ 1 . (40)

The first identity comes form (33), while the last inequality follows by (39) of Lemma
A.5 ��

A.2. Proof of Lemma 3.7. This is a rather classical result, the proof we give is taken from
[BMP18], where it is stated under the extra hypothesis of mass conservation, which is
not used in the proof.

Lemma A.6. Let 0 < r1 < r. Let E be a Banach space endowed with the norm | · |E .
Let X : Br → E a vector field satisfying

sup
Br

|X |E ≤ δ0 .

Then the flow �(u, t) of the vector field7 is well defined for every

|t | ≤ T := r − r1
δ0

and u ∈ Br1 with estimate

|�(u, t) − u|E ≤ δ0|t | , ∀ |t | ≤ T .

Proof of Lemma 3.7. The estimate for the Poisson bracket is proven in [BBP13]. In
order to prove the other estimates we use Lemma A.6, with E → hs , X → XS ,
δ0 → (r + ρ)|S|r+ρ, r → r + ρ, r1 → r, T → 8e. finally we do not write the
dependence on s which is fixed.
Then the fact that the time 1-Hamiltonian flow�1

S : Br (hs) → Br+ρ(hs) is well defined,
analytic, symplectic follows, since

sup
u∈Br+ρ(hs )

|XS|hs ≤ (r + ρ)|S|r+ρ <
ρ

8e
.

7 Namely the solution of the equation ∂t�(u, t) = X (�(u, t)) with initial datum �(u, 0) = u.
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Regarding the estimate (22), again by Lemma A.6 (choosing t = 1), we get

sup
u∈Br (hs )

∣∣∣�1
S(u) − u

∣∣∣
hs

≤ (r + ρ)|S|r+ρ <
ρ

8e
.

Estimates (23), (24), (25) directly follow by (26) with h = 0, 1, 2, respectively and
ck = 1/k!, recalling that by Lie series

H ◦ �1
S = eadSH =

∞∑

k=0

adkSH

k! =
∞∑

k=0

H (k)

k! ,

where H (i) := adiS(H) = adS(H (i−1)), H (0) := H .
Let us prove (26). Fix k ∈ N, k > 0 and set

ri := r + ρ(1 − i

k
) , i = 0, . . . , k .

Note that, by the immersion properties of the norm in Lemma 3.5,

‖S‖ri ≤ ‖S‖r+ρ , ∀ i = 0, . . . , k . (41)

Noting that

1 +
kri
ρ

≤ k

(
1 +

r

ρ

)
, ∀ i = 0, . . . , k , (42)

by using k times (20) we have

‖H (k)‖r = ‖{S, H (k−1)}‖r ≤ 4(1 +
kr

ρ
)‖H (k−1)‖rk−1‖S‖rk−1

(41)≤ ‖H‖r+ρ‖S‖kr+ρ4
k

k∏

i=1

(1 +
kri
ρ

)
(42)≤ ‖H‖r+ρ

(
4k

(
1 +

r

ρ

)
‖S‖r+ρ

)k

.

Then, using kk ≤ ekk!, we get
∥∥∥∥∥∥

∑

k≥h

ck H
(k)

∥∥∥∥∥∥
r

≤
∑

k≥h

|ck |‖H (k)‖r ≤ ‖H‖r+ρ

∑

k≥h

(
4e

(
1 +

r

ρ

)
‖S‖r+ρ

)k

= ‖H‖r+ρ

∑

k≥h

(‖S‖r+ρ/2δ)k
(21)≤ 2‖H‖r+ρ(‖S‖r+ρ/2δ)h .

Finally, if S and H satisfy momentum conservation so does each adkSH , k ≥ 1, hence
H ◦ �1

S too. ��
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A.3. Proof of lemma 3.8. Here we strongly use the fact that ω j ∼ j2. As we said in the
introduction, it would not be hard to modify the proof in order to deal with ω j ∼ jα

with α > 1, by adapting the proof of Lemmata A.9–A.10.
By Lemma A.1 (2), we have

∥
∥∥L−1

ω R
∥
∥∥
r,s+σ

≤ γ −1K‖R‖r,s
where

K = γ sup
j :α j+β j =0
π(α,β)=0

e−σ
(∑

i 〈i〉θ (αi+βi )−2〈 j〉θ )

|ω · (α − β)| .

Therefore proving (27) amounts to showing that

K ≤ eC1σ
− 3

θ
. (43)

We divide in two cases regarding whether the inequality
∣∣∣∣
∣

∑

i

(αi − βi )i
2

∣∣∣∣
∣
≤ 2

∑

i

|αi − βi | , (44)

holds or not. We remark that
∣∣
∣∣∣

∑

i

(αi − βi )i
2

∣∣
∣∣∣
≥ 2

∑

i

|αi − βi | �⇒ |ω · (α − β)| ≥ 1 , (45)

indeed denoting ω j = j2 + ξ j with
∣∣ξ j
∣∣ ≤ 1

2 ,

|ω · (α − β)| ≥ 2
∑

j

∣∣α j − β j
∣∣− 1

2

∑

j

∣∣α j − β j
∣∣ ≥ 1.

Of course if |ω · (α − β)| ≥ 1, by (39) and (40) we get

γ
e−σ

(∑
i 〈i〉θ (αi+βi )−2〈 j〉θ )

|ω · (α − β)| ≤ 1

and the bound (43) is trivially achieved.
Otherwise, to deal with the case in which (44) holds, we need some notation. Given
u ∈ Z

Z

f , consider the set

M(u) := {
j = 0 , repeated

∣∣u j
∣∣ times

}
,

where D(u) < ∞ is its cardinality. Define the vector m = m(u) as the reordering of the
elements of the set above such that |m1| ≥ |m2| ≥ · · · ≥ |mD| ≥ 1.
Given α = β ∈ N

Z

f with |α| + |β| ≥ 3 we consider m = m(α − β) and n̂ = n̂(α + β).

If we denote by D the cardinality of m and N the one of n̂ we have

D + α0 + β0 ≤ N (46)

and

(|m1|, . . . , |mD|, 1, . . . , 1︸ ︷︷ ︸
N−D times

) � (̂n1, . . . n̂N ) . (47)
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Example A.7. Let set v = α + β and u = α − β with

α−5 = 1, α−2 = 2, α0 = 2, α4 = 1

β−5 = 1, β−3 = 2, β0 = 3, β6 = 1

π(α, β) = (−5)(1 − 1) + (−3)(−2) + (−2)(2) + 4(1) + 6(−1) = 0

v−5 = 2, v−3 = 2, v−2 = 2, v0 = 5, v4 = 1, v6 = 1

u−5 = 0, u−3 = −2, u−2 = 2, u0 = −1, u4 = 1, u6 = −1

n̂(v) = (6, 5, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1), N = 13(= Card(n̂))

M(u) = {−3,−3,−2,−2, 4, 6},m(u) = {6, 4,−3,−3,−2,−2}, D(u) = 6.

Therefore, we have D(u) + α0 + β0 = 8 ≤ 13 = N (n̂(v)). Hence, (46) holds.
Furthermore, (6, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1) ≤ n̂(v), that is (47).

Lemma A.8 (Lemma C.3 of [BMP18]). Assume that g defined on Z is non negative,
even and not decreasing on N. Then, if α = β,

∑

i∈Z
g(i)|αi − βi | ≤ 2g(m1) +

∑

l≥3

g(̂nl) . (48)

Proof. By definition of m(α − β) and setting σl = sign(αml − βml ) , we have
∑

i∈Z
g(i)(αi − βi ) = g(0)(α0 − β0) +

∑

l≥1

σl g(ml) . (49)

Hence
∑

i∈Z
g(i)|αi − βi | = g(0)|α0 − β0| +

∑

l≥1

g(ml)

≤ g(1)(α0 + β0) + 2g(m1) +
∑

l≥3

g(ml)

and (48) follows by (46) and (47). ��
By (49)

0 =
∑

i∈Z
(αi − βi )i =

∑

l

σlml (50)

and
∑

i

(αi − βi )i
2 =

∑

l

σlm
2
l . (51)

Analogously

∑

i

|αi − βi | = D + |α0 − β0|
(46)≤ N . (52)

Finally note that

σlσl ′ = −1 �⇒ ml = ml ′ . (53)
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Lemma A.9. Givenα = β ∈ N
Z

f , such thatπ(α−β) = 0, N ≥ 3, D ≥ 1 and satisfying
(44), we have

|m1| ≤ 7
∑

l≥3

n̂2l . (54)

Proof. The case D = 1 is not compatible with momentum conservation. Let us now
consider the case D = 2, i.e.

α − β = σ1em1 + σ2em2 + (α0 − β0)e0 .

If σ1σ2 = −1, momentum conservation imposes m1 = m2 but this contradicts (53). In
the case σ1σ2 = 1, by momentum conservation we have m1 = −m2. Then conditions
(44) and (52) imply that

m2
1 + m2

2 ≤ 2(D + |α0 − β0|)
(52)≤ 2N ≤ 6(N − 2) ≤ 6

N∑

l=3

n̂2l

since n̂l ≥ 1.
Let us now consider the case D ≥ 3. By (44), (51) and (52)

m2
1 + σ1σ2m

2
2 ≤ 2(D + |α0 − β0|) +

D∑

l=3

m2
l ≤ 2N +

D∑

l=3

m2
l ≤ 2N +

N∑

l=3

n̂2l ≤7
N∑

l=3

n̂2l .

since (recall N ≥ 3) 2N ≤ 6(N − 2) ≤ 6
∑N

l=3 n̂
2
l .

If σ1σ2 = 1 then

|m1|, |m2| ≤
√
7
∑

l≥3

n̂2l .

If σ1σ2 = −1

(|m1| + |m2|)(|m1| − |m2|) = m2
1 − m2

2 ≤ 7
∑

l≥3

n̂2l .

Now, if |m1| = |m2| then

|m1| + |m2| ≤ 7
∑

l≥3

n̂2l .

Conversely, if |m1| = |m2|, by (53), m1 = m2, hence m1 = −m2. By substituting this
relation into (50), we have

2|m1| ≤
∑

l≥3

|ml | ≤
∑

l≥3

n̂2l ,

concluding the proof. ��
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Lemma A.10. Consider α, β ∈ M with α = β and |α| + |β| ≥ 3. If (44) holds then
for all j such that α j + β j = 0 one has

∑

i

|αi − βi |〈i〉θ/2 ≤ C∗

(
∑

i

(αi + βi )〈i〉θ − 2〈 j〉θ
)

, C∗ = 7

2 − 2θ
(55)

Proof. Let us first consider the case D = 0, this means that α − β = (α0 − β0)e0 and
the left hand side of (55) reads |α0 −β0|. By (39) and N ≥ 3 the right hand side of (55)
is at least 2 − 2θ , so if |α0 − β0| ≤ 7 the result is trivial. Otherwise we have two cases,
if j = 0

|α0 − β0| ≤ 2(|α0 − β0| − 2〈 j〉θ ) ≤ 2

(
∑

i

(αi + βi )〈i〉θ − 2〈 j〉θ
)

,

Otherwise we remark that if j = 0, α j + β j = 0 and α j − β j = 0, then α j + β j ≥ 2,
then

|α0 − β0| ≤ (α0 + β0) + (α j + β j − 2)〈 j〉θ ≤
∑

i

(αi + βi )〈i〉θ − 2〈 j〉θ .

Now we consider indices α, β such that N ≥ 3, D ≥ 1. Here we apply Lemma A.9
Given α, β ∈ N

Z

f , as above we consider m = m(α − β) and n̂ = n̂(α + β).

We have8

∑

i

|αi − βi |〈i〉θ/2 (48)≤ 2|m1| θ
2 +

∑

l≥3

n̂
θ
2
l

(54)≤ 2

⎛

⎝7
∑

l≥3

n̂2l

⎞

⎠

θ
2

+
∑

l≥3

n̂
θ
2
l

≤ +2(7)
θ
2
∑

l≥3

n̂θ
l +

∑

l≥3

n̂
θ
2
l

≤ 2
√
7 + 1

2 − 2θ

⎛

⎝(2 − 2θ )

⎛

⎝
∑

l≥3

n̂θ
l

⎞

⎠

⎞

⎠ , (56)

Then by Lemma A.5 and (56) we get

∑

i

|αi − βi |〈i〉θ/2 ≤ 7

2 − 2θ

(
∑

i

〈i〉θ (αi + βi ) − 2n̂θ
1

)

≤ 7

2 − 2θ

[
∑

i

〈i〉θ (αi + βi ) − 2〈 j〉θ
]

,

proving (55). ��
8 Using that for x, y ≥ 0 and 0 ≤ c ≤ 1 we get (x + y)c ≤ xc + yc.
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Conclusion of the proof of Lemma 3.8 By applying Lemma A.10, since ω ∈ Dγ we get:

γ
e−σ

(∑
i 〈i〉θ (αi+βi )−2〈 j〉θ )

|ω · (α − β)|
(4)≤ e−σ

(∑
i 〈i〉θ (αi+βi )−2〈 j〉θ )∏

i

(
1 + (αi − βi )

2〈i〉2
)

(55)≤ e− σ
C∗
∑

i |αi−βi |〈i〉
θ
2
∏

i

(
1 + (αi − βi )

2〈i〉2
)

≤ exp
∑

i

[
− σ

C∗
|αi − βi |〈i〉 θ

2 + ln
(
1 + (αi − βi )

2〈i〉2
)]

= exp
∑

i

fi (|αi − βi |) (57)

where, for 0 < σ ≤ 1, i ∈ Z and x ≥ 0, we defined

fi (x) := − σ

C∗
x〈i〉 θ

2 + ln
(
1 + x2〈i〉2

)
.

��
Finally, we have

Lemma A.11. (Lemma 7.2 of [BMP18]) Setting

i� :=
(
24C∗
σθ

ln
12C∗
σθ

) 2
θ

,

we get
∑

i

fi (|�i |) ≤ 18i� ln i� (58)

for every � ∈ Z
Z

f .

Proof. First of all we note that
∑

i

fi (|�i |) =
∑

i s.t. �i =0

fi (|�i |)

since fi (0) = 0. We have that9

fi (x) ≤ − σ

C∗
〈i〉 θ

2 x + 2 ln(x) + 2 ln〈i〉 + 1 , ∀ x ≥ 1 .

Now,

max
x≥1

(
− σ

C∗
〈i〉 θ

2 x + 2 ln(x)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

− σ

C∗
〈i〉 θ

2 if 〈i〉 ≥ i0 ,

−2 + 2 ln
2C∗
σ

− θ ln〈i〉 if 〈i〉 < i0 ,

where
9 Using that ln(1 + y) ≤ 1 + ln y for every y ≥ 1.
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i0 :=
(
2C∗
σ

) 2
θ

,

since the maximum is achieved for x = 1 if 〈i〉 ≥ i0 and x = 2C∗
σ 〈i〉θ/2 if 〈i〉 < i0. Note

that i0 ≥ e. Then we get

∑

i

fi (|�i |) =
∑

i s.t. �i =0

fi (|�i |)

≤
∑

〈i〉≥i0 s.t. �i =0

(
2 ln〈i〉 + 1 − σ

C∗
〈i〉 θ

2

)
+
∑

〈i〉<i0

(
2 ln

2C∗
σ

+
(
2 − θ

)
ln〈i〉

)
.

We immediately have that

∑

〈i〉<i0

(
2 ln

2C∗
σ

+
(
2 − θ

)
ln〈i〉

)
≤ 6i0

(
ln

2C∗
σ

+ ln i0

)

= 6

(
1 +

2

θ

)(
2C∗
σ

) 2
θ

ln
2C∗
σ

.

Moreover, in the case 〈i〉 ≥ i0 ≥ e,

2 ln〈i〉 + 1 − σ

C∗
〈i〉 θ

2 ≤ 3 ln〈i〉 − σ

C∗
〈i〉 θ

2 = 6

θ

(
ln〈i〉 θ

2 − 2C〈i〉 θ
2

)

where

C := θσ (2 − 2θ )

84
< 1 .

We have that10

ln〈i〉 θ
2 − 2C〈i〉 θ

2 ≤ −C〈i〉 θ
2 , when 〈i〉 ≥ i∗ :=

(
2

C
ln

1

C

) 2
θ

.

Note that

i� ≥ max{i0, i∗} .

Therefore

∑

〈i〉≥i0 s.t. �i =0

(
2 ln〈i〉 + 1 − σ

C∗
〈i〉 θ

2

)
≤

∑

〈i〉≥i0 s.t. �i =0

6

θ

(
ln〈i〉 θ

2 − 2C〈i〉 θ
2

)

≤ 6

θ

⎛

⎝
∑

〈i〉<i�

ln〈i〉 θ
2 −

∑

〈i〉≥i� s.t. �i =0

(
C〈i〉 θ

2

)
⎞

⎠ ≤ 9i� ln i� .

10 Using that, for every fixed 0 < C ≤ 1, we have Cx ≥ ln x for every x ≥ 2
C ln 1

C .
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In conclusion we get

∑

i

fi (|�i |) ≤ 6
2 + θ

θ

(
2C∗
σ

) 2
θ

ln
2C∗
σ

+ 9i� ln i�

≤ 9

(
2C∗
σθ

) 2
θ

ln

(
2C∗
σ

) θ
2

+ 9i� ln i� ≤ 18i� ln i�

��
The inequality (27) follows from plugging (58) into (57) and evaluating the constant. ��
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