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Abstract
This article is concerned with the geometry of germs of real analytic surfaces in
(C2, 0) having an isolated Cauchy–Riemann (CR) singularity at the origin. These are
perturbations of Bishop quadrics. There are two kinds of CR singularities stable under
perturbation: elliptic and hyperbolic. Elliptic case was studied by Moser–Webster
(Acta Math 150(3–4), 255–296, 1983) who showed that such a surface is locally,
near the CR singularity, holomorphically equivalent to normal form from which lots
of geometric features can be read off. In this article we focus on perturbations of
hyperbolicquadrics.Aswas shownbyMoser andWebster (1983), such a surface can be
transformed to a formal normal form by a formal change of coordinates that may not be
holomorphic in any neighborhood of the origin. Given a non-degenerate real analytic
surface M in (C2, 0) having a hyperbolic CR singularity at the origin, we prove the
existence of a non-constant Whitney smooth family of connected holomorphic curves
intersecting M along holomorphic hyperbolas. This is the very first result concerning
hyperbolic CR singularity not equivalent to quadrics. This is a consequence of a non-
standard KAM-like theorem for pair of germs of holomorphic involutions {τ1, τ2}
at the origin, a common fixed point. We show that such a pair has large amount of
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invariant analytic sets biholomorphic to {z1z2 = const} (which is not a torus) in a
neighborhood of the origin, and that they are conjugate to restrictions of linear maps
on such invariant sets.

Mathematics Subject Classification 32V40 · 37F50 · 37J40 · 51M15 · 70H08

1 Introduction

In this article, we are concernedwith the local holomorphic invariants of a real analytic
submanifold M in C

n . If the tangent space of M at a point p0 contains a maximal
complex subspace, the dimension d of which does not depend on p0, then we say
that M is a Cauchy–Riemann (CR) submanifold. Since the work of Cartan [11] in the
1930s, lots of studies were devoted to this geometry (see for instance [4, 12, 35, 36]).
As “baby” example, one can consider an open neighborhood U of a point p0 in Rn in
C

n . The local hull of holomorphy of U is the largest open set in Cn containing U and
over which all holomorphic functions defined on U can be holomorphically extended
to. It can be shown that, in that case, the hull of holomorphy of U is nothing but U .
This situation is quite different when considering a neighborhood of a CR singularity,
that is a point p0 in the real submanifold M in C

n such that the maximal complex
tangent spaces do not have a constant dimension in any neighborhood of p0. A real
submanifold with a CR singularity must have codimension at least 2.

The study of real submanifolds with CR singularities was initiated by Bishop [6] in
his pioneering work, and followed by Moser–Webster [40]. They considered higher-
order analytic perturbations of the elementary models called Bishop quadrics Qγ ⊂
C
2, depending on the Bishop invariant 0 ≤ γ ≤ ∞:

• for 0 ≤ γ < ∞, Qγ : z2 = Qγ (z1, z̄1) := |z1|2 + γ (z21 + z21),
• for γ = ∞, Q∞ : z2 = z21 + z21.

When γ �= 1
2 , such a surface has an isolated CR singularity at the origin as it is totally

real (i.e., d = 0) everywhere but at the origin at which the tangent space is the com-
plex line {z2 = 0} (i.e., d = 1). When 0 < γ < 1

2 , one says that this singularity is
elliptic. In their seminal work, Moser–Webster [40] considered higher-order analytic
perturbations of elliptic quadrics Qγ . They proved that such a submanifold is holo-
morphically equivalent to a normal form, z2 = |z1|2 + (γ + ε Re(z2)s)(z21 + z̄21), for
some ε ∈ {−1, 0, 1} and s ∈ N

∗∪{∞}. Lots of geometric features can be read off from
such a normal form. They also considered n-dimensional submanifolds in C

n which
have a complex tangent at the origin of minimal (positive) dimension. This has been
recently extended to CR singularity with maximal complex tangent by Gong and the
first author [23, 24]. When γ = 0 (degenerate elliptic case), Moser [39] constructed a
formal power series normal form. Although it is still not knownwhether such a normal
form can be obtained through a convergent transformation, Huang-Yin [28] did the
achievement of obtaining the holomorphic classification of analytic perturbations of
Q0. Relatively recently, related problems such as flattening [29–31] or quadric rigid-
ity [27] have been successfully considered by Huang and co-authors. Some results on
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CR singularities of k-dimensional submanifolds in C
n , k �= n have been obtained by

Coffman [14, 15].
In the so-called hyperbolic case, i.e., higher-order analytic perturbation of Qγ

with γ > 1
2 , not much is known. Moser–Webster [40] showed that some analytic

perturbations of Qγ may not be holomorphically equivalent to a normal form as
in the elliptic case. Forstnerič–Stout [19] proved that such a perturbation is always
polynomially convex near such a hyperbolic CR singularity. Gong [20] showed that
if the higher-order analytic perturbation of Qγ is formally equivalent to Qγ (i.e.,
by the mean of formal power series transformation) and if a Diophantine condition
associated to γ is satisfied, then the perturbation is actually holomorphically equivalent
to the quadric. He also proved the existence of higher-order analytic perturbations of
a hyperbolic quadric which are formally equivalent to the hyperbolic quadric but not
holomorphically equivalent to it [22]. On the other hand, Klingenberg [33] showed that
under a similar Diophantine condition, for a given higher-order analytic perturbation
M of the quadric, there always exists a holomorphic curve that intersects M along two
transverse totally real curves. Both results have been extended in higher dimension in
the case of maximal complex tangent [23].

In both elliptic and hyperbolic cases, the CR singularity is stable under perturbation
and is not removable.

The aim of this work is to prove that non-degenerate analytic perturbations of
hyperbolic quadrics, i.e., perturbations which are not formally equivalent to quadrics,
contain a large number of analytic hyperbolas. By this, we mean that there exists a
compact setK ⊂ Rof positivemeasure such that for allω ∈ K, there exists a connected
holomorphic curve Sω that intersects the non-degenerate analytic perturbation M
along two distinguished real analytic curves that are simultaneously holomorphically
mapped to the two branches of the real hyperbola {ξη = ω} (in a neighborhood
of the origin). We remark that it is elementary that a real analytic curve in the real
analytic surface is contained in a holomorphic curve. Having a connected holomorphic
curve that intersects M in two distinct real analytic curves is, however, one of main
conclusions of this paper.

To do so, we shall develop a new KAM theory (named after Kolmogorov–Arnold–
Moser [1, 34, 38]) for a pair of (germs of) holomorphic involutions in a neighborhood
of a fixed point (say 0) in C

2, which is swapped by conjugacy with some anti-
holomorphic involution. Initially, KAM theory was conceived as an answer to the
fundamental problem arising in Dynamical Systems and in particular in Celestial
Mechanics [13, 18]. It can be formulated as follows: Given a completely integrable
Hamiltonian dynamical system written in action-angle coordinates (θ, I ) ∈ T

n ×R
n

of the form θ̇ = ω(I ), İ = 0, where ω denotes an analytic function. For each I0, the
manifold T

n × {I0} is invariant and the motion on it is a constant rotation of angle
ω(I0). In the nature, these systems are rather rare but one encounters small pertur-
bations of them under the form (∗) θ̇ = ω(I ) + ε f (I , θ), İ = εg(I , θ) with f , g
analytic functions and ε a small number. Essentially, KAM theorem states that if the
system is non-degenerate in some sense then there exists a large (in measure) compact
set K such that for all I ∈ K, the system (∗) has an invariant manifold which is dif-
feomorphic to a torus the dynamical system on which is conjugated to the rotation of
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angle ω̃(I ) on that torus. In some sense, a lot of the invariant tori Tn × {I } “survive”
under a small non-degenerate perturbation.

As mentioned earlier, to obtain a connected holomorphic curve intersecting the real
surface is a main result. In our context, we shall go one step further by proving, for
a sufficiently small R > 0, the existence of a compact set O∞(R) ⊂] − R2, R2[ of
positive measure such that for each ω ∈ O∞(R), there exists an invariant connected

complex submanifold S̃ω in 	2(0, R
1
2 ) := {(ξ, η) ∈ C

2 : |ξ |, |η| < R
1
2 }, which

is the image of the connected holomorphic manifold CR
ω := {(ξ, η) ∈ C

2 : ξη =
ω, |ξ |, |η| < R} by a biholomorphism
ω : CR

ω → S̃ω. The inverse of the latter,
−1
ω ,

conjugates the restrictions of nonlinear involutions to S̃ω to the restrictions to CR
ω of

linear ones. We emphasize that CR
ω ∩ 	2(0, a

√|ω|) contains the graph ζ �→ (ζ, ω
ζ
)

over the annulus
√|ω|

a < |ζ | <
√|ω|a. This KAM-like result is non-standard as one

does not expect to obtain invariant tori as in [5, 7, 17, 42] but different kind of invariant
manifolds of the form {z1z2 = ω} (in a neighborhood of the origin; when ω �= 0).
The role played by the rotation is played by linear involutions. In a similar spirit, but
in a different context, a KAM-like theory was obtained by the first author for germs
of holomorphic vector fields at a fixed point [48]. We emphasize that the KAM-like
statement in this paper is different from an apparently similar real problem for which
one obtains a lot of invariant tori. The main achievements in this direction are due to
Sevryuk [43, 45, 46] near an elliptic fixed point. The non-standard hyperbola character
of our KAM-like result near an elliptic fixed point of reversible holomorphicmappings
unveils new unexpected difficulties.

Hard implicit function theorem, Nash–Moser theorem, Newton Scheme or KAM
process are various names in the literature that stand for “rapid iteration scheme”
usually needed to solve functional equations in Fréchet spaces [25]. This appears in
particular in conjugacy problem to normal forms of vector fields at a fixed point [9,
10, 47], of interval exchange maps [37] or in reducibility problems of quasi-periodic
cocycles [3, 16, 26], the latter being related to spectral theory as well.

2 Main results

We shall here summarize some statements of [40]. Let us consider Bishop’s hyperbolic
quadric, a real quadratic surface in C2 given by

Qγ : z2 = Qγ (z1, z̄1) = |z1|2 + γ (z21 + z21), γ >
1

2
.

Let M be a higher-order analytic perturbation of Qγ given by

M : z2 = Qγ (z1, z̄1) + f (z1, z̄1), f (z1, z̄1) = O3(z1, z̄1). (1)

To such a real surface, one associates a local dynamical system in (C2, 0), {τ o
1 , τ o

2 , ρ},
where τ o

1 , τ o
2 are local holomorphic involutions fixing 0, ρ is an anti-holomorphic

involution. They satisfy τ o
j ◦τ o

j = Id and τ o
2 = ρ◦τ o

1 ◦ρ.Moser–Webster’s construction
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goes as follow.We first “complexify” M as a complex surfaceM inC4 by considering
two new complex independent variablesw1,w2, playing the role of z̄1, z̄2 respectively.
In these coordinates,

M :
{

z2 = Qγ (z1, w1) + f (z1, w1)

w2 = Qγ (z1, w1) + f̄ (w1, z1).

There are two natural holomorphic mappings πi : (C4, 0) ∩ M → (C2, 0), i = 1, 2,
defined as π1(z, w) = z and π2(z, w) = w. It happens that these are 2 − 1 branched
coverings. Each mapping τ o

i is defined to be the deck transformation (different from
identity) of πi , that is

π1(τ
o
1 (z, w)) = z, π2(τ

o
2 (z, w)) = w.

For instance, τ o
1 canbe regarded as amappingdefined as τ o

1 (z1, w1) = (z1, φ1(z1, w1))

such that

Qγ (z1, φ1(z1, w1)) + f (z1, φ1(z1, w1)) = Qγ (z1, w1) + f (z1, w1).

The linear part T1 of the mapping τ o
1 at the fixed point 0, is obtained by solving the

equation Qγ (z1, T1(z1, w1)) = Qγ (z1, w1). An immediate computation shows that
T1(z1, w1) = (z1,−γ −1z1 − w1). In good local holomorphic coordinates (ξ, η), T1
is rewritten as T1(ξ, η) = (δη, δ−1ξ) for some complex number δ.

Such a triple {τ o
1 , τ o

2 , ρ} completely characterizes the holomorphic equivalent class
of the real surface M (cf. [40,Proposition 1.1] or [23,Proposition 2.8]). It is also useful
to consider the germ of biholomorphism σo := τ o

1 ◦ τ o
2 . In good local holomorphic

coordinates (ξ, η), we have ρ(ξ, η) = (ξ̄ , η̄),

τ o
1 (ξ, η) =

(
e

i
2λη + po(ξ, η)

e− i
2λξ + qo(ξ, η)

)
, (2)

τ o
2 (ξ, η) = (

ρ ◦ τ o
1 ◦ ρ

)
(ξ, η) =

(
e− i

2λη + p̄o(ξ, η)

e
i
2λξ + q̄o(ξ, η)

)
, (3)

where h̄ denotes h̄(ξ, η) := ∑
k,l≥0

¯̆hk,lξ
kηl if h(ξ, η) := ∑

k,l≥0 h̆k,lξ
kηl . We also

have

σo(ξ, η) =
(

μξ + f o(ξ, η)

μ−1η + go(ξ, η)

)
, μ = eiλ, |eiλ| = 1. (4)

Here, e
i
2λ, e− i

2λ are the roots of the quadratic equation γ X2 − X + γ = 0 and
po, qo, f o, go are germs of holomorphic functions of order ≥ 2 at the origin (i.e., the
functions and their first-order derivatives vanish at 0). In the case M = Qγ , τ o

1 , τ
o
2 are

the linear involutions

τ o
1 (ξ, η) =

(
e

i
2λη

e− i
2λξ

)
, τ o

2 (ξ, η) =
(

e− i
2λη

e
i
2λξ

)
.
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In the sequel, we shall assume that the submanifold M (or their associated involu-

tions τ o
1 , τ

o
2 ) is non-exceptional, meaning that e

i
2λ is not a root of unity. In this case,

Moser–Webster showed (cf. [40,Lemma 3.2, Theorem 3.4]) that there exists a formal
transformation 
̂ satisfying 
̂ ◦ ρ = ρ ◦ 
̂ such that

τ̂1 := (
̂−1 ◦ τ o
1 ◦ 
̂)(ξ, η) =

(
�(ξη)η

�−1(ξη)ξ

)
, (5)

τ̂2 := (
̂−1 ◦ τ o
2 ◦ 
̂)(ξ, η) =

(
�(ξη)−1η

�(ξη)ξ

)
, (6)

σ̂ := (
̂−1 ◦ σo ◦ 
̂)(ξ, η) =
(

M̂(ξη)ξ

M̂(ξη)−1η

)
. (7)

Here, �(z) and M̂(z) are formal power series of the one-dimensional variable z and
satisfy:

�(z)�̄(z) = 1, M̂(z) = �(z)2, �(0) = e
i
2λ, M̂(0) = μ.

Themaps τ̂ j and σ̂ are called formal normal form. Furthermore, the pair {τ̂1, τ̂2} is said
to be formally integrable. It would have been called integrable over a domain inC2 if�
was holomorphic in that domain. Themap 
̂ is called the normalizing transformation.
Contrary to the elliptic case, one cannot expect the normalizing transformation to
converge in a neighborhood of the origin. This is due to the presence of small divisors
(we recall that {|μk − 1|}k∈N∗ accumulate at the origin when |μ| = 1) as emphasized
in [40,Section 6 (b)].

If �(z) = �(0), then {τ o
1 , τ o

2 } is formally linearizable by a formal transformation
that commutes with ρ. Hence, the submanifold is formally equivalent to the quadric
Qγ . Gong’s theorem [20] asserts that, if a Diophantine condition is satisfied, i.e., there
exist r , c > 0, such that for k ∈ N

∗, |μk − 1| ≥ c
kr , then the submanifold is actually

holomorphically equivalent to the quadric Qγ near the origin.
In what follows, we shall focus on the non-degenerate case, i.e., we assume that

�(z) �= �(0) and assume that s is the smallest positive integer l such that�(l)(0) �= 0.

We can normalize �(s)(0)
s! = 1.

2.1 KAM-like theorem for reversible holomorphic maps

We assume that τ o
1 , τ o

2 , σo are defined in {|ξ |, |η| < r} for some 0 < r < 1
4 as in

(2)–(4), and

(A) λ ∈ [0, 4π [ with λ
π

∈ R \ Q,
(B) po and qo are convergent power series on {|ξ |, |η| < r} of order ≥ 2, i.e.,

po(ξ, η) =
∑

l+ j≥2
l, j≥0

p̆o
l, jξ

lη j , qo(ξ, η) =
∑

l+ j≥2
l, j≥0

q̆o
l, jξ

lη j ,
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with coefficients p̆o
l, j , q̆o

l, j ∈ C.

It is easy to verify that σo is reversible w.r.t. the involution ρ, i.e., σ−1
o = ρ ◦ σo ◦ ρ.

As above, let 
̂ be the unique normalized formal transformation together with the
formal power series � = �(z). We assume that �(z) is not constant. Let s ∈ N

∗ be
the smallest positive integer such that �(s)(0) �= 0. More precisely, we assume that

�(z) = e
i
2λ +

∑
j≥s

C̃ j z
s, C̃s �= 0. (8)

For r > 0, let 	2(0, r) := {(ξ, η) ∈ C
2 : |ξ |, |η| < r} and for ω ∈ R, let

Cr
ω := {

(ξ, η) ∈ C
2 : ξη = ω, |ξ |, |η| < r

}
. Obviously, Cr

ω is empty if |ω| ≥ r2.
The following theorem shows that there is a family of invariant closed curves for the
involutions τ o

j and the reversible map σo in any neighborhood of the origin.

Theorem 2.1 With the notations above and under assumption (8), there exists a small
enough R = R(λ, r , s) > 0 such that there is a compact set O∞(R) ⊂] − R2, R2[
satisfying1

|O∞(R)|
2R2 → 1, R → 0, (9)

such that for any ω ∈ O∞(R), one can find μω ∈ R and a holomorphic transformation


ω : CR
ω → 	2(0, R

1
2 ) with 
ω ◦ ρ = ρ ◦ 
ω, such that, on CR

ω :

(
−1
ω ◦ τ o

1 ◦ 
ω)(ξ, η) =
(

e
i
2μωη

e− i
2μωξ

)
, (
−1

ω ◦ τ o
2 ◦ 
ω)(ξ, η) =

(
e− i

2μωη

e
i
2μωξ

)
,

(
−1
ω ◦ σo ◦ 
ω)(ξ, η) =

(
eiμωξ

e−iμωη

)
, (ξ, η) ∈ CR

ω .

In other words, τ o
1 , τ o

2 and σo have 
ω(CR
ω ) as holomorphic invariant set and their

restrictions to it are conjugate to the restrictions to CR
ω of linear maps defined above.

Moreover, μω ∈]λ − π
4 , λ + π

4 [ depends on ω smoothly in the sense of Whitney, and


ω = 
̌ ◦ (Id + φω), with 
̌ biholomorphic on the neighborhood 	2(0, R), fixing
the origin, and φω is smooth with respect to ω and sufficiently small in the sense of
Whitney.

Remark 2.2 If the surface M can be holomorphically flattened, that is, if it can be
holomorphically mapped into Im(z2) = 0, then the situation is much simpler. Indeed,
in that case, the associated dynamical system has an extra holomorphic first integral
[21]. It implies that automatically, in good holomorphic coordinates near the origin,
all curves {ξη = constant} are left invariant by the original dynamics. One thus needs
to prove that for suitable values of these constants (i.e. ω’s), one has a conjugacy to
linear maps on the associated {ξη = constant} as mentioned by Sevryuk [44] in his
Mathematical review of Gong’s article [21].

1 Through the paper, for any S ⊂ R, |S| denotes its Lebesgue measure.
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Remark 2.3 μω obtained in Theorem 2.1 is such that μω

π
is irrational and {|einμω −

1|}n∈N∗ does not accumulate at the origin too quickly (see (67)), which guarantees that
the restriction σ |Sω

is an irrational rotation on Sω. This contrasts with the example
given Section 6(b) of [40]. Indeed, the divergence of the formal normalizing trans-
formation 
̂ in (5)–(7) cannot be avoided because of the periodic orbits of σ . Such
periodic orbits, as well as its invariant curves, do not have any immediate geometrical
significance since they do not lie on M but only on its complexification M ⊂ C

4.

Sketch of proof of Theorem 2.1. For τ o
1 and τ o

2 given as in (2) and (3), our aim is to
eliminate the perturbation po and qo (hence p̄o and q̄o) by a sequence of holomorphic
transformations which commute with ρ.

After finitely many steps of normalization in the sense of Poincaré–Dulac in the
neighborhood of origin, we obtain a pair of involutions of the form

τ̌1(ξ, η) =
(

e
i
2 α̌(ξη)η + p̌(ξ, η)

e− i
2 α̌(ξη)ξ + q̌(ξ, η)

)
, τ̌2 = ρ ◦ τ̌1 ◦ ρ,

with a non-degenerate α̌ = α̌(z) (as in (69)) and higher-order perturbations p̌, q̌ (as in
(70)). Hence, we can make the norm of the perturbation small enough by choosing a
small enough neighborhood of origin {|ξ |, |η| < r∗}. By a possible normalization on
the “crown”, {|ξη − ω| < β}, around {ξη = ω} with ω well chosen from a compact
positive-measure subset of ]−r2∗ , r2∗ [, the system enters into a general iteration scheme
(a KAM-like process, see Proposition 4.4), under an additional assumption on the
perturbation.

By the iteration process, we build a sequence of involutions τ
(1)
ν , ν ∈ N, (hence

τ
(2)
ν = ρ ◦ τ

(1)
ν ◦ ρ and σν = τ

(1)
ν ◦ τ

(2)
ν ) of the form

τ (1)
ν (ξ, η) =

(
e

i
2αν(ξη)η + pν(ξ, η)

e− i
2αν(ξη)ξ + qν(ξ, η)

)

on crowns around {ξη = ω}, that shrink to the connected holomorphic curve {ξη = ω}
when ν tends to infinite. On the other hand, when restricted to {ξη = ω}, αν tends
to a real number α∞(ω) and the perturbation (pν, qν) tends to zero, as ν tends to
infinite. In order to control this process, one has to exclude some parameters ω from
the previous set and to show that, the set of admissible parameters ω for full process
is non-void.

The required supplementary condition mentioned above is that the “crossing term”,

called skew term below, e
i
2αν(ξη)ηqν + e− i

2αν(ξη)ξ pν of τ
(1)
ν is much smaller than pν

and qν (see (52)) on the crown. With this condition, we are able to construct a suitable
holomorphic transformation of the form

ψν(ξ, η) =
(

ξ + uν(ξ, η)

η + vν(ξ, η)

)
,
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which conjugates τ
(1)
ν into τ

(1)
ν+1 with perturbation of much smaller size on a smaller

crown around {ξη = ω}. Here ω is chosen from a suitable real parameter set, which is
related to the small-divisor conditions and guarantees the convergence for the product
of sequence of transformations {ψν} on {ξη = ω}.

Indeed, the supplementary condition on the skew term of τ (1)
ν implies the skew term

ηuν + ξvν of transformation ψν is much smaller (similar to (145) in Lemma 7.5). As
a consequence, the error term coming from the non-degeneracy of the “eigenvalues”

e
i
2αν(ξη):

e± i
2αν(ξη+ηuν+ξvν+uνvν) − e± i

2αν(ξη)

is so small that it can be directly put into the new perturbation. We emphasize that
this supplementary hypothesis on the skew terms of τ

(1)
ν has to be assumed only at

the initial KAM step (i.e., for ν = 0), as after each (ν + 1) − th KAM step, the new
skew term of τ

(1)
ν+1 is automatically much smaller than pν+1 and qν+1. This is due to

a subtle cancellation of main parts (see (65) and (66) in Theorem 4.7 and its proof).
As mentioned above, by an initial preparation of the involutions, we can make them
to satisfy this supplementary condition required in the iteration process.

2.2 Geometry of hyperbolic CR singularity

We recall that M is non-exceptional, since λ
π

∈ R \ Q in the associated involutions
τ o
1 and τ o

2 given in (2) and (3). Hence, (5) and (6) hold. Let us show that Theorem
2.1 enables us to obtain the result on the geometry of real analytic surfaces with a
hyperbolic CR singularity.

Asmentioned above, the triple {τ o
1 , τ o

2 , ρ} given in (2), (3) completely characterizes
the holomorphic equivalent class of the submanifold M given in (1). Indeed, following
Moser–Webster [40], we can reconstruct a submanifold from a pair of involutions. Let
us define two holomorphic mappings ϕ1, � fixing the origin of C2 as follows:

ϕ1(ξ, η) := ξ + ξ ◦ τ o
1 , ϕ2 := ϕ1 ◦ ρ, ρ(ξ, η) = (ξ̄ , η̄). (10)

The latter implies that the biholomorphic mapping, fixing the origin of C2,

ϕ(ξ, η) = (ϕ1(ξ, η), ϕ2(ξ, η)) =: (z′, w′) (11)

transforms ρ into the standard complex conjugation (z′, w′) → (w′, z′). Define

�(ξ, η) := (ξ ◦ τ o
1 (ξ, η)) · ξ, (12)

where ξ ◦ τ o
1 (ξ, η) denotes the ξ -coordinate of τ o

1 (ξ, η). We verify that ϕ1 and � are
invariant by τ o

1 . Then the local analytic submanifold defined by the local equation

z2 = (� ◦ ϕ−1)(z1, z̄1), (13)
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has {τ o
1 , τ o

2 , ρ} as associatedMoser–Webster involutions. Assume that the pair of invo-
lutions τ o

1 and τ o
2 associated to the real surface M satisfies the assumption of Theorem

2.1. Then, for each ω ∈ O∞(R), there is a holomorphic map 
ω defined on CR
ω ={

(ξ, η) ∈ C
2 : ξη = ω, |ξ |, |η| < R

}
. It is a small perturbation of the the identity. Let

H R
ω be the real hyperbola of CR

ω , i.e., H R
ω := {

(ξ, η) ∈ R
2 : ξη = ω, |ξ |, |η| < R

}
.

Let us consider the connected holomorphic curve defined as the image of CR
ω (which

contains a graph over an annulus):

Sω :
{

z1 = ϕ1 ◦ 
ω(ξ, η)

z2 = � ◦ 
ω(ξ, η)
, (ξ, η) ∈ CR

ω .

as well as HR
ω , the image of the restriction, 
̃ω := (ϕ1,�) ◦ 
ω|H R

ω
, to H R

ω . Hence,

HR
ω ⊂ Sω shrinks to zero with R.

Theorem 2.4 Under the assumption of Theorem 2.1 and the notation above, the fam-
ily {Sω}ω∈O∞(R) is a non-constant Whitney smooth family of connected holomorphic
curves. Each of them intersects M, in a neighborhood of the origin, along the holo-
morphic hyperbola HR

ω .

Remark 2.5 Assumptions of the previous theorem, through (8), implies that the real
analytic surface M given in (1) is not formally equivalent to Qγ .

Remark 2.6 The conclusion of the previous theorem contrasts with that of the elliptic
case treated by Moser–Webster. Indeed, in the holomorphic normalizing coordinates,
there is a real analytic family of holomorphic curves Sc : z2 = c for c in a real
neighborhood of the origin, and for every c, Sc intersects M along the ellipse c =
|z1|2 + (γ + εcs)(z21 + z̄21) (Fig. 1).

Proof According to Theorem 2.1, for any good parameter ω ∈ O∞(R), there exists a
connected holomorphic curve Sω invariant by the dynamics and ρ, such that τ o

j |Sω
is

conjugated to the restriction to CR
ω of the linear involutions:

Tj : (ξ, η) �→
(

e
i
2 (−1) j−1μωη, e− i

2 (−1) j−1μωξ
)

.

Indeed, with the definitions given in (10) and (12), we have, for all (ξ, η) ∈ CR
ω ,

(ϕ1 ◦ 
ω)(ξ, η) = (ξ ◦ 
ω)(ξ, η) +
(
ξ ◦ 
ω ◦

(

−1

ω ◦ τ o
1 ◦ 
ω

))
(ξ, η)

= (ξ ◦ 
ω)(ξ, η) + (ξ ◦ 
ω)
(

e
i
2μωη, e− i

2μωξ
)

,

(� ◦ 
ω)(ξ, η) = (ξ ◦ 
ω)(ξ, η) ·
(
(ξ ◦ 
ω)

(
e

i
2μωη, e− i

2μωξ
))

.

We define the connected holomorphic curve Sω as the image of the holomorphic curve
CR

ω by the holomorphic map:

Sω :
{

z1 = (ϕ1 ◦ 
ω)(ξ, η)

z2 = (� ◦ 
ω)(ξ, η)
, (ξ, η) ∈ CR

ω .
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Fig. 1 Holomorphic hyperbola:
intersection of M by a
holomorphic curve

On the one hand, since 
ω and ρ commutes, we have

ϕ ◦ 
ω = (
ϕ1 ◦ 
ω, ϕ1 ◦ 
ω ◦ ρ

)
.

On the other hand, H R
ω := CR

ω ∩Fix(ρ) is the union of two branches of real hyperbola
{ξη = ω, ξ = ξ̄ , η = η̄, |ξ |, |η| < R}. Hence, we have

ϕ ◦ 
ω|H R
ω

= (z1, z̄1)|H R
ω
.

As a consequence, the complex curve Sω intersects M given in (13) along the image
of H R

ω by (ϕ1,�) ◦ 
ω,

z2 = (� ◦ 
ω) ◦
(

−1

ω ◦ ϕ−1
)

(z1, z̄1)|H R
ω

= (� ◦ 
ω) ◦ (ϕ ◦ 
ω)−1(z1, z̄1)|H R
ω
.
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We recall that 
ω = 
̌ ◦ (Id + φω). We can assume that 
̌ = Id for convenience.
Then, with �ω := e

i
2μω , Sω is defined as

⎧⎨
⎩

z1 = ξ + �ωη + (ξ ◦ φω)(ξ, η) + (ξ ◦ φω)(�ωη,�−1
ω ξ)

z2 = �ωω + ξ · ((ξ ◦ φω)(�ωη,�−1
ω ξ)) + �ωη · ((ξ ◦ φω)(ξ, η))

+((ξ ◦ φω)(ξ, η)) · ((ξ ◦ φω)(�ωη,�−1
ω ξ))

,

where (ξ, η) ∈ CR
ω , that is η = ω

ξ
, |ω|

R < |ξ | < R. Since φω is sufficiently small and
smooth with respect to ω in the sense of Whitney, Sω is a small perturbation of the
main part

{
z1 = ξ + �ω

ω
ξ

z2 = �ωω
,

which varieswithω as�ωω does. Indeed, assume that there existω,ω′ ∈ O∞(R) ⊂ R

with ω �= ω′ such that �ωω = �ω′ω′. Since �ω = e
i
2μω and �ω′ = e

i
2μω′ , we have

e
i
2 (μω′−μω) = ω

ω′ ∈ R,

which implies that μω′ − μω = (4k + 2)π for some k ∈ Z. This contradicts with the
fact that, μω ∈]λ − π

4 , λ + π
4 [ for every ω ∈ O∞(R). Hence, Sω varies with ω.

The Whitney smoothness of Sω follows immediately from that of 
ω and μω. ��
The rest of paper will be organized as follows. In Sect. 3, the precise definition

of crowns around the curve {ξη = constant} ⊂ C
2 and the norm of holomorphic

functions on them are introduced, and basic properties associated with reversible map
are given. In Sect. 4, we give an abstract KAM-like theorem, which is used to prove
Theorem 2.1 in Sect. 5. A preliminary normalization (which is required to start the
KAM-like process, also known as Newton method), as well as the Whitney smooth-
ness of the family of invariant curves, is also given in Sect. 5. In Sect. 6, we describe
properties of the pair of holomorphic involutions {τ1, τ2 = ρ ◦ τ1 ◦ ρ} and in partic-
ular of their non-degenerate principal parts, as well as of their reversible associated
composition σ = τ1 ◦ τ2. In Sect. 7, two types of holomorphic transformations of
{τ1, τ2}, commuting with ρ, are introduced, which is used to complete the proof of the
KAM-like theorem.

3 Preliminaries and notations

3.1 Basic property of reversible map

Let us define the involution ρ(ξ, η) = (ξ̄ , η̄). An invertible map σ : C2 → C
2 is

called reversible with respect to ρ if σ−1 = ρ ◦ σ ◦ ρ.

Lemma 3.1 Given ψ : C2 → C
2 with ψ = (u, v).

Then ψ ◦ ρ = ρ ◦ ψ if and only if u = ū, v = v̄.
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Proof Since ρ ◦ ρ = Id, we have ρ−1 ◦ ψ ◦ ρ = ρ ◦ ψ ◦ ρ = (ū, v̄) which equals to
ψ if and only if u = ū, v = v̄. ��
Lemma 3.2 Let σ : C2 → C

2 be a reversible map w.r.t. ρ, and let ψ : C2 → C
2 be

an invertible map commuting with ρ, Then ψ−1 ◦ σ ◦ ψ is also reversible w.r.t. ρ.

Proof The conclusion follows from

(ψ−1 ◦ σ ◦ ψ)−1 = ψ−1 ◦ σ−1 ◦ ψ

= (ρ ◦ ψ−1 ◦ ρ) ◦ (ρ ◦ σ ◦ ρ) ◦ (ρ ◦ ψ ◦ ρ)

= ρ ◦ (ψ−1 ◦ σ ◦ ψ) ◦ ρ.

��

3.2 Function space and norms

Given 0 < r < 1
4 and 0 ≤ β < r2, for ω ∈] − r2 + β, r2 − β[, we define

Cr
ω :=

{
(ξ, η) ∈ C

2 : ξη = ω, |ξ |, |η| < r
}

, Cω :=
⋃
r>0

Cr
ω, (14)

Cr
ω,β :=

{
(ξ, η) ∈ C

2 : |ξη − ω| ≤ β, |ξ |, |η| < r
}

, Cω,β :=
⋃
r>0

Cr
ω,β . (15)

For a power series

f (ξ, η) =
∑

l, j≥0

f̆l, jξ
lη j , f̆l, j ∈ C,

we have the unique decomposition

f (ξ, η) = f0,0(ξη) +
∑
l≥1

fl,0(ξη) ξ l +
∑
j≥1

f0, j (ξη) η j =
∑

l, j≥0
l· j=0

fl, j (ξη)ξ lη j , (16)

with the coefficients of f , depending on the product ξη, given by

fl, j (ξη) =
∑
k≥0

f̆k+l,k+ j · (ξη)k, l · j = 0.

Sometimes, by defining fl, j = 0 for l j �= 0, we rewrite f as

f (ξ, η) =
∑

l, j≥0

fl, j (ξη) ξ lη j .

Let us consider the anti-holomorphic involution ρ : (ξ, η) �→ (ξ̄ , η̄). We define the
conjugate of f to be f̄ , whose Taylor expansion coefficients at the origin are the
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complex conjugates of those of f . Obviously, f = f̄ if and only if f̆l, j ∈ R for all
l, j ≥ 0.

Let h = h(ξη) be a function of the product ξη. We define

|h|ω,β := sup
(ξ,η)∈Cω,β

|h(ξη)| = sup
|z−ω|<β

|h(z)|, |h|ω := sup
(ξ,η)∈Cω

|h(ξη)| = sup
z=ω

|h(z)|.

Given a power series f , we define the norms

| f |r :=
∑

l, j≥0

| f̆l, j |rl+ j , ‖ f ‖ω,β,r :=
∑

l, j≥0
l j=0

| fl, j |ω,β rl+ j . (17)

In particular, for a function f of ξη, we have ‖ f ‖ω,β,r = | f |ω,β . For ω ∈] − r2 +
β, r2 − β[, it is easy to see that

sup
(ξ,η)∈Cr

ω,β

| f (ξ, η)| ≤ ‖ f ‖ω,β,r ≤ | f |r . (18)

The definition of norm ‖ · ‖ω,β,r implies that

‖ f (ξ, η)‖ω,β,r = ‖ f (η, ξ)‖ω,β,r = ‖ f̄ (ξ, η)‖ω,β,r ,

| fl, j |ω,β ≤ ‖ f ‖ω,β,r r−(l+ j), l, j ≥ 0. (19)

For O ⊂] − r2 + β, r2 − β[, we also define the norm

‖ f ‖O,β,r := sup
ω∈O

|ω|<r2−β

‖ f ‖ω,β,r .

In particular, for the coefficients of f ,

‖ fl, j‖O,β,r = sup
ω∈O

|ω|<r2−β

| fl, j |ω,β, l, j ≥ 0, l j = 0.

Lemma 3.3 For given power series f and g, if |ω| < r2 − β, then ‖ f g‖ω,β,r ≤
‖ f ‖ω,β,r‖g‖ω,β,r .

Proof Decompose f g as in (16), we have

( f g)(ξ, η) = ( f g)0,0 +
∑
l≥1

( f g)l,0ξ
l +

∑
j≥1

( f g)0, jη
j

with the coefficients given by

( f g)0,0 = f0,0g0,0 +
∑
k≥1

( fk,0g0,k + f0,k gk,0)(ξη)k , (20)
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( f g)l,0 =
l−1∑
k=0

( fl−k,0gk,0 + fk,0gl−k,0) +
∑
k≥1

( fl+k,0g0,k + f0,k gl+k,0)(ξη)k , (21)

and similar expression for ( f g)0, j . If |ω| < r2 −β and (ξ, η) ∈ Cω,β , then |ξη| < r2.
Therefore, we have

|( f g)0,0|ω,β ≤ | f0,0|ω,β |g0,0|ω,β +
∑
k≥1

(| fk,0|ω,β |g0,k |ω,β + | f0,k |ω,β |gk,0|ω,β

)
r2k,

|( f g)l,0|ω,βrl ≤
l−1∑
k=0

(| fl−k,0|ω,β |gk,0|ω,β + | fk,0|ω,β |gl−k,0|ω,β

)
rl

+
∑
k≥1

(| fl+k,0|ω,β |g0,k |ω,β + | f0,k |ω,β |gl+k,0|ω,β

)
r2k+l ,

and a similar estimate for |( f g)0, j |ω,βr j . Since ‖ f g‖ω,β,r = ∑
l, j≥0 |( f g)l, j |ω,βrl+ j

with ( f g)l, j = 0 whenever l j �= 0, we obtain

‖ f g‖ω,β,r ≤
⎛
⎝ ∑

l, j≥0

| fl, j |ω,βrl+ j

⎞
⎠

⎛
⎝ ∑

l, j≥0

|gl, j |ω,βrl+ j

⎞
⎠ = ‖ f ‖ω,β,r‖g‖ω,β,r .��

Let 0 ≤ β < r2 andO ⊂]−r2, r2[.We defineHβ,r (U) to be the set of holomorphic
functions in a complex neighborhood U of

O(r , β) := O∩ ] − r2 + β, r2 − β[, (22)

and the collections of power series

Aβ,r (O) :=
⎧⎨
⎩ f =

∑
l, j

fl, j (ξη)ξ lη j : f is holomorphic on
⋃

ω∈O(r ,β) Cr
ω,β ,

fl, j ∈ Hβ,r (U), U complex neighborhood of O(r , β)

⎫⎬
⎭ ,

AR

β,r (O) := {
f ∈ Aβ,r (O) : f = f̄

}
.

In the above definition, U denotes an unprecised neighborhood over which all fl, j ’s
are holomorphic. Finally for any Õ ⊂ R and any function h defined on Õ, we define
the norm |h|Õ := sup

ω∈Õ |h(ω)|. By (19), we see that

| fl, j |O(r ,β) = ‖ fl, j‖O,β,r ≤ ‖ f ‖O,β,r r−(l+ j). (23)

It is easy to see that:

• (linear structure) for f , g ∈ Aβ,r (O) (orAR

β,r (O)), we have a1 f +a2g ∈ Aβ,r (O)

(or AR

β,r (O)), a1, a2 ∈ C(or R), with

‖a1 f + a2g‖O,β,r ≤ |a1|‖ f ‖O,β,r + |a2|‖g‖O,β,r . (24)

123



L. Stolovitch, Z. Zhao

• (monotonicity) IfO′ ⊂ O and r ′ ≤ r , β ′ ≤ β, r ′2 −β ′ ≤ r2 −β, thenAβ,r (O) ⊂
Aβ ′,r ′(O′) and AR

β,r (O) ⊂ AR

β ′,r ′(O′) with

‖ f ‖O′,β ′,r ′ ≤ ‖ f ‖O,β,r , ∀ f ∈ Aβ,r (O) or AR

β,r (O). (25)

��
Lemma 3.4 For f , g with ‖ f ‖O,β,r , ‖g‖O,β,r < ∞, we have that

‖ f g‖O,β,r ≤ ‖ f ‖O,β,r‖g‖O,β,r . (26)

Moreover, if f , g ∈ Aβ,r (O), then f g ∈ Aβ,r (O).

Proof In view of Lemma 3.3, we obtain (26). Provided that f , g ∈ Aβ,r (O), let
us prove the analyticity of coefficients ( f g)l, j (·), l, j ≥ 0 with l j = 0, on a same
neighborhood of O(r , β). By (21), we have, for l ≥ 1,

( f g)l,0(ω) =
l−1∑
k=0

(
fl−k,0(ω)gk,0(ω) + fk,0(ω)gl−k,0(ω)

)

+
∑
k≥1

(
fl+k,0(ω)g0,k(ω) + f0,k(ω)gl+k,0(ω)

)
ωk .

Let U be a complex neighborhood ofO(r , β) over which the fk, j , gk, j ’s are holomor-
phic. Since |ω| < r2 − β and, in view of (23), we have

| fl+k,0|O(r ,β)|g0,k |O(r ,β) + | f0,k |O(r ,β)|gl+k,0|O(r ,β) ≤ 2‖ f ‖O,β,r‖g‖O,β,r

r l+2k
.

The analyticity of the ( f g)l,0’s on a same neighborhood ofO(r , β) follows. The proof
for ( f g)0, j , j ≥ 0, is similar by the proof of Lemma 3.3. ��
Lemma 3.5 Given f ∈ Aβ,r (O) with ‖ f ‖O,β,r < ∞ and a ∈ C, we have ea f ∈
Aβ,r (O).

Proof By Lemma 3.4, we see that f k ∈ Aβ,r (O) with ‖ f k‖O,β,r ≤ ‖ f ‖k
O,β,r for

every k ∈ N. Then, according to (23), we have that, for l, j ≥ 0 with l j = 0,

|(ak f k)l, j |O(r ,β) ≤ ak‖ f k‖O,β,r

r l+ j
≤ ak

rl+ j
‖ f ‖k

O,β,r .

Developing the exponential function around 0, we have, for ω ∈ O(r , β),

(ea f )l, j (ω) = 1 +
∑
k≥1

ak( f k)l, j (ω)

k! .
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Hence we obtain the analyticity of (ea f )l, j , since

∣∣∣∣∣∣
∑
k≥1

(ak f k)l, j (ω)

k!

∣∣∣∣∣∣ ≤ 1

rl+ j

∑
k≥1

ak‖ f ‖k
O,β,r

k! .

��
Lemma 3.6 Given 0 < r ′′ < r ′ < 1

4 , O ⊂] − r ′2, r ′2[ and 0 < 2β ′′ ≤ β ′, if β ′ is
sufficiently small such that

e
9
8β ′ r ′′

r ′ < 1 − β ′2

16
, 8β ′ 12 < (r ′ − r ′′)r ′′, (27)

then for h ∈ Aβ ′,r ′ (O) with ‖h‖O,β ′,r ′ < +∞, for f1, f2, g1, g2 satisfying

‖ fm‖O,β ′′,r ′′ , ‖gm‖O,β ′′,r ′′ <
β ′2

16
, m = 1, 2,

we have that

‖h(ξ + f1, η + g1) − h(ξ + f2, η + g2)‖O,β ′′,r ′′

<
3r ′‖h‖O,β ′,r ′

(r ′ − r ′′)β ′ max
{‖ f1 − f2‖O,β ′′,r ′′ , ‖g1 − g2‖O,β ′′,r ′′

}
.

Moreover, if f1, f2, g1, g2 ∈ Aβ ′′,r ′′ (O), then

h(ξ + f1, η + g1) − h(ξ + f2, η + g2) ∈ Aβ ′′,r ′′ (O) .

Remark 3.7 Note that the second inequality in (27) implies that r ′′2 − β ′′ < r ′2 − β ′.
Hence, by the monotonicity, Aβ ′,r ′ (O) ⊂ Aβ ′′,r ′′ (O).

A more general version of Lemma 3.6 will be given in Sect. 6 (see Lemma 6.11), and
will be shown in Appendix A.

Given ( f , g) ∈ (Aβ,r (O))2, we define, for ω ∈ O(r , β),

‖( f , g)‖ω,β,r := ‖ f ‖ω,β,r + ‖g‖ω,β,r , ‖( f , g)‖O,β,r := ‖ f ‖O,β,r + ‖g‖O,β,r .

Lemma 3.8 Given 0 < r ′′ < r ′ < 1
4 , O ⊂] − r ′2, r ′2[ and β ′ > 0, consider the

transformation φ = Id + U on Cr ′
ω,β ′ with U ∈ (Aβ ′,r ′(O))2. If β ′ is sufficiently small

such that (27) is satisfied, and

‖U‖O,β ′,r ′ <
β ′(r ′ − r ′′)

30r ′ , (28)
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then φ is invertible on Cr ′
ω,β ′ , with φ−1 − Id ∈ (A β′

2 ,r ′′(O))2 and

‖φ−1 − Id + U‖O,
β′
2 ,r ′′ ≤ 8r ′‖U‖2O,β ′,r ′

(r ′ − r ′′)β ′ .

Proof In view of (28), we see that φ is close to identity, hence it is biholomorphic on
Cr ′

ω,β ′ . Let us write φ−1 =: Id + V . The identity φ ◦ φ−1 = Id means that

V = −U ◦ (Id + V) = −U − (U ◦ (Id + V) − U). (29)

By Lemma 3.6 (since (27) is satisfied) and (29), we have

‖V‖O,
β′
2 ,r ′′ < ‖U‖O,β ′,r ′ + 6r ′

(r ′ − r ′′) · β ′ ‖V‖O,
β′
2 ,r ′′ ‖U‖O,β ′,r ′

< ‖U‖O,β ′,r ′ +
‖V‖O,

β′
2 ,r ′′

5
,

which implies that ‖V‖O,
β′
2 ,r ′′ < 5

4‖U‖O,β ′,r ′ . Let us set U1 = −U , V1 = U ◦ (Id +
V) − U . Hence, V = U1 − V1, and, by Lemma 3.6, U1 ∈ A β′

2 ,r ′′(O),

‖V1‖O,
β′
2 ,r ′′ <

6r ′

(r ′ − r ′′) · β ′ ‖V‖O,
β′
2 ,r ′′ ‖U‖O,β ′,r ′ <

‖V‖O,
β′
2 ,r ′′

5
<

‖U‖O,β ′,r ′

4
.

Then, we have

V = −U ◦ (Id + U1 − V1)

= −U ◦ (Id + U1) − (U ◦ (Id + U1 − V1) − U ◦ (Id + U1)) =: U2 − V2,

and, by Lemma 3.6, U2 ∈ A β′
2 ,r ′′(O),

‖V2‖O,
β′
2 ,r ′′ <

6r ′

(r ′ − r ′′) · β ′ ‖V1‖O,
β′
2 ,r ′′ ‖U‖O,β ′,r ′

<

‖V1‖O,
β′
2 ,r ′′

4
<

‖U‖O,β ′,r ′

42
.

Assume that, for some n ∈ N, we have V = Un − Vn with

Un ∈ A β
2 ,r ′′(O), ‖Vn‖O,

β′
2 ,r ′′ < 4−n‖U‖O,β ′,r ′ .

Then we have V = Un+1 − Vn+1 with

Un+1 := −U ◦ (Id + Un), Vn+1 := U ◦ (Id + Un − Vn) − U ◦ (Id + Un).
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By Lemma 3.6, we have Un+1 ∈ A β
2 ,r ′′(O) and

‖Vn+1‖O,
β′
2 ,r ′′ <

6r ′

(r ′ − r ′′) · β ′ ‖Vn‖O,
β′
2 ,r ′′ ‖U‖O,β ′,r ′

<

‖Vn‖O,
β′
2 ,r ′′

4
<

‖U‖O,β ′,r ′

4n+1 .

As n → ∞, we see that V ∈ A β
2 ,r ′′(O).

Let Ũ := φ−1− Id+U . By (29), we have Ũ = U −U ◦ (Id+V). Hence, by Lemma
3.6,

‖Ũ‖O,
β′
2 ,r ′′ = ‖U − U ◦ (Id + V)‖O,

β′
2 ,r ′′ <

6r ′‖U‖O,β ′,r ′

(r ′ − r ′′) · β ′ ‖V‖O,
β′
2 ,r ′′

<
8r ′‖U‖2O,β ′,r ′

(r ′ − r ′′) · β ′ .

��

4 An abstract KAM-like theorem

In this section, we give an abstract KAM-like theorem for pairs of holomorphic
involutions near a fixed point, which are pairwise conjugate by an anti-holomorphic
involution. From this, we obtain the existence of a lot of analytic invariant sets in a
neighborhood of the fixed point. This is the core of the proof of Theorem 2.1.

4.1 Sequences of quantities

With fixed s ∈ N
∗, 0 < r0 < 1

4 , 0 < ε0 < r20 , ζ0 := ε
1
3
0 , define the sequences, with

ν ∈ N, {εν}, {βν}, {β̃ν}, {ζν}, {rν} and {Kν} by:

εν+1 := ε
5
4
ν , βν := ε

1
40s
ν , β̃ν := 16βν+1 = 16ε

1
32s
ν ,

ζν+1 := ζν + ε
1
3
ν , rν+1 := rν − r0

2ν+2 , Kν := | ln εν |∣∣∣ln (
7rν+rν+1

8rν

)∣∣∣ .
(30)

Between rν and rν+1, we define

r (m)
ν := rν+1 + m

8
(rν − rν+1), m = 0, 1, . . . , 8, r̃ν := r (4)

ν = rν + rν+1

2
.
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We assume that ε0 is small enough such that

⎛
⎝ |ln ε0|∣∣∣ln (

7
8 + r1

8r0

)∣∣∣ + 2

⎞
⎠ (16s + 1)16sε

1
2400s2

0

(r0 − r1)r1
< 1. (31)

Lemma 4.1 Under the assumption (31), we have

⎛
⎝ |ln εν |∣∣∣ln (

7
8 + rν+1

8rν

)∣∣∣ + 2

⎞
⎠ (16s + 1)16sε

1
2400s2
ν

(rν − rν+1)rν+1
< 1, ν ∈ N. (32)

Proof The above inequality holds for ν = 0 under the assumption (31). Now, assume
that, for some ν∗ ∈ N, we have

⎛
⎝

∣∣ln εν∗
∣∣∣∣∣ln (

7
8 + rν∗+1

8rν∗

)∣∣∣ + 2

⎞
⎠ (16s + 1)16sε

1
2400s2
ν∗

(rν∗ − rν∗+1)rν∗+1
< 1. (33)

The definition of sequence {εν} implies that, for ν ∈ N,

|ln εν+1| = 5

4
|ln εν | , ε

1
2400s2

ν+1 = ε

5
4 · 1

2400s2
ν , (34)

and the definition of {rν} implies that, for ν ∈ N,

rν+1 = r0

⎛
⎝1 −

ν∑
j=0

1

2 j+2

⎞
⎠ , rν+1 − rν+2 = rν − rν+1

2
. (35)

Hence, for ν ∈ N, we have

rν

rν+1
≤ 4

3
, 1 − rν+1

rν

= 1

2ν+1 + 2
. (36)

Indeed, it is true for ν = 0, and for ν ∈ N
∗,

rν

rν+1
= 1 − ∑ν−1

j=0
1

2 j+2

1 − ∑ν
j=0

1
2 j+2

= 1 + 1

2ν+1 + 1
≤ 4

3
, 1 − rν+1

rν

= 1

2ν+1 + 2
.

Then, we obtain

∣∣∣∣∣∣
ln

(
1 − 1

8 (1 − rν+1
rν

)
)

ln
(
1 − 1

8 (1 − rν+2
rν+1

)
)
∣∣∣∣∣∣ ≤

3
2 · 1

8 (1 − rν+1
rν

)

3
4 · 1

8 (1 − rν+2
rν+1

)
= 4 − 2

2ν + 1
≤ 4. (37)
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By (34)–(37), combining with the assumption (33), we have

⎛
⎝

∣∣ln εν∗+1
∣∣∣∣∣ln (

7
8 + rν∗+2

8rν∗+1

)∣∣∣ + 2

⎞
⎠ (16s + 1)16sε

1
2400s2

ν∗+1

(rν∗+1 − rν∗+2)rν∗+2

=
⎛
⎝5

4

∣∣ln εν∗
∣∣∣∣∣ln (

7
8 + rν∗+1

8rν∗

)∣∣∣ ·
∣∣∣∣∣∣
ln

(
1 − 1

8 (1 − rν∗+1
rν∗

)
)

ln
(
1 − 1

8 (1 − rν∗+2
rν∗+1

)
)
∣∣∣∣∣∣ + 2

⎞
⎠

· 2rν∗+1

rν∗+2

(16s + 1)16sε

5
4 · 1

2400s2
ν∗

(rν∗ − rν∗+1)rν∗+1

≤ 5

4
· 4 · 2 · 4

3
· ε

1
4 · 1

2400s2
ν∗

⎛
⎝

∣∣ln εν∗
∣∣∣∣∣ln (

7
8 + rν∗+1

8rν∗

)∣∣∣ + 2

⎞
⎠ (16s + 1)16sε

1
2400s2
ν∗

(rν∗ − rν∗+1)rν∗+1

<
40

3
ε

1
4 · 1

2400s2
ν∗ < 1.

The last inequality follows from (33) since ε

1
4 · 1

2400s2
ν∗ < ε

1
4 · 1

2400s2

0 < (16s +1)−4s < 3
40 .��

4.2 Iteration argument

Let the sequences of quantities be given as in (30). For ω ∈ O0 ⊂] − r20 , r20 [ with
|O0| > r20 , we consider the pair of germs of holomorphic involutions τ

(1)
0 , τ

(2)
0 :

(C2, 0) → (C2, 0), i.e., they satisfy τ
(k)
0 ◦ τ

(k)
0 = Id, k = 1, 2. Recalling the notation

in (22), we set O0(r0, β0) := O0 ∩ ] − r20 + β0, r20 − β0[. We assume that they are of
the form

τ
(1)
0 (ξ, η) =

(
e

i
2α0(ξη)η + p0(ξ, η)

e− i
2α0(ξη)ξ + q0(ξ, η)

)
, (38)

τ
(2)
0 (ξ, η) =

(
ρ ◦ τ

(1)
0 ◦ ρ

)
(ξ, η) =

(
e− i

2α(ξη)η + p̄0(ξ, η)

e
i
2α(ξη)ξ + q̄0(ξ, η)

)
, (39)

where, for the fixed s ∈ N
∗,

• (the principal part) α0 = α0(ξη) ∈ AR

β0,r0
(O0) with

α0(ω) ∈
]
−1

8
, 4π + 1

8

[
, ω ∈ O0(r0, β0), (40)

‖α0(ξη)‖O0,β0,r0 < 4π + 1

4
, (41)
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∣∣∣α(s)
0 − s!

∣∣∣O0(r0,β0)
<

s!
16

, (42)

∣∣∣α(k)
0

∣∣∣O0(r0,β0)
<

1

16
, 1 ≤ k ≤ s − 1, if s ≥ 2, (43)

∣∣∣α(k)
0

∣∣∣O0(r0,β0)
<

r−1
0

4
, s + 1 ≤ k ≤ 16s, (44)

• (the perturbation) p0 = p0(ξ, η), q0 = q0(ξ, η) ∈ Aβ0,r0(O0) with

‖p0‖O0,β0,r0 , ‖q0‖O0,β0,r0 ≤ ε0

10
, ‖e

i
2α0(ξη)ηq0+e− i

2α0(ξη)ξ p0‖O0,β0,r0 <
ε

3
2
0

3
.

(45)

Remark 4.2 For instance, α0(z) = λ + zs +∑m
j=s+1 c j z j , with λ ∈ [0, 4π [, arbitrary

m ≥ s+1, c j ∈ R, and r0 sufficiently small, is an example of such a function satisfying
(40)–(44).

Remark 4.3 In (45), besides the smallness of perturbation (p0, q0), the smallness of

e
i
2α0(ξη)ηq0 + e− i

2α0(ξη)ξ p0, called the “skew term” of τ
(1)
0 , is crucial in the iteration.

We also consider the germ of map σ0 = τ
(1)
0 ◦ τ

(2)
0 . It is reversible with respect to

both ρ and τ
(1)
0 since

ρ ◦ σ0 ◦ ρ = ρ ◦ τ
(1)
0 ◦ ρ ◦ ρ ◦ τ

(2)
0 ◦ ρ = τ

(2)
0 ◦ τ

(1)
0 = σ−1

0 = τ
(1)
0 ◦ σ0 ◦ τ

(1)
0 .

We can write σ0 = τ
(1)
0 ◦ τ

(2)
0 as

σ0(ξ, η) =
(

eiα0(ξη)ξ + f0(ξ, η)

e−iα0(ξη)η + g0(ξ, η)

)
.

It will be shown in Sect. 6 (see Lemma 6.14 and Corollary 6.15) that, if ε0 satisfies
(31), then f0, g0 ∈ A

β̃0,r
(7)
0

(O0) with

‖ f0‖O0,β̃0,r
(7)
0

, ‖g0‖O0,β̃0,r
(7)
0

≤ ε0

4
.

Proposition 4.4 (Iteration scheme) Assume that ε0 > 0 satisfies (31). There exist a
sequence of sets {Oν} with Oν ⊂] − r2ν , r2ν [ satisfying that

Oν+1 ⊂ Oν ∩ ] − r2ν+1, r2ν+1[,
∣∣(Oν \ Oν+1) ∩ ]−r2ν+1 + βν+1, r2ν+1 − βν+1

[∣∣ < ε

1
100s2
ν ,

(46)
and a sequence of maps {σν} given by σν = τ

(1)
ν ◦ τ

(2)
ν with

τ (1)
ν (ξ, η) =

(
e

i
2αν(ξη)η + pν(ξ, η)

e− i
2αν(ξη)ξ + qν(ξ, η)

)
, τ (2)

ν = ρ ◦ τ (1)
ν ◦ ρ, (47)
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satisfying τ
(k)
ν ◦ τ

(k)
ν = Id, k = 1, 2, such that the following holds.

(1) αν = αν(ξη) ∈ AR

βν,rν
(Oν) satisfies that

∣∣∣α(s)
ν − s!

∣∣∣Oν (rν ,βν)
<

(
1

16
+ ζν

)
s!, (48)

∣∣∣α(k)
ν

∣∣∣Oν (rν ,βν)
<

1

16
+ ζν, 1 ≤ k ≤ s − 1, i f s ≥ 2, (49)

∣∣∣α(k)
ν

∣∣∣Oν (rν ,βν)
<

(
1

4
+ ζν

)
r−1
ν , s + 1 ≤ k ≤ 16s, (50)

and for 0 ≤ k ≤ 16s,

∥∥∥(αν+1 − αν)
(k)

∥∥∥Oν+1,βν+1,rν+1
< ε

1
3
ν . (51)

(2) pν , qν ∈ Aβν,rν (Oν) satisfy that

‖pν‖Oν ,βν ,rν
, ‖qν‖Oν ,βν ,rν

<
εν

10
, ‖e

i
2 αν(ξη)ηqν + e− i

2 αν(ξη)ξ pν‖Oν ,βν ,rν
<

ε
3
2
ν

3
.

(52)

(3) The reversible map (w.r.t. ρ) σν = τ
(1)
ν ◦ τ

(2)
ν has the form

σν(ξ, η) =
(

eiαν(ξη)ξ + fν(ξ, η)

e−iαν(ξη)η + gν(ξ, η)

)
,

with ‖ fν‖Oν ,β̃ν ,r (7)
ν

, ‖gν‖Oν ,β̃ν ,r (7)
ν

<
εν

4
.

(4) There is a sequence of transformations {ψν} of the form

ψν(ξ, η) = (Id + Uν)(ξ, η) =
(

ξ + uν(ξ, η)

η + vν(ξ, η)

)
, (53)

with Uν ∈ (AR

βν+1,rν+1
(Oν+1))

2 satisfying

‖uν‖Oν+1,βν+1,rν+1 , ‖vν‖Oν+1,βν+1,rν+1 <
ε

49
50
ν

2

such that, for every ω ∈ Oν+1(rν+1, βν+1), ψν : Crν+1
ω,βν+1

→ Crν

ω,βν
and, onCrν+1

ω,βν+1
,

σν+1 = ψ−1
ν ◦ σν ◦ ψν, τ

(k)
ν+1 = ψ−1

ν ◦ τ (k)
ν ◦ ψν, k = 1, 2.
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Remark 4.5 According to the definition of sequence εν = ε

(
5
4

)ν

0 and the fact that
( 54 )

x − 1 > x
8 , ∀ x > 0, we have

∑
ν≥0

ες
ν = ε

ς
0

∑
ν≥0

ε
ς
[(

5
4

)ν−1
]

0 < ε
ς
0

∑
ν≥0

ε
ςν
8
0 = ε

ς
0

1 − ε
ς
8
0

, ∀ 0 < ς < 1. (54)

In particular,
∑

ν≥0 ε
1
3
ν <

ε
1
3
0

1−ε
1
24
0

< 1
240 . Since

∥∥(αν+1 − αν)
(k)

∥∥Oν+1,βν+1,rν+1
< ε

1
3
ν ,

0 ≤ k ≤ 16s, we obtain, according to (40) and (41), for ∀ ν ∈ N,

αν(ω) ∈
]
−1

4
, 4π + 1

4

[
, ∀ ω ∈ Oν(rν, βν), ‖αν‖Oν ,βν ,rν

< 4π + 1

2
. (55)

Moreover, in view of the definition of {ζν}, we see that ζν < 1
240 for every ν ∈ N,

which implies that 1
16 + ζν < 1

15 ,
1
4 + ζν < 1

2 . Then, by (48)–(50),

∣∣∣α(s)
ν − s!

∣∣∣Oν (rν ,βν)
<

s!
15

, (56)

∣∣∣α(k)
ν

∣∣∣Oν (rν ,βν)
<

1

15
, 1 ≤ k ≤ s − 1, i f s ≥ 2, (57)

∣∣∣α(k)
ν

∣∣∣Oν (rν ,βν)
<

r−1
ν

2
, s + 1 ≤ k ≤ 16s. (58)

4.3 Proof of Proposition 4.4

Suppose that, at the (ν + 1)th step, ν ≥ 0, we have

τ (1)
ν =

(
e

i
2αν(ξη)ξ + pν(ξ, η)

e− i
2αν(ξη)η + qν(ξ, η)

)
, τ (2)

ν = ρ ◦ τ (1)
ν ◦ ρ, σν = τ (1)

ν ◦ τ (2)
ν ,

as described in Proposition 4.4. Our aim is to construct the transformation ψν as in
(53), such that σν+1 := ψ−1

ν ◦ σν ◦ ψν , τ
(k)
ν+1 := ψ−1

ν ◦ τ
(k)
ν ◦ ψν , k = 1, 2, possess

similar properties as those of σν , τ
(k)
ν . This will describe an iteration step, hence will

give the proof of Proposition 4.4 .
Before starting the construction of ψν , we first introduce another type of transfor-

mations that conjugate the pairs of involutions (47) to a perturbation of a new integrable
pair. The main feature of the new involutions is that the new perturbation part is much
smaller than the initial one, provided that the initial skew term smallness condition is
satisfied.
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For given 0 < r+ < r < 1
4 and fixed s ∈ N

∗, assume that ε > 0 satisfies

(
|ln ε|∣∣ln ( 7
8 + r+

8r

)∣∣ + 2

)
(16s + 1)16sε

1
2400s2

(r − r+)r+
< 1.

Let us set

β ∈ [ε 1
40s , ε

1
60s ], β+ = β

5
4 ∈ [ε 1

32s , ε
1
48s ], (59)

r (m) := r+ + m

8
(r − r+), m = 0, 1, . . . , 8, r̃ := r (4) = r + r+

2
. (60)

Given O ⊂] − r2, r2[, we consider the involutions τ1, τ2 = ρ ◦ τ1 ◦ ρ:

τ1(ξ, η) =
(

e
i
2α(ξη)η + p(ξ, η)

e− i
2α(ξη)ξ + q(ξ, η)

)
, τ2(ξ, η) =

(
e− i

2α(ξη)η + p̄(ξ, η)

e
i
2α(ξη)ξ + q̄(ξ, η)

)
(61)

with α = α(ξη) ∈ AR

β,r (O) satisfying (55)–(58) as αν , together with p, q ∈ Aβ,r (O)

satisfying

‖p‖O,β,r , ‖q‖O,β,r <
ε

10
. (62)

Remark 4.6 Here, all assumptions of Proposition 4.4 are satisfied but the smallness

condition of the skew term e
i
2α(ξη)ηq + e− i

2α(ξη)ξ p in (52).

Theorem 4.7 (Main step) Given δ ∈] 80ε 1
60s , 1 [, let

Oδ :=
{

ω ∈ O : |einα(ω) − 1| ≥ δ, ∀ 0 < |n| ≤ K + 1, K := | ln ε|∣∣ln(r (7)/r)
∣∣
}

.

(63)
There exists a transformation ψ of the form

ψ(ξ, η) = (Id + U)(ξ, η) =
(

ξ + u(ξ, η)

η + v(ξ, η)

)

with u, v ∈ AR

β+,r+(Oδ) satisfying

‖u‖Oδ,β+,r+ , ‖v‖Oδ,β+,r+ <
ε

49
50

2
,

such that for every ω ∈ Oδ(r+, β+) = Oδ ∩ ]−r2++β+, r2+−β+[, ψ is biholomorphic

on Cr+
ω,β+ with ψ

(
Cr+

ω,β+

)
⊂ Cr

ω,β , and, on Cr+
ω,β+ ,

(ψ−1 ◦ τ1 ◦ ψ)(ξ, η) =
(

e
i
2α+(ξη)η + p+(ξ, η)

e− i
2α+(ξη)ξ + q+(ξ, η)

)
, (ξ, η) ∈ Cr+

ω,β+ ,

where α+ = α+(ξη) ∈ AR

β+,r+(Oδ), with
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∥∥∥(α+ − α)(k)
∥∥∥Oδ,β+,r+

<
ε

1
3

10
, 0 ≤ k ≤ 16s, (64)

and p+, q+ ∈ Aβ+,r+(Oδ), with

‖p+‖Oδ,β+,r+ , ‖q+‖Oδ,β+,r+ <
ε

61
32

2
+ 24(K + 1)δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r ,

(65)

‖e
i
2α+ηq+ + e− i

2α+ξ p+‖Oδ,β+,r+ < ε
61
32 . (66)

Remark 4.8 Theorem 4.7 can be applied in two ways, which are indeed two cases
described in Sect. 5.2.

• If the skew term e
i
2αηq + e− i

2αξ p of τ1 satisfies

δ−1‖e
i
2αηq + e− i

2αξ p‖O,β,r < ε1+ς , 0 < ς < 1,

then, according to (65), Theorem 4.7 describes an iteration step (as in Proposition

4.4) with r = rν , r+ = rν+1, ε = εν , and we can simply take β = ε
1
40s .

• If it is not the case, we cannot apply our Iteration scheme. However, noting that

(65) implies ‖p+‖Oδ,β+,r+ , ‖q+‖Oδ,β+,r+ <
ε

49
50

10
, we see that the Iteration scheme

is applicable to ψ−1 ◦ τ1 ◦ ψ in view of (66). Hence, Theorem 4.7 describes a

preliminary step of iteration. In this case, we need to take β > ε
1
40s since the new

perturbation may be of size ε
49
50 . This is why β is defined in an interval as in (59).

We postpone the proof of Theorem 4.7 to Sect. 7. The rest of the section is devoted
to the proof of Proposition 4.4 from Theorem 4.7.

We want to conjugate the involution τ
(1)
ν to a new one τ

(1)
ν+1. To do so, we need to

exclude some parameters so we define the new parameter set as follow:

Oν+1 :=
{
ω ∈ Oν ∩ ] − r2ν+1, r2ν+1[ : |einαν(ω) − 1| > ε

1
64s
ν , ∀ 0 < |n| ≤ Kν + 1

}
.

(67)
In order to measure its size, let us first recall Pyartli’s lemma:

Lemma 4.9 [41, 42] Let f : [a, b] �→ R with a < b be a q-times continuously
differentiable function satisfying

| f (q)(t)| ≥ δ, ∀ t ∈ [a, b]

for some q ∈ N
∗ and δ > 0. Then, for any A > 0,

|{t ∈ [a, b] : | f (t)| ≤ A}| ≤ 4

(
q! A

2δ

) 1
q

.
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We then have

Lemma 4.10
∣∣(Oν \ Oν+1)∩ ] − r2ν+1 + βν+1, r2ν+1 − βν+1 [∣∣ < ε

1
80s2
ν .

Proof Since |αν(ω)| < 4π +1, it is sufficient to bound from above the measure of the
parameter set

⋃
0<|n|≤Kν+1Rν,n , where

Rν,n :=
⎧⎨
⎩ω ∈ Oν ∩ ] − r2ν+1, r2ν+1[ : |nαν(ω) − 2kπ | ≤ 3ε

1
64s
ν

2
, k ∈ Z, |k| ≤ 3|n|

⎫⎬
⎭ .

In view of (48)–(50), we see infω∈Oν

∣∣(nαν)
(s)(ω)

∣∣ ≥ 3
4 |n|s!. Applying Lemma 4.9

with q = s, we have

|Rν,n| ≤ 3|n| · 4
⎛
⎝ε

1
64s
ν

2|n|

⎞
⎠

1
s

≤ 20(Kν + 1)1−
1
s ε

1
64s2
ν .

Therefore, we obtain

⋃
0<|n|≤Kν+1

∣∣Rν,n
∣∣ ≤ 40(Kν + 1)2−

1
s ε

1
64s2
ν < ε

1
80s2
ν ,

noting that (32) implies that

(Kν + 1)2ε
1

64s2
− 1

80s2
ν =

⎛
⎝ | ln εν |∣∣∣ln (

7rν+rν+1
8rν

)∣∣∣ + 1

⎞
⎠

2

ε

1
320s2
ν

< (16s + 1)−16s <
1

40
.

��

Applying Theorem 4.7 to τ1 = τ
(1)
ν with δ = ε

1
64s
ν > 80ε

1
60s
ν , we obtain a transfor-

mation ψν of the form

ψν(ξ, η) = (Id + Uν)(ξ, η) =
(

ξ + uν(ξ, η)

η + vν(ξ, η)

)

with uν , vν ∈ AR

βν+1,rν+1
(Oν+1) satisfying

‖uν‖Oν+1,βν+1,rν+1 , ‖v‖Oν+1,βν+1,rν+1 <
ε

49
50
ν

2
,
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such that, on Crν+1
ω,βν+1

, ω ∈ Oν+1(rν+1, βν+1), ψν : Crν+1
ω,βν+1

→ Crν

ω,βν
is injective and

holomorphic, and

(ψ−1
ν ◦ τ (1)

ν ◦ ψν)(ξ, η) =
(

e
i
2αν+1(ξη)η + pν+1(ξ, η)

e− i
2αν+1(ξη)ξ + qν+1(ξ, η)

)
,

where αν+1 = αν+1(ξη) ∈ AR

βν+1,rν+1
(Oν+1) with

‖(αν+1 − αν)
(k)‖Oν+1,βν+1,rν+1 < ε

1
3
ν , 0 ≤ k ≤ 16s,

which, combining with (48)–(50), implies that

|α(s)
ν+1 − s!|Oν+1(rν+1,βν+1) <

(
1

16
+ ζν+1

)
s!,

|α(k)
ν+1|Oν+1(rν+1,βν+1) <

1

16
+ ζν+1, 1 ≤ k ≤ s − 1, if s ≥ 2,

|α(k)
ν+1|Oν+1(rν+1,βν+1) <

(
1

4
+ ζν+1

)
r−1, s + 1 ≤ k ≤ 16s.

In view of (52) and (65), (66), we have the new perturbation pν+1 and qν+1 satisfy
that

‖pν+1‖Oν+1,βν+1,rν+1 , ‖qν+1‖Oν+1,βν+1,rν+1

<
ε

61
32
ν

2
+ 24(Kν + 1)ε

− 1
64s

ν ‖e
i
2αν ηqν + e− i

2αν ξ pν‖Oν ,βν ,rν
,

<
ε

5
4
ν

10
= εν+1

10
,

and the new skew term satisfies

‖e
i
2αν+1ηqν+1 + e− i

2αν+1ξ pν+1‖Oν+1,βν+1,rν+1 < ε
61
32
ν <

ε
15
8

ν

3
= ε

3
2
ν+1

3
.

According to Lemma 3.1, uν , vν ∈ AR

βν+1,rν+1
(Oν+1) implies that ρ ◦ ψν = ψν ◦ ρ.

Then, for

τ
(1)
ν+1 := ψ−1

ν ◦ τ (1)
ν ◦ ψν, τ

(2)
ν+1 := ψ−1

ν ◦ τ (2)
ν ◦ ψν = ρ ◦ τ

(1)
ν+1 ◦ ρ,

we still have τ
(k)
ν+1 ◦ τ

(k)
ν+1 = Id, k = 1, 2. Moreover, in view of Lemma 3.2, for

σν+1 = τ
(1)
ν+1 ◦ τ

(2)
ν+1, it is still reversible w.r.t. ρ.

123



Geometry of hyperbolic Cauchy–Riemann singularities...

5 Proof of Theorem 2.1

This section is dedicated to the proof of Theorem 2.1 by applying the Iteration scheme
Proposition 4.4.

5.1 Preliminary normalization

Let us consider the pair of involutions τ o
1 and τ o

2 given in (2) and (3) (and the reversible
map σo = τ o

1 ◦ τ o
2 ). In order to start the Iteration scheme Proposition 4.4, we need the

involutions to be in a well prepared form as in (38) and (39).
First of all, for any N > s, there exists a holomorphic transformation 
̌ in the

neighborhood of origin, tangent to identity up to order 2, with 
̌ ◦ ρ = ρ ◦ 
̌, such
that

τ̌1(ξ, η) :=
(

̌−1 ◦ τ o

1 ◦ 
̌
)

(ξ, η) =
(

e
i
2 α̌(ξη)η + p̌(ξ, η)

e− i
2 α̌(ξη)ξ + q̌(ξ, η)

)
, (68)

where we have

α̌(ξη) := λ + (ξη)s +
N∑

n=s+1

cn(ξη)n, cn ∈ R, (69)

and convergent power series at the origin

p̌(ξ, η) =
∑

l+ j≥2N+2
l, j≥0

˘̌pl, jξ
lη j , q̌(ξ, η) =

∑
l+ j≥2N+2

l, j≥0

˘̌ql, jξ
lη j . (70)

Indeed, since λ
π

∈ R \ Q, by classical normal form theory [2, 32, 40], combining
with the fact that τ o

1 ◦ τ o
1 = Id, there is a polynomial transformation 
P D , tangent to

identity up to order 2 at the origin (composed by finitely many steps of normalization
in the sense of Poincaré–Dulac) satisfying 
P D ◦ ρ = ρ ◦ 
P D , such that

(

−1

P D ◦ τ o
1 ◦ 
P D

)
(ξ, η) =

(
(e

i
2λ + C̃(ξη))η + p̃(ξ, η)

(e
i
2λ + C̃(ξη))−1ξ + q̃(ξ, η)

)
, C̃(z) =

N∑
j=s

c̃ j z
j .

Here p̃, q̃ are holomorphic at the origin and of order ≥ 2N + 2 there. We note that

e
i
2λ + C̃(z) is actually the truncation of�(z) in (5)–(7). Recalling the non-degeneracy

assumption of Theorem 2.1, we see that c̃s �= 0. According to the proof of Theorem

3.4 of [40], we can change e
i
2λ + C̃ to (e

i
2λ + C̃)μ−2 by applying the transformation

(ξ, η) �→ (μ(ξη)ξ, μ−1(ξη)η), (71)

where μ = μ(ξη) is the fourth root μ(ξη) :=
(
(e

i
2λ + C̃(ξη))(e− i

2λ + ¯̃C(ξη))
) 1

4
.

We see thatμ(ξη) is sufficiently close to 1 and hence well-defined since (ξ, η) belongs
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to a sufficiently small neighborhood of the origin. A direct computation shows that

(e
i
2λ + C̃)μ−2 = (e

i
2λ + C̃)

1
2 (e− i

2λ + ¯̃C)−
1
2

= e
i
2λ(1 + e− i

2λC̃)
1
2 (1 + e

i
2λ ¯̃C)−

1
2 .

We consider the principal determination of the logarithm to be defined onC \R−. Let
A(t) be holomorphic germ vanishing at the origin. If t is small enough, there are real
numbers b̃k such that

ln(1 + A(t)) − ln(1 + Ā(t)) =
∑
k≥1

Ak(t) − Āk(t)

k
= i

∑
k≥1

b̃k tk

and it converges at the origin. Applying this, we have

ln
(
(1 + e− i

2λC̃)
1
2 (1 + e

i
2λ ¯̃C)−

1
2

)
= 1

2

(
e− i

2λc̃s − e
i
2λ ¯̃cs

)
(ξη)s +

∑
n≥s+1

bn(ξη)n,

with {bn} ⊂ iR coefficients of a convergent power series. Define

α̌(ξη) := λ − i
(

e− i
2λc̃s − e

i
2λ ¯̃cs

)
(ξη)s − 2i

N∑
n=s+1

bn(ξη)n,

which is of the form (69) up to a scaling on the neighborhood of origin. By rewriting

(1 + e− i
2λC̃)

1
2 (1 + e

i
2λ ¯̃C)− 1

2 as

(1 + e− i
2λC̃)

1
2 (1 + e

i
2λ ¯̃C)−

1
2 = e

i
2 (α̌−λ) exp

⎧⎨
⎩

∑
n≥N+1

bn(ξη)n

⎫⎬
⎭ ,

we see that

(e
i
2λ + C̃)μ−2 − e

i
2 α̌ = e

i
2λ · e

i
2 (α̌−λ) ·

⎛
⎝exp

⎧⎨
⎩

∑
n≥N+1

bn(ξη)n

⎫⎬
⎭ − 1

⎞
⎠ ,

which contains terms of (ξ, η) of order ≥ 2N + 2. It is similar for (e
i
2λ + C̃)−1μ2 −

e− i
2 α̌ . Hence, we obtain τ̌1 in (68), up to a scaling on the neighborhood of origin.
The following lemma shows that, for N ≥ 16s large enough, there exists 0 < r∗ <

1
4 sufficiently small, depending on the coefficients cn , n = s + 1, . . . , N , such that
(31) can be satisfied in the two cases (where A := 10max{| p̌|r∗ , |q̌|r∗}):
• ε0 = A

49
50 , r0 = 3

4r∗ and r1 = 9
16r∗,

• ε0 = A, r0 = r∗ and r1 = 3
4r∗.
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Lemma 5.1 If N is large enough, there exists 0 < r∗ < 1
4 sufficiently small such that

(1) sup|z|<r2∗ |α̌(z) − λ| < 1
8 , sup|z|<r2∗ |α̌(s)(z) − s!| < s!

20 ,

(2) sup|z|<r2∗ |α̌(k)(z)| < 1
20 , 1 ≤ k ≤ s − 1, if s ≥ 2,

(3) sup|z|<r2∗ |α̌(k)(z)| <
r−1∗
4 , s + 1 ≤ k ≤ 16s,

(4) A = 10max{| p̌|r∗ , |q̌|r∗} satisfies that

(
|ln A|∣∣ln ( 7
8 + 1

8 · 3
4

)∣∣ + 2

)
(16s + 1)16s A

49
50 · 1

2400s2

( 34r∗ − 9
16r∗) · 9

16r∗
< 1. (72)

Proof In view of (69), it is easy to see that (1)–(3) are satisfied for α̌ for any N ≥ 16s
and r∗ sufficiently small. Let us choose N = 4900s2. We recall that all terms of p̌ and
q̌ are of order≥ 2N +2. According to the definitions of norms in (17), if we replace r∗
by r ′

k := 2−kr∗, then A′
k := 10max{| p̌|r ′

k
, |q̌|r ′

k
} satisfies that A′

k ≤ A ·
(

r ′
k

r∗

)2N+2 =
2−(2N+2)k A. Since 0 < r∗ < 1

4 , we have that
(
( 34r∗ − 9

16r∗) · 9
16r∗

)−1 = 256
27 r−2∗ <

10r−2∗ . To show (4), it is sufficient to show that

(16s + 1)16s

(
|ln A|∣∣ln ( 31

32

)∣∣ + 2

)
A

49
50 · 1

4800s2 < 1, (73)

10r−2∗ A
49
50 · 1

4800s2 < 1. (74)

Replacing r∗ by r ′
k in (73) and (74), we see that, as k → ∞,

(16s + 1)16s

( ∣∣ln A′
k

∣∣∣∣ln ( 31
32

)∣∣ + 2

)
(A′

k)
49
50 · 1

4800s2

< (16s + 1)16s

(
ln(2) · (9800s2 + 2)k + |ln A|∣∣ln ( 31

32

)∣∣ + 2

)
2− 49

50 · 9800s2+2
4800s2

k
A

49
50 · 1

4800s2 → 0,

10r ′−2
k · (A′

k)
49
50 · 1

4800s2 < 10r−2∗ 22k · 2− 49
50 · 9800s2+2

4800s2
k

A
49
50 · 1

4800s2

= 10r−2∗ A
1

4800s2 · 2−( 4950 · 9800s2+2
4800s2

−2)k → 0.

Hence, there exists a k∗ ∈ N
∗ such that if we replace r∗ by r ′

k∗ , then (73) and (74) are
both satisfied. ��

5.2 Application of KAM-like Theorem

Take r∗ as in Lemma 5.1. Since p̌ and q̌ are convergent power series, in view of (18),

we have that, for any β∗ ∈ [A
1
40s , A

1
60s ],

‖ p̌‖]−r2∗+β∗,r2∗−β∗[, β∗, r∗ , ‖q̌‖]−r2∗+β∗,r2∗−β∗[, β∗, r∗ ≤ max{| p̌|r∗ , |q̌|r∗} = A

10
. (75)
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• Case 1. Small skew term

If we have

‖e− i
2 α̌ξ p̌ + e

i
2 α̌ηq̌‖]−r2∗+β∗,r2∗−β∗[, β∗, r∗ <

A
3
2

3
, (76)

then, from Lemma 5.1 and (75), with α0(ξη) := α̌(ξη), p0 := p̌, q0 := q̌ , r0 := r∗,
ε0 := A, β0 := ε

1
40s
0 = A

1
40s andO0 :=]−r20 , r20 [, we have that α0(ξη) ∈ AR

β0,r0
(O0),

p0, q0 ∈ Aβ0,r0(O0), and (40)–(45) are satisfied. Since, for r1 := 3
4r0 = 3

4r∗, (31) is
satisfied from Lemma 5.1, we can apply Proposition 4.4 to τ

(1)
0 := τ̌1 (hence τ

(2)
0 =

ρ◦τ
(1)
0 ◦ρ and σ = τ

(1)
0 ◦τ

(2)
0 ) on Cr0

ω,β0
,ω ∈ O0(r0, β0) = O0 ∩ ]−r20 +β0, r20 −β0 [.

• Case 2. Non-small skew term

Now assume that (76) is not satisfied. In view of (69) and Lemma 5.1, we see that

|e± i
2 α̌ |ω,β∗ = |e± i

2 (α̌−λ)|ω,β∗ ≤
∑
k≥0

1

k!
( |α̌ − λ|ω,β∗

2

)k

≤ e
1
16 , ω ∈ ] − r2∗ + β∗, r2∗ − β∗[.

Then, by (75),

‖e− i
2 α̌ξ p̌ + e

i
2 α̌ηq̌‖ω,β∗,r∗ <

e
1
16

2
· A

10
<

A

10
.

With r = r∗, r+ = 3
4r∗ and r ( j)∗ := r+ + j

8 (r∗ − r+), j = 0, . . . , 8, δ := 100A
1
60s ,

β := A
1
60s , β+ := A

49
50 · 1

40s ∈ [A
1
32s , A

1
48s ], and

Oδ :=
⎧⎨
⎩ω ∈ ] − r2∗ , r2∗ [ : |einα̌(ω) − 1| > δ, ∀ 0 < |n| ≤ K∗ + 1 := | ln A|∣∣∣ln(r (7)∗ /r∗)

∣∣∣ + 1

⎫⎬
⎭ ,

we apply Theorem 4.7 to τ̌1 for ω ∈ Oδ(r+, β+) := Oδ ∩ ] − r2+ + β+, r2+ − β+[.
We obtain, for all ω ∈ Oδ(r+, β+), a biholomorphic transformation ψ̌ = Id + Ǔ :
Cr+

ω,β+ → Cr
ω,β , with Ǔ ∈ (AR

β+,r+(Oδ))
2 and ‖Ǔ‖ω,β+,r+ < A

49
50

2 . Furthermore, there

are α̌+ = α̌+(ξη) ∈ AR

β+,r+(Oδ), p̌+, q̌+ ∈ Aβ+,r+(Oδ) such that

(ψ̌−1 ◦ τ̌1 ◦ ψ̌)(ξ, η) =
(

e
i
2 α̌+(ξη)η + p̌+(ξ, η)

e− i
2 α̌+(ξη)ξ + q̌+(ξ, η)

)
, (ξ, η) ∈ Cr+

ω,β+ .

They satisfy ∥∥∥(α̌+ − α̌)(k)
∥∥∥Oδ,β+,r+

<
A

1
3

10
, 0 ≤ k ≤ 16s, (77)

‖ p̌+‖Oδ,β+,r+ , ‖q̌+‖Oδ,β+,r+
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<
A

61
32

2
+ 18(K∗ + 1)δ−1‖e

i
2 α̌ηq̌ + e− i

2 α̌ξ p̌‖]−r2∗+β∗,r2∗−β∗[,β∗,r∗ <
A

49
50

10
,

‖e− i
2 α̌+ξ p̌+ + e

i
2 α̌+ηq̌+‖Oδ,β+,r+ < A

61
32 <

A
49
50 · 32
3

.

Hence, for α0 := α̌+, p0 := p̌+, q0 := q̌+, r0 := r+ = 3
4r∗, ε0 := A

49
50 , and

β0 := β+ = ε
1
40s
0 = A

49
50 · 1

40s ,

we have (45) for O0 := Oδ(r0, β0). According to (77), we obtain (40)–(44) from
Lemma 5.1. In particular, Lemma 5.1 (1) and (77) imply that

|α0(·) − λ|O0 <
1

4
.

For r0 = 3
4r∗, r1 := 3

4r0 = 9
16r∗, (31) is verified by Lemma 5.1, then we can apply

Proposition 4.4 to τ
(1)
0 := ψ̌−1◦τ̌1◦ψ̌ (hence τ

(2)
0 = ρ◦τ

(1)
0 ◦ρ and σ = τ

(1)
0 ◦τ

(2)
0 ) on

Cr0
ω,β0

, ω ∈ O0(r0, β0) = O0. According to Lemma 5.1, we see that |α̌(s)(ω)| ≥ 19
20 s!

for ω ∈ ] − r2∗ , r2∗ [, then we deduce from Pyartli’s lemma (Lemma 4.9) that

∣∣∣ ] − r20 + β0, r20 − β0 [ \O0

∣∣∣ < A
1

80s2 . (78)

The proof of (78) is similar to that of Lemma 4.10.
Let us define ψ̌ = Id in Case 1. In Case 2, we have, as above, ψ̌ = Id + Ǔ with

Ǔ ∈ (AR

β+,r+(Oδ))
2. In both cases, we define �̃ := 
̌ ◦ ψ̌ . To summarize, for the

involutions τ o
1 given in (2), we have

Proposition 5.2 There exists r0 > 0 and there exists ε0 > 0 satisfying (31) with
r1 = 3r0

4 , and there exists a set O0 ⊂] − r20 , r20 [ with

∣∣∣ ] − r20 + β0, r20 − β0 [ \O0

∣∣∣ < ε

49
50 · 1

80s2

0

for β0 = ε
1
40s
0 , such that the following holds for ω ∈ O0.

There exists a transformation �̃ : Cr0
ω,β0

→ C
2, with �̃ ◦ ρ = ρ ◦ �̃, such that the

involution

τ
(1)
0 (ξ, η) = (�̃−1 ◦ τ o

1 ◦ �̃)(ξ, η) =
(

e
i
2α0(ξη)η + p0(ξ, η)

e− i
2α0(ξη)ξ + q0(ξ, η)

)
,

with α0(ξη) ∈ AR

β0,r0
(O0), p0, q0 ∈ Aβ0,r0(O0) and (40)–(45) satisfied. In particular,

|α0(·) − λ|O0 <
1

4
. (79)
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As in (3), τ
(2)
0 is obtained by τ

(2)
0 = ρ ◦ τ

(1)
0 ◦ ρ, and σ0 = τ

(1)
0 ◦ τ

(2)
0 . Since �̃

commutes with ρ, we see that τ (2)
0 is still an involution and, in view of Lemma 3.2, σ0

is still reversible with respect to ρ.
By applying Proposition 4.4 to τ

(1)
0 (hence τ

(2)
0 = ρ◦τ

(1)
0 ◦ρ and σ0 = τ

(1)
0 ◦τ

(2)
0 ) on

Cr0
ω,β0

, ω ∈ O0(r0, β0), we get sequences of involutions {τ (1)
ν }ν∈N and {τ (2)

ν }ν∈N (and

hence {σν}ν∈N) on Crν

ω,βν
and a sequence of holomorphic transformations {ψν}ν∈N of

the formψν = Id+Uν with Uν ∈ (AR

βν+1,rν+1
(Oν+1))

2 and ‖Uν‖Oν+1,βν+1,rν+1 < ε
49
50
ν ,

such that, for all ω ∈ Oν+1(rν+1, βν+1), ψν : Crν+1
ω,βν+1

→ Crν

ω,βν
,

σν+1 = ψ−1
ν ◦ σν ◦ ψν, τ

(k)
ν+1 = ψ−1

ν ◦ τ (k)
ν ◦ ψν, k = 1, 2.

Recall that rν+1 = rν − 2−(ν+2)r0, we see that rν → r0
2 =: R as ν → ∞. By

(46), we can see that Oν → O∞(R) for some O∞(R) ⊂
]
− r20

4 ,
r20
4

[
= ]−R2, R2

[
.

Moreover, by (46) and (54),

∣∣∣]−R2, R2
[

\ O∞(R)

∣∣∣ <
∑
ν≥0

ε

1
100s2
ν <

ε

1
100s2

0

1 − ε

1
800s2

0

< 2ε
1

100s2

0 .

Hence, we have (9) by noting that the Lebesgue density of O∞(R) in
]−R2, R2

[
satisfies

1 − ε

1
100s2

0

R2 <
|O∞(R)|

2R2 < 1,

since r0 = r∗ or 34r∗, andby (72),wehave ε

1
100s2

0 ≤ A
49
50 · 1

100s2 <
( r0
2

)2400s2· 1
100s2 = R24.

For any ν ∈ N, let 
ν := ψ̌ ◦ ψ0 ◦ · · · ◦ ψν , which is well defined and injective on
Crν+1

ω,βν+1
for every ω ∈ Oν+1(rν+1, βν+1). By Lemma 3.1, since Ǔ ∈ (AR

β+,r+(Oδ))
2

and u j , v j ∈ AR

β j+1,r j+1
(O j+1), j = 0, 1, . . . , ν, then ψ̌ ◦ ρ = ρ ◦ ψ̌ and ψ j ◦ ρ =

ρ ◦ ψ j . Hence 
ν ◦ ρ = ρ ◦ 
ν .

Lemma 5.3 For every ν ∈ N, ‖
ν+1 − 
ν‖Oν+2,βν+2,rν+2 < ε
4
5
ν+1.

Proof With the smallness of A verified in Lemma 5.1 and recalling that ε0 = A or

A
49
50 , we have, by Lemma 3.6,

‖
0‖O1,β1,r1 ≤ ‖ψ̌ ◦ ψ0 − ψ̌‖O1,β1,r1 + ‖ψ̌‖O1,β1,r1

≤ 3r0‖ψ̌‖O0,β0,r0ε
49
50
0

2(r0 − r1)β0
+ ‖ψ̌‖O0,β0,r0
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≤ (2r0 + A
49
50 )

⎛
⎝ 3r0ε

49
50
0

2(r0 − r1)β0
+ 1

⎞
⎠ ≤ 3r0.

Let us show the lemma by induction on ν. When ν = 0, 
0 = ψ̌ ◦ ψ0 and

1 = 
0 ◦ ψ1. For any (ξ, η) ∈ Cr1

ω,β1
, we have ψ1(ξ, η) ∈ Cr0

ω,β0
. Since (31) implies

that (27) holds for β ′ = β1, β ′′ = β2, r ′ = r1, r ′′ = r2, we have, by Lemma 3.6,

‖
1 − 
0‖O2,β2,r2 = ‖
0(ξ + u1, η + v1) − 
0(ξ, η)‖O2,β2,r2

<
3r1‖
0‖O1,β1,r1

2(r1 − r2)β1
ε

49
50
1 <

3r0r1ε
49
50
1

(r1 − r2)β1
< ε

4
5
1 .

Given k ∈ N
∗, assume that ‖
 j+1 − 
 j‖O j+2,β j+2,r j+2 < ε

4
5
j+1 for 0 ≤ j ≤ k. Then

‖
k+1‖Ok+2,βk+2,rk+2 ≤ ‖
0‖O1,β1,r1 +
k∑

j=0

‖
 j+1 − 
 j‖O j+2,β j+2,r j+2

< 3r0 +
k∑

j=0

ε
4
5
j+1 < 4r0. (80)

Hence, by Lemma 3.6,

‖
k+2 − 
k+1‖Ok+3,βk+3,rk+3

= ‖
k+1(ξ + uk+2, η + vk+2) − 
k+1(ξ, η)‖Ok+3,βk+3,rk+3

<
3rk+2‖
k+1‖Ok+2,βk+2,rk+2

2(rk+2 − rk+3)βk+2
ε

49
50
k+2

<
6r0rk+2ε

49
50
k+2

(rk+2 − rk+3)βk+2
< ε

4
5
k+2,

since (32) implies that (27) holds for β ′ = βk+2, β ′′ = βk+3, r ′ = rk+2, r ′′ = rk+3. ��
The above lemma shows that, with 
̌ in (68), for every ω ∈ O∞(R), the sequence

{
̌ ◦ 
ν} converges uniformly to an injective holomorphic mapping 
ω : CR
ω → C

2

as it is a Cauchy sequence:

sup
(ξ,η)∈CR

ω

‖
̌ ◦ 
ν(ξ, η) − 
̌ ◦ 
ν′(ξ, η)‖

≤ ‖
̌‖R‖
ν − 
ν′ ‖ω,0,R

≤ ‖
̌‖R

ν′∑
j=ν

‖
 j − 
 j+1‖ω,β j+2,r j+2
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< ‖
̌‖R

∑
j≥ν

ε
4
5
j → 0, ν → ∞.

We shall denote 
ω,ν the restriction of 
̌ ◦ 
ν to CR
ω . Moreover, recalling that 
̌ is

tangent to identity and combining with (80), we have, for every ω ∈ O∞(R),

sup
(ξ,η)∈CR

ω

‖
ω(ξ, η)‖ ≤ ‖
̌‖R

(
‖
0‖O1,β1,r1 +

∞∑
ν=0

‖
ν+1 − 
ν‖Oν+2,βν+2,rν+2

)
< R

1
2 ,

(81)
which implies that 
ω(CR

ω ) ⊂ 	2(0, R
1
2 ).

For ω ∈ Oν+1(rν+1, βν+1), we have


−1
ν ◦ 
̌−1 ◦ τ

(1)
0 ◦ (
̌ ◦ 
ν) = τ

(1)
ν+1 =

(
e

i
2αν+1(ξη)ξ + pν+1

e− i
2αν+1(ξη)η + qν+1

)
,

with ‖pν+1‖ω,βν+1,rν+1 , ‖qν+1‖ω,βν+1,rν+1 <
εν+1

10
and (
̌ ◦ 
ν) ◦ ρ = ρ ◦ (
̌ ◦ 
ν)

implies that

τ
(2)
ν+1 = ρ ◦ τ

(1)
ν+1 ◦ ρ = 
−1

ν ◦ 
̌−1 ◦ τ
(2)
0 ◦ (
̌ ◦ 
ν),

σν+1 = τ
(1)
ν+1 ◦ τ

(2)
ν+1 = 
−1

ν ◦ 
̌−1 ◦ σ0 ◦ (
̌ ◦ 
ν).

Hence, for every ω ∈ O∞(R) ⊂ ]−R2, R2
[
, the sequence {αν} restricted to CR

ω

converges to a real number μω = α∞(ω) with α∞ := α0 + ∑
ν≥1(αν − αν−1).

Indeed, since for any ν′, ν ∈ N with ν′ ≥ ν,

|αν − αν′ |ω,0 ≤
ν′∑

j=ν

|α j − α j+1|ω,β j+1 <
∑
j≥ν

ε
1
3
j → 0, ν → ∞,

it is a Cauchy sequence ⊂] − 1, 4π + 1[. In particular, combining (51) and (79), we
obtain

|α∞ − λ|O∞(R) < |α0 − λ|O0 +
∑
ν≥1

‖αν − αν−1‖Oν ,βν ,rν
<

1

4
+

∑
ν≥1

ε
1
3
ν−1 <

π

4
.

Furthermore, we have

(
−1
ω ◦ τ

(1)
0 ◦ 
ω)(ξ, η) =

(
e

i
2μωη

e− i
2μωξ

)
, (
−1

ω ◦ σ0 ◦ 
ω)(ξ, η) =
(

eiμωξ

e−iμωη

)
.
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5.3 Whitney-smoothness of holomorphic hyperbolas

Now let us show the smoothness (in the sense ofWhitney) ofμω and
ω with respect to
ω ∈ O∞ = O∞(R). We refer to [8,Chapter 6.1.4] for Whitney-smoothness notions.

Given r ∈ R+ \N, let kr := �r� = max{k ∈ Z : k < r}. Given a closed setO ⊂ R,
given a family f = ( fl)0≤l≤kr ∈ (C0(O))kr +1, we define its Whitney-Cr norm to be:

| f |Cr
W (O) := sup

ω∈O
0≤l≤kr

| fl(ω)| + sup
(ω,ω′)∈O2, ω �=ω′

0≤l≤kr

| fl(ω) − Pl(ω, ω′)|
|ω − ω′|r−l

,

where Pl is an analogue of the (kr − l) − th Taylor polynomial for fl , i.e.,

Pl(ω, ω′) :=
kr −l∑
j=0

1

j ! fl+ j (y)(ω − ω′) j .

Such a family f = ( fl)0≤l≤kr ∈ (C0(O))kr +1 is said to define aWhitney-Cr function
f if its Whitney-Cr norm is finite:

| f |Cr
W (O) < +∞.

Given an open set U satisfying O ⊂ U ⊂ R, for g ∈ Ckr (U), we define

|g|Cr (U) := sup
ω∈U

0≤l≤kr

|g(l)(ω)| + sup
(ω,ω′)∈U2

ω �=ω′

|Dkr g(ω) − Dkr g(ω′)|
|ω − ω′|r−kr

,

|g|Cr (O) := sup
ω∈O

0≤l≤kr

|g(l)(ω)| + sup
(ω,ω′)∈O2

ω �=ω′

|Dkr g(ω) − Dkr g(ω′)|
|ω − ω′|r−kr

.

We have |g|Cr (O) ≤ |g|Cr (U). According to Chapter 6.1.4 of [8], the norms | · |Cr
W (O)

and | · |Cr (O) are equivalent. Given A > 0, this last norm can be extended to func-
tions defined in a (complex) A-neighborhood O + A := {z ∈ C : |z − ω| <

A, for some ω ∈ O} of O as well. Following Zehnder [49, (2.5), p. 109], Cauchy’s
estimates can be generalized to “derivatives of non-integer orders” of holomorphic
functions g in a neighborhood U of O such that |g|Cr (U) < +∞: if r ′ < r (not
necessarily integers) and A′ < A, then there exists some constant Cr ,r ′ > 1 such that

|g|Cr (O+A) ≤ Cr ,r ′

(A − A′)r−r ′ |g|Cr ′
(O+A′). (82)

Let us consider the sumα∞ = α0+∑
ν≥1(αν −αν−1), which converges inCs̃(O∞)

if s̃ ∈ R+ \ N with s̃ < 16s. Indeed, according to (51), we apply (82) to αν+1 − αν ,
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ν ∈ N, with r = s̃, r ′ = ks̃ . Since βν+1 < β
s̃−ks̃
ν+1 , there is some constant Cs̃ such that

|αν+1 − αν |Cs̃ (O∞) ≤ Cs̃ · sup0≤l≤ks̃
‖(αν+1 − αν)

(l)‖Oν+1,βν+1,rν+1

βν+1
< Cs̃ε

1
3− 1

32s
ν .

Since 1
3 − 1

32s > 0, according to (54), we have

∑
l≥ν

|αl+1 − αl |Cs̃ (O∞) ≤ Cs̃

∑
l≥ν

ε
1
3− 1

32s
l ≤ Cs̃ε

1
3− 1

32s
ν

1 − ε
32s−3
8·96s

ν

→ 0, ν → ∞.

Hence, it is a Cauchy sequence in Cs̃(O∞). Furthermore, we have

|α∞ − α0|Cs̃
W (O∞)

≤
∑
ν≥1

|αν − αν−1|Cs̃
W (O∞)

≤ Cs̃ε
1
3− 1

32s
0

1 − ε
32s−3
8·96s
0

.

With fixed ω0 ∈ O∞, let us consider the sets

Uω0 :=
{
ω ∈ O∞ :

∣∣∣∣ ω

ω0

∣∣∣∣ ≤ 2

}
, C

R
2

ω0 =
{
(ξ, η) ∈ (C2, 0) : ξη = ω0, |ξ |, |η| <

R

2

}
.

Let us define, for allω ∈ Uω0 , the map κω : C
R
2
ω0 → CR

ω to be κω(ξ, η) := ( ω
ω0

ξ, η). We

then define 
̃ω,ν := 
ω,ν ◦ κω and 
̃ω := 
ω ◦ κω on C
R
2
ω0 . With the same argument,

using Lemma 5.3, we have

sup

(ξ,η)∈C
R
2

ω0

|
̃ω(ξ, η) − 
̃ω,0(ξ, η)|Cs̃
W (Uω0 )

= sup

(ξ,η)∈C
R
2

ω0

∣∣∣∣∣∣
∑
ν≥1

(
̃ω,ν(ξ, η) − 
̃ω,ν−1(ξ, η))

∣∣∣∣∣∣
Cs̃

W (Uω0 )

≤ C(s̃, ω0)
∑
ν≥1

‖
ν − 
ν−1‖Oν+1,βν+1,rν+1

βν+1

≤ C(s̃, ω0)
∑
ν≥1

ε
4
5− 1

32s
ν ≤ C(s̃, ω0)ε

4
5− 1

32s
0

1 − ε
128s−5
8·160s
0

.

Here, C(s̃, ω0) > 0 is some constant that depends only on s̃ and ω0. Hence, 
̃ω is

Whitney smooth in ω and holomorphic on C
R
2
ω0 .

As a consequence, there is a Cs̃-Whitney smooth family of holomorphic invariant
curves of τ o

1 , τ
o
2 and σo, for 16s − 1 < s̃ < 16s.
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6 Involutions and reversible maps

In this section, we describe some properties of a pair of germs of involutions τ1, τ2
as in (61) with α = α(ξη) ∈ AR

β,r (O) satisfying (55)–(58) with Oν = O, together
with p, q ∈ Aβ,r (O) with ‖p‖O,β,r , ‖q‖O,β,r < ε

10 . Hence, according to Remark

4.6, if we take the involutions (τ1, τ2) = (τ
(1)
ν , τ

(2)
ν ) for some ν ∈ N, described in

Proposition 4.4, then the above assumptions are satisfied. We also consider the germ
of map σ = τ1 ◦ τ2.

Given 0 < r+ < r , recall that we have defined r (m) and r̃ in (60) between r and
r+:

r (m) = r+ + m

8
(r − r+), m = 0, 1, . . . , 8, r̃ = r (4) = r + r+

2
. (83)

We assume, from now on, that ε is sufficiently small such that

(
|ln ε|∣∣ln ( 7
8 + r+

8r

)∣∣ + 2

)
(16s + 1)16sε

1
2400s2

(r − r+)r+
< 1. (84)

It is easy to see that (32) holds if we have

εν = ε, rν = r , rν+1 = r+.

6.1 Properties of˛(·)

Recalling (22) and (59), we define

β ∈ [ε 1
40s , ε

1
60s ], β+ = β

5
4 ∈ [ε 1

32s , ε
1
48s ], β̃ = 16β

5
4 , O(r , β) = O∩] − r2 + β, r2 − β[.

The definitions are compatible with (30) if we take

ε = εν, β = βν, β+ = βν+1, β̃ = β̃ν, ν ∈ N.

The smallness of ε in (84) implies that of β, β+ and β̃, and we have

β+ < β̃ < β < β
1
32 < 2−16. (85)

As it is needed below, we also have r−1 < β− 1
32 and

e
9β̃
8 < 1 + 9β̃

8

∑
k≥0

(
9β̃

8

)k

= 1 + 9β̃

8

1

1 − 9β̃
8

< 1 + 7β̃

6
. (86)

Then, according to (55)–(58), we have
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Lemma 6.1
∣∣α′∣∣O(r ,β)

< 11
10 and

∣∣α(k)
∣∣O(r ,β)

< β− 1
32 for 2 ≤ k ≤ 16s.

Remark 6.2 The non-degeneracy condition (56) is essential through this paper. Nev-
ertheless, we only need the estimates of Lemma 6.1 in the rest of this section.

Lemma 6.3 For every ω ∈ O(r , β), |α(ξη) − α(ω)|ω,β̃ < 9
8 β̃ and

|α( j)(ξη) − α( j)(ω)|ω,β̃ <
β

17
16

2
, 1 ≤ j ≤ s.

Proof For (ξ, η) ∈ Cω,β̃ , we have |ξη − ω| < β̃. Developing α(·) around ω,

|α(ξη) − α(ω)| ≤
∑
k≥1

|α(k)(ω)|
k! |ξη − ω|k <

∑
k≥1

|α(k)(ω)| · β̃k

k! .

According to (85), we have

β− 1
32 β̃

2(1 − β̃)
= 16β

5
4− 1

32

2(1 − β̃)
< 10β

5
4− 1

32 <
1

90
.

Then, in view of Lemma 6.1, we have

16s∑
k=1

|α(k)(ω)| · β̃k

k! <
11

10
β̃ + β− 1

32

2

16s∑
k=2

β̃k <
11

10
β̃ + β− 1

32 β̃2

2(1 − β̃)
<

10

9
β̃. (87)

Since 4π + 1 < 24, Cauchy’s inequality and (55) lead to

|α(k)(ω)| ≤ k! sup
|z−w|= β

2

|α(z)| · 2
k

βk
<

k! · 2k+4

βk
, k ≥ 16s + 1. (88)

Then, we obtain

∑
k≥16s+1

|α(k)(ω)| · β̃k

k! <
∑

k≥16s+1

2k+4β̃k

βk
= 24

∑
k≥16s+1

(
25β

1
4

)k

=
24

(
25β

1
4

)16s+1

1 − 25β
1
4

.

According to (85), we have 1

1−β
1
8

< 4
3 and

24β
16s+1

8 = 24 · β
1
8 · β2s < 2−12β2 < β2.
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Therefore, we have

∑
k≥16s+1

|α(k)(ω)| · β̃k

k! <
24

(
25β

1
4

)16s+1

1 − 25β
1
4

<
24β

16s+1
8

1 − β
1
8

<
4β2

3
<

β̃

72
. (89)

Adding estimates (87) and (89), we obtain |α(ξη) − α(ω)|ω,β̃ < 9
8 β̃.

For (ξ, η) ∈ Cω,β̃ , and 1 ≤ j ≤ s, by Lemma 6.1, we have,

|α( j)(ξη) − α( j)(ω)| ≤
∑
k≥1

|α( j+k)(ω)|
k! |ξη − ω|k <

β− 1
32

2

16s− j∑
k=1

β̃k

+
∑

k≥16s+1− j

( j + k)! · 2 j+k+4β̃k

k! · β j+k
.

Note that under (84), for k ≥ 16s + 1 − j ≥ 15s,

( j + k)! · 2 j+k+4β̃k

k! · β j+k
< 2 j+5k+4β

k
6− jβ

k
15

≤ 2s+4+5kβ
k
24 · β

k
8− jβ

k
15 <

1

2
β

k
15 .

Hence, we have

|α( j)(ξη) − α( j)(ω)| ≤ β

2

(
16β

7
32

1 − β̃
+ β

16(s−1)+2− j
15

1 − β
1
15

)
<

β
17
16

2
.

��
By Lemmas 6.1, 6.3 and (88), we have

Corollary 6.4 supω∈O(r ,β) |α′(ξη)|ω,β̃ < 6
5 ,

sup
ω∈O(r ,β)

|α(k)(ξη)|ω,β̃ <

{
2β− 1

32 2 ≤ k ≤ sif s ≥ 2
k!2k+5

βk , k ≥ s + 1,
.

Corollary 6.5 For any b ∈ R, and any 0 ≤ β ′ ≤ β̃, we have

sup
ω∈O(r ,β)

|eibα(ξη)|ω,β ′ < e
9
8 |b|β̃ .

Moreover, for −1 ≤ b ≤ 1,

sup
ω∈O(r ,β)

∣∣∣|eibα(ξη)| − 1
∣∣∣
ω,β ′ <

5

4
β̃.
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Remark 6.6 By Corollary 6.5, for b ∈ R with |b| ≤ β− 1
4 , we have supω∈O(r ,β)

|eibα(ξη)|ω,β ′ < e
9
8β

− 1
4 ·β̃ = e18β , for all 0 ≤ β ′ ≤ β̃. Since β < 2−16, we usu-

ally use the rough estimate in this paper for convenience:

sup
ω∈O(r ,β)

|eibα(ξη)|ω,β ′ <
101

100
, ∀ b ∈ R with |b| ≤ β− 1

4 .

Proof of Corollary 6.5. Sinceα(ω) ∈ R, |eibα(ω)|=1.Then |eibα(ξη)|=|eib(α(ξη)−α(ω))|.
For (ξ, η) ∈ Cω,β ′ , we have

eib(α(ξη)−α(ω)) = 1 +
∑
k≥1

ikbk

k! (α(ξη) − α(ω))k .

If |b| ≤ 1, then, under (84), |b||α(ξη) − α(ω)| < 9
8 β̃ is sufficiently small, and we

have

∣∣∣|eibα(ξη)| − 1
∣∣∣ =

∣∣∣|eib(α(ξη)−α(ω))| − 1
∣∣∣ ≤

∣∣∣∣∣∣
∑
k≥1

ikbk

k! (α(ξη) − α(ω))k

∣∣∣∣∣∣
≤

9
8 β̃

1 − 9
8 β̃

<
5

4
β̃.

Moreover, for any b ∈ R, any 0 ≤ β ′ ≤ β̃,

∣∣∣eibα(ξη)
∣∣∣
ω,β ′ ≤

∣∣∣∣∣∣
∑
k≥0

ikbk

k! (α(ξη) − α(ω))k

∣∣∣∣∣∣
ω,β̃

<
∑
k≥0

|b|k
k!

(
9

8
β̃

)k

= e
9
8 |b|β̃ .

��
Lemma 6.7 Given 0 < r ′ < r , assume β is sufficiently small such that

β < r2 − r ′2. (90)

Given 0 ≤ β ′ ≤ β̃, and f ∈ Aβ ′,r ′(O) with

‖ f ‖O,β ′,r ′ < β24s, (91)

then α(ξη + f ) ∈ Aβ ′,r ′(O) with

‖α(ξη + f ) − α(ξη)‖O,β ′,r ′ <
5

4
‖ f ‖O,β ′,r ′ , (92)
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and for −1 ≤ b ≤ 1, eibα(ξη+ f ) ∈ Aβ ′,r ′(O) with

‖eibα(ξη+ f ) − eibα(ξη)‖O,β ′,r ′ <
4

3
‖ f ‖O,β ′,r ′ . (93)

Remark 6.8 Recalling r (m) given in (83), we see that, under the assumption (84), (90)
is satisfied for

r = r (m+1), r ′ = r (m), m = 0, 1, . . . , 7.

Indeed, according to (84), we have

β ≤ ε
1
60s <

(r − r+)r+
(16s + 1)16s

<
(r − r+)(15r+ + r)

8

= (r (1))2 − (r (0))2 ≤ (r (m+1))2 − (r (m))2.

Proof Let ς := ‖ f ‖O,β ′,r ′ . (91) implies that, for (ξ, η) ∈ Cω,β ′ , ω ∈ O(r ′, β ′),

|ξη + f (ξ, η) − ω| ≤ |ξη − ω| + ‖ f ‖O,β ′,r ′ ≤ β̃ + ς < β,

and (90) implies that r ′2 − β ′ < r ′2 < r2 − β.
Developing α(·) around ξη, we obtain

α(ξη + f ) − α(ξη) =
∑
k≥1

α(k)(ξη)

k! f k . (94)

By Lemma 3.3, for every ω ∈ O(r ′, β ′), we have ‖ f k‖ω,β ′,r ′ ≤ ςk for k ∈ N
∗. Then,

in view of Corollary 6.4, we have

‖α(ξη + f ) − α(ξη)‖ω,β ′,r ′

<

⎧⎨
⎩

6
5ς + 2β− 1

32
∑s

k=2
ςk

k! + 25
∑

k≥s+1
2kςk

βk , s ≥ 2
6
5ς + 25

∑
k≥2

2kςk

βk , s = 1
,

which can be bounded by 5
4ς under assumption ς < β24s . Indeed,

• if s = 1, we have ς < β24s = β24, then

25
∑
k≥2

2kςk

βk
< 25

∑
k≥2

2kςk

ς
k
24

= 25
∑
k≥2

(
2ς

23
24

)k = 27ς
23
12

1 − 2ς
23
24

.

• if s ≥ 2, then, ς < β24s implies that

25
∑

k≥s+1

2kςk

βk
< 25

∑
k≥s+1

2kςk

ς
k
24s

< 25
∑
k≥2

(
2ς1− 1

24s

)k = 27ς2− 1
12s

1 − 2ς1− 1
24s

,

123



L. Stolovitch, Z. Zhao

2β− 1
32

s∑
k=2

ςk

k! < β− 1
32

s∑
k=2

ςk <
ς− 1

24s·32 · ς2

1 − ς
= ς · ς1− 1

24s·32

1 − ς
.

According to (85), we have

ς < ς1− 1
32·24s < ς1− 1

24s < ς1− 1
12s < β22 < 2−16·32·22.

Hence, we obtain these rough estimates

27ς1− 1
12s

1 − 2ς1− 1
24s

<
1

200
,

ς1− 1
24s·32

1 − ς
<

1

200
, ∀ s ≥ 1.

As a consequence, we have, for every ω ∈ O(r ′, β ′), ‖α(ξη + f ) − α(ξη)‖ω,β ′,r ′ ≤
6
5ς + ς

100 ≤ 5
4ς . By Lemmas 3.3 and 3.4, we see that f k ∈ Aβ ′,r ′(O) for every k ∈ N,

and, in view of (23),

|( f k)l, j |O(r ′,β ′) ≤ ‖ f ‖k
O,β ′,r ′r−(l+ j) = ςkr−(l+ j).

Hence, according to (94), α(ξη + f ) − α(ξη) ∈ Aβ ′,r ′(O) with

(α(ξη + f ) − α(ξη))l, j (ω) =
∑
k≥1

α(k)(ω)

k! ( f k)l, j (ω), ∀ l, j ≥ 0.

For −1 ≤ b ≤ 1, we have

eibα(ξη+ f ) − eibα(ξη) = eibα(ξη)
(

eib(α(ξη+ f )−α(ξη)) − 1
)

= eibα(ξη)
∑
k≥1

ikbk

k! (α(ξη + f ) − α(ξη))k .

Then, by Lemma 3.3 and Remark 6.6, we obtain, for every ω ∈ O(r ′, β ′),

‖eibα(ξη+ f ) − eibα(ξη)‖ω,β ′,r ′ ≤ |eibα(ξη)|ω,β ′
∑
k≥1

1

k! ‖α(ξη + f ) − α(ξη)‖k
ω,β ′,r ′

<
101

100

∑
k≥1

5kςk

k!4k
<

4

3
ς,

which implies (93). By Lemmas 3.4 and 3.5, we see that

eibα(ξη+ f ) − eibα(ξη) =
(

eib(α(ξη+ f )−α(ξη)) − 1
)

eibα(ξη) ∈ Aβ ′,r ′(O).

��
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Lemma 6.9 Given 0 < r ′′ < r ′ ≤ r < 1
4 , if β is sufficiently small such that

8β
1
2 < (r ′ − r ′′)r ′′, e

9
8β r ′′

r ′ < 1 − β2

16
, (95)

then for −1 ≤ b ≤ 1, for 0 < β ′ ≤ β̃, h ∈ Aβ ′,r ′(O) with ‖h‖O,β ′,r ′ < +∞, we
have h(eibα(ξη)ξ, e−ibα(ξη)η) ∈ Aβ ′′,r ′′(O) with

‖h(eibα(ξη)ξ, e−ibα(ξη)η)‖O,β ′′,r ′′ < ‖h‖O,β ′,r ′ .

Remark 6.10 Under the assumption (84), (95) is satisfied for

r ′ = r (m+1), r ′′ = r (m), m = 0, 1, . . . , 7. (96)

Indeed, (84) implies that

1

7
> − ln

(
7

8
+ r+

8r

)
=

∣∣∣∣ln
(
7

8
+ r+

8r

)∣∣∣∣
>

(16s + 1)16s | ln ε| · ε
1

2400s2

(r − r+)r+
> 2β

1
32 >

5

4
β. (97)

Then we have

8β
1
2 <

(r − r+)r+
7(16s + 1)16s

≤ 8(r (m+1) − r (m))r (m)

7(16s + 1)16s
< (r (m+1) − r (m))r (m),

e
9
8β r (7)

r (8)
= e

9
8β

(
7

8
+ r+

8r

)
< e− β

8 < 1 − β2

16
.

Hence we obtain (95) for the case (96) by noting that, for 0 ≤ m ≤ 6,

r (m)

r (m+1)
= 8r+ + m(r − r+)

8r+ + (m + 1)(r − r+)
<

8r+ + (m + 1)(r − r+)

8r+ + (m + 2)(r − r+)
= r (m+1)

r (m+2)
.

Proof In view of Corollary 6.5, we have, for every ω ∈ O(r ′′, β ′′),
∥∥∥h(eibαξ, e−ibαη)

∥∥∥
ω,β ′′,r ′′

≤ ∣∣h0,0
∣∣
ω,β ′ +

∑
l≥1

∣∣∣eiblαhl,0

∣∣∣
ω,β ′ r ′′l +

∑
j≥1

∣∣∣e−ibjαh0, j

∣∣∣
ω,β ′ r ′′ j

≤ ∣∣h0,0
∣∣
ω,β ′ +

∑
l≥1

e
9
8 l|b|β̃ ∣∣hl,0

∣∣
ω,β ′ r ′′l +

∑
j≥1

e
9
8 j |b|β̃ ∣∣h0, j

∣∣
ω,β ′ r ′′ j

≤ ∣∣h0,0
∣∣
ω,β ′ +

∑
l≥1

(
e
9
8 β̃ r ′′

r ′

)l ∣∣hl,0
∣∣
ω,β ′ r ′l +

∑
j≥1

(
e
9
8 β̃ r ′′

r ′

) j ∣∣h0, j
∣∣
ω,β ′ r ′ j
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< ‖h‖ω,β ′,r ′ .

Noting that, for l, j ≥ 0,

(
h(eibα(ξη)ξ, e−ibα(ξη)η)

)
l, j

(ω) = hl, j (ω)eib(l− j)α(ω),

we see that h
(
eibα(ξη)ξ, e−ibα(ξη)η

) ∈ Aβ ′′,r ′′(O). ��

Lemma 6.11 Let 0 < r ′′ < r ′ ≤ r < 1
4 and 0 < 2β ′′ ≤ β ′ ≤ β̃. If β is small

enough such that (95) is satisfied, then for h ∈ Aβ ′,r ′ (O) with ‖h‖O,β ′,r ′ < +∞, for
f1, f2, g1, g2 with

‖ fm‖O,β ′′,r ′′ , ‖gm‖O,β ′′,r ′′ <
β ′2

16
, m = 1, 2, (98)

we have that, for −1 ≤ b ≤ 1,

‖h(eibα(ξη)ξ + f1, e−ibα(ξη)η + g1) − h(eibα(ξη)ξ + f2, e−ibα(ξη)η + g2)‖O,β ′′,r ′′

<
3r ′‖h‖O,β ′,r ′

(r ′ − r ′′)β ′ max
{‖ f1 − f2‖O,β ′′,r ′′ , ‖g1 − g2‖O,β ′′,r ′′

}
.

Moreover, if f1, f2, g1, g2 ∈ Aβ ′′,r ′′ (O), then

h(eibα(ξη)ξ + f1, e−ibα(ξη)η + g1) − h(eibα(ξη)ξ + f2, e−ibα(ξη)η + g2) ∈ Aβ ′′,r ′′ (O) .

Remark 6.12 We deduce Lemma 3.6 from Lemma 6.11 by taking b = 0, with (27)
verified by (95).

We postpone the detailed proof of Lemma 6.11 in Appendix A.

6.2 Properties of the perturbation

Recall that τ1 and τ2 are given by (61) with p, q ∈ Aβ,r (O) satisfying (62).

Lemma 6.13 For 0 ≤ k ≤ 16s,

|(e− i
2α p0,1)

(k)|O(r (7),β̃) , |(e i
2α p̄0,1)

(k)|O(r (7),β̃) <
ε

1
3

10
. (99)

Proof By (19), Corollary 6.5 and the assumption ‖p‖O,β,r < ε
10 , we see that

sup
|z−ω|<β

|(e− i
2α p0,1)(z)| <

101ε

1000r
, ω ∈ O(r (7), β̃).
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Hence (99) is true for k = 0. According to (84) and (86), we have

(16s)!e 9
16 β̃ ε

1
2

10r
< ε

1
2− 1

1920 · 101(16s + 1)16sε
1

1920s

1000r+
< ε

1
2− 1

1920 <
ε

1
3

10
.

Indeed, according to (84), we have

ε
1

1920s

r+
<

∣∣∣∣ln
(
7

8
+ r+

8r

)∣∣∣∣ (16s + 1)−16s(r − r+) <
r − r+

7(16s + 1)16s
< 1.

Hence, ε
1
6− 1

1920 < ε
1

1920s < r+. Then, applying Cauchy’s inequality and recalling that

β̃ ∈ [16ε 1
32s , 16ε

1
48s ], we have, for 1 ≤ k ≤ 16s, ω ∈ O(r (7), β̃),

|(e− i
2α p0,1)

(k)(ω)| ≤ k! · sup|z−ω|=β̃ |(e− i
2α p0,1)(z)|

16kε
k
32s

<
(16s)!e 9

16 β̃ ε
1
2

10r
<

ε
1
3

10
.

The proof for e
i
2α p̄0,1 is similar. ��

For σ = τ1 ◦ τ2, we have

σ(ξ, η) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp
{
i
2

(
α(ξη + e− i

2αηq̄ + e
i
2αξ p̄ + p̄q̄) + α(ξη)

)}
ξ

+ exp
{
i
2α(ξη + e− i

2αηq̄ + e
i
2αξ p̄ + p̄q̄)

}
q̄(ξ, η)

+ p(e− i
2αη + p̄, e

i
2αξ + q̄)

exp
{
− i

2

(
α(ξη + e− i

2αηq̄ + e
i
2αξ p̄ + p̄q̄) + α(ξη)

)}
η

+ exp
{
− i

2α(ξη + e− i
2αηq̄ + e

i
2αξ p̄ + p̄q̄)

}
p̄(ξ, η)

+ q(e− i
2αη + p̄, e

i
2αξ + q̄)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=:
(

e
i
2α(ξη)ξ + f (ξ, η)

e− i
2α(ξη)η + g(ξ, η)

)
.

Hence, we have

f =
(
exp

{
i

2

(
α(ξη + e− i

2αηq̄ + e
i
2αξ p̄ + p̄q̄) − α(ξη)

)}
− 1

)
eiαξ

+ exp

{
i

2
α(ξη + e− i

2αηq̄ + e
i
2αξ p̄ + p̄q̄)

}
q̄ + p(e− i

2αη + p̄, e
i
2αξ + q̄),

(100)

g =
(
exp

{
− i

2

(
α(ξη + e− i

2αηq̄ + e
i
2αξ p̄ + p̄q̄) − α(ξη)

)}
− 1

)
e−iαη

+ exp

{
− i

2
α(ξη + e− i

2αηq̄ + e
i
2αξ p̄ + p̄q̄)

}
p̄ + q(e− i

2αη + p̄, e
i
2αξ + q̄).

(101)
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Lemma 6.14 f , g ∈ Aβ̃,r (7) (O) with

∥∥∥∥ f − iα′(ξη)

2
(e− i

2αηq̄ + e
i
2αξ p̄)eiαξ − e

i
2αq̄ − p(e− i

2αη, e
i
2αξ)

∥∥∥∥O,β̃,r (7)
<

ε
31
16

80
,

(102)∥∥∥∥g + iα′(ξη)

2
(e− i

2αηq̄ + e
i
2αξ p̄)e−iαη − e− i

2α p̄ − q(e− i
2αη, e

i
2αξ)

∥∥∥∥O,β̃,r (7)
<

ε
31
16

80
.

(103)

Proof According to Lemmas 6.7 and 6.11, we see that p(e− i
2αη + p̄, e

i
2αξ + q̄),

q(e− i
2αη+ p̄, e

i
2αξ+q̄) andα(ξη+e− i

2αηq̄+e
i
2αξ p̄+ p̄q̄) are elements ofAβ̃,r (7) (O).

Then, by Lemma 3.5,

exp

{
± i

2
α(ξη + e− i

2αηq̄ + e
i
2αξ p̄ + p̄q̄)

}
∈Aβ̃,r (7) (O),

exp

{
± i

2

(
α(ξη + e− i

2αηq̄ + e
i
2αξ p̄ + p̄q̄) − α(ξη)

)}
∈Aβ̃,r (7) (O).

In view of (100) and (101), combining with Lemma 3.4, we obtain that f , g ∈
Aβ̃,r (7) (O).

For (ξ, η) ∈ Cr (7)

ω,β̃
, ω ∈ O(r (7), β̃), we have

(
exp

{
i

2
(α(ξη + e− i

2αηq̄ + e
i
2αξ p̄ + p̄q̄) − α(ξη))

}
− 1

)
eiαξ

= eiαξ
∑
k≥1

ik

2kk!
(
α(ξη + e− i

2αηq̄ + e
i
2αξ p̄ + p̄q̄) − α(ξη)

)k

= i

2
α′(ξη)

(
e− i

2αηq̄ + e
i
2αξ p̄

)
eiαξ (104)

+ i

2
α′(ξη)eiαξ · p̄q̄ + ieiαξ

2

∑
j≥2

α( j)(ξη)

j ! (e
i
2αηq̄ + e− i

2αξ p̄ + p̄q̄) j

(105)

+ eiαξ
∑
k≥2

ik

2kk!
(
α(ξη + e

i
2αηq̄ + e− i

2αξ p̄ + p̄q̄) − α(ξη)
)k

. (106)

Since ‖p‖O,β,r , ‖q‖O,β,r < ε
10 , by Corollary 6.5 and (86), we obtain

‖e− i
2αηq̄ + e

i
2αξ p̄ + p̄q̄‖O,β̃,r (7) <

e
9
8 β̃r (7)ε

10
+ ε2

100
<

ε

10
.
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Hence, applying Corollary 6.4 and Lemma 3.4, we have, if s ≥ 2, then

∥∥∥∥∥∥
ieiαξ

2

∑
j≥2

α( j)(ξη)

j ! (e− i
2αηq̄ + e

i
2αξ p̄ + p̄q̄) j

∥∥∥∥∥∥O,β̃,r (7)

≤ r (7)e
9
8 β̃ · β− 1

32

s∑
j=2

1

j !
( ε

10

) j + r (7)e
9
8 β̃

2

∑
j≥s+1

2 j+5ε j

β j10 j
<

ε
63
32

100
.

Otherwise, for s = 1, we have

∥∥∥∥∥∥
ieiαξ

2

∑
j≥2

α( j)(ξη)

j ! (e− i
2αηq̄ + e

i
2αξ p̄ + p̄q̄) j

∥∥∥∥∥∥O,β̃,r (7)

≤ r (7)e
9
8 β̃

2

∑
j≥2

2 j+5ε j

β j10 j
<

ε
31
16

200
.

Then, the ‖ · ‖O,β̃,r (7) -norm of terms in (105) is bounded by

ε
31
16

200
+ 3r (7)e

9
8 β̃

5

( ε

10

)2
<

ε
31
16

160
. (107)

Applying Lemma 6.7, we obtain

‖α(ξη + e− i
2αηq̄ + e

i
2αξ p̄ + p̄q̄) − α(ξη)‖O,β̃,r (7) <

ε

8
.

Hence the ‖ · ‖O,β̃,r (7) -norm of terms (106) is bounded by

r (7)e
9
8 β̃

∑
k≥2

εk

k!2k8k
<

ε2

100
. (108)

Since ‖p‖O,β̃,r (7) ≤ ‖p‖O,β,r < ε
10 , by Lemma 6.11, we have

‖p(e− i
2αη + p̄, e

i
2αξ + q̄) − p(e− i

2αη, e
i
2αξ)‖O,β̃,r (7)

<
3r

(r − r (7))β̃
max{‖p‖O,β̃,r (7) , ‖q‖O,β̃,r (7)} · ‖p‖O,β,r

≤ 3rε2

100 · 16(r − r (7))ε
1
32s

<
ε

31
16

200
. (109)
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Moreover, by (93) in Lemma 6.7, we have

∥∥∥∥exp
{
i

2
α(ξη + e− i

2αηq̄ + e
i
2αξ p̄ + p̄q̄)

}
q̄ − e

i
2α(ξη)q̄

∥∥∥∥O,β̃,r (7)

≤
∥∥∥∥exp

{
i

2
α(ξη + e− i

2αηq̄ + e
i
2αξ p̄ + p̄q̄)

}
− e

i
2α(ξη)

∥∥∥∥O,β̃,r (7)
‖q‖O,β̃,r (7)

<
4

3
· ε

10
· ε

10
= ε2

75
. (110)

Hence, (102) is shown by combining (107)–(110). The proof for (103) is similar. ��
Corollary 6.15 ‖ f ‖O,β̃,r (7) , ‖g‖O,β̃,r (7) < ε

4 .

Proof Lemma 6.9 implies that

‖p(e− i
2αη, e

i
2αξ)‖O,β̃,r (7) , ‖q(e− i

2αη, e
i
2αξ)‖O,β̃,r (7) <

ε

10
.

Moreover, we have

∥∥∥∥ iα
′(ξη)

2
(e− i

2αηq̄ + e
i
2αξ p̄)eiαξ

∥∥∥∥O,β̃,r (7)
,

∥∥∥∥ iα
′(ξη)

2
(e− i

2αηq̄ + e
i
2αξ p̄)e−iαη

∥∥∥∥O,β̃,r (7)
<

3e2β̃r2ε

50
,

‖e
i
2α q̄‖O,β̃,r (7) , ‖e− i

2α p̄‖ω,β̃,r (7) <
e

9
16 β̃ ε

10
.

By Lemma 6.14, the corollary is shown. ��

Let C(ξ, η) := i
2α

′(ξη)
(

e− i
2α(ξη)ηq̄(ξ, η) + e

i
2α(ξη)ξ p̄(ξ, η)

)
. Applying (19),

we have

Corollary 6.16 C ∈ Aβ̃,r (7) (O) and we have

∥∥∥ fl,0 − e
i
2αq̄l,0 − e

i
2 lα p0,l − eiαCl−1,0

∥∥∥O,β̃,r (7)
<

ε
31
16

80(r (7))l
, l ≥ 2,

(111)

∥∥∥ f0, j − e
i
2αq̄0, j − e− i

2 jα p j,0 − (ξη)eiαC0, j+1

∥∥∥O,β̃,r (7)
<

ε
31
16

80(r (7)) j
, j ≥ 0,

(112)

∥∥∥gl,0 − e− i
2α p̄l,0 − e

i
2 lαq0,l + (ξη)e−iαCl+1,0

∥∥∥O,β̃,r (7)
<

ε
31
16

80(r (7))l
, l ≥ 0,

(113)
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∥∥∥g0, j − e− i
2α p̄0, j − e− i

2 jαq j,0 + e−iαC0, j−1

∥∥∥O,β̃,r (7)
<

ε
31
16

80(r (7)) j
, j ≥ 2.

(114)

Recall that τ1 ◦ τ1 = Id, which means that

(
ξ

η

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp
{
i
2

(
α(ξη + e

i
2αηq + e− i

2αξ p + pq) − α(ξη)
)}

ξ

+ exp
{
i
2α(ξη + e

i
2αηq + e− i

2αξ p + pq)
}

q

+ p(e
i
2αη + p, e− i

2αξ + q),

exp
{
− i

2

(
α(ξη + e

i
2αηq + e− i

2αξ p + pq) − α(ξη)
)}

η

+ exp
{
− i

2α(ξη + e
i
2αηq + e− i

2αξ p + pq)
}

p

+ q(e
i
2αη + p, e− i

2αξ + q)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, similarly to Lemma 6.14, we have

Lemma 6.17 We have

∥∥∥∥ iα
′(ξη)

2
(e

i
2αηq + e− i

2αξ p)ξ + e
i
2αq + p(e

i
2αη, e− i

2αξ)

∥∥∥∥O,β̃,r (7)
<

ε
31
16

80
,

(115)∥∥∥∥− iα′(ξη)

2
(e

i
2αηq + e− i

2αξ p)η + e− i
2α p + q(e

i
2αη, e− i

2αξ)

∥∥∥∥O,β̃,r (7)
<

ε
31
16

80
.

(116)

Corollary 6.18 We have, for l, j ≥ 1

‖(ξη)(e
i
2 αq1,0 + e− i

2 α p0,1)‖O,β̃,r (7) <
r (7)ε

31
16

80
, (117)

∥∥∥(ξη)(e
i
2 αql+1,0 + e− i

2 (l+1)α p0,l+1) + e− i
2 α pl−1,0 + e− i

2 (l−1)αq0,l−1

∥∥∥O,β̃,r (7)
<

ε
31
16

40(r (7))l−1
,

(118)
∥∥∥(ξη)(e− i

2 α p0, j+1 + e
i
2 ( j+1)αq j+1,0) + e

i
2 αq0, j−1 + e

i
2 ( j−1)α p j−1,0

∥∥∥O,β̃,r (7)
<

ε
31
16

40(r (7)) j−1
.

(119)

Proof Due to cancellation of terms, we have that

η

(
iα′(ξη)

2
(e

i
2αηq + e− i

2αξ p)ξ + e
i
2αq + p(e

i
2αη, e− i

2αξ)

)

+ ξ

(
− iα′(ξη)

2
(e

i
2αηq + e− i

2αξ p)η + e− i
2α p + q(e

i
2αη, e− i

2αξ)

)
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= e
i
2αηq + e− i

2αξ p + ηp(e
i
2αη, e− i

2αξ) + ξq(e
i
2αη, e− i

2αξ).

Hence, by (115) and (116),

∥∥∥e
i
2αηq + e− i

2αξ p + ηp(e
i
2αη, e− i

2αξ) + ξq(e
i
2αη, e− i

2αξ)

∥∥∥O,β̃,r (7)

≤ 2r (7) · ε
31
16

80
= r (7)ε

31
16

40
.

The corresponding coefficients under the decomposition (16) satisfy (117)–(119). ��
Corollary 6.19 We have

‖e
i
2αq1,0 + e− i

2α p0,1‖O,β̃,r (7) <
ε

61
32

60r (7)
, (120)

‖e
i
2α q̄1,0 + e

i
2α p0,1 − f1,0‖O,β̃,r (7) <

ε
61
32

60r (7)
, (121)

‖e− i
2α p̄0,1 + e− i

2αq1,0 − g1,0‖O,β̃,r (7) <
ε

61
32

60r (7)
. (122)

Proof Note that (117) actually means that

‖(e i
2αηq + e− i

2αξ p)0,0‖O,β̃,r (7) <
r (7)ε

31
16

80
.

Hence we obtain (120), since in (115), the coefficients of the term ξ1η0 satisfies

∥∥∥∥ iα
′(ξη)

2
(e

i
2αηq + e− i

2αξ p)0,0 + e
i
2αq1,0 + e− i

2α p0,1

∥∥∥∥O,β̃,r (7)
<

ε
31
16

80r (7)
.

In (102), the coefficients of the term ξ satisfies

∥∥∥∥ f1,0 − iα′(ξη)

2
(e− i

2αηq̄ + e
i
2αξ p̄)0,0eiα − e

i
2α q̄1,0 − e

i
2α p0,1

∥∥∥∥O,β̃,r (7)
<

ε
31
16

80r (7)
,

then we have (121). The proof for (122) is similar by applying (103). ��

6.3 The skew terms

In the KAM-like (or Newton) scheme stated in Sect. 4, we also consider the skew term
e

i
2αηq + e− i

2αξ p of τ1, and the skew term e−iαη f + eiαξg of σ . By Lemma 3.4 and
6.14, we see that both skew terms belong to Aβ̃,r (7) (O).
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Lemma 6.20 We have

‖e−iαη f + eiαξg‖O,β̃,r (7) < 2‖e
i
2αηq + e− i

2αξ p‖O,β,r + ε
31
16

40
. (123)

Proof According to (102) and (103), e−iαη f + eiαξg can be approximated by

e−iαη

(
iα′

2

(
e− i

2 αηq̄ + e
i
2 αξ p̄

)
eiαξ + e

i
2 α q̄ + p(e− i

2 αη, e
i
2 αξ)

)

+ eiαξ

(
− iα′

2

(
e− i

2 αηq̄ + e
i
2 αξ p̄

)
e−iαη + e− i

2 α p̄ + q(e− i
2 αη, e

i
2 αξ)

)

= e− i
2 αηq̄ + e

i
2 αξ p̄ + e− i

2 α
(

e− i
2 αη

)
p(e− i

2 αη, e
i
2 αξ) + e

i
2 α

(
e

i
2 αξ

)
q(e− i

2 αη, e
i
2 αξ),

up to an error smaller than
ε

31
16

40
. In view of (19) and (25), we have

‖e− i
2 αηq̄ + e

i
2 αξ p̄‖O,β̃,r (7) = ‖e

i
2 αηq + e− i

2 αξ p‖O,β̃,r (7) ≤ ‖e
i
2 αηq + e− i

2 αξ p‖O,β,r ,

By (19) and Lemma 6.9, we have

‖e− i
2α(e− i

2αη)p(e− i
2αη, e

i
2αξ) + e

i
2α(e

i
2αξ)q(e− i

2αη, e
i
2αξ)‖O,β̃,r (7)

≤ ‖e
i
2αηq + e− i

2αξ p‖O,β,r .

Then (123) is shown by combining the error smaller than
ε

31
16

40
. ��

7 Transformations on crowns

Fix s ∈ N
∗, 0 < r+ < r < 1

4 , 0 < ε, β < r2 as in Sect. 6. In this section, we
introduce two types of transformations on the “crown” Cr

ω,β , which will be used in the
KAM-like scheme.

7.1 Product-preserving scaling transformation

Consider the map

τ(ξ, η) =
(

(e
i
2 θ(ξη) + A(ξη))η + p(ξ, η)

(e
i
2 θ(ξη) + A(ξη))−1ξ + q(ξ, η)

)
, (ξ, η) ∈ Cr ′

ω,β ′ , (124)

with 0 ≤ β ′ < β̃ and 0 < r ′ < (r2 − β)
1
2 , where A = A(ξη) ∈ Aβ,r (O) with

‖A‖O,β,r < 1
16 , p, q ∈ Aβ,r (O), θ = θ(ξη) ∈ AR

β,r (O), with θ(ω) ∈ ] − 1
2 , 4π + 1

2 [
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for ω ∈ O(r , β) and ‖θ‖O,β,r < 4π + 1. Furthermore, we assume |θ(s) − s!|O(r ,β) <
s!
15 and

|θ(k)|O(r ,β) <

{ 1
15 , 1 ≤ k ≤ s − 1 and s ≥ 2,

r− 1
2

2 , s + 1 ≤ k ≤ 16s.

θ satisfies all the hypothesis of α in Sect. 6 (see (55)–(58) in Sect. 4). Hence all the
lemmas and corollaries in Sect. 6.1 are applicable on θ . In particular, by Remark 6.6,
we have

‖eibθ‖O,β ′,r ′ <
101

100
, ∀ − β− 1

4 ≤ b ≤ β− 1
4 . (125)

For (ξ, η) ∈ Cr ′
ω,β ′ , ω ∈ O(r ′, β ′) , let

�(ξη) :=
(
(e

i
2 θ(ξη) + A(ξη))(e− i

2 θ(ξη) + Ā(ξη))
) 1

4
(126)

be the fourth root, and let us set

ϕ : (ξ, η) �→
(
�(ξη)ξ,�−1(ξη)η

)
. (127)

It is easy to show that ρ ◦ ϕ = ϕ ◦ ρ.

Lemma 7.1 For k = ±1, ±2, �k ∈ AR

β ′,r ′(O) satisfies that

‖�k − 1‖O,β ′,r ′ <
3|k|
4

‖A‖O,β ′,r ′ . (128)

Proof Since A ∈ Aβ,r (O) with ‖A‖O,β,r < 1
16 , by (125), we have that e

i
2 θ Ā +

e− i
2 θ A + AĀ ∈ AR

β ′,r ′(O) with

‖e
i
2 θ Ā + e− i

2 θ A + AĀ‖O,β ′,r ′ <
101

50
‖A‖O,β,r + ‖A‖2O,β,r <

21

10
‖A‖O,β,r .

For k = ±1, ±2, we have

‖(1 + e
i
2 θ Ā + e− i

2 θ A + AĀ)
k
4 − 1‖O,β ′,r ′

≤ |k|
4

‖e
i
2 θ Ā + e− i

2 θ A + AĀ‖O,β ′,r ′(
1 − ‖e

i
2 θ Ā + e− i

2 θ A + AĀ‖O,β ′,r ′
)1− k

4

≤ |k|
4

· 21
10

‖A‖O,β,r ·
(
1 − 21

10
‖A‖O,β,r

)− 3
2

≤ 3|k|
4

‖A‖O,β,r .
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By the expression of � in (126), we obtain that �k ∈ AR

β ′,r ′(O) and (128) is satisfied.
��

Proposition 7.2 If ‖A‖O,β,r satisfies that

‖A‖O,β,r <
4(r − r ′)

3r ′ , (129)

then ϕ, as defined by (127), satisfies ‖ϕ − Id‖O,β ′,r ′ < 3
4‖A‖O,β,r and, for every

ω ∈ O(r ′, β ′), we have ϕ(Cr ′
ω,β ′) ⊂ Cr

ω,β . Furthermore, there are θ+ ∈ AR

β ′,r ′(O),
p+, q+ ∈ Aβ ′,r ′(O) such that

(ϕ−1 ◦ τ ◦ ϕ)(ξ, η) =
(

e
i
2 θ+(ξη)η + p+(ξ, η)

e− i
2 θ+(ξη)ξ + q+(ξ, η)

)
,

θ+(ξη) − θ(ξη) = −i(e− i
2 θ(ξη) A(ξη) − e

i
2 θ(ξη) Ā(ξη)), (130)

‖p+‖O,β ′,r ′ <

(
1 + 3

4
‖A‖O,β,r

)
‖p‖O,β,r + ‖A‖2O,β,r , (131)

‖q+‖O,β ′,r ′ <

(
1 + 3

4
‖A‖O,β,r

)
‖q‖O,β,r + ‖A‖2O,β,r . (132)

Moreover, we have

‖e− i
2 θ+ξ p+ + e− i

2 θ+ηq+‖O,β ′,r ′

< ‖e− i
2 θ ξ p + e

i
2 θηq‖O,β,r + ‖A‖O,β,r (‖p‖O,β,r + ‖q‖O,β,r ) + ‖A‖2O,β,r .

(133)

Remark 7.3 At each KAM step, we always work with the involutions of the form (61)
with p, q ∈ Aβ,r (O) satisfying (62). After conjugacy by the KAM transformation,
the new involution, denoted by τ̃1 (resp. τ̃2 = ρ ◦ τ̃1 ◦ ρ), has the form

τ̃1(ξ, η) =
(

λ(ξη)η + p̃(ξ, η)

λ−1(ξη)ξ + q̃(ξ, η)

)
,

with new perturbations p̃ and q̃ of much smaller size than p, q. Nevertheless, the new
principal part usually does not satisfy |λ(ω)| = 1 (but close to 1). Hence, an additional
transformation ϕ (as in (127), see also (71)) is needed in order to preserve the same
form as τ1 in (61). This is similar to the role of Theorem 3.4 in [40] for the formal
hyperbolic non-exceptional manifold case.

Before the proof of Proposition 7.2,we show the following lemma similar toLemma
6.9.
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Lemma 7.4 For 0 < r ′ < r and h ∈ Aβ,r (O) with ‖h‖O,β,r < +∞, if ‖A‖O,β,r is
sufficiently small such that (129) is satisfied, then we have h(�ξ,�−1η) ∈ Aβ ′,r ′(O)

with
‖h(�ξ,�−1η)‖O,β ′,r ′ < ‖h‖O,β,r . (134)

Proof According to (129), we have
(
1 + 3

4 |A|ω,β ′
) r ′

r = 1 +
3
4 |A|ω,β′r ′−(r−r ′)

r < 1.
Therefore, with the help of (128), we obtain for ω ∈ O(r ′, β ′):

∥∥h(�ξ, �−1η)
∥∥

ω,β ′,r ′ ≤ |h0,0|ω,β ′ +
∑
l≥1

|hl,0|ω,β ′ |�|lω,β ′r ′l +
∑
j≥1

|h0, j |ω,β ′ |�−1| j
ω,β ′r ′ j

< |h0,0|ω,β ′ +
∑
l≥1

(
1 + 3

4
|A|ω,β ′

)l ( r ′

r

)l

(|hl,0|ω,β ′ + |h0,l |ω,β ′ )rl

< ‖h‖ω,β,r .

Since for l, j ≥ 0 with l j = 0 and ω ∈ O(r ′, β ′),
(
h(�ξ,�−1η)

)
l, j (ω) = hl, j (ω) ·

�l− j (ω), we see that h(�ξ,�−1η) ∈ Aβ ′,r ′(O). ��
Proof of Proposition 7.2. With ϕ defined in (127), we have

ϕ−1 ◦ τ ◦ ϕ =
(

�−2(ξη)(e
i
2 θ(ξη) + A(ξη))η

�2(ξη)(e
i
2 θ(ξη) + A(ξη))−1ξ

)
+

(
�−1(ξη)p(�ξ,�−1η)

�(ξη)q(�ξ,�−1η)

)
.

In view of (134), we obtain

∥∥∥p(�ξ,�−1η)

∥∥∥O,β ′,r ′ < ‖p‖O,β,r ,

∥∥∥q(�ξ,�−1η)

∥∥∥O,β ′,r ′ < ‖q‖O,β,r .

Combining with (128) together with B := 1 + 3
4‖A‖O,β,r , we have

∥∥∥�−1 p(�ξ,�−1η)

∥∥∥O,β ′,r ′ < B‖p‖O,β,r ,

∥∥∥�q(�ξ,�−1η)

∥∥∥O,β ′,r ′ < B‖q‖O,β,r .

By a direct computation, we have, for (ξ, η) ∈ Cr ′
ω,β ′ , ω ∈ O(r ′, β ′),

�−2(ξη)(e
i
2 θ(ξη) + A(ξη)) = e

i
2 θ(ξη) + A(ξη)

(e
i
2 θ(ξη) + A(ξη))

1
2 (e− i

2 θ(ξη) + Ā(ξη))
1
2

= (e
i
2 θ(ξη) + A(ξη))

1
2 (e− i

2 θ(ξη) + Ā(ξη))−
1
2

= e
i
2 θ(ξη)(1 + e− i

2 θ(ξη) A(ξη))
1
2 (1 + e

i
2 θ(ξη) Ā(ξη))−

1
2 ,

�2(ξη)(e
i
2 θ(ξη) + A(ξη))−1 = e− i

2 θ(ξη)(1 + e− i
2 θ(ξη) A(ξη))−

1
2 (1 + e

i
2 θ(ξη) Ā(ξη))

1
2 .

According to (125) and (129), we see that e− i
2 θ(ξη) A(ξη) and e

i
2 θ(ξη) Ā(ξη) are small

enough. Then, by the expansion of power series, we have

ln
(
(1 + e− i

2 θ(ξη) A(ξη))
1
2 (1 + e

i
2 θ(ξη) Ā(ξη))−

1
2

)
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= ln

(
1 + 1

2

(
e− i

2 θ(ξη) A(ξη) − e
i
2 θ(ξη) Ā(ξη)

)
+ P̃(ξη))

)

= 1

2

(
e− i

2 θ(ξη) A(ξη) − e
i
2 θ(ξη) Ā(ξη)

)
+ P(ξη),

where P̃ , P are sums of powers of (e− i
2 θ A, e

i
2 θ Ā) of order greater than 2, satisfying

that

‖P̃‖O,β ′,r ′ , ‖P‖O,β ′,r ′ <
1

2
‖A‖2O,β ′,r ′ .

Now we define θ+(ξη) := θ(ξη) − i(e− i
2 θ(ξη) A(ξη) − e

i
2 θ(ξη) Ā(ξη)) as in (130),

which belongs to AR

β ′,r ′(O). Then we rewrite (1 + e− i
2 θ A)

1
2 (1 + e

i
2 θ Ā)− 1

2 as

(1 + e− i
2 θ A)

1
2 (1 + e

i
2 θ Ā)−

1
2 = e

i
2 (θ+−θ)eP .

Since (125) implies that

‖e− i
2 θ A − e

i
2 θ Ā‖O,β ′,r ′ ≤ 2‖e− i

2 θ A‖O,β ′,r ′ <
101

50
‖A‖O,β,r ,

we have

∥∥∥�−2 · (e
i
2 θ + A) − e

i
2 θ+

∥∥∥O,β ′,r ′ =
∥∥∥e

i
2 θ (1 + e− i

2 θ A)
1
2 (1 + e

i
2 θ Ā)−

1
2 − e

i
2 θ+

∥∥∥O,β ′,r ′

=
∥∥∥e

i
2 θ e

i
2 (θ+−θ)eP − e

i
2 θ+

∥∥∥O,β ′,r ′

≤ ‖e
i
2 θ‖O,β ′,r ′ ‖e

i
2 (θ+−θ)‖O,β ′,r ′ ‖eP − 1‖O,β ′,r ′

<
101

100

(
1 + 101

40
‖A‖O,β,r

)
· 2
3
‖A‖2O,β ′,r ′

< ‖A‖2O,β ′,r ′ . (135)

Similarly, we have

∥∥∥�2 · (e
i
2 θ + A)−1 − e− i

2 θ+
∥∥∥O,β ′,r ′ < ‖A‖2O,β,r . (136)

Then we obtain (131) and (132) by letting

(
p+(ξ, η)

q+(ξ, η)

)
:=

(
(�−2 · (e

i
2 θ + A) − e

i
2 θ+)η

(�2 · (e
i
2 θ + A)−1 − e− i

2 θ+)ξ

)
+

(
�−1 · p(�ξ,�−1η)

� · q(�ξ,�−1η)

)
.

Since ‖A‖O,β,r ≤ 1
16 , we see that (e

i
2 θ + A)±1 ∈ Aβ ′,r ′ (O). According to Lemma

3.4, Lemma 7.1 and Lemma 7.4, we have that p+, q+ ∈ Aβ ′,r ′(O).
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It remains to prove (133). With the above p+ and q+, we have that

e− i
2 θ+ξ p+ + e

i
2 θ+ηq+

= e− i
2 θ+ · (ξη)

(
�−2 · (e

i
2 θ + A) − e

i
2 θ+

)
(137)

+ e− i
2 θ+ · (ξη)

(
�2 · (e

i
2 θ + A)−1 − e− i

2 θ+
)

(138)

+ e− i
2 θ+ξ · �−1 · p(�ξ,�−1η) + e

i
2 θ+η · � · q(�ξ,�−1η). (139)

Since (130) implies ‖θ+ − θ‖O,β ′,r ′ < 101
50 ‖A‖O,β,r , so that

‖eibθ+ − eibθ‖O,β ′,r ′ <
7

2
|b|‖A‖O,β,r , −1 ≤ b ≤ 1,

which implies that ‖eibθ+‖O,β ′,r ′ < 2, we see that, in view of (135) and (136), the sum
of terms in (137) and (138) is smaller than ‖A‖2O,β,r . Let us focus on (139), which
equals to

e− i
2 θ+ · �−1ξ · p(�ξ,�−1η) + e

i
2 θ+ · �η · q(�ξ,�−1η)

= e− i
2 θ · (�ξ)p(�ξ,�−1η) + e

i
2 θ · (�−1η)q(�ξ,�−1η)

+ (e− i
2 θ+�−1 − e− i

2 θ�)ξ p(�ξ,�−1η) + (e
i
2 θ+� − e

i
2 θ�−1)ηq(�ξ,�−1η)

Since Lemma 7.1 implies that ‖�−1‖O,β ′,r ′ < 1 + 3
4‖A‖O,β,r < 19

16 and

‖� − �−1‖O,β ′,r ′ ≤ ‖� − 1‖O,β ′,r ′ + ‖�−1 − 1‖O,β ′,r ′ <
3

2
‖A‖O,β,r ,

we obtain that

‖e− i
2 θ+�−1 − e− i

2 θ�‖O,β ′,r ′

≤ ‖(e− i
2 θ+ − e− i

2 θ )�−1‖O,β ′,r ′ + ‖e− i
2 θ (�−1 − �)‖O,β ′,r ′

<
19

16
· 7
4
‖A‖O,β,r + 101

100
· 3
2
‖A‖O,β,r < 4‖A‖O,β,r .

Similarly, we have

‖e
i
2 θ+� − e

i
2 θ�−1‖O,β ′,r ′ < 4‖A‖O,β,r .

On the other hand, by Lemma 7.4, we see that

‖e− i
2 θ · (�ξ)p(�ξ, �−1η) + e

i
2 θ · (�−1η)q(�ξ, �−1η)‖O,β ′,r ′ < ‖e− i

2 θ ξ p + e
i
2 θ ηq‖O,β,r .

Hence (139) is bounded by ‖e− i
2 θ ξ p + e

i
2 θηq‖O,β ′,r ′ + ‖A‖O,β,r (‖p‖O,β,r +

‖q‖O,β,r ). Combining with the errors in (137) and (138), (133) is shown. ��
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7.2 Approximated cohomological equations—Proof of Theorem 4.7

For 0 < r+ < r < 1
4 , let ε > 0 be sufficiently small such that (84) is satisfied, let

β, β+, β̃ be defined as in (59), and let r (m), m = 0, 1, . . . , 8, be defined as in (60).
Consider the holomorphic involution

τ1(ξ, η) =
(

e
i
2α(ξη)η + p(ξ, η)

e− i
2α(ξη)ξ + q(ξ, η)

)
, (ξ, η) ∈ Cr

ω,β, ω ∈ O(r , β)

given as in Sect. 6 (same with that in Theorem 4.7), with ‖p‖O,β,r , ‖q‖O,β,r < ε
10 .

The rest of this subsection is devoted to the proof of Theorem 4.7. The core of proof
is the resolution of the approximated cohomological equations (see Lemma 7.5).

At first, we see that the definition of Oδ in (63) implies that

|einα(ξη) − 1| ≥ δ

2
, ∀ 0 < |n| ≤ K + 1, ∀ (ξ, η) ∈ Cω,β̃ , ω ∈ Oδ. (140)

Indeed, recalling that β̃ = 16β+ and δ > 80ε
1
60s , by (84), we have

K + 1 = | ln ε|∣∣ln(r (7)/r)
∣∣ + 1 = | ln ε|∣∣ln( 78 + r+

8r )
∣∣ + 1 <

ε
− 1

2400s2

2
. (141)

Hence, by Lemma 6.3, for 0 < |n| ≤ K + 1, we have

|n||α(ξη) − α(ω)|ω,β̃ < (K + 1) · 18β+ ≤ 18(K + 1)ε
1
48s < 20ε

1
60s <

δ

4
.

In view of Remark 6.6, we have

|einα(ξη) − einα(ω)|ω,β̃ ≤ e
9
8 |n|β̃ |ein(α(ξη)−α(ω)) − 1|ω,β̃

≤ 101

100

∑
k≥1

|n|k |α(ξη) − α(ω)|k
ω,β̃

k! <
δ

2
,

and hence, combining with (63), (140) is obtained.
Define pK and qK ∈ Aβ,r (O) as

(
pK

qK

)
:=

(
p0,0(ξη) + ∑

1≤l≤K pl,0(ξη)ξ l + ∑
1≤ j≤K p0, j (ξη)η j

q0,0(ξη) + ∑
1≤l≤K ql,0(ξη)ξ l + ∑

1≤ j≤K q0, j (ξη)η j

)
. (142)

Since ‖p‖O,β,r , ‖q‖O,β,r < ε
10 , we have

‖p − pK ‖O,β̃,r (7) , ‖q − qK ‖O,β̃,r (7) <
ε

10

(
r (7)

r

) | ln ε||ln(r(7)/r)| = ε2

10
. (143)
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Lemma 7.5 There is Û =
(

û
v̂

)
∈ (AR

β̃,r (7) (Oδ))
2, with û1,0 = v̂0,1 = 0 satisfying

∥∥û
∥∥Oδ,β̃,r (7) ,

∥∥v̂
∥∥Oδ,β̃,r (7) <

ε
49
50

20
, (144)

∥∥ηû + ξ v̂
∥∥Oδ,β̃,r (7) <

ε
61
32

16
+ 5(K + 1)δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r

(145)

such that

‖e
i
2αv̂ − û(e

i
2αη, e− i

2αξ) + pK − p0,1η‖Oδ,β̃,r (7)

<
ε

61
32

80
+ 6(K + 1)

δ
‖e

i
2αηq + e− i

2αξ p‖O,β,r , (146)

‖e− i
2α û − v̂(e

i
2αη, e− i

2αξ) + qK − q1,0ξ‖Oδ,β̃,r (7)

<
ε

61
32

80
+ 6(K + 1)

δ
‖e

i
2αηq + e− i

2αξ p‖O,β,r , (147)∥∥∥e− i
2αξ

(
e

i
2αv̂ − û(e

i
2αη, e− i

2αξ) + pK − p0,1η
)

+ e
i
2αη

(
e− i

2α û − v̂(e
i
2αη, e− i

2αξ) + qK − q1,0ξ
)∥∥∥Oδ,β̃,r (7)

<
ε

61
32

20
.

(148)

Remark 7.6 Asmentioned in Sect. 2.1, the aim of the KAM-like process is to eliminate
the main part of the perturbation and get a much smaller new perturbation.

In view of (143), we would like to construct Û =
(

û
v̂

)
so that the change of

variables Id + Û eliminates pK and qK . This amounts to solve the cohomological
equations (arising as the “linearized equation” of the conjugacy equation),

e
i
2αv̂ − û(e

i
2αη, e− i

2αξ) + pK − p0,1η = 0,

e− i
2α û − v̂(e

i
2αη, e− i

2αξ) + qK − q1,0ξ = 0,

with p0,1η and q1,0ξ added to the newprincipal part. Based on the fact that τ1 and τ2 are
involutions and τ1◦τ2 is reversiblew.r.t.ρ,we solve the above equations approximately,
with the errors estimated as in (146) and (147). Then, with the transformation Id+ Û ,
the main parts of perturbations of τ1, τ2 and τ1 ◦ τ2 are all eliminated approximately.

Proof Let us define û, v̂ by giving the coefficients: û1,0 = v̂0,1 = 0,

ûl,0(ξη) := 1

2
· fl,0(ξη) − ei(l+1)α(ξη) f̄l,0(ξη)

eilα(ξη) − eiα(ξη)
, 2 ≤ l ≤ K , (149)
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û0, j (ξη) := 1

2
· f0, j (ξη) − e−i( j−1)α(ξη) f̄0, j (ξη)

e−i jα(ξη) − eiα(ξη)
, 0 ≤ j ≤ K , (150)

v̂l,0(ξη) := 1

2
· gl,0(ξη) − ei(l−1)α(ξη)ḡl,0(ξη)

eilα(ξη) − e−iα(ξη)
, 0 ≤ l ≤ K , (151)

v̂0, j (ξη) := 1

2
· g0, j (ξη) − e−i( j+1)α(ξη)ḡ0, j (ξη)

e−i jα(ξη) − e−iα(ξη)
, 2 ≤ j ≤ K , (152)

with other coefficients being 0. Here, f , g are defined by (100) and (101). In view of
(149)–(152), we see that if ûl, j �= 0, then

ûl, j (ξη) = 1

2
· f̄l, j (ξη) − e−i(l− j+1)α(ξη) fl, j (ξη)

e−i(l− j)α(ξη) − e−iα(ξη)
= ûl, j (ξη),

and if v̂l, j �= 0, then

v̂l, j (ξη) = 1

2
· ḡl, j (ξη) − e−i(l− j−1)α(ξη)gl, j (ξη)

e−i(l− j)α(ξη) − eiα(ξη)
= v̂l, j (ξη).

Hence, according to the definition ofOδ in (63) and Lemma 6.14, û, v̂ ∈ AR

β̃,r (7) (Oδ).

With the coefficients in (149)–(152), we have, for l j = 0, l, j ≤ K and (l, j) �=
(0, 1),

e
i
2αv̂l, j − e

i
2 ( j−l)α û j,l

= e
i
2α

2

gl, j − ei(l− j−1)α ḡl, j

ei(l− j)α − e−iα
− e

i
2 ( j−l)α

2

f j,l − ei( j−l+1)α f̄ j,l

ei( j−l)α − eiα
, (153)

and for l j = 0, l, j ≤ K , (l, j) �= (1, 0),

e− i
2α ûl, j − e

i
2 ( j−l)αv̂ j,l

= e− i
2α

2

fl, j − ei(l− j+1)α f̄l, j

ei(l− j)α − eiα
− e

i
2 ( j−l)α

2

g j,l − ei( j−l−1)α ḡ j,l

ei( j−l)α − e−iα
. (154)

According to Corollary 6.16, we have

C = i

2
α′(ξη)

(
e− i

2α(ξη)ηq̄ + e
i
2α(ξη)ξ p̄

)
∈ Aβ̃,r (7) (Oδ).

Replacing the coefficients of f and g in (153) and (154) and according to (111)–(114),
let us show that, for l j = 0 with l, j ≤ K ,

‖e
i
2αv̂l, j − e

i
2 ( j−l)α û j,l + pl, j − p̂l, j‖Oδ,β̃,r (7) <

δ−1ε
31
16

16(r (7))l+ j
, (l, j) �= (0, 1),

(155)
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‖e− i
2α ûl, j − e

i
2 ( j−l)αv̂ j,l + ql, j − q̂l, j‖Oδ,β̃,r (7) <

δ−1ε
31
16

16(r (7))l+ j
, (l, j) �= (1, 0).

(156)

Here, p̂, q̂ ∈ Aβ̃,r (7) (Oδ) with p̂l, j and q̂l, j defined by

p̂l,0 := (ξη) · −e− i
2αCl+1,0 + eilαe

i
2αC̄l+1,0 + e

i
2 lαC0,l+1 − e− i

2 lαe−iαC̄0,l+1

2(eilα − e−iα)

+ 1

2

(
pl,0 + e− i

2 (l−1)αq0,l
)

, 0 ≤ l ≤ K , (157)

p̂0, j := −e− i
2αC0, j−1 + e−i jαe

i
2αC̄0, j−1 + e− i

2 jαC j−1,0 − e
i
2 jαe−iαC̄ j−1,0

2(e−i jα − e−iα)

+ 1

2

(
p0, j + e

i
2 ( j+1)αq j,0

)
, 2 ≤ j ≤ K , (158)

q̂l,0 := e
i
2αCl−1,0 − eilαe− i

2αC̄l−1,0 − e
i
2 lαC0,l−1 + e− i

2 lαeiαC̄0,l−1

2(eilα − eiα)

+ 1

2

(
ql,0 + e− i

2 (l+1)α p0,l
)

, 2 ≤ l ≤ K , (159)

q̂0, j := (ξη) · e
i
2αC0, j+1 − e−i jαe− i

2αC̄0, j+1 − e− i
2 jαC j+1,0 + e

i
2 jαeiαC̄ j+1,0

2(e−i jα − eiα)

+ 1

2

(
q0, j + e

i
2 ( j−1)α p j,0

)
, 0 ≤ j ≤ K , (160)

and all other coefficients of p̂ and q̂ are defined as 0. Indeed, by (153), we have

e
i
2αv̂l,0 − e− i

2 lα û0,l = e
i
2α

2

gl,0 − ei(l−1)α ḡl,0

eilα − e−iα

−e− i
2 lα

2

f0,l − e−i(l−1)α f̄0,l
e−ilα − eiα

=
4∑

k=1

(Mk + Nk),

where, M2 := M̄1eiα , M4 := M̄3e−ilα , N2 := N̄1eiα , N4 := N̄3e−ilα together
with

M1 := e
3i
2 α

2(ei(l+1)α − 1)

(
e− i

2α p̄l,0 + e
i
2 lαq0,l − (ξη)e−iαCl+1,0

)
,

N1 := e
3i
2 α

2(ei(l+1)α − 1)

(
gl,0 − e− i

2α p̄l,0 − e
i
2 lαq0,l + (ξη)e−iαCl+1,0

)
,

M3 := − e− i
2 (l+2)α

2(e−i(l+1)α − 1)

(
e

i
2αq̄0,l + e− i

2 lα pl,0 + (ξη)eiαC0,l+1

)
,

N3 := − e− i
2 (l+2)α

2(e−i(l+1)α − 1)

(
f0,l − e

i
2αq̄0,l − e− i

2 lα pl,0 − (ξη)eiαC0,l+1

)
.
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By Corollary 6.5 and Remark 6.6, we obtain, for 0 ≤ l ≤ K , ω ∈ O(r (7), β̃),

|e 3i
2 α|ω,β̃ , |ei(l+ 1

2 )α|ω,β̃ , |e− i
2 (l+2)α|ω,β̃ , |e− 3i

2 lα|ω,β̃ <
101

100
,

and, by (140), for 0 ≤ l ≤ K ,
∥∥(e±i(l+1)α − 1)−1

∥∥Oδ,β̃,r (7) < 2δ−1. Then, by (112),
(113), we have

4∑
k=1

‖Nk‖Oδ,β̃,r (7) ≤ 4 · 101
100

δ−1 · ε
31
16

80(r (7))l
<

δ−1ε
31
16

16(r (7))l
. (161)

On the other hand, we have

M1 = e
i
2α

2(eilα − e−iα)

(
e− i

2α p̄l,0 + e
i
2 lαq0,l − (ξη)e−iαCl+1,0

)

= 1

2(eilα − e−iα)

(
p̄l,0 + e

i
2 (l+1)αq0,l − (ξη)e− i

2αCl+1,0

)
,

M2 = − 1

2(eilα − e−iα)

(
eilα pl,0 + e

i
2 (l−1)αq̄0,l − (ξη)ei(l+

1
2 )αC̄l+1,0

)
,

M3 = 1

2(eilα − e−iα)

(
e

i
2 (l−1)αq̄0,l + e−iα pl,0 + (ξη)e

i
2 lαC0,l+1

)
,

M4 = − 1

2(eilα − e−iα)

(
e− i

2 (l+1)αq0,l + p̄l,0 + (ξη)e− i
2 (l+2)αC̄0,l+1

)
.

Hence, adding the above terms, we have

pl,0 +
4∑

k=1

Mk = pl,0 + 1

2(eilα − e−iα)

[(
p̄l,0 − p̄l,0

) +
(

e
i
2 (l−1)α q̄0,l − e

i
2 (l−1)α q̄0,l

)]

+ (e−iα pl,0 − eilα pl,0) + (e
i
2 (l+1)αq0,l − e− i

2 (l+1)αq0,l )

2(eilα − e−iα)

+ (ξη) · e
i
2 lαC0,l+1 − e− i

2 lαe−iαC̄0,l+1 − e− i
2 αCl+1,0 + eilαe

i
2 αC̄l+1,0

2(eilα − e−iα)

= pl,0 + e− i
2 (l−1)αq0,l
2

+ (ξη) · −e− i
2 αCl+1,0 + eilαe

i
2 αC̄l+1,0 + e

i
2 lαC0,l+1 − e− i

2 lαe−iαC̄0,l+1

2(eilα − e−iα)

= p̂l,0. (162)

By (161) and (162), we obtain (155) for the case (l, j) = (l, 0), l ≥ 0. The proof is
similar for the case (l, j) = (0, j), j ≥ 2. It is also similar for proving (156).
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Now we are going to show (146)–(148). Since (155) and (156) imply that

‖e
i
2αv̂ − û(e

i
2αη, e− i

2αξ) + pK − p0,1η − p̂‖Oδ,β̃,r (7) <
K δ−1ε

31
16

8
,

‖e− i
2α û − v̂(e

i
2αη, e− i

2αξ) + qK − q1,0ξ − q̂‖Oδ,β̃,r (7) <
K δ−1ε

31
16

8
,

it is sufficient to prove

‖ p̂‖Oδ,β̃,r (7) , ‖q̂‖Oδ,β̃,r (7) <
ε

61
32

100
+ 6(K + 1)δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r ,

(163)

‖e− i
2αξ p̂ + e

i
2αηq̂‖Oδ,β̃,r (7) <

ε
61
32

40
. (164)

By (19), Lemma 3.3 and Corollary 6.4, we have

‖C‖Oδ,β̃,r (7) ≤ ‖α′‖O,β,r

2
‖e

i
2αηq + e− i

2αξ p‖O,β̃,r (7)

<
3

5
‖e

i
2αηq + e− i

2αξ p‖O,β,r ,

which gives the estimates for the coefficients: for l j = 0,

‖Cl, j‖Oδ,β̃,r (7) <
3

5(r (7))l+ j
‖e

i
2αηq + e− i

2αξ p‖O,β,r .

Then, in view of (115), we have that

‖e
i
2αq + p(e

i
2αη, e− i

2αξ)‖Oδ,β̃,r (7)

≤ ‖e
i
2αq + p(e

i
2αη, e− i

2αξ) − C̄ξ‖Oδ,β̃,r (7) + ‖Cξ‖Oδ,β̃,r (7)

≤ ε
31
16

80
+ 3r (7)

5
‖e

i
2αηq + e− i

2αξ p‖O,β,r ,

which gives the estimates for the coefficients: for l j = 0,

‖e
i
2αql, j + e

i
2 ( j−l)α p j,l‖Oδ,β̃,r (7) , ‖e− i

2α pl, j + e
i
2 ( j−l)αq j,l‖Oδ,β̃,r (7)

<

(
ε

31
16

80
+ 3r (7)

5
‖e

i
2αηq + e− i

2αξ p‖O,β,r

)
(r (7))−(l+ j).

Recalling the coefficients in (157)–(160), and combining with (140), we obtain

‖ p̂l, j‖Oδ,β̃,r (7) , ‖q̂l, j‖Oδ,β̃,r (7)
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<
101

200

(
ε

31
16

80
+ 3r (7)

5
‖e− i

2αηq̄ + e
i
2αξ p̄‖Oδ,β̃,r (7)

)
(r (7))−(l+ j)

+ 4 · 101
100

δ−1 · 3
5
‖e− i

2αηq̄ + e
i
2αξ p̄‖Oδ,β̃,r (7) (r (7))−(l+ j)

<

(
ε

31
16

100
+ 3δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r

)
(r (7))−(l+ j),

which implies (163). By Corollary 6.18, we have, for l ≥ 1,

‖e− i
2α(pl−1,0 + e− i

2 (l−2)αq0,l−1)

+(ξη)e
i
2α(ql+1,0 + e− i

2 (l+2)α p0,l+1)‖Oδ,β̃,r (7) <
ε

31
16

40(r (7))l−1
. (165)

Moreover, we have

e− i
2α · −(ξη)e− i

2αCl,0

2(ei(l−1)α − e−iα)
+ (ξη)e

i
2α · e

i
2αCl,0

2(ei(l+1)α − eiα)
= 0, (166)

e− i
2α · (ξη)ei(l−1)αe

i
2αC̄l,0

2(ei(l−1)α − e−iα)
+ (ξη)e

i
2α · −ei(l+1)αe− i

2αC̄l,0

2(ei(l+1)α − eiα)
= 0, (167)

e− i
2α · (ξη)e

i
2 (l−1)αC0,l

2(ei(l−1)α − e−iα)
+ (ξη)e

i
2α · −e

i
2 (l+1)αC0,l

2(ei(l+1)α − eiα)
= 0, (168)

e− i
2α · −(ξη)e− i

2 (l−1)αe−iαC̄0,l

2(ei(l−1)α − e−iα)
+ (ξη)e

i
2α · e− i

2 (l+1)αeiαC̄0,l

2(ei(l+1)α − eiα)
= 0. (169)

In view of the definition of coefficients of p̂ and q̂ in (157)–(160), we have, for
1 ≤ l ≤ K ,

e− i
2 α p̂l−1,0 + (ξη)e

i
2 α q̂l+1,0

= e− i
2 α

2
(pl−1,0 + e− i

2 (l−2)αq0,l−1) + (ξη)e
i
2 α

2
(ql+1,0 + e− i

2 (l+2)α p0,l+1)

+ (ξη)e− i
2 α · −e− i

2 αCl,0 + ei(l−1)αe
i
2 αC̄l,0 + e

i
2 (l−1)αC0,l − e− i

2 (l−1)αe−iαC̄0,l

2(ei(l−1)α − e−iα)

(170)

+ (ξη)e
i
2 α e

i
2 αCl,0 − ei(l+1)αe− i

2 αC̄l,0 − e
i
2 lαC0,l + e− i

2 (l+1)αeiαC̄0,l

2(ei(l+1)α − eiα)
. (171)

Combining (165)–(169), we have (170) + (171)= 0, so that

‖e− i
2α p̂l−1,0 + (ξη)e

i
2αq̂l+1,0‖Oδ,β̃,r (7) <

ε
31
16

2(r (7))l
, 1 ≤ l ≤ K + 1.
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Similarly, we have

‖(ξη)e− i
2α p̂0, j+1 + e

i
2αq̂0, j−1‖Oδ,β̃,r (7) <

ε
31
16

2(r (7)) j
1 ≤ j ≤ K + 1.

Then, according to (141), we obtain (164) by

‖e− i
2αξ p̂ + e

i
2αηq̂‖Oδ,β̃,r (7)

≤
K+1∑
l=1

|e− i
2α p̂l−1,0 + (ξη)e

i
2αq̂l+1,0|Oδ,β̃,r (7) (r (7))l

+
K+1∑
j=1

|(ξη)e− i
2α p̂0, j+1 + e

i
2α q̂0, j−1|O(6)

δ ,8β+(r (7)) j

< 2(K + 1)ε
31
16 <

ε
61
32

40
.

In view of (149) and (150), and recalling that ‖ f ‖Oδ,β̃,r (7) < ε
2 in Corollary 6.15,

we have

‖ûl, j‖Oδ,β̃,r (7) <
101

100
δ−1 ·

(
1 + 101

100

)
ε

2(r (7))l+ j
<

6δ−1ε

5(r (7))l+ j
.

Hence, recalling that δ > 80ε
1
60s and (141), we have

‖û‖Oδ,β̃,r (7) ≤
K∑

l=2

‖ûl,0‖Oδ,β̃,r (7) (r (7))l +
K∑

j=0

‖û0, j‖Oδ,β̃,r (7) (r (7)) j

< 2K · 6
5
δ−1ε <

ε
49
50

20
.

We have similarly, ‖v̂‖Oδ,β̃,r (7) <
ε

49
50

20
.

In ηû + ξ v̂, (ηû + ξ v̂)0,0 = 0 since û1,0 = v̂0,1 = 0. For other terms, we have

K+1∑
l=1

∥∥∥(ηû + ξ v̂)l,0ξ
l
∥∥∥Oδ ,β̃,r (7)

=
K+1∑
l=1

∥∥∥(ûl+1,0 · ξη + v̂l−1,0
)
ξ l

∥∥∥Oδ ,β̃,r (7)

= 1

2

K+1∑
l=1

∥∥∥∥∥
fl+1,0 − ei(l+2)α f̄l+1,0

ei(l+1)α − eiα
ξη + gl−1,0 − ei(l−2)α ḡl−1,0

ei(l−1)α − e−iα

∥∥∥∥∥Oδ ,β̃,r (7)

(r (7))l
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= 1

2

K+1∑
l=1

∥∥∥∥ ((ξη)e−iα fl+1,0 + eiαgl−1,0) − eilα((ξη)eiα f̄l+1,0 + e−iα ḡl−1,0)

eilα − 1

∥∥∥∥Oδ ,β̃,r (7)
(r (7))l ,

and similarly,

K+1∑
j=1

∥∥∥(ηû + ξ v̂)0, j η
j
∥∥∥
Oδ ,β̃,r (7)

= 1

2

K+1∑
j=1

∥∥∥∥∥
(e−iα f0, j−1 + (ξη)eiαg0, j+1) − e−i jα(eiα f̄0, j−1 + (ξη)e−iα ḡ0, j+1)

e−i jα − 1

∥∥∥∥∥
Oδ ,β̃,r (7)

(r (7)) j .

Note that (ξη)e−iα fl+1,0 +eiαgl−1,0 and e−iα f0, j−1+ (ξη)eiαg0, j+1 are respectively
the coefficients of ξ l and η j in e−iαη f + eiαξg . Hence, in view of Lemma 6.20, we
have

K+1∑
l=1

∥∥∥(ηû + ξ v̂)l,0ξ
l
∥∥∥Oδ,β̃,r (7)

+
K+1∑
j=1

∥∥∥(ηû + ξ v̂)0, jη
j
∥∥∥Oδ,β̃,r (7)

< 2(K + 1)δ−1
(
1 + 101

100

)
‖e−iαη f + eiαξg‖O,β,r

< 2(K + 1)δ−1
(
1 + 101

100

)(
ε

31
16

40
+ 2‖e

i
2αηq + e− i

2αξ p‖O,β,r

)

<
ε

61
32

16
+ 5(K + 1)δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r .

This finishes the proof of Lemma 7.5. ��
By Lemma 7.5, we see that φ = Id + Û is invertible on Cr (7)

ω,β̃
and φ(Cr (7)

ω,β̃
) ⊂ Cr

ω,β

for ω ∈ Oδ(r (7), β̃) = Oδ ∩ ] − (r (7))2 + β̃, (r (7))2 − β̃[. Indeed, according to (144),
(145) and (141), we have

∥∥ηû + ξ v̂ + ûv̂
∥∥Oδ,β̃,r (7)

<
ε

61
32

16
+ 5(K + 1)δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r + ε
49
25

400

<
ε

61
32

16
+ 5(K + 1)δ−1 · 101

200
· ε

10
+ ε

49
25

400
< ε

49
50 .

Then, in view of the definition of the set given in (15), we have for any (ξ, η) ∈ Cr (7)

ω,β̃

with ω ∈ Oδ(r (7), β̃),

|(ξ + û(ξ, η))(η + v̂(ξ, η)) − ω| ≤ |ξη − ω| + |ηû(ξ, η) + ξ v̂(ξ, η) + û(ξ, η)v̂(ξ, η)|
< β̃ + ‖ηû + ξ v̂ + ûv̂‖Oδ ,β̃,r (7) < β̃ + ε

49
50 < β,
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|ξ + û(ξ, η)|, |η + v̂(ξ, η)| < r (7) + ε
49
50 < r ,

noting that, under the condition (84),

ε
49
50 < ε

1
40s ≤ β

2
< β − β̃, ε

49
50 < ε

1
2400s2 <

r − r+
8

= r − r (7).

Moreover, since û, v̂ ∈ AR

β̃,r (7) (Oδ), we have, by Lemma 3.1, ρ ◦ φ = φ ◦ ρ.

With φ = Id + Û constructed above, we define τ̃1 := φ−1 ◦ τ1 ◦ φ. For any
h = h(ξη), we define the linear operator Lh by:

[
Lh

(
p1
p2

)]
(ξ, η) := e−ih(ξη)ξ p1(ξ, η) + eih(ξη)ηp2(ξ, η). (172)

Lemma 7.7 For τ̃1 = φ−1 ◦ τ1 ◦ φ, we have

τ̃1(ξ, η) −
(

(e
i
2α(ξη) + p0,1)η

(e
i
2α(ξη) + p0,1)−1ξ

)
∈ (A2β+,r̃ (Oδ))

2,

satisfying that

∥∥∥∥∥τ̃1(ξ, η) −
(

(e
i
2α(ξη) + p0,1)η

(e
i
2α(ξη) + p0,1)−1ξ

)∥∥∥∥∥Oδ,2β+,r̃

<
ε

61
32

3
+ 22(K + 1)

δ
‖e

i
2αηq + e− i

2αξ p‖O,β,r , (173)∥∥∥∥∥L α
2

(
τ̃1(ξ, η) −

(
(e

i
2α(ξη) + p0,1)η

(e
i
2α(ξη) + p0,1)−1ξ

))∥∥∥∥∥Oδ,2β+,r̃

<
ε

61
32

2
. (174)

Proof A direct computation yields that

τ̃1 = φ−1 ◦ τ1 ◦ φ

=
(

e
i
2 α(ξη+ηû+ξ v̂+ûv̂)η + e

i
2 α(ξη+ηû+ξ v̂+ûv̂)v̂ + p ◦ φ − û ◦ τ1 ◦ φ

e− i
2 α(ξη+ηû+ξ v̂+ûv̂)ξ + e− i

2 α(ξη+ηû+ξ v̂+ûv̂)û + q ◦ φ − v̂ ◦ τ1 ◦ φ

)
+ Ũ ◦ τ1 ◦ φ,

with Ũ = φ−1 − Id + Û defined as in the proof of Lemma 3.8. Recalling (142), we
see that

τ̃1(ξ, η) −
(

(e
i
2α(ξη) + p0,1)η

(e
i
2α(ξη) + p0,1)−1ξ

)

=
(

0(
(e− i

2α(ξη) + q1,0) − (e
i
2α(ξη) + p0,1)−1

)
ξ

)
(175)
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+
(

e
i
2α(ξη)v̂ − û(e

i
2αη, e− i

2αξ) + pK − p0,1η

e− i
2α(ξη)û − v̂(e

i
2αη, e− i

2αξ) + qK − q1,0ξ

)
(176)

+
(

p − pK

q − qK

)
+

(
p ◦ φ − p
q ◦ φ − q

)
(177)

+
(

(e
i
2α(ξη+ηû+ξ v̂+ûv̂) − e

i
2α(ξη))(η + v̂)

(e− i
2α(ξη+ηû+ξ v̂+ûv̂) − e− i

2α(ξη))(ξ + û)

)
(178)

−
(
Û ◦ τ1 ◦ φ − Û(e

i
2αη, e− i

2αξ)
)

+ Ũ ◦ τ1 ◦ φ. (179)

In what follows, we shall estimate the norms of terms (175)–(179) as well as their
image under L α

2
. We emphasize that if a given term T ∈ (A2β+,r̃ (Oδ))

2 satisfies
‖T ‖Oδ,2β+,r̃ < Dες with ς > 1 and some constant D > 0, then ‖L α

2
(T )‖Oδ,2β+,r̃ <

101
200 Dες < Dες .

• Terms in (175)

In view of (120) in Corollary 6.19, we obtain, for ω ∈ Oδ(r̃ , 2β+),

|(e i
2α + p0,1)(e

− i
2α + q1,0) − 1|ω,2β+

= |e i
2αq1,0 + e− i

2α p0,1 + p0,1q1,0|ω,2β+ <
ε

61
32

50r (7)
. (180)

Since Corollary 6.5 implies that, for any (ξ, η) ∈ Cω,2β+ , ω ∈ Oδ(r̃ , 2β+),

|e i
2α(ξη) + p0,1(ξη)| ≥ |e i

2α(ξη)| − |p0,1|ω,2β+ >
4

5
,

we see that ((e− i
2α +q1,0)− (e

i
2α + p0,1)−1)(ω) is analytic onOδ(r̃ , 2β+), and (180)

implies that

|(e− i
2α + q1,0) − (e

i
2α + p0,1)

−1|ω,2β+ <
ε

61
32

40r (7)
.

Hence, (175)∈ (A2β+,r̃ (Oδ))
2,

∥∥∥∥∥
(

0(
(e− i

2α(ξη) + q1,0) − (e
i
2α(ξη) + p0,1)−1

)
ξ

)∥∥∥∥∥Oδ,2β+,r̃

<
ε

61
32

40
. (181)

• Terms in (176)

According to Lemma 7.5, û, v̂ ∈ AR

β̃,r (7) (Oδ), which implies that

(
e

i
2α(ξη)v̂ − û(e

i
2αη, e− i

2αξ) + pK − p0,1(ξη)η

e− i
2α(ξη)û − v̂(e

i
2αη, e− i

2αξ) + qK − q1,0(ξη)ξ

)
∈ (A2β+,r̃ (Oδ))

2.
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By (146)–(148), we obtain

∥∥∥∥∥
(

e
i
2α(ξη)v̂ − û(e

i
2αη, e− i

2αξ) + pK − p0,1(ξη)η

e− i
2α(ξη)û − v̂(e

i
2αη, e− i

2αξ) + qK − q1,0(ξη)ξ

)∥∥∥∥∥Oδ,2β+,r̃

<
ε

61
32

40
+ 6(K + 1)δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r , (182)∥∥∥∥∥L α
2

(
e

i
2α(ξη)v̂ − û(e

i
2αη, e− i

2αξ) + pK − p0,1(ξη)η

e− i
2α(ξη)û − v̂(e

i
2αη, e− i

2αξ) + qK − q1,0(ξη)ξ

)∥∥∥∥∥Oδ,2β+,r̃

<
ε

61
32

20
.

(183)

• Terms in (177)

In view of (143), we have p − pK , q − qK ∈ A2β+,r̃ (Oδ), with

∥∥∥∥
(

p − pK

q − qK

)∥∥∥∥Oδ,2β+,r̃
<

ε2

5
. (184)

Since r̃ = r+r+
2 and β ≥ ε

1
40s , we have, by Lemma 6.11,

(
p ◦ φ − p
q ◦ φ − q

)
∈ (A2β+,r̃ (Oδ))

2,

satisfying that

∥∥∥∥
(

p ◦ φ − p
q ◦ φ − q

)∥∥∥∥Oδ,2β+,r̃
<

6r

(r − r̃)β
· ε

49
50

20
· ε

10
≤ 3rε

99
50− 1

40s

50(r − r+)
<

ε
61
32

80
. (185)

The last inequality follows from (97).

• Terms in (178)

In view of Lemma 7.5, we see that ηû + ξ v̂ + ûv̂ ∈ A2β+,r̃ (Oδ) and

‖ηû + ξ v̂ + ûv̂‖Oδ,2β+,r̃

<
ε

61
32

16
+ 5(K + 1)δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r + ε
49
25

400

<
ε

61
32

12
+ 5(K + 1)δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r . (186)

By Lemma 6.7, we obtain α(ξη + ηû + ξ v̂ + ûv̂) − α(ξη) ∈ A2β+,r̃ (Oδ), and for
−1 ≤ b ≤ 1, eibα(ξη+ηû+ξ v̂+ûv̂) − eibα(ξη) ∈ A2β+,r̃ (Oδ), with

∥∥α(ξη + ηû + ξ v̂ + ûv̂) − α(ξη)
∥∥Oδ,2β+,r̃
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<
ε

61
32

8
+ 7(K + 1)δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r ,∥∥∥eibα(ξη+ηû+ξ v̂+ûv̂) − eibα(ξη)
∥∥∥Oδ,2β+,r̃

<
ε

61
32

9
+ 7(K + 1)δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r , −1 ≤ b ≤ 1.

Hence, we have

(
(e

i
2α(ξη+ηû+ξ v̂+ûv̂) − e

i
2α(ξη))(η + v̂)

(e− i
2α(ξη+ηû+ξ v̂+ûv̂) − e− i

2α(ξη))(ξ + û)

)
∈ (A2β+,r̃ (Oδ))

2,

satisfying that

∥∥∥∥∥
(

(e
i
2α(ξη+ηû+ξ v̂+ûv̂) − e

i
2α(ξη))(η + v̂)

(e− i
2α(ξη+ηû+ξ v̂+ûv̂) − e− i

2α(ξη))(ξ + û)

)∥∥∥∥∥Oδ,2β+,r̃

<

(
ε

61
32

9
+ 7(K + 1)δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r

)
·
(
1

4
+ ε

49
50

20

)

<
ε

61
32

30
+ 2(K + 1)δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r (187)

In order to obtain the estimate of the image under L α
2
of this term, we shall follow

the scheme of the proof of Lemma 6.14. Developing e
i
2α(·) around ξη,

e
i
2α(ξη+ηû+ξ v̂+ûv̂) − e

i
2α(ξη)

= e
i
2α(ξη)

∑
k≥1

ik

2k · k! (α(ξη + ηû + ξ v̂ + ûv̂) − α(ξη))k

= i

2
e

i
2α(ξη)α′(ξη)(ηû + ξ v̂)

+ i

2
e

i
2α(ξη)α′(ξη)ûv̂ + e

i
2α(ξη)

∑
j≥2

α( j)(ξη)

j ! (ηû + ξ v̂ + ûv̂) j

+ e
i
2α(ξη)

∑
k≥2

ik

2k · k! (α(ξη + ηû + ξ v̂ + ûv̂) − α(ξη))k . (188)

Noting that ‖ûv̂‖Oδ,β̃,r (7) <
ε

49
25

400
, and (186) gives the rough estimates via (144):

‖ηû + ξ v̂ + ûv̂‖Oδ,2β+,r̃ <
ε

49
50

20
, (189)
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∥∥α(ξη + ηû + ξ v̂ + ûv̂) − α(ξη)
∥∥Oδ,2β+,r̃ <

ε
49
50

16
, (190)

∥∥∥eibα(ξη+ηû+ξ v̂+ûv̂) − eibα(ξη)
∥∥∥Oδ,2β+,r̃

<
ε

49
50

15
, −1 ≤ b ≤ 1, (191)

we have, in view of (188),

∥∥∥∥e
i
2α(ξη+ηû+ξ v̂+ûv̂) − e

i
2α(ξη) − i

2
e

i
2α(ξη)α′(ξη)(ηû + ξ v̂)

∥∥∥∥Oδ,2β+,r̃
<

ε
61
32

3
. (192)

Indeed, according to Corollary 6.4, we have, for ω ∈ Oδ(r̃ , 2β+),

|α′(ξη)|ω,2β+ <
6

5
, |α(k)(ξη)|ω,2β+ <

{
2β− 1

32 , 2 ≤ k ≤ s, if s ≥ 2
k!2k+5

βk , k ≥ s + 1
.

As a consequence, (188) implies that, if s ≥ 2, then,

∥∥∥∥e
i
2α(ξη+ηû+ξ v̂+ûv̂) − e

i
2α(ξη) − i

2
e

i
2α(ξη)α′(ξη)(ηû + ξ v̂)

∥∥∥∥Oδ,2β+,r̃

≤ 101

200
· 6
5

· ε
49
25

400
+ 101

100
· 2β− 1

32

s∑
k=2

1

k!

(
ε

49
50

20

)k

+ 101

100

∑
k≥s+1

2k+5

βk

(
ε

49
50

20

)k

+ 101

100

∑
k≥2

1

2k · k!

(
ε

49
50

16

)k

<
ε

61
32

3
.

Otherwise, for s = 1, it is bounded by

101

200
· 6
5

· ε
49
25

400
+ 101

100

∑
k≥2

2k+5

βk

(
ε

49
50

20

)k

+ 101

100

∑
k≥2

1

2k · k!

(
ε

49
50

16

)k

<
ε

61
32

3
.

Similarly,

∥∥∥∥e− i
2α(ξη+ηû+ξ v̂+ûv̂) − e− i

2α(ξη) + i

2
e

i
2α(ξη)α′(ξη)(ηû + ξ v̂)

∥∥∥∥Oδ,2β+,r̃
<

ε
61
32

3
.

(193)

Noting that L α
2

(
− i

2e
i
2α(ξη)α′(ξη)(ηû + ξ v̂)η

i
2e− i

2α(ξη)α′(ξη)(ηû + ξ v̂)ξ

)
= 0, we have

L α
2

⎛
⎝

(
e

i
2 α(ξη+ηû+ξ v̂+ûv̂) − e

i
2 α(ξη)

)
(η + v̂)(

e− i
2 α(ξη+ηû+ξ v̂+ûv̂) − e− i

2 α(ξη)
)

(ξ + û)

⎞
⎠
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= L α
2

⎛
⎝

(
e

i
2 α(ξη+ηû+ξ v̂+ûv̂) − e

i
2 α(ξη)

)
(η + v̂) − i

2 e
i
2 α(ξη)α′(ξη)(ηû + ξ v̂)η(

e− i
2 α(ξη+ηû+ξ v̂+ûv̂) − e− i

2 α(ξη)
)

(ξ + û) + i
2 e− i

2 α(ξη)α′(ξη)(ηû + ξ v̂)ξ

⎞
⎠ .

Hence, by (192), (193) and Lemma 6.7, we have

∥∥∥∥∥∥L α
2

⎛
⎝

(
e

i
2α(ξη+ηû+ξ v̂+ûv̂) − e

i
2α(ξη)

)
(η + v̂)(

e− i
2α(ξη+ηû+ξ v̂+ûv̂) − e− i

2α(ξη)
)

(ξ + û)

⎞
⎠

∥∥∥∥∥∥Oδ,2β+,r̃

<
2r̃

3
ε

61
32 + ε

49
25

150
<

ε
61
32

5
. (194)

• Terms in (179)

Since ‖Û‖Oδ,8β+,r (7) <
ε

49
50

10
, and according to Lemma 3.8, Ũ = �−1 − Id + U

satisfies

‖Ũ‖Oδ,4β+,r (6) ≤
r (7)‖Û‖2Oδ,8β+,r (7)

(r (7) − r (6))β+
≤ ε

61
32

8
.

Then, by Lemma 6.9, we have that

‖Û(e
i
2α(ξη)η, e− i

2α(ξη)ξ)‖Oδ,4β+,r (6) <
ε

49
50

10
,

‖Ũ(e
i
2α(ξη)η, e− i

2α(ξη)ξ)‖Oδ,2β+,r (5) <
ε

61
32

8
.

By Lemma 6.11, we have

‖p(ξ + û, η + v̂)‖Oδ,8β+,r (7) , ‖q(ξ + û, η + v̂)‖Oδ,8β+,r (7)

<
ε

10
+ 3r

(r − r (7))β
· ε1+ 49

50

200
<

ε

8
,

which, together with (191), implies that

∥∥∥∥∥
(

(e
i
2α(ξη+ηû+ξ v̂+ûv̂) − e

i
2α(ξη))η + p(ξ + û, η + v̂)

(e− i
2α(ξη+ηû+ξ v̂+ûv̂) − e− i

2α(ξη))ξ + q(ξ + û, η + v̂)

)∥∥∥∥∥Oδ,2β+,r̃

<
2r (7)ε

49
50

15
+ ε

4
<

ε
49
50

20
.

Therefore, by Lemma 6.11, we obtain

‖Û ◦ τ1 ◦ φ − Û(e
i
2α(ξη)η, e− i

2α(ξη)ξ)‖Oδ,2β+,r̃
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<
6r (7)

8(r (7) − r̃)β+
· ε

49
50

10
· ε

49
50

20
<

ε
61
32

200
. (195)

In a similar way, we have,

‖Ũ ◦ τ (1) ◦ φ‖Oδ,2β+,r̃

≤ ‖Ũ(e
i
2α(ξη)η, e− i

2α(ξη)ξ)‖ω,4β+,r (5)

+‖Ũ ◦ τ (1) ◦ φ − Ũ(e
i
2α(ξη)η, e− i

2α(ξη)ξ)‖ω,2β+,r̃

<
ε

61
32

8
+ 6r (6)

4(r (6) − r̃)β+
· ε

49
50

20
· ε

61
32

8
<

ε
61
32

6
. (196)

With (175)–(179) estimated as above, we have (173) by combining (181), (182),
(184), (185), (187), (195), (196), and get (174) by combining (181), (183), (184),
(185), (194), (195), (196). Hence Lemma 7.7 is shown. ��
Proof of Theorem 4.7. By Lemma 7.7, we see that τ̃1 = φ−1 ◦ τ1 ◦φ can be written as

τ̃1 =
(

(e
i
2α(ξη) + p0,1)η

(e
i
2α(ξη) + p0,1)−1ξ

)
+

(
p̃(ξ, η)

q̃(ξ, η)

)

with p̃, q̃ ∈ A2β+,r̃ (Oδ) satisfying that

∥∥∥∥
(

p̃
q̃

)∥∥∥∥Oδ,2β+,r̃
<

ε
61
32

3
+ 22(K + 1)δ−1‖e

i
2αηq + e− i

2αξ p‖O,β,r , (197)

∥∥∥∥L α
2

(
p̃
q̃

)∥∥∥∥Oδ,2β+,r̃
<

ε
61
32

2
. (198)

Since ‖p‖O,β,r , ‖q‖O,β,r < ε
10 , (197) implies a rough estimate for p̃ and q̃:

‖ p̃‖Oδ,2β+,r̃ , ‖q̃‖Oδ,2β+,r̃ <
ε

61
32

3
+ ε

31
32

20
<

ε
31
32

16
. (199)

As in Sect. 7.1, with the well-defined fourth root

�(ξη) :=
(
(e

i
2α(ξη) + p0,1(ξη))(e− i

2α(ξη) + p̄0,1(ξη))
) 1

4
,

we define
ϕ : (ξ, η) �→

(
�(ξη)ξ,�−1(ξη)η

)
. (200)

Since |p0,1|ω,β+ < ε, we can apply Proposition 7.2 with r = r̃ , r ′ = r+, and get

(ϕ−1 ◦ τ̃1 ◦ ϕ)(ξ, η) =
(

e
i
2α+(ξη)η + p+(ξ, η)

e− i
2α+(ξη)ξ + q+(ξ, η)

)
,
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with α+ ∈ AR

2β+,r̃ (Oδ) satisfying

α+(ξη) − α(ξη) = −i(e− i
2α(ξη) p0,1(ξη) − e

i
2α(ξη) p̄0,1(ξη)).

By Lemma 6.13, we obtain (64).

With ψ := φ ◦ϕ, which satisfies ψ ◦ρ = ρ ◦ψ , let U =
(

u
v

)
:= ψ − Id. In view

of the definitions of φ = Id + Û in Lemma 7.5 and ϕ given in (200), we have that

(ψ − Id)(ξ, η) =
(

(� − 1)ξ
(�−1 − 1)η

)
+

(
û(�ξ,�−1η)

v̂(�ξ,�−1η)

)
.

Since ‖û‖Oδ,β̃,r (7) , ‖v̂‖Oδ,β̃,r (7) <
ε

49
50

20
, by Lemma 7.4, we have

‖û(�ξ,�−1η)‖Oδ,β+,r+ , ‖v̂(�ξ,�−1η)‖Oδ,β+,r+ <
ε

49
50

20
, (201)

Moreover, by Lemma 7.1, we obtain that

‖� − 1‖Oδ,2β+,r̃ , ‖�−1 − 1‖Oδ,2β+,r̃ <
3

4
‖p0,1‖Oδ,β,r <

3ε

40r
. (202)

Combining (201) and (202), we obtain ‖u‖Oδ,β+,r+ , ‖v‖Oδ,β+,r+ < ε
49
50

2 .
It remains to prove (65) and (66). By (131), (132) in Proposition 7.2, we obtain that

p+, q+ ∈ Aβ+,r+(Oδ), and

‖p+‖Oδ ,β+,r+ <

(
1 + 3

4
‖p0,1‖O,β,r

)
‖ p̃‖Oδ ,2β+,r̃ + ‖p0,1‖2O,2β,r ,

<

(
1 + 3ε

40r

)(
ε

61
32

3
+ 22(K + 1)δ−1‖e

i
2 αηq + e− i

2 αξ p‖O,β̃,r (7)

)
+ ε2

<
ε

61
32

2
+ 24(K + 1)δ−1‖e

i
2 αηq + e− i

2 αξ p‖O,β̃,r (7) ,

‖q+‖ω,β+,r+ <
ε

61
32

2
+ 24(K + 1)δ−1‖e

i
2 αηq + e− i

2 αξ p‖O,β̃,r (7) .

Moreover, by (133) in Proposition 7.2 and (198), (199), we have

‖e− i
2 α+ξ p+ + e− i

2 α+ηq+‖Oδ ,β+,r+

< ‖e− i
2 αξ p̃ + e

i
2 αηq̃‖Oδ ,2β+,r̃ + ‖p0,1‖O,β,r (‖ p̃‖Oδ ,2β+,r̃ + ‖q̃‖Oδ ,2β+,r̃ ) + ‖p0,1‖2O,β,r

<
ε

61
32

2
+ ε

10r
· ε

31
32

8
+ ε2

100r2
< ε

61
32 .
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It remains to show that

ψ(ξ, η) ∈ Cr
ω,β for (ξ, η) ∈ Cr+

ω,β+ , ω ∈ Oδ(r+, β+). (203)

Recalling the definition of the set given in (15), we have

Cr+
ω,β+ :=

{
(ξ, η) ∈ C

2 : |ξη − ω| < β+, |ξ |, |η| < r+
}

.

Since ‖u‖Oδ,β+,r+ , ‖v‖Oδ,β+,r+ <
ε

49
50

2
, we have that

|(ξ + u(ξ, η))(η + v(ξ, η)) − ω| < β+ + ‖ηu + ξv + uv‖ω,β+,r+

< β+ + ε
49
50 + ε

49
25 < β,

|ξ + u(ξ, η)|, |η + v(ξ, η)| < r+ + ε
49
50 < r .

(203) is shown. ��
Acknowledgements The authors thank X. Gong for his interest, stimulating discussions that help them to
substantially improve the exposition of the main results. The authors would also like to thank L. Lempert
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Appendix A: Proof of Lemma 6.11

Let ς := max{‖ f1 − f2‖O,β ′′,r ′′ , ‖g1 − g2‖O,β ′′,r ′′ }, which is, by (98), smaller than
β ′2
16 . Let ω ∈ O(r ′′, β ′′). In order to estimate its norm, let us first decompose the
following expression:

h(eibα(ξη)ξ + f1, e−ibα(ξη)η + g1) − h(eibα(ξη)ξ + f2, e−ibα(ξη)η + g2)

=
∑
l≥0

(
hl,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

−hl,0(ξη + e−ibαη f2 + eibαξg2 + f2g2)
)

(204)

·
(

eibαξ + f2
)l

+
∑
l≥1

hl,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)
(
(eibαξ + f1)

l − (eibαξ + f2)
l
)

(205)

+ similar expressions involving h0, j instead of hl,0. (206)

• Terms in (204)
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Expanding hl,0 around ξη + e−ibαη f2 + eibαξg2 + f2g2 in (204), we obtain:

hl,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

−hl,0(ξη + e−ibαη f2 + eibαξg2 + f2g2)

=
∑
k≥1

1

k!h(k)
l,0 (ξη + e−ibαη f2 + eibαξg2 + f2g2)

·
(
(e−ibαη f1 + eibαξg1 + f1g1) − (e−ibαη f2 + eibαξg2 + f2g2)

)k
.

(207)

Combining Corollary 6.5 together with Remark 6.6 and (98), we obtain, for (ξ, η) ∈
Cr ′′

ω,β ′′ and m = 1, 2:

|ξη + e−ibαη fm + eibαξgm + fm gm − ω|
≤ |ξη − ω| + |e−ibαη fm + eibαξgm + fm gm |
< β ′′ + 2e

9
8 β̃r ′′ · β ′2

16
+ β ′4

256

<
β ′

2
+ 101

200
· β ′

16
+ β ′

256
< β ′.

By Cauchy’s inequality, we have, for all (ξ, η) ∈ Cω,β ′′ and k̃ ≥ 1,

1

k̃!
∣∣∣h(k̃)

l,0 (ξη)

∣∣∣ ≤ sup
|z−ξη|= β′

2

|hl,0(z)|
(
2

β ′

)k̃

≤
(
2

β ′

)k̃

|hl,0|ω,β ′ . (208)

We recall that, for |z| < 1,

∑
k̃≥k

Ck
k̃

zk̃−k = 1

k!
∑
k̃≥0

dk

dzk

(
zk̃

)
= 1

k!
dk

dzk

(
1

1 − z

)
= (1 − z)−(k+1).

Hence, developing h(k)
l,0 around ξη, we have, for k ≥ 1,

1

k!
∥∥∥h(k)

l,0 (ξη + e−ibαη f2 + eibαξg2 + f2g2)
∥∥∥

ω,β ′′,r ′′

≤
∑
k̃≥k

∣∣∣h(k̃)
l,0

∣∣∣
ω,β ′′

k!(k̃ − k)! ‖e−ibαη f2 + eibαξg2 + f2g2‖k̃−k
ω,β ′′,r ′′

=
∑
k̃≥k

k̃!
(k̃ − k)! · k! ·

∣∣∣h(k̃)
l,0

∣∣∣
ω,β ′′

k̃! ‖e−ibαη f2 + eibαξg2 + f2g2‖k̃−k
ω,β ′′,r ′′
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≤ |hl,0|ω,β ′
∑
k̃≥k

Ck
k̃

(
2

β ′

)k̃ (
β ′2

16

)k̃−k

=
(
2

β ′

)k

|hl,0|ω,β ′
∑
k̃≥k

Ck
k̃

(
β ′

8

)k̃−k

=
(
2

β ′

)k

|hl,0|ω,β ′
(
1 − β ′

8

)−(k+1)

. (209)

Recalling that |ω| < r ′′2 − β ′′, by Lemma 3.3, we have, for −1 ≤ b ≤ 1,

∥∥∥(e−ibαη f1 + eibαξg1 + f1g1) − (e−ibαη f2 + eibαξg2 + f2g2)
∥∥∥

ω,β ′′,r ′′

≤
∥∥∥e−ibαη( f1 − f2)

∥∥∥
ω,β ′′,r ′′ +

∥∥∥eibαξ(g1 − g2)
∥∥∥

ω,β ′′,r ′′

+ ‖( f1 − f2)g1 − f2(g1 − g2)‖ω,β ′′,r ′′

< e
9
8 β̃r ′′ (‖ f1 − f2‖ω,β ′′,r ′′ + ‖g1 − g2‖ω,β ′′,r ′′

)
+ ‖ f1 − f2‖ω,β ′′,r ′′ ‖g1‖ω,β ′′,r ′′ + ‖ f2‖ω,β ′′,r ′′ ‖g1 − g2‖ω,β ′′,r ′′

<
101

50
r ′′ς + β ′2

8
ς <

13

25
ς. (210)

Since ς
β ′ <

β ′
8 and according to (85), we have 1 − β ′

8 > 99
100 and 1 −

26ς
25β ′

(
1 − β ′

8

)−1
> 99

100 , so that 26
25

(
1 − β ′

8

)−2
(
1 − 26ς

25β ′
(
1 − β ′

8

)−1
)−1

< 27
25 .

Combining (209) and (210), together with (19), we obtain

∥∥∥hl,0(ξη + e−ibαη f1 + eibαξg1 + f1g1) − hl,0(ξη + e−ibαη f2 + eibαξg2 + f2g2)
∥∥∥

ω,β ′′,r ′′

≤
∑
k≥1

1

k! ‖h(k)
l,0 (ξη + e−ibαη f2 + eibαξg2 + f2g2)‖ω,β ′′,r ′′

·
∥∥∥(e−ibαη f1 + eibαξg1 + f1g1) − (e−ibαη f2 + eibαξg2 + f2g2)

∥∥∥k

ω,β ′′,r ′′

< ‖h‖ω,β ′,r ′r ′−l ·
∑
k≥1

(
26ς

25β ′

)k (
1 − β ′

8

)−(k+1)

= ‖h‖ω,β ′,r ′r ′−l 26ς

25β ′

(
1 − β ′

8

)−2
(
1 − 26ς

25β ′

(
1 − β ′

8

)−1
)−1

<
27ς

25β ′ ‖h‖O,β ′,r ′r ′−l . (211)

Hence, according to Lemma 3.3, for l ≥ 0,

∥∥∥(hl,0(ξη + e−ibαη f1+eibαξg1+ f1g1) − hl,0(ξη + e−ibαη f2 + eibαξg2 + f2g2)
)
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· (eibαξ + f2)
l
∥∥∥

ω,β ′′,r ′′

<
27ς

25β ′ ‖h‖ω,β ′,r ′r ′−l
(

e
9
8 β̃r ′′ + β ′2

16

)l

.

On the other hand, (95) implies 2r ′′β̃ < r ′−r ′′
8 . Indeed, since 0 < r ′′ < r ′ < 1

4 and

0 < β < 1, then 8β
1
2 < (r ′ − r ′′)r ′′ implies

2r ′′β̃ = 2r ′′ · 16β 5
4 < 8β

5
4 < 8β < 8β

1
2 · (r ′ − r ′′)r ′′

8
<

r ′ − r ′′

8
. (212)

Therefore, according to (86), we have

r ′ − e
9
8 β̃r ′′ − β ′2

16
> r ′ − r ′′ − 2β̃r ′′ > r ′ − r ′′ − r ′ − r ′′

8
= 7

8
(r ′ − r ′′).

As a consequence, we have

∑
k≥0

r ′−k
(

e
9
8 β̃r ′′ + β ′2

16

)k

= r ′

r ′ − e
9
8 β̃r ′′ − β ′2

16

<
8r ′

7(r ′ − r ′′)
.

Thus, under (95), the ‖ · ‖O,β ′′,r ′′ -norm of (204) is bounded by

27ς

25β ′ ‖h‖O,β ′,r ′
∑
l≥0

r ′−l
(

e
9
8 β̃r ′′ + β ′2

16

)l

<
27

25
· 8r ′

7(r ′ − r ′′)
ς

β ′ ‖h‖O,β ′,r ′

<
5r ′

4(r ′ − r ′′)
ς

β ′ ‖h‖O,β ′,r ′ . (213)

To show (204)∈ Aβ ′′,r ′′ (O) provided that f1, f2, g1, g2 ∈ Aβ ′′,r ′′ (O), it remains
to verify the analyticity on O(r ′′, β ′′) for the coefficients (204)l, j , l, j ≥ 0, l j = 0.
According to (207), (209) and (210), for l̃ ≥ 0,

hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1) − hl̃,0(ξη + e−ibαη f2

+eibαξg2 + f2g2) ∈ Aβ ′′,r ′′ (O) ,

and, by (23) and (211), for l̃ ≥ 0, for l, j ≥ 0 with l j = 0,

∣∣∣(hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

− hl̃,0(ξη + e−ibαη f2 + eibαξg2 + f2g2)
)

l, j

∣∣∣∣O(r ′′,β ′′)
≤ 27ς

25β ′
‖h‖O,β ′,r ′

r ′l̃ r ′′l+ j
.
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Note that, for l ≥ 0,

(204)l,0 =
∑
l̃≥0

∑
0≤k≤l

(
(eibαξ + f2)

l̃
)

k,0

·
(

hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

−hl̃,0(ξη + e−ibαη f2 + eibαξg2 + f2g2)
)

l−k,0

+
∑
l̃≥0

∑
k≥1

(
(eibαξ + f2)

l̃
)

l+k,0
(ξη)k

·
(

hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

−hl̃,0(ξη + e−ibαη f2 + eibαξg2 + f2g2)
)
0,k

,

and for j ≥ 1,

(204)0, j =
∑
l̃≥0

∑
0≤k≤ j

(
(eibαξ + f2)

l̃
)
0,k

·
(

hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

−hl̃,0(ξη + e−ibαη f2 + eibαξg2 + f2g2)
)
0, j−k

+
∑
l̃≥0

∑
k≥1

(
(eibαξ + f2)

l̃
)
0, j+k

(ξη)k

·
(

hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

−hl̃,0(ξη + e−ibαη f2 + eibαξg2 + f2g2)
)

k,0
,

where, by Lemma 6.5 and by (23), for l, j ≥ 0 with l j = 0,

∣∣∣∣
(
(eibαξ + f2)

l̃
)

l, j

∣∣∣∣O(r ′′,β ′′)
≤

(
e
9
8 β̃r ′′ + β ′2

16

)l̃

r ′′−(l+ j).

Then we see that, for ω ∈ O(r ′′, β ′′),

∑
l̃≥0

∑
0≤k≤l

∣∣∣∣
(
(eibαξ + f2)

l̃
)

k,0
(ω)

·
(

hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

−hl̃,0(ξη + e−ibαη f2 + eibαξg2 + f2g2)
)

l−k,0
(ω)

∣∣∣∣
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≤ 27(l + 1)ς‖h‖O,β ′,r ′

25β ′r ′′l
∑
l̃≥0

(
e
9
8 β̃ r ′′

r ′ + β ′2

16r ′

)l̃

,

∑
l̃≥0

∑
k≥1

∣∣∣∣
(
(eibαξ + f2)

l̃
)

l+k,0
(ω) · ωk

·
(

hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

−hl̃,0(ξη + e−ibαη f2 + eibαξg2 + f2g2)
)
0,k

(ω)

∣∣∣∣
≤

∑
l̃≥0

∑
k≥1

(
e
9
8 β̃r ′′ + β ′2

16

)l̃

r ′′−(l+k)(r ′′2 − β ′′)k · 27ς

25β ′
‖h‖O,β ′,r ′

r ′l̃ r ′′k

≤ 27ς‖h‖O,β ′,r ′

25β ′r ′′l
∑
k≥1

(
1 − β ′′

r ′′2

)k ∑
l̃≥0

(
e
9
8 β̃ r ′′

r ′ + β ′2

16r ′

)l̃

,

which implies the analyticity of (204)l,0 under (95), and it is similar for that of (204)0, j .
Hence, (204)∈ Aβ ′′,r ′′ (O).

• Terms in (205)

Note that (19) and (208) imply that, for ω ∈ O(r ′′, β ′′), for l ≥ 0,

‖hl,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)‖ω,β ′′,r ′′

≤
∑
k≥0

|h(k)
l,0 |ω,β ′′

k! ‖e−ibαη f1 + eibαξg1 + f1g1‖k
ω,β ′′,r ′′

≤ |hl,0|ω,β ′
∑
k≥0

(
2

β ′

)k (
2e

9
8 β̃r ′′ β ′2

8
+ β ′4

256

)k

≤ 101

100

‖h‖O,β ′,r ′

r ′l . (214)

In (205), we have, for l ≥ 1,

‖(eibαξ + f1)
l − (eibαξ + f2)

l‖ω,β ′′,r ′′ ≤
l∑

k=1

Ck
l ‖eibαξ + f1‖l−k

ω,β ′′,r ′′ ‖ f2 − f1‖k
ω,β ′′,r ′′

<

l∑
k=1

Ck
l

(
e

9
8 β̃r ′′ + β ′2

16

)l−k

ςk

=
(

e
9
8 β̃r ′′ + β ′2

16
+ ς

)l

−
(

e
9
8 β̃r ′′ + β ′2

16

)l

≤ l
(

e
9
8 β̃r ′′ + β ′2 + ς

)l−1
ς. (215)
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Furthermore, by (95), we have β
5
4 < β

1
2 < r ′−r ′′

32 . Recalling that ς <
β ′2
8 ≤ (16β

5
4 )2

8
and using (212), we have

1− e
9
8 β̃r ′′ + β ′2 + ς

r ′ > 1− (1 + 2β̃)r ′′

r ′ >
r ′ − r ′′

r ′ − r ′ − r ′′

8r ′ = 7(r ′ − r ′′)
8r ′ . (216)

Therefore, the ‖ · ‖O,β ′′,r ′′ -norm of (205) is bounded by

∑
l≥1

‖hl,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)‖ω,β ′′,r ′′

· ‖(eibαξ + f1)
l − (eibαξ + f2)

l‖O,β ′′,r ′′

<
101ς

100r ′ ‖h‖O,β ′,r ′
∑
l≥1

l

(
e
9
8 β̃r ′′ + β ′2 + ς

r ′

)l−1

= 101ς

100r ′ ‖h‖O,β ′,r ′

(
1 − e

9
8 β̃r ′′ + β ′2 + ς

r ′

)−2

<
101ς

100r ′ ‖h‖O,β ′,r ′ · 82r ′2

72(r ′ − r ′′)2
<

7r ′ς‖h‖O,β ′,r ′

5(r ′ − r ′′)2
. (217)

For l ≥ 0, we have that (205)l,0 equals to

∑
l̃≥1

∑
0≤k≤l

(
hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

)
l−k,0

×
(
(eibαξ + f1)

l̃ − (eibαξ + f2)
l̃
)

k,0

+
∑
l̃≥1

∑
k≥1

(
hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

)
l+k,0

×
(
(eibαξ + f1)

l̃ − (eibαξ + f2)
l̃
)
0,k

(ξη)k

+
∑
l̃≥1

∑
k≥1

(
hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

)
0,k

×
(
(eibαξ + f1)

l̃ − (eibαξ + f2)
l̃
)

l+k,0
(ξη)k,

and for j ≥ 1, (205)0, j equals to

∑
l̃≥1

∑
0≤k≤ j

(
hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

)
0, j−k

×
(
(eibαξ + f1)

l̃ − (eibαξ + f2)
l̃
)
0,k
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+
∑
l̃≥1

∑
k≥1

(
hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

)
0, j+k

×
(
(eibαξ + f1)

l̃ − (eibαξ + f2)
l̃
)

k,0
(ξη)k

+
∑
l̃≥1

∑
k≥1

(
hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

)
k,0

×
(
(eibαξ + f1)

l̃ − (eibαξ + f2)
l̃
)
0, j+k

(ξη)k .

If f1, f2, g1, g2 ∈ Aβ ′′,r ′′ (O), then by (214)–(216) and (19), we see the analyticity of
(205)l,0, since for ω ∈ O(r ′′, β ′′),

∣∣∣∣∣∣
∑
l̃≥1

∑
0≤k≤l

(
hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

)
l−k,0

(ω)

×
(
(eibαξ + f1)

l̃ − (eibαξ + f2)
l̃
)

k,0
(ω)

∣∣∣∣
≤

∑
l̃≥1

∑
0≤k≤l

101

100

‖h‖O,β ′,r ′

r ′l̃ r ′′l−k
· l̃(e

9
8 β̃r ′′ + β ′2 + ς)l̃−1ς

r ′′k

= 101

100

(l + 1)‖h‖O,β ′,r ′ς

r ′r ′′l
∑
l̃≥1

l̃

(
e
9
8 β̃r ′′ + β ′2 + ς

r ′

)l̃−1

,

∣∣∣∣∣∣
∑
l̃≥1

∑
k≥1

(
hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

)
l+k,0

(ω)

×
(
(eibαξ + f1)

l̃ − (eibαξ + f2)
l̃
)
0,k

(ω) · ωk
∣∣∣∣

≤
∑
l̃≥1

∑
k≥1

101

100

‖h‖O,β ′,r ′

r ′l̃ r ′′l+k
· l̃(e

9
8 β̃r ′′ + β ′2 + ς)l̃−1ς

r ′′k · (r ′′2 − β ′′)k

= 101

100

‖h‖O,β ′,r ′ς

r ′r ′′l
∑
l̃≥1

l̃

(
e
9
8 β̃r ′′ + β ′2 + ς

r ′

)l̃−1 ∑
k≥1

(r ′′2 − β ′′)k

r ′′2k
,

∣∣∣∣∣∣
∑
l̃≥1

∑
k≥1

(
hl̃,0(ξη + e−ibαη f1 + eibαξg1 + f1g1)

)
0,k

(ω)

×
(
(eibαξ + f1)

l̃ − (eibαξ + f2)
l̃
)

l+k,0
(ω) · ωk

∣∣∣∣
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≤
∑
l̃≥1

∑
k≥1

101

100

‖h‖O,β ′,r ′

r ′l̃ r ′′k · l̃(e
9
8 β̃r ′′ + β ′2 + ς)l̃−1ς

r ′′l+k
· (r ′′2 − β ′′)k

= 101

100

‖h‖O,β ′,r ′ς

r ′r ′′l
∑
l̃≥1

l̃

(
e
9
8 β̃r ′′ + β ′2 + ς

r ′

)l̃−1 ∑
k≥1

(r ′′2 − β ′′)k

r ′′2k
.

The proof for (205)0, j is similar, hence (205)∈ Aβ ′′,r ′′ (O).
Combining (213), (217) and similar estimates obtained for expressions (206), we

obtain

‖h(eibαξ + f1, e−ibαη + g1) − h(eibαξ + f2, e−ibαη + g2)‖O,β ′′,r ′′

<
1

r ′ − r ′′

(
14r ′

5(r ′ − r ′′)
+ 5r ′

2β ′

)
ς‖h‖O,β ′,r ′ <

3r ′

(r ′ − r ′′)β ′ ς‖h‖O,β ′,r ′ ,

since (95) implies that β ′ ≤ β̃ < r ′−r ′′
64 . This finishes the proof of Lemma 6.11. ��
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