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Abstract

This article is concerned with the geometry of germs of real analytic surfaces in
(C?, 0) having an isolated Cauchy—Riemann (CR) singularity at the origin. These are
perturbations of Bishop quadrics. There are two kinds of CR singularities stable under
perturbation: elliptic and hyperbolic. Elliptic case was studied by Moser—Webster
(Acta Math 150(3—4), 255-296, 1983) who showed that such a surface is locally,
near the CR singularity, holomorphically equivalent to normal form from which lots
of geometric features can be read off. In this article we focus on perturbations of
hyperbolic quadrics. As was shown by Moser and Webster (1983), such a surface can be
transformed to a formal normal form by a formal change of coordinates that may not be
holomorphic in any neighborhood of the origin. Given a non-degenerate real analytic
surface M in (C?, 0) having a hyperbolic CR singularity at the origin, we prove the
existence of a non-constant Whitney smooth family of connected holomorphic curves
intersecting M along holomorphic hyperbolas. This is the very first result concerning
hyperbolic CR singularity not equivalent to quadrics. This is a consequence of a non-
standard KAM-like theorem for pair of germs of holomorphic involutions {r7, 72}
at the origin, a common fixed point. We show that such a pair has large amount of
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invariant analytic sets biholomorphic to {z1z2 = const} (which is not a torus) in a
neighborhood of the origin, and that they are conjugate to restrictions of linear maps
on such invariant sets.

Mathematics Subject Classification 32V40 - 37F50 - 37J40 - 51M15 - 70H08

1 Introduction

In this article, we are concerned with the local holomorphic invariants of a real analytic
submanifold M in C". If the tangent space of M at a point pp contains a maximal
complex subspace, the dimension d of which does not depend on pg, then we say
that M is a Cauchy—Riemann (CR) submanifold. Since the work of Cartan [11] in the
1930s, lots of studies were devoted to this geometry (see for instance [4, 12, 35, 36]).
As “baby” example, one can consider an open neighborhood U of a point pg in R” in
C". The local hull of holomorphy of U is the largest open set in C" containing U and
over which all holomorphic functions defined on U can be holomorphically extended
to. It can be shown that, in that case, the hull of holomorphy of U is nothing but U.
This situation is quite different when considering a neighborhood of a CR singularity,
that is a point pg in the real submanifold M in C" such that the maximal complex
tangent spaces do not have a constant dimension in any neighborhood of pg. A real
submanifold with a CR singularity must have codimension at least 2.

The study of real submanifolds with CR singularities was initiated by Bishop [6] in
his pioneering work, and followed by Moser—Webster [40]. They considered higher-
order analytic perturbations of the elementary models called Bishop quadrics Q,, C
(Cz, depending on the Bishop invariant 0 < y < oc:

e for0<y <o00,Q,:20= 0,1, 21) = zl> +y@ +7),
o fory =00, Qno: 22 = 23 + 77.

When y # %, such a surface has an isolated CR singularity at the origin as it is totally
real (i.e., d = 0) everywhere but at the origin at which the tangent space is the com-
plex line {zo = 0} (i.e.,d = 1). When 0 < y < %, one says that this singularity is
elliptic. In their seminal work, Moser—Webster [40] considered higher-order analytic
perturbations of elliptic quadrics Q,,. They proved that such a submanifold is holo-
morphically equivalent to a normal form, 7o = |z; |2 +(y+e Re(zZ)S)(z% + Z%), for
somee € {—1,0, 1}ands € N*U{oo}. Lots of geometric features can be read off from
such a normal form. They also considered n-dimensional submanifolds in C" which
have a complex tangent at the origin of minimal (positive) dimension. This has been
recently extended to CR singularity with maximal complex tangent by Gong and the
first author [23, 24]. When y = 0 (degenerate elliptic case), Moser [39] constructed a
formal power series normal form. Although it is still not known whether such a normal
form can be obtained through a convergent transformation, Huang-Yin [28] did the
achievement of obtaining the holomorphic classification of analytic perturbations of
Qp. Relatively recently, related problems such as flattening [29-31] or quadric rigid-
ity [27] have been successfully considered by Huang and co-authors. Some results on
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CR singularities of k-dimensional submanifolds in C", k # n have been obtained by
Coffman [14, 15].

In the so-called hyperbolic case, i.e., higher-order analytic perturbation of Q,
with y > %, not much is known. Moser—Webster [40] showed that some analytic
perturbations of Q,, may not be holomorphically equivalent to a normal form as
in the elliptic case. Forstneri¢—Stout [19] proved that such a perturbation is always
polynomially convex near such a hyperbolic CR singularity. Gong [20] showed that
if the higher-order analytic perturbation of Q, is formally equivalent to Q, (i.e.,
by the mean of formal power series transformation) and if a Diophantine condition
associated to y is satisfied, then the perturbation is actually holomorphically equivalent
to the quadric. He also proved the existence of higher-order analytic perturbations of
a hyperbolic quadric which are formally equivalent to the hyperbolic quadric but not
holomorphically equivalent to it [22]. On the other hand, Klingenberg [33] showed that
under a similar Diophantine condition, for a given higher-order analytic perturbation
M of the quadric, there always exists a holomorphic curve that intersects M along two
transverse totally real curves. Both results have been extended in higher dimension in
the case of maximal complex tangent [23].

In both elliptic and hyperbolic cases, the CR singularity is stable under perturbation
and is not removable.

The aim of this work is to prove that non-degenerate analytic perturbations of
hyperbolic quadrics, i.e., perturbations which are not formally equivalent to quadrics,
contain a large number of analytic hyperbolas. By this, we mean that there exists a
compactset  C R of positive measure such that forall w € K, there exists a connected
holomorphic curve S, that intersects the non-degenerate analytic perturbation M
along two distinguished real analytic curves that are simultaneously holomorphically
mapped to the two branches of the real hyperbola {£ = w} (in a neighborhood
of the origin). We remark that it is elementary that a real analytic curve in the real
analytic surface is contained in a holomorphic curve. Having a connected holomorphic
curve that intersects M in two distinct real analytic curves is, however, one of main
conclusions of this paper.

To do so, we shall develop a new KAM theory (named after Kolmogorov—Arnold—
Moser [1, 34, 38]) for a pair of (germs of) holomorphic involutions in a neighborhood
of a fixed point (say 0) in C?, which is swapped by conjugacy with some anti-
holomorphic involution. Initially, KAM theory was conceived as an answer to the
fundamental problem arising in Dynamical Systems and in particular in Celestial
Mechanics [13, 18]. It can be formulated as follows: Given a completely integrable
Hamiltonian dynamical system written in action-angle coordinates (6, I) € T" x R"
of the form § = w(I), I = 0, where w denotes an analytic function. For each Iy, the
manifold T" x {Iy} is invariant and the motion on it is a constant rotation of angle
w(lp). In the nature, these systems are rather rare but one encounters small pertur-
bations of them under the form (%) § = w(I) + € f(1,0), I = eg(l,0) with f, g
analytic functions and € a small number. Essentially, KAM theorem states that if the
system is non-degenerate in some sense then there exists a large (in measure) compact
set /C such that for all I € I, the system () has an invariant manifold which is dif-
feomorphic to a torus the dynamical system on which is conjugated to the rotation of
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angle (/) on that torus. In some sense, a lot of the invariant tori T" x {I} “survive”
under a small non-degenerate perturbation.

As mentioned earlier, to obtain a connected holomorphic curve intersecting the real
surface is a main result. In our context, we shall go one step further by proving, for
a sufficiently small R > 0, the existence of a compact set Ox(R) C] — R%, R?[ of
positive measure such that for each w € Oy (R), there exists an invariant connected
complex submanifold S, in Ax(0, R?) := {(£,7) € C? : |£|,|n] < R2}, which
is the image of the connected holomorphic manifold Calf ={(E,n) e C?:&n =
w, €], |n] < R} by abiholomorphism W, : Calf — &,,. The inverse of the latter, \Il(;l,
conjugates the restrictions of nonlinear involutions to S., to the restrictions to CR of
linear ones. We emphasize that Ca’f N A2(0, a+/|w]) contains the graph ¢ +— (¢, %’)

over the annulus @ < |¢] < #/]w|a. This KAM-like result is non-standard as one
does not expect to obtain invariant tori asin [5, 7, 17, 42] but different kind of invariant
manifolds of the form {z1z> = w} (in a neighborhood of the origin; when @ # 0).
The role played by the rotation is played by linear involutions. In a similar spirit, but
in a different context, a KAM-like theory was obtained by the first author for germs
of holomorphic vector fields at a fixed point [48]. We emphasize that the KAM-like
statement in this paper is different from an apparently similar real problem for which
one obtains a lot of invariant tori. The main achievements in this direction are due to
Sevryuk [43, 45, 46] near an elliptic fixed point. The non-standard hyperbola character
of our KAM-like result near an elliptic fixed point of reversible holomorphic mappings
unveils new unexpected difficulties.

Hard implicit function theorem, Nash—Moser theorem, Newton Scheme or KAM
process are various names in the literature that stand for “rapid iteration scheme”
usually needed to solve functional equations in Fréchet spaces [25]. This appears in
particular in conjugacy problem to normal forms of vector fields at a fixed point [9,
10, 471, of interval exchange maps [37] or in reducibility problems of quasi-periodic
cocycles [3, 16, 26], the latter being related to spectral theory as well.

2 Main results

We shall here summarize some statements of [40]. Let us consider Bishop’s hyperbolic
quadric, a real quadratic surface in C? given by

1

Q, =0,z =lalP+yE+7D, v > 3

Let M be a higher-order analytic perturbation of Q,, given by

M:z= 0,1,z + f(z1,20), f(z1,21) = 0% (21, Z1). (1

To such a real surface, one associates a local dynamical system in ((Cz, 0), {t/, 73, p},
where 77, 77 are local holomorphic involutions fixing 0, p is an anti-holomorphic

involution. They satisfy 77077 = Idand 7§ = pot{op. Moser—Webster’s construction
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goes as follow. We first “complexify” M as a complex surface M in C* by considering
two new complex independent variables w1, w7, playing the role of 71, z2 respectively.
In these coordinates,
M { 22
w2

There are two natural holomorphic mappings 7; : (C*, 0) N M — (C?,0),i = 1,2,
defined as 71 (z, w) = z and 72 (z, w) = w. It happens that these are 2 — 1 branched
coverings. Each mapping 7/ is defined to be the deck transformation (different from
identity) of ;, that is

Qy (z1, w1) + f(z1, w1)
0y (z1, wy) + f(wy, z1).

T (t{(z, w)) =z, m(15(z, w)) = w.

Forinstance, 7{ can be regarded as a mapping defined as 7y (z1, w1) = (z1, ¢1(z1, w1))
such that

0y (z1, ¢1(z1, w1)) + f(z1, ¢1(z1, w1) = Oy (z1, w1) + f(z1, w).

The linear part 77 of the mapping 7 at the fixed point 0, is obtained by solving the
equation Q (z1, T1(z1, w1)) = Qy(z1, wi). An immediate computation shows that
Ti(z1, wy) = (21, —y_lm — wy). In good local holomorphic coordinates (&€, 1), T
is rewritten as 77 (£, n) = (8n, 8~ L&) for some complex number §.

Such a triple {z{, 75, p} completely characterizes the holomorphic equivalent class
of the real surface M (cf. [40, Proposition 1.1] or [23, Proposition 2.8]). It is also useful
to consider the germ of biholomorphism o, := 77 o 7. In good local holomorphic
coordinates (£, n), we have p(&,n) = (€, 1),

iy o
0(%.’ )= ezirl+P (57 77) )’ (2)
e <e—z‘s + g%, )

3

i,
Tzo(é',fl)=(por1”op)(g,,7)=<e n+p (&n))

e+ 405, )
where i denotes h(&, ) = D k150 fzk,léknl it h(&,n) = D =0 fzk,léknl. We also

e §+ (&)
_(rE+ G A LA
%@Jﬂ_<u”n+g%&m>’ p=ets fetl=1. @)

Here, 3%, ¢~ 3% are the roots of the quadratic equation y X> — X 4+ y = 0 and
p°,q°, f°, g° are germs of holomorphic functions of order > 2 at the origin (i.e., the
functions and their first-order derivatives vanish at 0). In the case M = Q,, tf’ s 1:2” are
the linear involutions

0 ety 0 e~y
1:1(5,77)= (g_é)‘é‘>’ 7—'2(&777)2 (eé)‘é‘ >
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In the sequel, we shall assume that the submanifold M (or their associated involu-

tions 77, 75) is non-exceptional, meaning that 2% is not a root of unity. In this case,
Moser—Webster showed (cf. [40, Lemma 3.2, Theorem 3.4]) that there exists a formal
transformation W satisfying ¥ o p = p o W such that

2= o0 U)(E, ) = (2(_”%1’@’;)5) (5)
R R -1

=W oo U)E, ) = (2@35 ”), (6)

&= (o0, 0 W&, ) = (Zgg;in) %

Here, A(z) and M (z) are formal power series of the one-dimensional variable z and
satisfy:

ARQAR) =1, M) =AR?% AO0) =er*, MO) =

The maps 7; and 6 are called formal normal form. Furthermore, the pair {7, 7>} is said
to be formally integrable. It would have been called integrable over adomain in C? if A
was holomorphic in that domain. The map U is called the normalizing transformation.
Contrary to the elliptic case, one cannot expect the normalizing transformation to
converge in a neighborhood of the origin. This is due to the presence of small divisors
(we recall that {|f — 1|}xen+ accumulate at the origin when |p| = 1) as emphasized
in [40, Section 6 (b)].

If A(z) = A(0), then {7, 77} is formally linearizable by a formal transformation
that commutes with p. Hence, the submanifold is formally equivalent to the quadric
Q, . Gong’s theorem [20] asserts that, if a Diophantine condition is satisfied, i.e., there
exist r, ¢ > 0, such that for k € N*, |,uk —1] = k‘—',, then the submanifold is actually
holomorphically equivalent to the quadric Q,, near the origin.

In what follows, we shall focus on the non-degenerate case, i.e., we assume that
A(z) # A(0) and assume that s is the smallest positive integer / such that AD(©0) £ 0.

A®)(0) -1

. s
We can normalize .

2.1 KAM-like theorem for reversible holomorphic maps

We assume that 77, 77, 0, are defined in {|£], [§| < r} for some 0 < r < 4—1‘ as in
(2)~(4), and

(A) 1 €[0,4r[ with £ e R\ Q,
(B) p? and ¢ are convergent power series on {|&|, || < r} of order > 2, i.e.,

pPPE =Y pE e =D g g
[+j>2 I+j>2
1,j=0 1,j=0
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with coefficients pj ;, g7 ; € C.

It is easy to verify that o, is reversible w.r.t. the involution p, i.e., o, l'=poo,onp.

As above, let ¥ be the unique normalized formal transformation together with the
formal power series A = A(z). We assume that A(z) is not constant. Let s € N* be
the smallest positive integer such that A®)(0) # 0. More precisely, we assume that

A@ =+ G2, G #0. @®)

Jj=s

For r > 0, let A2(0,7) := {(§,n) € C2 : |€|,|n| < r} and for € R, let
C, = {(¢.n) e C* :&n = w, [£].|n] < r}. Obviously, C., is empty if || > r?.
The following theorem shows that there is a family of invariant closed curves for the

involutions r]? and the reversible map o, in any neighborhood of the origin.

Theorem 2.1 With the notations above and under assumption (8), there exists a small

enough R = R(\,r,s) > 0 such that there is a compact set Os(R) C] — R?, R?[
satisfying!
O (R)]
2R?
such that for any w € Ox(R), one can find i, € R and a holomorphic transformation
v, : Cg — Ay (0, R%) with W, o p = p o W, such that, on Colf:

— 1, R—0, )

_ e%l‘vw _ e_%lia)
WlotloWw)Em =" ), WwloowyE =" "],
e 2#(»%: ezﬂwg
eiﬂwg

(\IJ;1 oog,o0V,)(&,n) = (e_i““’n> , E.n)e Cﬁ-

In other words, t{, ©§ and o, have \IJQ,(CCIS) as holomorphic invariant set and their
restrictions to it are conjugate to the restrictions to C(f of linear maps defined above.
Moreover, p,, €]h — T, A + [ depends on w smoothly in the sense of Whitney, and
v, = Uo (Id + ¢), with U biholomorphic on the neighborhood A;(0, R), fixing
the origin, and ¢, is smooth with respect to w and sufficiently small in the sense of
Whitney.

Remark 2.2 1f the surface M can be holomorphically flattened, that is, if it can be
holomorphically mapped into Im(z2) = 0, then the situation is much simpler. Indeed,
in that case, the associated dynamical system has an extra holomorphic first integral
[21]. It implies that automatically, in good holomorphic coordinates near the origin,
all curves {£n = constant} are left invariant by the original dynamics. One thus needs
to prove that for suitable values of these constants (i.e. w’s), one has a conjugacy to
linear maps on the associated {§n = constant} as mentioned by Sevryuk [44] in his
Mathematical review of Gong’s article [21].

! Through the paper, for any S C R, |S| denotes its Lebesgue measure.
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Remark 2.3 1., obtained in Theorem 2.1 is such that % is irrational and {|e"He —
1]},en* does not accumulate at the origin too quickly (see (67)), which guarantees that
the restriction o|s, is an irrational rotation on S,. This contrasts with the example
given Section 6(b) of [40]. Indeed, the divergence of the formal normalizing trans-
formation W in (5)—(7) cannot be avoided because of the periodic orbits of o. Such
periodic orbits, as well as its invariant curves, do not have any immediate geometrical
significance since they do not lie on M but only on its complexification M C C*.

Sketch of proof of Theorem 2.1. For t{ and 3 given as in (2) and (3), our aim is to
eliminate the perturbation p° and ¢° (hence p° and ¢°) by a sequence of holomorphic
transformations which commute with p.

After finitely many steps of normalization in the sense of Poincaré—Dulac in the
neighborhood of origin, we obtain a pair of involutions of the form

B = (655‘@’”77 +PE )
e

i . , Th=poTiop,
—2“<f">s+q<s,n)>

with a non-degenerate & = &(z) (as in (69)) and higher-order perturbations p, ¢ (as in
(70)). Hence, we can make the norm of the perturbation small enough by choosing a
small enough neighborhood of origin {|£|, || < r«}. By a possible normalization on
the “crown”, {|€n — w| < B}, around {£n = w} with @ well chosen from a compact
positive-measure subset of | — rf, rf [, the system enters into a general iteration scheme
(a KAM-like process, see Proposition 4.4), under an additional assumption on the
perturbation.

By the iteration process, we build a sequence of involutions r,fl), v € N, (hence

152) =po rlf]) opando, = 151) o Tv(z)) of the form

Ty (En)
OeE m=(°" n+ pu&,n)
’ e 20 EMg 4 g8, )

on crowns around {7 = w}, that shrink to the connected holomorphic curve {£n = w}
when v tends to infinite. On the other hand, when restricted to {§n = w}, «, tends
to a real number s (w) and the perturbation (p,, g,) tends to zero, as v tends to
infinite. In order to control this process, one has to exclude some parameters » from
the previous set and to show that, the set of admissible parameters w for full process
is non-void.

The required supplementary condition mentioned above is that the “crossing term”,
called skew term below, e%a”@")ﬁq\; + e_%“”(én)gpv of rlgl) is much smaller than p,
and g, (see (52)) on the crown. With this condition, we are able to construct a suitable
holomorphic transformation of the form

Yol = (“””@’”)),

77 + v\)(gﬂ 77)
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which conjugates tv(l) into 7521 with perturbation of much smaller size on a smaller

crown around {£7 = w}. Here w is chosen from a suitable real parameter set, which is
related to the small-divisor conditions and guarantees the convergence for the product
of sequence of transformations {y,} on {§n = w}.

Indeed, the supplementary condition on the skew term of t,fl) implies the skew term
nu, + &v, of transformation v, is much smaller (similar to (145) in Lemma 7.5). As
a consequence, the error term coming from the non-degeneracy of the “eigenvalues”
ez En).

et Entmu+Evatuvy) _ e En)

is so small that it can be directly put into the new perturbation. We emphasize that

this supplementary hypothesis on the skew terms of rlfl) has to be assumed only at
the initial KAM step (i.e., for v = 0), as after each (v 4+ 1) — th KAM step, the new
skew term of tv(}:l is automatically much smaller than p, 1 and ¢, 1. This is due to
a subtle cancellation of main parts (see (65) and (66) in Theorem 4.7 and its proof).
As mentioned above, by an initial preparation of the involutions, we can make them

to satisfy this supplementary condition required in the iteration process.

2.2 Geometry of hyperbolic CR singularity

We recall that M is non-exceptional, since % € R\ Q in the associated involutions

77 and 77 given in (2) and (3). Hence, (5) and (6) hold. Let us show that Theorem
2.1 enables us to obtain the result on the geometry of real analytic surfaces with a
hyperbolic CR singularity.

As mentioned above, the triple {z{, 75, p} givenin (2), (3) completely characterizes
the holomorphic equivalent class of the submanifold M given in (1). Indeed, following
Moser—Webster [40], we can reconstruct a submanifold from a pair of involutions. Let
us define two holomorphic mappings ¢y, ® fixing the origin of C? as follows:

&M =E+&o0t], g:=910p, pEn)=(E 7). (10)
The latter implies that the biholomorphic mapping, fixing the origin of C2,
P& ) = (pi1E, m), 926, m) = (', w) (1D
transforms p into the standard complex conjugation (z/, w’) — (w’, Z’). Define

PE. ) =G0t )&, 12)

where & o 77 (£, ) denotes the &-coordinate of 7} (&, n). We verify that ¢ and ® are
invariant by z{. Then the local analytic submanifold defined by the local equation

2= (Do Nz, 7)), (13)
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has {t7, 77, p} as associated Moser—Webster involutions. Assume that the pair of invo-
lutions 77 and 73 associated to the real surface M satisfies the assumption of Theorem
2.1. Then, for each w € Ox(R), there is a holomorphic map W, defined on Ccf =
{(S, neC?:en=uw, |£,n < R}. It is a small perturbation of the the identity. Let
H(f be the real hyperbola of Calf, ie., Hcf = {(E, N eR?:En=w, £, |n < R}.
Let us consider the connected holomorphic curve defined as the image of C® (which
contains a graph over an annulus):

i =e10¥,(E ) R
S‘”'{ZZ ®ow, &,y &M ECo

as well as Hg, the image of the restriction, \i'w = (¢1,P) o \Ille(f, to H,f. Hence,
HR c S, shrinks to zero with R.

Theorem 2.4 Under the assumption of Theorem 2.1 and the notation above, the fam-
ily {Sw}weOy () is a non-constant Whitney smooth family of connected holomorphic

curves. Each of them intersects M, in a neighborhood of the origin, along the holo-
morphic hyperbola Hg.

Remark 2.5 Assumptions of the previous theorem, through (8), implies that the real
analytic surface M given in (1) is not formally equivalent to Q,, .

Remark 2.6 The conclusion of the previous theorem contrasts with that of the elliptic
case treated by Moser—Webster. Indeed, in the holomorphic normalizing coordinates,
there is a real analytic family of holomorphic curves S, : zp = c for ¢ in a real
neighborhood of the origin, and for every ¢, S intersects M along the ellipse ¢ =
211> + (v + €c)(z] + 2}) (Fig. D).

Proof According to Theorem 2.1, for any good parameter w € Ox (R), there exists a
connected holomorphic curve S,, invariant by the dynamics and p, such that rj? ls, is

conjugated to the restriction to Ccf of the linear involutions:
Ty : (&) > (B0 oy, BN o)
Indeed, with the definitions given in (10) and (12), we have, for all (§, n) € C(f,
(@10 W) 1) = (€ 0 Vo) & 1) + (§ 0 W0 (W' 077 0 W) (6. )

= (0 Wo)(E. 1)+ (§ 0 W) (e, e Hiug ),
(® 0 W,)(E, 1) = (€ 0 W) (&, 1) - ((§ 0 W) (eFhon, e3¢ ) ).

We define the connected holomorphic curve S,, as the image of the holomorphic curve
C£ by the holomorphic map:

(&, eck

s _{m = (p1 0 Vo). 1)
“ = @own)E
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Fig. 1 Holomorphic hyperbola:
intersection of M by a
holomorphic curve

&n=w

On the one hand, since W,, and p commutes, we have
oW, = (€01 O‘L’w,¢10‘l’wop)~

On the other hand, HR := CRNFix(p) is the union of two branches of real hyperbola
{En=w, § =&, n=n, |§l, Inl < R}. Hence, we have

poWulpr = (z1,21)|gk-

As a consequence, the complex curve S, intersects M given in (13) along the image
of HX by (¢1, ®) 0 ¥,

= (@0 W) o (W 09™) @1 2l = (P 0 Wu) o @0 W)~ (21 2l g
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We recall that ¥, = ¥ o (Id + ¢). We can assume that U = Id for convenience.
Then, with A, := eiho, S, 1s defined as

2 =&+ Ao+ (0 ¢u)E ) + (€0 du)(Aun, AL'E)
22 = Ao + & - (€ 0 90) (Apn, AL'E)) + Aun - (5 0 du) (€, 1)
+((§ 0 Pu)(E, M) - (€ 0 Pu) (Aon, AL'E))
where (£, 1) € Calf, thatis n = ?, ‘%l < |&] < R. Since ¢,, is sufficiently small and
smooth with respect to w in the sense of Whitney, S,, is a small perturbation of the
main part
{ z1=§+ Aw%
2= Aypow

which varies with  as A, does. Indeed, assume that there exist w, 104 € Ox(R)CR
with @ # @' such that Ayw = Ay @'. Since Ay, = e2# and A,y = e, we have

3 o/ =Ho) — ﬂ/ cR,
w
which implies that @, — e, = (4k + 2)7r for some k € Z. This contradicts with the
fact that, i, €]A — 7, A + 7 [ for every o € Oxo(R). Hence, S, varies with w.
The Whitney smoothness of S, follows immediately from that of W, and .. O

The rest of paper will be organized as follows. In Sect. 3, the precise definition
of crowns around the curve {£n = constant} C C? and the norm of holomorphic
functions on them are introduced, and basic properties associated with reversible map
are given. In Sect. 4, we give an abstract KAM-like theorem, which is used to prove
Theorem 2.1 in Sect. 5. A preliminary normalization (which is required to start the
KAM-like process, also known as Newton method), as well as the Whitney smooth-
ness of the family of invariant curves, is also given in Sect. 5. In Sect. 6, we describe
properties of the pair of holomorphic involutions {71, 72 = p o 7] o p} and in partic-
ular of their non-degenerate principal parts, as well as of their reversible associated
composition ¢ = 11 o 72. In Sect. 7, two types of holomorphic transformations of
{1, 72}, commuting with p, are introduced, which is used to complete the proof of the
KAM-like theorem.

3 Preliminaries and notations
3.1 Basic property of reversible map

Let us define the involution p(£, 7) = (&, 7). An invertible map o : C> — C? is
called reversible with respect to p if ™! = p oo 0 p.
Lemma 3.1 Given ¢ : C> — C? with y = (u, v).

Then ¥ o p = p oy ifand only ifu = u, v = 0.
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Proof Since p o p =1Id, we have p~' oy 0 p = p o ¥ 0 p = (i, v) which equals to
Yifandonlyifu =u, v =v. O
Lemma3.2 Let o : C* — C? be a reversible map w.rt. p, and let  : C*> — C? be
an invertible map commuting with p, Then ! o & o ¥ is also reversible w.r.t. p.

Proof The conclusion follows from
W oooy) =y loo oy

=(poyop)o(poaop)o(poop)
=po(ogoy)op.

O
3.2 Function space and norms
Given0 <r < 4—1‘ and0 < 8 < r2, for 3| —r2+ﬂ,r2—f3[,wedeﬁne
ci={EmeC gn=o glm<r}, =JC, (14)

r>0

Le=lEn e ol <p kL <r). Cop=JC, 09

r>0

For a power series

fEm =" fiEnl, fijeC,

1,j>0

we have the unique decomposition

FE MW= fooEm + Y fioEmE +) fojEmnl =D fijEnEl. (16)
1>1 j>1 1,j=0
1-j=0

with the coefficients of f, depending on the product &5, given by

fri@EmM =" firiarj- ES 1 j=0.

k>0

Sometimes, by defining f; ; = 0 for [j # 0, we rewrite f as

fEm =Y fijEmén.

1,j=0

Let us consider the anti-holomorphic involution p : (§, ) — (€, 7). We define the
conjugate of f to be f, whose Taylor expansion coefficients at the origin are the
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complex conjugates of those of f. Obviously, f = £ if and only if fl j € Rforall
l,j=0.
Let i = h(&n) be a function of the product £n. We define

Ihlwp = sup [h(Em|= sup [h(@)], |hlo:= sup |h(En)| = sup|h(2)].
EmeCap lz—wl<p EmeCs =

Given a power series f, we define the norms

Flr= Y 1 1P Wl = Y [ fijlopr™. (17)
1,j=0 1,j>0
1j=0

In particular, for a function f of &7, we have || fllw,gr = | flw,g. For o €] — r2 4+
B, r? — B, it is easy to see that

sup  [fE DI = fllopr =1flr (18)
&.mecy,

The definition of norm || - ||, g, implies that

1 E Dllwpr = 1F0Elwpr = I1FE Dllwpr
fiilwp < I fllop,r D, 1 j>0. (19)

ForO c]—r?+ B, r— B[, we also define the norm

Iflo.pr="sup Nfllwp.r

we®
lo|<r?—p

In particular, for the coefficients of f,

I fi.jllopgr="suwp |fijlwp, ,j=0,1=0.
we@
lw|<r?—p

Lemma 3.3 For given power series f and g, if || < r> — B, then lfgllw.pr <
| fNew.prlgllo.s.r-

Proof Decompose fg as in (16), we have

(fR)E ) = (f2)o0+ Y _(fRo& + Y _(f2on’

>1 j>1

with the coefficients given by

(f2)0.0 = f0.080.0 + Y_(fr080x + foxgr0)En, (20)
k=1
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-1

(fR)0 = Y _(fik08k0 + fr08i—40) + »_(firko080k + forgirr0)EML.  (21)

k=0 k>1

and similar expression for (fg)o, ;. If || < r2—pBand (£, 1) € Co,p.then |&n| < r2.
Therefore, we have

(£2)0.0lw.p < 1f0.0lw.81800lw.p+ D (1fk.0lw.p180.klw.p + | foklw.plerolwp) ¥,
k=1

-1
[(f@)10lwpr’ < Z | fik.0lw.p 18k 0lw.p + | fr0lw.pl81-k.0lwp) '
=0

Z (Lfrk.0lw.8180klw.p + | foklw.plgrrrolws) T,
k>

and a similar estimate for |(fg)0,j|w7,3rj. Since || fgllw,g,r = Zl,jzo |(fg)1,j|w,ﬁrl+f
with (fg);,j = 0 whenever [j # 0, we obtain

1fglwpr < | D 1filopr™ | | D2 181ilwpsr™ | = 1 fllo.prliglop.r-0

1,j=0 1,j=0

Let0 < B < r?and O C]—r?, r?[. We define Hg,r (U) to be the set of holomorphic
functions in a complex neighborhood ¢/ of

O, B) :=0N1—r>+B,r> - Bl (22)

and the collections of power series

[ is holomorphic on U ,co¢- ) s,

w,B°

- _ . Lj.
Apr(O) =1 f = ZﬁJ EmEn’ fi,j € Hp,»WU), U complex neighborhood of O(r, B)

L

Af,(0) == {f € A, (O): f = f}.

In the above definition, I/ denotes an unprecised neighborhood over which all f; ;’s

are holomorphic. Finally for any O c Rand any function / defined on O, we define
the norm |h|@ ‘=sup, 5 |h(w)|. By (19), we see that

lfiilow.s = fiillopr < Iflopr 7. (23)

It is easy to see that:

e (linear structure)for f, g € Ag (O) (or Aﬂér (0)),wehavea; f+arg € Ag -(O)
(or AF .(0)), a1, ay € C(or R), with

larf +axgllo.pr < lailll fllo,p,r + lazlliglo,p,r- (24)
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e (monotonicity) If O’ c Oandr’ <r,p < B,r'*>— B’ < r?— B, then Ag - (0) C

Ap 1 (0) and AF (O) C A, ,(O) with

Ifllog.r <N Flopr Y F € Apr(O)or Ag ,(O). (25)
O

Lemma3.4 For f, g with | fllo,g.r llgllo,p.r < 00, we have that

Ifellopr < Ifloprliglo,p: (26)

Moreover, if f, g € Ag (O), then fg € Ag (O).

Proof In view of Lemma 3.3, we obtain (26). Provided that f, g € Ag ,(O), let
us prove the analyticity of coefficients (fg); (), [, j = 0 with [j = 0, on a same
neighborhood of O(r, B8). By (21), we have, forl > 1,

-1
(fero(w) = Z (fi—k.0(@)8k,0(@) + fi.0(@)g1-1.0(®))

k=0

+ > (frek0@)g0k (@) + for(@)gisro()) oF.
k>1

Let U be a complex neighborhood of O(r, B) over which the f ;, gx, ;’s are holomor-
phic. Since |o| < r? — B and, in view of (23), we have

2| fllop.rliglo,s,
| fi+k.0lowplgokloe, g + 1 foklow,pl&i+k0lOw, ) = r/i-:Zk =3

The analyticity of the (fg);.0’s on a same neighborhood of O(r, ) follows. The proof
for (fg)o,j,» j = 0, is similar by the proof of Lemma 3.3. O

Lemma3.5 Given f € Ag,(O) with || fllo,p,» < o0 and a € C, we have =
Ag - (O).

Proof By Lemma 3.4, we see that fX € Ag ,(O) with || f*llo g, < | f||’29’ 4. for
every k € N. Then, according to (23), we have that, for /, j > 0 with [j = 0,

k k k
k pky a“|| f ||O,;3,r a k
(@ fOjloes = — 155 = 51 llo s,

Developing the exponential function around 0, we have, for w € O(r, 8),

k¢ rky, .
(eaf)l,j(w) =1+ Z W

k>1
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Hence we obtain the analyticity of (e%/);, j» since

k k
Z @ 5 (@) _ ! Za 1106,
! - pltj | :
=1 k! ritJ = k!
O
Lemma3.6 Given 0 <" <r' < 3,0 Cl—r?r?[and0 < 2p" < B, if B’ is
sufficiently small such that

— "y, 27

then for h € Ag . (O) with ||h|lo,p,,» < +00, for f1, f2, &1, &2 satisfying

2
I fmllo.pr.r, lIgmllo,p7.rm < 6 ™= 1,2,

we have that

lhE + fi,n+g1) —hE+ fa.n+g)llop
3r'kllo,p -
< 2 lo.p.r

" max {|| f1 = falo.prr. g1 — g2ll0.prr} -

Moreover, if f1, f2, &1, 82 € Agr r (O), then

hE+ fi.n+g) —hE+ fr,n+g) € Agr (0).

Remark 3.7 Note that the second inequality in (27) implies that »"> — " < r> — 8.
Hence, by the monotonicity, Ag , (O) C Agr ,» (O).

A more general version of Lemma 3.6 will be given in Sect. 6 (see Lemma 6.11), and
will be shown in Appendix A.
Given (f, g) € (A,g,,((’)))z, we define, for w € O(r, B),

1CFs Mo, = 1 fllo.pr + 18w, (s DN0pr = I1fll0,pr +1glO,,r-

Lemma3.8 Given 0 < v’ < v < ;11, O cl—r?r?* and B > 0, consider the

transformation ¢ = Id +U on C(:):ﬂ, withU € (Aﬁ/,r/((’)))z. If B' is sufficiently small
such that (27) is satisfied, and

ﬁ/(r/ _ r//)

28
30r’ (28)

IUllo.p.r <
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then ¢ is invertible on C:; P with¢p™' —1d € (Ay o (O)? and
) 2

8/ 1UIIG 41 e

—1
—Id+U ’ < .
”¢ + ”O,%,r” — (r/ _ r//)IB/

Proof In view of (28), we see that ¢ is close to identity, hence it is biholomorphic on
c e Let us write ¢! =: Id 4+ V. The identity ¢ o ¢! = Id means that

V=-Uo@+V)=—-U—-Uodd+ V) —U). (29)

By Lemma 3.6 (since (27) is satisfied) and (29), we have

/

6r
m ”V”O, g IUllo,p
Wlo g 0
5 9

Wlo g 0 < Wllo.pr + 2
< Ulop.r+

which implies that |V, g , < 3IUllo g, Letus setUy = —U, Vi =U o (Id +
9 2 9
V) —U.Hence, V =U; — V|, and, by Lemma 3.6, U € Ay r,,((’)),
g

67'/ ”V”O,%/,r”
m”V”O,%,,r””u”()*ﬂ/’r/ <

Ullo.p .
V s, < < .
Wil e, 3 4
Then, we have

V=—-Uodd+U — V)
=—UoId+U)— Uodd+U; — V1) —Uodd+Uy)) =: Ur — V>,

and, by Lemma 3.6,1h € Ay, (0),
2 Na

6r'
O,%/,r” < (r/ — r//) . ﬂ/
(0%

V2l Willp g, 1U10.p.r

0.4 _Ulog.

= 4 42

Assume that, for some n € N, we have V = U,, — V,, with
un € ‘Ag’r//(o)i ”VHHO,%,}’” < 47””“”0,/3“!"'
Then we have V = U, 41 — V41 with

Upst = —U o (d+Uy), Vest :=Uo Ad+Uy, — V) —U o (Id + Uy).
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By Lemma 3.6, we have U, 1| € Ap o (0) and
2 k]

/

Watillo, g oo < Gy Willo, g Mlo.51r
Wallp s Ul0.p 0
< <
4 4n+1

Asn — oo, we see that V € A r,,(O).
s,

Letid := ¢>‘1 —1d+U. By (29), we haveld =U —Uo (Id+YV). Hence, by Lemma
3.6,

or'lUllo,p r
—"S’FIIVII

el O,%,r” = ' =" p O,%/,r”

ot o =IU=Uodd+V)|
52)

81U 4 e
< ——.
(V/ _ r//) . ’8/

4 An abstract KAM-like theorem

In this section, we give an abstract KAM-like theorem for pairs of holomorphic
involutions near a fixed point, which are pairwise conjugate by an anti-holomorphic
involution. From this, we obtain the existence of a lot of analytic invariant sets in a
neighborhood of the fixed point. This is the core of the proof of Theorem 2.1.

4.1 Sequences of quantities

1
With fixed s € N*, 0 < rg < }T, 0<g < rg, Lo = 88, define the sequences, with
veN,{e} {Bv}, {Bu}s {60}, {rv} and (K, } by:

5 1 - 1
Gt =8y, Bri=a, Bv = 16By11 = 166>,
1 7o [Ing,| (30)
— 3 — —
Svrl =8+ &0, vyl =1y 2’ K, = | Tt \|
n 8ry
Between r, and r,11, we define
m ~ 4 ry + Fytl
W= =), m=0 18 R = BT
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We assume that &g is small enough such that

1

lIn o (165 + 1)!05g 240
ro — ryr
|1n( +8r0>‘ (ro —riri

< 1. (31)

Lemma 4.1 Under the assumption (31), we have

1

1 16 1 16s . 240052
el ) dos+D7e™ 0 N (32)

‘h]( +r\,+1)‘ (ry — rog)rug1

Proof The above inequality holds for v = 0 under the assumption (31). Now, assume
that, for some v, € N, we have

Ine 16 1 16s 2400&
_men] o) Q6s DR (33)
‘]n( + r"*“)) (rv, — o417, +1
The definition of sequence {¢,} implies that, for v € N,
5 2401()s2 i 240los2
[Ineyq1] = 1 [Ine,|, &yl =& ) (34)
and the definition of {r,} implies that, for v € N,
! 1 r yrl
— '+
v+l =10 I—ZW > Vv—&-l_ru—i-ZZ%' (35)
j=0
Hence, for v € N, we have
A S R (36)
For1r 3 ry v+l 42
Indeed, it is true for v = 0, and for v € N*,
11—yl 1 4 1
ry _ ]:021+2=1+—<_ 1_rv+l=—
Fogl 1 — Z‘]j‘:o # vl 41 — 37 y vl 427

Then, we obtain

(1—-(1 ’v“)) 3h( - 5
Fog2 = 3.1 T2 =4- 2V 4+ 1 =4 @37
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By (34)-(37), combining with the assumption (33), we have

1
‘ln€v*+]‘ (l6s+ )lﬁs 2400v
‘]n< + 8“’*” )‘ (rv,+1 — rv*+2)rv*+2
Fog+1
1 Tyg
e, | [n(1-ga-2=n)

5
Z I +| ’ 1 Tvg+2 +2
‘m( )‘ In (1 ~la- —,;;1))

5 1

2rv*+l (16S + 1)16S83*.2400s2

Ty, 42 (rv* - rv*+1)rv*+l

1
(16S + l)lﬁxe‘)Z:OOsz

§§.4.2._.8i24olox2 L—I—Z
. (3] ) e
40 s 1‘}*' 2401m2 1

11 11
The last inequality follows from (33) since 83* 240057 88 20055 (165 4+1)"% < %.

4.2 Iteration argument

Let the sequences of quantities be given as in (30). Forw € Oyp C ] — rg, rg[ with
|Og| > rg, we consider the pair of germs of holomorphic involutions ‘L'(l), ‘L’éz) :

(C2,0) — (C2,0), i.e., they satisfy 7, e o r(gk) = Id k =1, 2. Recalling the notation
in (22), we set Og(rg, o) := OpN] — "0 + Bo, r0 Bol[. We assume that they are of
the form

b [y 4 e 38
7 (&n)—(e;ao(zsn)g +aqo&m ) -

@ _ e 1%EMy 1 Fo(, )
W& =(porop)Em= (ei‘*@"’swo(s,n) ) (39)

where, for the fixed s € N*,

e (the principal part) ag = ag(En) € ’Aﬂo "o (Op) with

1 1
—,47r+§|:, w € Oo(ro, Po), (40)

ap(w) € :|_8

1
||050(§77)||(’)0,ﬁ0,r0 <4+ Zs (41)
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o) — g1 -8 (42)
Oo(ro.Po) 16

‘a(()k) <i’ l<k<s—1,ifs>2, (43)
Oo(ro.Po) 16
-1
(k) "o

o <0 sa1<k<16s, 44)

‘ 0 100, p0) 4 (

e (the perturbation) po = po(&, 1), g0 = qo(§, n) € Agy r,(Op) with

™
(=N

€0 i _i
IPolloy.o.ro> 1ol po.ro < 75 €226 ngo+e~2%0EME poll oy goro <

(45)

Remark 4.2 For instance, ag(z) = A +2° + Z;-":S 41€ jzj , with A € [0, 4 [, arbitrary
m > s+1,c¢; € R, andrg sufficiently small, is an example of such a function satisfying
(40)—(44).

Remark 4.3 In (45), besides the smallness of perturbation (po, qo), the smallness of
€3% (E")qu + e~ 196 'l)f po, called the “skew term” of ré 1), is crucial in the iteration.

(OIS

We also cons1der the germ of map oy = 1 ( ) Tt is reversible with respect to

both p and To ) since

poo’oop—pot(g)opoporéz)op—‘réz) rél)zao _ré)oaoorél).

We can write o = rél) o ‘Céz) as

¢ ENE 4 fo(5.m) )

oo, n) = (E—iao@")n + g0, n)

It will be shown in Sect. 6 (see Lemma 6.14 and Corollary 6.15) that, if gg satisfies
(31), then fy, go € ABO L0 (Op) with
To

&0
~ ~ < —
”fO”O(),ﬁOJ((;)’ ||g0||(9(),,30,r(()7) =7

Proposition 4.4 (Iteration scheme) Assume that g > 0 satisfies (31). There exist a
sequence of sets {O,} with O,, C ] — r2, r2[ satisfying that

Ovp1 CONT =1 r2 L |(Ou\ Opst) N ]=rdyy + Bust, oy — ﬂu+1[|<sl°°s,

(46)
and a sequence of maps {o,} given by o, = 1:51) ) 152) with
e1ENy 4o (€
(@=L EPEM ) e porMep @)
e 2MENE 4+ gy (5, m)
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=1d, k = 1, 2, such that the following holds.

satisfying tv(k) o r]fk)
1) oy =a,(En) € ARMU (O,) satisfies that

o) —s! <(Lie)s (48)
Y OI)(erﬂU) 16 ’
o) <i+§v, l<k=<s—1,ifs=>2, (49)
Vo) 16 =" = =
1
k —1
@ Oy (71 " Q) noo shlskslos G0
and for 0 < k < 16s,
1
—a® H 3 51
o o <e&).
H( o v) Ovit1.Bvs1.1v41 v (1)
(2) Pv, v € Aﬂv’rv (Ou) Satisfy that
3
&y
?.

lpvllo,.py.rs lavlloy. gy < 1 ez EMng, + e 2 CVep o, 5 1 <

= rv‘” o 1:52) has the form

EENE 4 f(E )
ov(§,n) = <e—iav(577)n + &v(§, n)> ’

(3) The reversible map (w.r.t. p) o,

with | fullp, 5 0 gl 5 00 < =&
(4) There is a sequence of transformations {\,} of the form

— _ s‘i‘uv(é’ 77)

withlU, € (,zt,glﬁwl,+1 (Ov41))? satisfying
49
&)’

”uV”Ov+l>ﬂv+lsrv+l’ ||vV||Ov+1;/3v+lsrv+l < 2

. T 1 T I 1
such that, foreveryw € O, 41 (rv+1, Bv+1), ¥y - Cw”jgm — va,ﬂv and, on Cwu,%m’
oy ® _ -1 k=12
v+1 _wv 00\;01//1;7 T\)+1 —I/fv oT, OI/[Uy — 1, 4.
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5 v
Remark 4.5 According to the definition of sequence &, = e§4) and the fact that
(%)" —1> %,Vx > 0, we have

Zsﬁ: Zso[% _]<SOZS%= , VO<¢ <1 (54)

<
v>0 v>0 v=>0 1— 863

1
1

. 3 P 1 . k
In particular, )~ - &) < Lz% < 515- Since || (0typ1 — ory) )”O
I—e¢g

0 < k < 16s, we obtain, accordmg to (40) and (41), forVv € N,

<é&

< Lo

bl

V1 Bot 1 vt 1

1 1 1
ay(w) € i|__a 4 + Z[, YoeO,(r, B, ”av”(ﬂv,ﬁu,ru <4+ 5 (55)

4

Moreover, in view of the definition of {¢,}, we see that ¢, < 23‘—0 for every v € N,
which implies that 11_6 + & < %, % + & < % Then, by (48)-(50),

!
() _ o 5 56
BT o s T 15 (56)
1
—. l<k<s—1 ifs>2 57
Outrp) 15 sk=s—Lifs ©7
r—l
o 1 <k < 16s. 58
Ov(rv,ﬂv) = 2 s + - - s ( )

4.3 Proof of Proposition 4.4

Suppose that, at the (v + 1) step, v > 0, we have

S, En)
o L @E) + pu(§, 1) @ =potWop, o,=tPor?®,
e 20EMy + g, (&, )

as described in Proposition 4.4. Our aim is to construct the transformation ¥, as in
(53), such that 0,41 = Iﬂu o0y oYy, (k)l =Y, Iy rv ) o Yy, k = 1,2, possess
similar properties as those of oy, 7 ®) This will describe an iteration step, hence will
give the proof of Proposition 4.4 .

Before starting the construction of ¥r,,, we first introduce another type of transfor-
mations that conjugate the pairs of involutions (47) to a perturbation of a new integrable
pair. The main feature of the new involutions is that the new perturbation part is much

smaller than the initial one, provided that the initial skew term smallness condition is
satisfied.
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For given 0 < ry <r < zl; and fixed s € N*, assume that ¢ > 0 satisfies

1
1 16 1)165 ¢ 240052
I7n8|r ) (I6s +1)™¢ -1
in GG+ )] = rore
Let us set
1 1 5 1 1
B ele®,ed], By =ptele, e8], (59)
r(m):=r++%(r—r+), m=0.1,...8 7=r®="""" (0

Given O C] — r2, r2[, we consider the involutions 71, 7o = poT|op:

_ (B €y + pe ) _ (e €+ pe. )
”(S’”)‘<e—é“@")é+q(§,n> e =g g ) O

witha = a(én) € A]E’r(O) satisfying (55)—(58) as a,, together with p, ¢ € Ag - (O)
satisfying

&
iplo.pr lalopr < 15- (62)

Remark 4.6 Here, all assumptions of Proposition 4.4 are satisfied but the smallness
condition of the skew term ¢2%@" g + e~ 2%E Mg p in (52).

Theorem 4.7 (Main step) Given 8 €] 80e®s, 11, let

. |In¢g|
i . ina(w) _ o
(95.—{we(9. le 1/1>6, VO<n|<K+1, K: }ln(r(7)/r)|}'
(63)
There exists a transformation  of the form
_ _(§+uEn
v, n=dd+U)E, n = <77 + o, 77))

withu,v € AR (Os) satisfying
+ 7+ 49

£50
N L

suchthat foreveryw € Os(r4, B+) = Os N ]—r_%_ + B+, ri — B+, ¥ is biholomorphic
r. . T r.
on wam with (wam) C C;,ﬁ, and, on waﬁ#

4 (e My piE ) r
W OTIOW)(E’U)_<e—ia+<fn>g+q+(g,n)>’ & meCy.,

where ay = a4 (€n) € AIE%M (Os), with
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1

H(a+ —a)® H <0<k <16s. (64)
Os.B+.r+ 10 -

and py, q € Ag, r (Os), with

61
£32 Zq, i _i
| p+1l0s.84ry s la+ 05,1y < —5-4—24(K'+-08 Yez*ng +e 2%Epllop,r
(65)

i _i 61
le2**ngy + e 2% Epillospor, < €7 (66)

Remark 4.8 Theorem 4.7 can be applied in two ways, which are indeed two cases
described in Sect. 5.2.

o If the skew term e%“nq + e_%“gp of 71 satisfies

57 e ng + e 2 Epllog, <& 0<s <1,
then, according to (65), Theorem 4.7 describes an iteration step (as in Proposition
. . L
44)withr =ry, ry =ryy1, € = &, and we can simply take g = 05 .
e If it is not the case, we cannot apply our Iteration scheme. However, noting that
@

. . £ 50 .
(65) implies || p+ |05, 8, .71 1G9+ 105,81, < 1o we see that the Iteration scheme

is applicable to ¥~ o 7| o ¥ in view of (66). Hence, Theorem 4.7 describes a
preliminary step of iteration. In this case, we need to take § > e since the new
perturbation may be of size £%. This is why B is defined in an interval as in (59).

We postpone the proof of Theorem 4.7 to Sect. 7. The rest of the section is devoted

to the proof of Proposition 4.4 from Theorem 4.7.

We want to conjugate the involution rlfl) to a new one 7521- To do so, we need to

exclude some parameters so we define the new parameter set as follow:

. L
Oyiq = {a) € 0,N] _"5+1"'5+1[3 e @ _ 1| > ¢85 VO < |n|<K,+1}.

(67)
In order to measure its size, let us first recall Pyartli’s lemma:

Lemma4.9 [41, 42] Let f : [a,b] — R with a < b be a g-times continuously
differentiable function satisfying

If9Ow) =8, Yiela, b

for some g € N* and § > 0. Then, for any A > 0,

(e ela.bl: |f@)] < A} <4 <q!%>q
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We then have

1
Lemma4.10 [(Oy\ Ops) ] =y + Bust ryyy — Bt [] < el

Proof Since |a,(w)| < 47 + 1, it is sufficient to bound from above the measure of the
parameter set (o _, <k, +1 Rv,n » Where

1
2 2 ;o
v
Roni=qwe€OyN]—ry gl ey (w) —2kx| <

, keZ, |k| <3|n|¢.

In view of (48)—(50), we see inf ,c0, |(na,,)(s) (w) | > % |n|s!. Applying Lemma 4.9
with g = s, we have

N
A
v

1
<20(K, + 1)\ =57
2|n|

|Rv,n| = 3|n| -4

Therefore, we obtain

1 1
2

U [Ruu| 40K, + D> 568 < 607,
0<|n|<K,+1

noting that (32) implies that

1 1
(K, + 12?0 = | e

- Try+rv41
in (57)]

1
16s + )76 < —.
< (16s+1) < 20

2
+ 1 8320;

m}

1 .
Applying Theorem 4.7 to 7y = 7. with § = ¥ > 805", we obtain a transfor-

mation v, of the form

E+uv(&,n)
vis, =(d v ) =
e = (e = (5T )
with u,, v, € AIEUH’,UH (O, 41) satisfying
49
&

||MV||OV+1>/3V+1JV+1’ ||v||0\)+lvﬁl’+1’rl)+l < 7’
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Tv+1 RV LATES| ry P .
such that, on Cw!*/;m, w € Opr1(ry+1, Bvrl), Yo Cw}}vﬂ — Cw,ﬁU is injective and
holomorphic, and

B erevr1 Gy 4 ’
(wv 1 ° ,L,‘Sl) o w]})(g, 77) — iy, (sri Pv+1 (g 77) ,
e 2 HEME + gy 11 (8, 1)

where &, +1 = avr1(En) € Ay (Oyq1) with

1
. !
Ittt — @) ® N0y posrrnes <&0s 0=k < 16s,

which, combining with (48)—(50), implies that

1
1():)-1 - S!|OU+l(r1)+laﬁv+l) < <E + ;‘U-‘rl) SYs

) 1
|av+l |Ov+|(”v+ls,3u+l) < E + §U+1’

loe

l<k<s—1,ifs>2,

1
k _
|a1(;+)1|(9v+1(ru+1,ﬁv+1) < <Z + §v+1) r 1, s+ 1<k <16s.

In view of (52) and (65), (66), we have the new perturbation p, 4 and g, satisfy
that

||Pv+1 ||Ov+1,,3v+l,rv+l ) ||ql)+1 ||Ou+1,ﬂv+1yrv+1
61
32 1

£ —6is A i
< % +24(Ky 4+ Dey * [le2%ngy + e 2 Epyllo, g

5
I
gy &4l

< - ’
10 10

and the new skew term satisfies

15 %
. . 61 8 &
Loy — Loy 32 €v _ v+l
le2*" ' ngyi1 + e 2 E Pyt 1Oysr, fortirvsr < &0 < = =3

According to Lemma 3.1, u,, v, € AIE‘)HJM (Oy+1) implies that p o ¥, = ¥, 0 p.
Then, for

1 -1 1 2 -1 2 1

tler)l =, orlf)ow‘,, T$+)1 =, orlf)m/fv =,001‘f+)1 op,
we still have rlfﬁ_)l o rlfﬁ_)l = Id, k = 1, 2. Moreover, in view of Lemma 3.2, for
Oytl = T‘flr)l ) rv(i)], it is still reversible w.r.t. p.
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5 Proof of Theorem 2.1

This section is dedicated to the proof of Theorem 2.1 by applying the Iteration scheme
Proposition 4.4.

5.1 Preliminary normalization

Let us consider the pair of involutions 7y and 75 givenin (2) and (3) (and the reversible
map o, = 7{ o 74). In order to start the Iteration scheme Proposition 4.4, we need the
involutions to be in a well prepared form as in (38) and (39).

First of all, for any N > s, there exists a holomorphic transformation U in the
neighborhood of origin, tangent to identity up to order 2, with Uop=poW,such

that .
e (G o0 o _ (¥ + e
fm = ( ”l°‘I’)(€’”)‘<e—5&<sn>g+qv@-,n)>’ (68)

where we have

N
GEMD =A+ED + Y )", aeR, (69)
n=s+1

and convergent power series at the origin

pEM =D pEnl, qEm= Y qEn. (70)
[+j=2N+2 I+j>2N+2
1,j>0 1,j>0

Indeed, since % € R\ Q, by classical normal form theory [2, 32, 40], combining

with the fact that 7{ o 7{ = Id, there is a polynomial transformation Wp p, tangent to
identity up to order 2 at the origin (composed by finitely many steps of normalization
in the sense of Poincaré—Dulac) satisfying Wpp o p = p o Wpp, such that

ISy ~ N
\Ilf1 o1l oW — (e? +(5(§77))77+P(E»77) C~, _ ~ j.
( PO 71 PD) é.n <(62A+C(§ﬁ))_1§+é(é,n) , C@) gcjz

Here p, g are holomorphic at the origin and of order > 2N + 2 there. We note that

et 4+ C (z) is actually the truncation of A(z) in (5)—(7). Recalling the non-degeneracy
assumption of Theorem 2.1, we see that ¢; # 0. According to the proof of Theorem

3.4 of [40], we can change et + Cto (e2* + C)u2 by applying the transformation

&, ) = (ENE ' Enn, (71)

. ) - 1
where = u(&n) is the fourth root (&) = ((e%)‘ +EEN) e + C(én)))4.
We see that w(&n) is sufficiently close to 1 and hence well-defined since (&, ) belongs
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to a sufficiently small neighborhood of the origin. A direct computation shows that

i

@+ O u 2 = (e2* + C)i(e* + )2
— e (14+e P C)2 (1 +e2*C) 2.
We consider the principal determination of the logarithm to be defined on C\ R™. Let

A(t) be holomorphic germ vanishing at the origin. If 7 is small enough, there are real
numbers by such that

kepy _ Ak B
In(1 4+ A1) = In(1+ A1) =Y w =iy bt*
k>1 k>1

and it converges at the origin. Applying this, we have

i~ i, = 1 i iy =
In (1473031 +e20)7H) = 2 (788 —eP8) @' + Y balen),
n>s+1
with {b,} C iR coefficients of a convergent power series. Define
. . N
G(Em) =1 —1i (e—fkav - efkes) En)' =20 Y baEm)",
n=s+1

which is of the form (69) up to a scaling on the neighborhood of origin. By rewriting
1+ e_%ké)% 1+ e%)‘é‘)_% as

(I+e PO+t =3 Pexpt 3 buen)' y,
n>N+1

we see that

(¥ + Oy — b = o3t 3G exp S by~ 1,
n>N+1

which contains terms of (&, 1) of order > 2N + 2. It is similar for (e%)‘ + é)_luz —

¢~ 2% Hence, we obtain 7, in (68), up to a scaling on the neighborhood of origin.

The following lemma shows that, for N > 16s large enough, there exists 0 < r, <
41'1 sufficiently small, depending on the coefficients ¢,, n = s + 1, ..., N, such that
(31) can be satisfied in the two cases (where A := 10 max{|pl.., |4l }):

2 3 9
e g0 = A0, ry = I7x and r; = 6"
e sp=A,ro=ryandr; = %r*.
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Lemma 5.1 If N is large enough, there exists 0 < ry < zlt sufficiently small such that

(1) suppy 2 16() = Al < g, suppy 2 169 @) — 1] < &5,
@) supp2 [60@)] < g5 1 sk =s—Lifs 22,

Z1
() supp 2 160 @) < s+ 1 <k < 16s,
4) A =10max{|pl.,, 19|} satisfies that

49 1

In A 165 + 1)165 450 2400,
—7| 1' 2 (3 )9 5 <1. (72)

In(g+5-3) (Fr« = 767%) * 16"+

Proof In view of (69), it is easy to see that (1)—(3) are satisfied for & for any N > 16s
and r, sufficiently small. Let us choose N = 4900s2. We recall that all terms of 5 and
q are of order > 2N + 2. According to the definitions of norms in (17), if we replace r

) ) o\ 2V +2
by rk = 2"kr,, then Ay = 10max{|p|r , |q|r '} satisfies that A} < A - ( *> =

1
2-@N+Dk A Since 0 < ry < ‘—1‘, we have that ((Zr* — Er*) . Er*) = 26,-2 _
10r; 2 To show (4), it is sufficient to show that

' InA 49 1
(165 + 1)'6 ( [In |)| +2) AS 0T < 1, (73)

|ln(32

49 1
107, 2 A% 3007 < 1. (74)

Replacing r, by r,i in (73) and (74), we see that, as k — 00,

/
(165 4+ 1)16 (‘JIH(A || + 2) (A’)S" 007?

In(2) - (9800s% + 2)k + |In A| 2) _ 49 9800s242; 49

49 1
2 50 430052 " A0 4800s2 — (),
In (33)]|
49 9800v2+2 49

49 49 1
10r1’< 2 (A )50 4800s2 < 10r_222k 2750 480052 " A 30 480052

< (165 4+ 1)'6¢ (

49 98005242 o)k
(50 480052 )

= 10r*_2A4800s2 2 — 0.

Hence, there exists a k, € N* such that if we replace r, by r,é*, then (73) and (74) are
both satisfied. O

5.2 Application of KAM-like Theorem

Take r, as in Lemma 5.1. Since p and g are convergent power series, in view of (18),
1
we have that, for any B, € [A®s, A ],

. . A
1P =248, 2=l B e NG I—r248, 02— pol, Bo e = Max{IPlr,, 191r} = 1o (75)
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o Case 1. Small skew term
If we have

3

gy iy o A2
lle 2P +e2"nqlly 248, /24,1 o r < 3 (76)
then, from Lemma 5.1 and (75), with ag(€n) := &(En), po := P, qo := q, 70 := T's,
g0 = A, By = 8 — AT and O =] — rO, ro [, we have that o (7)) € Aﬁo ro(OO)’
Do, 90 € Agy.r,(Oo), and (40)—(45) are satisfied. Since, for ry : 3ro = 4r*, Bl)is

(1) @ _

satisfied from Lemma 5.1, we can apply Proposition 4.4 to 7, := 7; (hence

po‘cél)op ando = tél)oroz))oncr"ﬁo w € Oy(ro, Po) = Ooﬁ 1—r3+Bo, 15— PBol.

e Case 2. Non-small skew term

Now assume that (76) is not satisfied. In view of (69) and Lemma 5.1, we see that

v k
iy iy 1 |Cl*)\.| B €1
lex2%, 5, = |e52@ M, 5 < E(%) <e, wel—r2+ fur?— Bl
k>0 "

Then, by (75),

1
i ix ele A A
—2% 5 2% P — i
lle”2%6p +e2"nqllw p..r. < > 10 < 1o
Withr =7y, ry = %r* andr(]) =ry+ %(r* —r4),j=0,...,8,6:= lOOAﬁ,

Bi= AW, By = AW € [AT5, AT |, and

. In A
05 = {we]—rf,r,%[:|e‘"“<‘”)—1|>6, VO<inl < Kit1 —‘l('(“)/')H],
n(ry Iy

we apply Theorem 4.7 to 7} for w € Os(ry, B4+) == OsN] — rJr + B+, rJr ,8+[
We obtain, for all w € Os(ry, B+), a biholomorphic transformation Vo= 1d + u -
49

C‘jm — C:U)ﬂ, with U € (AR+,r+ (05))? and ||Lvl||w,5+,r+ < @. Furthermore, there

are &y = Gy (§1) € Af . (Os), Py, 4+ € Ap, r, (O5) such that

ot o i — [+ B ) .
(Ip oT OW)(E7 T]) - (e_£&+(sn)s+é+(s’ n)) ) (S, n) Ecw,ﬁbr

They satisfy

A3
<2 0<k<16s, (77)

v <k>)
o o
H( + ) 05,;‘3+,r+ 10

||]3+||Og,ﬂ+,r+’ ||é+”05,ﬁ+,r+
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A% “yda, s —ag A%
= T +18(K + 1ol nqgte > sp”]_rg-‘rﬁ*vr:%_ﬂ*[ng*vr* = W’
49 3
61 A2

le™ 3% oy + €3 NG 05 prrs < AR <

. ~ . ~ . ~ . 3 . 29
Hence, for g := a4, po := p+,q0 :=q+.10 =1y = I7%> €0 == A0, and

L 1
05

Boi= Py =" = AW,

we have (45) for Oy := Os(ro, Bo). According to (77), we obtain (40)—(44) from
Lemma 5.1. In particular, Lemma 5.1 (1) and (77) imply that

‘-b
g

1
lao () = Ao, < T

For rg = %r*, ry = 3ro = %r*, (31) is verified by Lemma 5.1, then we can apply

Proposition 4.4 to '((1) : I/V/_loflol/vf (hencer( ) — ,oorO o,o ando = rél)oréz))on
Cwoﬁo, w € Oy(ro, /30) Op. According to Lemma 5.1, we see that |&*) (w)| > —0

forwe] — rf, rf[, then we deduce from Pyartli’s lemma (Lemma 4.9) that

1- ”0 + Bo, rO Bo[\Op| < A80s . (78)

The proof of (78) is similar to that of Lemma 4.10. 5
Let us define 1// Id in Case 1. In Case 2, we have, as above, w Id + U with
Ue (.Aﬂ+ e ((9(;))2 In both cases, we define ® := =vo w To summarize, for the

involutions t{ given in (2), we have

Proposition 5.2 There exists ro > 0 and there exists eg > 0 satisfying (31) with
ry = 34 and there exists a set Oy C| — rO, [ with

49 1

1= 13+ Bo.rg — Bo[\Oo| < g ™

for By = 840‘ such that the following holds for o € O.
There exists a transformation o C:)O_ fo C2, with ® o p = p o @, such that the
involution

5 . SaoEn)
% (6.m =@ ot} 0 d)(E ) = <€2 S0 + po(€.m) )

e 3906Mg + o, )

withao(En) € 'Aﬁo "o (Do), po, g0 € Agy.ry(Oo) and (40)—(45) satisfied. In particular,

1
lo () = Moy < - (79)
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As in (3), r(z) is obtained by r(z) =po ‘L’él)

commutes with p, we see that ‘L'( )
is still reversible with respect to 0.

By applying Proposition 4.4 to rol) (hence 1
Ca? Bo’
hence {0}, },en) On C v B and a sequence of holomorphic transformations {y, },en of

49
< 8\) ’

(1)

op,andop =7, ' o roz) Since ®

is still an involution and, in view of Lemma 3.2, o¢

(2 ) (1

) = = por, op andog = 1 oroz))on

w € Oy(ro, Bo), we get sequences of 1nvolut10ns {rv b }ven and {r,g }ven (and

the form v, = Id+U,, withl4, € (Aﬂu+| Fost (Opr1))?and Uy o

such that, for all w € Oy 1 (Fus1, Boi1), Yo : Cw”%'ﬂ — C:J,ﬂv’

b1 Bu 1,41

— k —
o=V oaoty, ¥ =y lot® oy, k=1,2.

Recall that 41 = 1, — 2=+ we see that r, — %0 =: Rasv — oo. By
2 2

(46), we can see that O, — Oy (R) for some Oy (R) C i|—T° %°|: = ]—R2, Rz[.

Moreover, by (46) and (54),

1
10052 1

H R?, Rz[\(’)oo(R)‘ Zs“’o“ <—80 : <25(W.

V>0 1— 86;0052

Hence, we have (9) by noting that the Lebesgue density of Ox(R) in ]—Rz, R2[
satisfies

1
£l _ 10 (®)
R2 2R2

1-— <1,

1

49 1
z L —
sincergy = ry or ir*, andby (72), wehave g,®" < A% 100 <

(2 )2400A 100 02 = R24.

Forany v € N, let ¥, := 1// Yoo --- oy, which is well deﬁned and 1n_]ectlve on

C;”TS]V for every w € Oy11(ry+1, ,3,,+1) By Lemma 3.1, since Ue (.A/S+ r (05))?

anduj, v; € Aﬁj+1’rj+1(0j+1), j=0,1,...,v,then ¥y o p = p oy and Yjop=
povj. Hence W,0p =poW,.

4
Lemma5.3 Foreveryv € N, W11 — W, (0,5 8ri0.r0s0 < Enyl-
Proof With the smallness of A verified in Lemma 5.1 and recalling that g = A or
A%, we have, by Lemma 3.6,

||‘I’O||(91,ﬁ1,r1 = ||1/f o I//0 - 1//”(91,,31,}’1 + ||W||(91,ﬁ1,r1

. 49
< 37‘0 ” 1/[ ”(90,/30,}”0880

2(ro — r1)Bo

+ 11V 10y po.r0
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49
50
3}’080

49
<Q@ro+AD) | ——
2(ro — r1)Bo

+1] < 3r.

Let us show the lemma by induction on v. When v = 0, ¥y = 1/V/ o Yo and
Wy = W o yy. Forany (&, n) € C;‘ﬂl, we have {1 (&, 1) € Cgﬁo. Since (31) implies
that (27) holds for 8/ = B1, B’ = B2, r' = r1, r” = rp, we have, by Lemma 3.6,

”\Ill - \IJ()”Oz,ﬁz,rz = ||\I’0(‘§ +uy, n + U[) - \IJ()(é:, 77)||(’)2,ﬂ2,r2

4
3rillVolloy g 2 - 3rorie”

% 4
20r —r)B1 ! (r1 — )i !

< &7.

4

Given k € N*, assume that W1 — ¥, |0 < 8;+1 for 0 < j < k. Then

j+2:Bj+2.7j+2

k

||\Ijk+1 ||Ok+2,l3k+2,rk+2 =< ”"IJOHO],ﬁl,r] + Z ||\IJ]+1 - \Ijj||0j+2,,3j+2,rj+2
Jj=0

ko y
< 3rp + ZSEH < 4rp. (80)
j=0

Hence, by Lemma 3.6,

1Wit2 — Wit1 ||Ok+3s/3k+3v"k+3
= W1 + tir2, 1+ Vit2) — Ykt 1€ M Opis.Brisoriss
3rk+2||q}k+1”Ok+21ﬂk+2qu+2 %

2rk42 — rk43) Pz K2
49

- 6rori+2€ ,{512
(k2 — rie+3) Br+2

(SR

< &r4ns

since (32) implies that (27) holds for 8’ = Bx+2, B’ = Bias, ' = reaa, ¥’ = rge3.0

5 The above lemma shows that, with U in (68), for every w € Oy (R), the sequence
{W o W} converges uniformly to an injective holomorphic mapping WV, : C(f — C?
as it is a Cauchy sequence:

sup W o W, (&, n) — oW, )l
(&.m)eCk

< WY = Wi llw,0.r

v

<IPUR D W) = Wil parin

j=v
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v 4
< ||\1/||Rze; — 0, v— o0.

jzv

We shall denote ¥, , the restriction of Yo vy, to C(f. Moreover, recalling that U is
tangent to identity and combining with (80), we have, for every w € O (R),

o0
v 1
wpW%@mngww(wwaﬁﬂ+iﬂmﬂ—wma%mNM)<R%
(57?7)60(5 v=0
(81)

which implies that ¥, (CX) c A (0, R%).
For w € Oyq1(rv+1, fu+1), we have

. . Setvi1(En)
wrlod o To(l) o(Wow,)= T521 _ e_i . ;? + Puti ,
e 2 + gy

. Ev+1 v v
with || py1 ”w,ﬁu+1,rv+1 > 1 qv+1 ||w,/3v+1,rv+1 < ;_O and (WoW,)op=po(Vol,)

implies that
2 1 _ v o 2 v
1 =porop=0 ol orP o (Fow,),

1 2 _ v v
Uu+1=T5_310f§_:1=‘L’vlo\I/ Yoopo(Wow,).

Hence, for every @ € Ox(R) C ]—R?, R*[, the sequence {a,} restricted to CX
converges to a real number p, = doo(w) With ay = ap + X:‘jzl(ozU — ay_1).
Indeed, since for any v/, v € N with v' > v,

U/

1
3
ay — Aylwo < E |aj—ocj+1|w,ﬂj+1 < E €; — 0, v— o0,

j=v jzv

it is a Cauchy sequence C] — 1, 4w + 1[. In particular, combining (51) and (79), we
obtain

1 1 /4
oo = Mo < leo = Aoy + Yl —evillo, g, < 7+ D801 < -

v>1 v>1

Furthermore, we have

e—%uwg e Moy

iﬂw ile
<w;10ré”oww><s,n>=(” ’7>, <wglooooww><s,n)=(e ‘5).
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5.3 Whitney-smoothness of holomorphic hyperbolas

Now let us show the smoothness (in the sense of Whitney) of 11, and ¥, with respect to
w € Ox = Ox(R). We refer to [8, Chapter 6.1.4] for Whitney-smoothness notions.

Givenr € Ry \N,letk, := |r] = max{k € Z : k < r}. Givenaclosed set O C R,
given a family f = (f))o<i<k, € (C%(0)k*!, we define its Whitney-C" norm to be:

| fi(®) — Pi(w, &)]|
|(,z)—a)/|r_l

|fley, ) = sup |fi(w)| + sup

e »,0)eO?, wta
0=l=kr R

)

where P is an analogue of the (k. — [) — th Taylor polynomial for f7, i.e.,

ky—l1

1 )
Pi(w,0) =Y 0@ =Y.

J=0

Such afamily f = (f))o<i<k, € (CY(O))k+1 is said to define a Whitney-C” function
f if its Whitney-C” norm is finite:

| fler, o) < +oo.
Given an open set U satisfying O C U C R, forg € C kr U), we define

Dkr w _Dk, (1)/
glcran == sup 1§D (@) + sup D™ g(w) /rikg( 1§
(w,0)eld? lo — o |" K
w#o

weld

0<I<k,

| D% g(w) — DY g())]
|a) _ w’l’*k’

iglcr) == sup gV (@) + sup
(w,0)eO?
w#o'

0252,
We have |g|cr ) < |glcr@)- According to Chapter 6.1.4 of [8], the norms | - |C;V((’))
and | - |cr(©) are equivalent. Given A > 0, this last norm can be extended to func-
tions defined in a (complex) A-neighborhood O + A = {z € C : |z — w| <
A, forsome w € O} of O as well. Following Zehnder [49, (2.5), p. 109], Cauchy’s
estimates can be generalized to “derivatives of non-integer orders” of holomorphic
functions g in a neighborhood U of O such that |g|crqy < +oo:if ' < r (not
necessarily integers) and A’ < A, then there exists some constant C, ,» > 1 such that

Cr r
, < d
lglcr+a) < A

A_ Ay 18ler (0 ar (82)

Let us consider the sum oo = “0+Zu31 (oty —ay—1), which converges in C¥(Ox)
if § € Ry \ Nwith s < 16s. Indeed, according to (51), we apply (82) to a1 — oy,
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v € N,withr = §, r’ = k;. Since B,41 < ,BU_H , there is some constant C; such that

l
SupOglgkg ”(O‘V-H - aV)( )”Ou+1»f3u+|,ru+|

IBV—H

lov41 —avleso,) =

= Ll
)|
5

< Cgb‘

. 1 1 .
Since 3= 3 > 0, according to (54), we have

11 Cgé‘g 2
2 3732
o4 _051|(;5((’)00) <G; E & < —==5—>0, v—> oo
[>v I>v 1—¢ 8-96s

1
C§88 i
Ooo — (X()|Cv (On) = Z lovy — oty 1|CV ((’)oo) = 32.‘;—3 :
v=1 1 _ 8084 65

With fixed wg € O, let us consider the sets

Uy, := {a)e(’)oo : ’3
)

R R
52}: Clg():{(évn)e((czfo):%_WZwO’ |§|s |77|<5}

R
Let us define, for all w € U, the map «, : Cafo — C(f tobe k, (&, n) := (wﬂoé, n). We

~ ~ R
then define W, , := W, , 0k, and W, := W, o &, on C,. With the same argument,
using Lemma 5.3, we have

sup [Wo (&, ) — o0&, M, WUy

@,n)ecwo
= Y WouEm = Vo1 (6. 0)
&, n>e67 vzl 5y (Uug)
< CG U)O)Z (R \I"U*1|Iov+1,l3u+1,ru+1
- v>1 lgv+1

1

4_ 1
d_L C(S, wp)ep >

> 0
<CGoan) ) o) & <

v>1 1 — gyt

Here, C(5, wp) > 0 is some constant that depends only on s and wg. Hence, \I/w is
R

Whitney smooth in  and holomorphic on CJ,.

As a consequence, there is a C’-Whitney smooth family of holomorphic invariant
curves of 7, 7§ and o, for 16s — 1 < § < 16s.
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6 Involutions and reversible maps

In this section, we describe some properties of a pair of germs of involutions 7y, 72
asin (61) witha = «a(én) € A]g’r(O) satisfying (55)—(58) with O, = O, together
with p,q € Ag (O) with |[pllog.r. lgllo.psr < % Hence, according to Remark

4.6, if we take the involutions (7, ) = (t,fl), 1152)) for some v € N, described in

Proposition 4.4, then the above assumptions are satisfied. We also consider the germ
of mapo = 11 0 13.
Given 0 < ry < r, recall that we have defined r and 7 in (60) between r and

ry:
r(m)=r+~|—%(r—r+), m=0,1,...,8, F:r(4)=r+2r+. (83)
We assume, from now on, that ¢ is sufficiently small such that
1 16 1 16s L 2
2400s
'7“', o) Qos F D Femn” (84)
In ( + )| (r—ryry

It is easy to see that (32) holds if we have
gy =§& Fy=TF, Fysl =Tr4t.
6.1 Properties of a(-)
Recalling (22) and (59), we define
B el ea], py=piclem o], f=1683, O¢.p) =0N—r>+p,r’—fl.
The definitions are compatible with (30) if we take

e=¢ey, B=PBu, Br=Put1, B=PB, veN

The smallness of ¢ in (84) implies that of 8, B+ and B, and we have
ﬁ+<}§<ﬂ<ﬁ% <2716, (85)

.. €1
As it is needed below, we also have r~! < B 32 and

~ -\ k - -
o 98 (98 98 1 78
8 1+ — — =14+ — - 1+ —. 86
es < +8k§0<8> +81_%< +6 (86)

Then, according to (55)-(58), we have
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< qg and [a®] o < B = for2 <k < 16s.

Lemma 6.1 |a ‘O(r g <10

Remark 6.2 The non-degeneracy condition (56) is essential through this paper. Nev-

ertheless, we only need the estimates of Lemma 6.1 in the rest of this section.

Lemma 6.3 For every w € O(r, B), |a(En) — 05(60)|a,,5 < %B and

@ En) —aV (@), 5 <
Proof For (§,n) € C, g we have |£7 — w| < B. Developing «(-) around w,

|Ol(k)(a))| _ a)|k _ Z |a(k)(a))| . Bk

laEn) — (@) = Y = — 1€ x
k>1 k>1
According to (85), we have
_ 1= _1
pRp 165177 <10pi% < L.
215 201-p) 90
Then, in view of Lemma 6.1, we have
f jo® ()] - B¢ nﬁ . ﬁ’i fjﬁ LB 10
- . - — - = < — .
= M B
Since 47 + 1 < 2*, Cauchy’s inequality and (55) lead to
2k k! - 2k+4
la® ()| <k! sup |a(z)]- P k> 16s + 1.
B

|Z_w|=2

Then, we obtain

3 QI 5 2B ™ (2%)1(

! k
k p k>16s+1

k>16s5+1 k>16s5+1
24 (25,3

1 - 25p%

) 16s+1

According to (85), we have —— < ‘—3‘ and

1-48

]63+1
24

24 'Bg IBZS < 2_12ﬂ2 < ,32‘
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Therefore, we have

24’3% 4’32

16s+1
aBwl-p 2 (28Y)
<

k! sgr I3
k=165+1 : 1—2°p4 1—p3

Adding estimates (87) and (89), we obtain |« (&n) — a(a))|w,5 < %,5
For (&, 1) € Cw,ﬁ’ and I < j <s, by Lemma 6.1, we have,

|oz(j+k)(a))| —35

p

< —. (89)

72

1 16s—j

@ (En) — aP ()| < ZTIEn —off < ﬁTn > B
k=1

k>1

i+ k 1. J+k+4 gk
+ Z v k)v . Bitk £
k>165+1—j ’

Note that under (84), fork > 16s + 1 — j > 15s,

(G +h)!- 2j+k+4‘3'k

. k_ . &
: < 2 HSkHAgE— gis
k!.ﬁ]+k

Hence, we have

ol

2

,3 16ﬂ312 ,B 16(x—11;+27j ﬂ %7
Wm@m—am@NSE( + )< :

1— B

By Lemmas 6.1, 6.3 and (88), we have

Corollary 6.4 sup,,co - g |a’(§n)|w’5 < g,

[

(k)
sup |Ol (57))| g < k12k+5
weO(r,p) @b e k>s+1,

izﬂ—fz 2<k<sifs>2

Corollary 6.5 Forany b € R, and any 0 < ' < B, we have

sup  |elbeEn)| o3 IbIB.

weO(r,B)

w,p <
Moreover, for —1 < b < 1,

. 5.
sup |[eP*CEM| — 1 < =B.
weO(r,p) wp 4
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Remark 6.6 By Corollary 6.5, for b € R with |b] < ,3’%, we have sup,co( g
. -1~ ~

leiba @m0 < e®B 5B — o186 forall 0 < B/ < f. Since B < 25, we usu-

ally use the rough estimate in this paper for convenience:

. 101
sup Jebe €| o Tog Vb ERwith b < B4

weO(r,p) 0’

Proof of Corollary 6.5. Sincea(w) € R, [e?*(@|=1.Then |e!P*EM | = |elb@Em—a(@))
For (&, n) € Cy, g/, we have

k k
ebEm—a() _ + Z _(05(577) _ O{(a)))k
k>1 !

If |b| < 1, then, under (84), |b|la(En) — a(w)| < %B is sufficiently small, and we
have

sk pk
@) 1] = [t 1| < 13T @) — ato)!

k>1

o0l\o
™

p.

IA

-llell

—35

ooI\o

Moreover, for any b € R, any 0 < 8/ < B,

kk

1bot(§17) v _ k
oy =2 @ @)
k>0 w,f}
|bI* (9 ~>k %1616
< Z — =) =es”".
= k! \8
O
Lemma 6.7 Given 0 < r’ < r, assume B is sufficiently small such that
B <rt—r" (90)
Given0 < g < B, and f € Ag 1(O) with
Iflo.p . < B, 1)
then a(En+ f) € Ag . (O) with
5
laEn+ f) —a@Emllop. < Z”f”(?,ﬁ’,r’» (92)
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and for —1 < b < 1, eb*En+f) ¢ Ap: (O) with
. . 4
||elboz($77+f) _ elba(é‘n)”aﬂ,,r, < g”f”@,ﬁ’,r’- (93)

Remark 6.8 Recalling rm given in (83), we see that, under the assumption (84), (90)
is satisfied for

(m+1) (m)

r=r r=rm, m=0,1,...,7.

Indeed, according to (84), we have

Lo ooy (r—ry)(A5ry +7)
(165 + 1)16s 8
— (r(l))2 _ (r(O))Z S (r(m+l))2 _ (r(m))Z

Proof Let ¢ := || fllo,p - (91) implies that, for (&, 1) € Cy, g, 0 € O, '),

En+ fE ) —ol <|En—ol+flog., <B+s <8,

and (90) implies that r'> — g’ < r’? < r?> — B.
Developing «(-) around &7, we obtain

(k)
a(En + f) — alEn) = Z"‘k—(f”)f". (94)

k>1

By Lemma 3.3, for every w € O(r/, B'), we have || ||, g ,» < ¢* for k € N*. Then,
in view of Corollary 6.4, we have

leEn+ f) —aEllw,p .-

_ 1 k ok k
_ Sct+2p7m Zi:2%+252k3s+1,3—§v s =2
2k k b
g§+252k22ﬁ_i’ s=1

which can be bounded by %g under assumption ¢ < %% Indeed,

e if s = 1, we have ¢ < %% = B%*, then

k _k 7 B
S s 2'¢S 5 Bk 2gn
D e
X L pE]
k>2 B k>2 G2 k=2 1—2¢>

e if s > 2, then, ¢ < B?* implies that

S 2k ck S 2k ck S RERY. 275_27ﬁ
2y 5 <2 ) —k<22(25 2‘”) =— -

s -
k>s+1 k>s41 G2 k=2 1—-2¢72%
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S gk 1 i 5‘72451«32 . gz 5-1724;.32
Z<pmYy Fc——2 = —
k! 1— 1 —

=2 k=2 S S

w‘__
9l

28~

k

According to (85), we have

1 1 1

5—<§1—m<§1—m<§1—m<ﬁ22<2—16'32'22_

Hence, we obtain these rough estimates

275_1—% 1 gl—ﬁ 1
— <=, —— <——, VYs>1

As a consequence, we have, for every w € O, B)), lle(En + f) — aEMllw,pr <

gg + ﬁ < %g. By Lemmas 3.3 and 3.4, we see that fk e Ag (O) forevery k e N,
and, in view of (23),

| iloe.sy < Il g™ = frm D,
Hence, according to (94), a(§n + f) — a(én) € Ag (O) with

a® ()
k!

(@En+ f)—aEn); (@ =) (@), VI, j=0.

k>1
For —1 < b < 1, we have

PbaEntf) _ jibaEn) _ ibaEn) (eib(a(émf)fa(én)) _ 1)

iba(51) i“b* k
—e Zr(a(én-l—f)—a(fﬂ)) .

k>1

Then, by Lemma 3.3 and Remark 6.6, we obtain, for every w € O/, 8'),

. : : 1
@) — G Emy g < D, g Y Sl @+ ) — @l g
k>1 "

101 skck 4

= 700 £~ k1ak = 3%
k>1

which implies (93). By Lemmas 3.4 and 3.5, we see that

plbaEnt ) _ jiban _ (eib(a(EnJrf)fa(én)) _ 1) P E ¢ Ay (0.
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Lemma6.9 Given0 <r”" <r' <r < %, if B is sufficiently small such that

" 2
862 < (' — r")r", e%ﬂrr—/ <1- /13—6, (95)

then for =1 < b < 1, for0 < B < B, h € Ag ,(O) with |hllo. g, < +00, we
have h(eP*EMg =1baEnyy ¢ Agr 1 (O) with

(e EMe, e PXED 10 gr o < (Rl 0. g7 -

Remark 6.10 Under the assumption (84), (95) is satisfied for
p=r D =t =01, 7. (96)
Indeed, (84) implies that

1 7 r+ 7 r+
e (i Yo m( Ll
77 n<8+8r> ‘n(8+8r)‘

1
(16s + 1)1 | Ing| - g24002

(r—ryry

> 287 > Zﬂ. 97)

Then we have

_ (m+1) _ pm)y,-(m)
(r—rory 8@ m rimyptmn < (P _ pmy ),

887

S 7065+ )16 = 7(16s + 1)1

@) >

T LA T (U W S -t
es ,,(8)_68 8+8r <e 8 <1 6

Hence we obtain (95) for the case (96) by noting that, for 0 < m < 6,

Fm 8rp +m(r —ry) 8rpo +(m+ D —ry) pmth
< _

P e A n+ D =) 8ry +m 2 —ry)  rmD

Proof In view of Corollary 6.5, we have, for every w € O@”, B”),

Hh(eibas’ e—ibolr)) H
w

,ﬂ”,r”

< |h0’0|w p + Z ‘elblah[,o‘ r//l + Z ‘e_lb]aho,j‘ G
> w,B - w,p
>1 j>1

< |hool, 5+ D e8P hyol, o + D e8P [ 5| r"

>1 j=1

25’,// l p 25’,// J g
< ool 3 (35) Il 4 3 (32) ol

>1 j=1
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< Wl pr

Noting that, for /, j > 0,

(h(eihot(én) £ e’”’"’@”)n))l j (@) = hy_j(@)e? D@

we see that h (eib"‘@”)g, e‘ib"‘@”)n) e Agr . (0O). O

Lemma6.11 Let 0 < v < r' <r < yand 0 < 28" < B’ < B. If B is small
enough such that (95) is satisfied, then for h € Ags ,» (O) with 2llo,p, < +00, for
J1, f2, 81, g2 with

12

p
Ifmllo.p s gmlloprr < To m=1,2, (98)

we have that, for —1 < b < 1,
Ih (e EPg 4 f1, 7P EDn 4 g1) — h(@*EVE + fo, ey 1 go) 0,70

3r'|lkllo,pr

= p max {|| fi — fallo.pr.r. g1 — &2llo.p70} -

Moreover, if f1, f2, &1, 82 € Agr r (O), then

h(eP*EM g 4 g1 o700 EMy 4oy — (P EMe 4 fr, o7 EMy 4 00y € Agn i (O).

Remark 6.12 We deduce Lemma 3.6 from Lemma 6.11 by taking b = 0, with (27)
verified by (95).

We postpone the detailed proof of Lemma 6.11 in Appendix A.

6.2 Properties of the perturbation

Recall that 71 and 17 are given by (61) with p, g € Ag ,(O) satistying (62).
Lemma6.13 For0 < k < 16s,

1
_i i - €3
€2 o.M o gy - €200V loeo gy < 15 (99)

&

Proof By (19), Corollary 6.5 and the assumption || pllo g, < 15, We see that

sup (e 2% po.)(2)] < weor?, .

lz—w|<pB 1000~ ’
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Hence (99) is true for k = 0. According to (84) and (86), we have

=N

(16s)leisPed 1 1 101165+ D'Semhn

< g2 1920 <g% 1920 <
10r 10007+ 1

™
W=

)

Indeed, according to (84), we have

1
£ T9205 r—ry

_ T
7(16s + D16s ~

<

7
In <— N 6s+ )10 —ry) <
8 8r

r+

Hence, g5 < £ T < r+. Then, applying Cauchy’s inequality and recalling that
~ 1 ~
B e [16s7, 1667 |, we have, for 1 < k < 165, w € OG- 7, §),
SUP|._ o 1(€72% p0.1) (2)] (ms)ve% Pex g3
< —.
16k 3 10r 10

(e 2 po.)® ()] < k! -

The proof for e%“ﬁo,l is similar. O

For o = 11 o 72, we have

exp {4 (w(en+e2ng + 36 + pg) + alem)) | &
+eXp{ algn+e” 2“nq+62“§p+pq)}q($ n)
o'(%"n) — —i—p(e 2a77+P ezaé‘l'Q) .
eXp{—- (a(€n+e 2 nq+ez $p+pq)+a(€n))}
+eXpH_—za(Sn+_e 2“nq+e2°‘ép+pq)}p($,n)
+q(e™ 2% + p, €2 +§)
_ (eF s+ £ )

e 2@y pem |

Hence, we have
i _ig - lge = | == i
f=<eXp{§(a($n+e 2"ng +e2 ép+17q)—a(€n))}—l>e
1 i i i i
+ exp {Ea(én +e 2%ng +e2%Ep + ﬁé)} q+ple 2 n+p, e’ +q),
(100)
i PV Toe = — —ia
g=<6XP{—§ (a(€n+e 2%ng +e2 Ep+pq)—a(én))}—l>e n
i i i i i
+ exp {—50!(577 +e 2%ng +e2%p + 1367)} p+aqle 2n+p, e +q).

(101)
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Lemma6.14 f,g € Af;y,m (O) with

31
£16

i’ i i . i i i
Hf W (g g e s — e3G — plem . eﬂ@” S 80
2 04so 80

(102)

- . i . ?7'
Hg+—la (fn) €3G + eI pley — ¢TI — g (eI, eF S)H w

< .
O,ﬁ,rm 80
(103)

Proof According to Lemmas 6.7 and 6.11, we see that p(e_%"‘n + p, e%“g + q),
qle 2%+, e2%E+q) and a(En+e~ 290G +e2%E p+ pq) are elements of Az, (O).
Then, by Lemma 3.5,

i T
exp {iza(é'n +e 2%ng +e2%Ep + PQ)} €Az, (0),
i T
exp {i§ (aten+e3ng +e36p + pg) - a(Sn))} eAg, ().
In view of (100) and (101), combining with Lemma 3.4, we obtain that f,g €

Ag 0 (0).
For (¢.1) € C1 .0 € OGP, B), we have

(exp {%(a(én +e73nG + e 6 + ) - a(én))} - 1) g

, ik ; ; k
= ey s (an+ et g + 6 p + 53 — a(en))

k>1
_ i —lapa 4 ehag 5 gl 104
—y(&n)(e ng +e ép)e (104)
i . i )]
+geendes g+ 25 3 E g R+ )
j=2
(105)
) ik I SO k
+66 Y s (wEn+edng + ¢ 6P+ ) —atem) . (106)

k>2

Since lIpllo,g.r llgllo,pr < 10, by Corollary 6.5 and (86), we obtain

haps b Sy G g < ET e &
lle™2%ng +e2>"6p + pallp g0 < +100 <10
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Hence, applying Corollary 6.4 and Lemma 3.4, we have, if s > 2, then

- i )] i i i
N S g 4 e + iy
= O,B,rM
Ky . 93 i / 63
. 1 j (N pgh 2Ji+5g] 2
<rMeif pa (L) 4+ R
j1\10 BI10J 100
j= Jj=s+1

Otherwise, for s = 1, we have

ie® aPDEn) i, i
: j'én (e72%ng +e2*6p + pg)’
Jj=2 ’ O.B,r®
rDedb — 2045g0 i

2 7107 = 200°
in P

=

Then, the || - [|» ., -norm of terms in (105) is bounded by

8% 3r(7)e%‘§ ( e )2 8%

— — —. 107
200 5 \10) <160 (17
Applying Lemma 6.7, we obtain
g - lge = - £
le@En + e72%ng +e2%Ep + pg) —eEnllof,m < g
Hence the || - ||(9,B,r<7> -norm of terms (106) is bounded by
k 2
M3 é £
rDesh > TR < 100" (108)
k>2
Since ||p||0’ﬂ~’r(7) <lprlogr < %, by Lemma 6.11, we have
Ip(e™2%n + p.e2%E +§) — pe™2n.e2°8) 5,
! {lpl lqll - lpll
< ————— max 5 (7 5 . -
r— B Plo g rm-> 140 g 0 Plo.g,
2 31
3re et6
< < —. (109)

1
s

T 100 16(- — rMyem 200
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Moreover, by (93) in Lemma 6.7, we have

i O N I _
exp{za(§ﬂ+e 2%nq +62“EP+PCI)}¢]—62“(§”)CIHO .
Bor

i SV i
< eXp{Ea(€n+e 2“nq+62“€p+pq)}—ez°‘@") ~ ldllog.o
O,,rM
4 & ¢ &2
_he e (110)
3 10 10 75

Hence, (102) is shown by combining (107)—(110). The proof for (103) is similar. O

Corollary 6.15 || I 5,0+ gl 5,0 < &

Proof Lemma 6.9 implies that

_i i _i i &
Ip(e™2n, €28l g m» llgle™ 290, e2°E)llp 5.0 < 10

Moreover, we have

ia’ i i .
e
2 0.5
i’ i i . 3e2Pr2e
(E’l) (e—fané + ejasﬁ)e—lan ‘ < € r ,
2 0.5.r® 50
o 2
A . B
o= iy = elol¢g
le2*qllp g, . le"2%pl, 5,0 < o
By Lemma 6.14, the corollary is shown. O

Let C&.m) = fa'&m (e 4Cng(e, m) + €20 (e, m)). Applying (19),
we have

Corollary 6.16 C € ‘AB,N) (O) and we have

31

_ T = _ o _ €16
Hfl,o e2%qro—e2“pos —e“Cio10 050 < BOGY” 1>2,
(111)
1o
i i . e
. a0~ ., 3] . _ 1 . o
Hfo,/ e2%qo,j —e 2% pjo— (e Co jt1 050 < Bogmy I >0,
(112)
i
_ —da = _ L —ia €
ng,o e 2%pro—e2qo + (Eme " Cry10 04 = oG [ >0,
(113)
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31
&6

_ehas o mdieg e '
Hgo,j e 2°po,j—e 27gjote CO’J_IHO,E,N) < 800 )7 Jj=2.
(114)
Recall that 77 o 1 = Id, which means that
exp {3 (a(en+ e3ng + e 36p+ p) — ot |
+ exp {-a(én +etng e % p + pq)} q
<$> | e+ peive g,
" exp{—- (a($n+e2°‘nq+e 2“$p+pq)—a($n))}
+ eXp{ Ta(En +e2%nq + e 2% p +pq)} P
+q(e3n + p, e 1% +q)
Then, similarly to Lemma 6.14, we have
Lemma 6.17 We have
31
io (En) ets
T (e “ng +e” 251))€+ezq+p(e2 n,e 25) < ==,
0.5, 80
(115)
i/, i
i £
” 1 “ng +e” 2%‘p)rﬂre 21v+q(e2 n,e 2%)” < .
0.5 80
(116)
Corollary 6.18 We have, forl, j > 1
i i rDets
Eme2*qro+e 2% po)llp g,m < 0 117)
31
iy _ig4Da _ig CigeDa eTs
H(én)(e2 qrero+e 2 pg ) + e pry g+ e 20D qO’I_IHO,B,rW) < 000y
(118)
%
_ig LD iy - Da e
H(En)(e 2%po i1 + ezt )+ e j1 +ezUD Pj—l,()”ovﬁyrm < 2001
(119)

Proof Due to cancellation of terms, we have that

n(la (Sn)( Ung + e I%Ep)E + e2% + p(ei®n. e 2“5))

+$< o (én)( “ng + e TEPIN + e 2 p + g%, e 2"’5))
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= 2% + e 2% p + np(e2®n, eT2%E) + Eq (%, T IYE).

Hence, by (115) and (116),

€3 + e I%Ep + np(e2®n, eT2%E) + Eq (e, e‘%“%‘)H i
O,f},r(7)

31 31
el6 rDels

<2r?.
80 40

The corresponding coefficients under the decomposition (16) satisfy (117)—-(119). O

Corollary 6.19 We have

61

iy g ) £32
lle*"qro+e>"porllo g, < o5 (120)
61
1e2%G10 + 2 pot — frollp 5,0 < ——mr (121)
s s s O’ﬂﬁr( ) 60}"(7) )
61
le™ 3% Fo.t + e 310 — g10llp 4,0 < e (122)
’ ’ DROLrD = 60,

Proof Note that (117) actually means that

iy _ig rMeis
[(e2%ng +e 2"Ep)oollp g, < =0

Hence we obtain (120), since in (115), the coefficients of the term £ 7 satisfies

31
16
< —.
O,B.r® 80r(

i’ i i i i
#(ﬂanq +e 2%Ep)oo +e2%0+ e 2%po

In (102), the coefficients of the term & satisfies

31
£16
< S~
0.5, 80r(

i’ i i . i i
G) e 2%nq + e2%Ep)ooe” —e2%qr0 —e2%po,1

=

then we have (121). The proof for (122) is similar by applying (103). O

6.3 The skew terms
In the KAM-like (or Newton) scheme stated in Sect. 4, we also consider the skew term

e%"‘nq + e’%“ép of 71, and the skew term e ™1 f + ¢“£ g of 0. By Lemma 3.4 and
6.14, we see that both skew terms belong to Aﬁ,r“) (0).
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Lemma 6.20 We have

31

le™nf +e“6gllp 5,0 <2lle2*ng +e 2% pllo,pr + 20 (123)

Proof According to (102) and (103), ™% f + ¢'*£ g can be approximated by

: ia’ i i . i i i
e~y (7 (7370 + 3% p) € + €3%G + p(e™n, ef“é))

- i’ i i . i i i
+el (77 (7370 +e36p) e n + ¢T3 + (e, ei“s))

i

=3 + e+ o2 (e_f“n) ple™ 3%, e198) + e1¢ (e%"é) qle™ 2, e3°¢),

o
up to an error smaller than 84—0 In view of (19) and (25), we have

le™2%ng +e2*€pllp 5,00 = le2*ng + e~ 2% plip 5,0 < lleZ*ng +e 2% pllo g,

By (19) and Lemma 6.9, we have

le™2%(e 2% pe”2%n, e2%6) + e2%(e2%E)gq(e™2%n, €2%6) 0 5.,
< llez*ng +e 26 pllo.p.r-

31
16

Then (123) is shown by combining the error smaller than 84_0 O

7 Transformations on crowns

Fixs e N, 0 <ry <r < le 0<egpB < r2 as in Sect. 6. In this section, we

introduce two types of transformations on the “crown” C!, 8 which will be used in the
KAM-like scheme.

7.1 Product-preserving scaling transformation

Consider the map

fen)
CIE ((92 +AEM)n+ p&E,n)

: (&, cr . 124
(ez"@">+A@n>)—‘s+q<s,n)> €1 € Cop (29

with0 < B/ < Band0 < r' < (r2 — ﬂ)%, where A = A(én) € Ag,(O) with
IAlo.p.r < 15 P-4 € Apr(0),0 = 0(n) € AF (O), with 0(w) €] — 3. 47 + 3]
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forw € O(r, B) and ||0]|0 g, < 47 + 1. Furthermore, we assume |9(S) —slloe.p <

% and

%, l<k<s—1lands > 2,
r_%
27

10©10¢.p) <
i s+ 1<k <16s.

0 satisfies all the hypothesis of « in Sect. 6 (see (55)—(58) in Sect. 4). Hence all the
lemmas and corollaries in Sect. 6.1 are applicable on 6. In particular, by Remark 6.6,
we have

. 101
le®llo.pr . < 18—0 V_pi<b<pi. (125)
For (§,1) € C), 4,0 € O(, B))., let
. . 1
OEn) = (@77 + AEm)Ee ¢ + A ) (126)
be the fourth root, and let us set
v € (0EnE 0~ Enn). (127)

It is easy to show that p o ¢ = ¢ o p.

Lemma7.1 Fork = +1, +2, ©F ¢ AgR, (O) satisfies that

3k|
lAllo,p .- (128)

16" = Tlloprr < =~

Proof Since A € Ag,(O) with [Allos, < &, by (125), we have that e/ 4 +
e A+ AA € A () with
ig = _ig - 101 2 21
le2?A+ e A+ Adllop.r < <5 IAlo.pr + 141G 5, < T511ANO.Br-
For k = 1, 42, we have

1+ e A+ e 294+ AR — 1]o 4
Ik| e A+ e 1A+ Ad|lo g

<
- . k
1 4

T - i - 1-
(1 —lle2A +e 294 + AA||@,,3,,,/)

< k2 | Al 1 21 A -
=74 "10"NOpr 10" OB
|

31k|
= T||A||(9,/S,r~
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By the expression of ® in (126), we obtain that ek e A]E/’r/ (O) and (128) is satisfied.
O

Proposition 7.2 If |Allo g, - satisfies that

4(r — 1)

= (129)

lAllo.p.r <
then @, as defined by (127), satisfies |l¢ — Id|o g, < %||A||o,ﬂ,, and, for every

w € OF', B), we have (p(C;/) 1) C C,, 4. Furthermore, there are 0, € AIE//(O),
P+, q+ € Ag (O) such that

360+
(w‘orow)(s,n)=<e e )

e 10 EVE 4 g (£, )

0,(En) — 0(En) = —i(e 19EM A(En) — 296D A(en)), (130)
3

Ipsllop.r < (1 + ZnAno,,g,r) Iplos, + 1415 ,,. (13D
3

lgillop ., < (1 + Z||A||o,,g,r> lallog, +1AIL,,.  (132)

Moreover, we have

_ig _ip
le 2" &p+ +e 2" ng+llo,p

< lle™¥&p + 2 ngllo . + 1Alo.pr (P06 + Idll0p.) + 141D 5,
(133)

Remark 7.3 At each KAM step, we always work with the involutions of the form (61)
with p, ¢ € Ag,,(O) satistying (62). After conjugacy by the KAM transformation,
the new involution, denoted by 7| (resp. 7o = p o 71 o p), has the form
- AEMD + pE, ) >
7105, = _ ~ 5
16 m (A LEmE + G

with new perturbations p and g of much smaller size than p, g. Nevertheless, the new
principal part usually does not satisfy | (w)| = 1 (but close to 1). Hence, an additional
transformation ¢ (as in (127), see also (71)) is needed in order to preserve the same
form as 7 in (61). This is similar to the role of Theorem 3.4 in [40] for the formal
hyperbolic non-exceptional manifold case.

Before the proof of Proposition 7.2, we show the following lemma similar to Lemma
6.9.
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Lemma7.4 For0 <1’ <randh € Ag,(O) with |hlo,p, < +00, if |Alop.r is
sufficiently small such that (129) is satisfied, then we have h(®&, ®~ ') € Ag 1(O)
with

1h(©, 0~ 'llo.p . < Ihlo.p. (134)

A, prr/—(r—r")

Proof According to (129), we have (1 + 3|Al, 5) & = 1+ 2oefm 000

r r

Therefore, with the help of (128), we obtain for w € O@’, B'):

|n©&, 07" )|, 5 < 1ho0lwp + D 1hi0lw g 1O, gr" + Y 1ho jlup O] 4

I>1 j=1

3 1 ' 1 ,

< lhoolwp + ) (1 + Z|A|w4ﬂ/> (7) (h1.0lw.p + 1hotlw.p)r
=1

< ”h”w,ﬁ,r-
Since for [, j > 0 with [j = 0 and w € O/, B), (h(OE, ®’1n))l j (@) =hij(@)-
O/~ (w), we see that h(O&, O~ ) € Ay, (O). o
Proof of Proposition 7.2. With ¢ defined in (127), we have

g loTop= 9_2(577)(6%0@") A <®_1(Sn)p(®$’ 9_1’7)>
@2(En)(e2?EM + AEn) ¢ IR A

In view of (134), we obtain

lpec0 |, <lplops |a@c 07|, <lalos.

O.p.r 0.p.r

Combining with (128) together with B := 1 + %||A||@,,3,r, we have

0 'y, 0! H B , H@ ot 0! ” B .
p(©§ 1) opr " Ipllo.g.r q(©F ) Opr " lgllo.p.r

By a direct computation, we have, for (¢, n) € CZ), g @ € ow', B),

€376 1 Aen)
(376D 1 AEm) (306D 4+ Aen))?
(276D 1 AEm)? 30 4+ Aen) 7T
= 37N (1 4 e HED AE))E (14 e3P A3,

@2 (En) (7€M + AEn) " = e 20EN (1 4 o720 AEy) (1 + e 27ED A(n)) 2.

O 2(En)(e29EM + AEn)) =

According to (125) and (129), we see that e’%e@")A(én) and e%e(gn)fi(én) are small
enough. Then, by the expansion of power series, we have

i

In (14 eTHED A@n) (1 + 270 Ag) F)
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= In (1 b3 (730 A ) — X A + 75(577)))

i

(737D acen) - X7V Aem)) + Peen),

1
2

i

where P, P are sums of powers of (e 2% A, 9%91&) of order greater than 2, satisfying
that

- 1
1Plog. IPlog. < 514154,

i

Now we define 64 (5n) := 0(&n) — i(e2%EM A(En) — 2D A(&n)) as in (130),

which belongs to AIE/ ,(O). Then we rewrite (1 + e_%gA)% 1+ e%‘g/i)_% as

(14 e 2043 (1 420 A)2 = ¢30+—0P
Since (125) implies that
_i ig = _i 101
le2°A 2" Allo g < 2lle™2" Allo g < < I1All0 g1
we have

H@‘Z (€30 4 A) — 30+ = e300 + e 30 4) 1 (1 4+ €30 A) — 30

O,ﬁ/,r/ O,ﬁ/»r,
= [le2bp0+-0),P _ 36+
O.p.r
< e lop ez Do g, lle? =105
101 101 2
—(1+—4 Z1ANS .
< 100( 20 I I|O,ﬁ,r) 3|| 106
< 1A% 4 - (135)
Similarly, we have
32 . (56 -1 —io, 2
O - (e2” + A) e 2 Of < ”A”O,ﬁ,r' (136)

Then we obtain (131) and (132) by letting

g+ &) ) ; ® - q(®&, 071y

<p+<s, n)) @@ a ety | <®—1 . p(OE, ®—1n)>
(O (e2? + A)~! — e 2%)¢ '

Since |Allp,g,r < %, we see that (e%e + At € Apg' r (0). According to Lemma
3.4, Lemma 7.1 and Lemma 7.4, we have that py, g1 € Ag ,/(O).
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It remains to prove (133). With the above py and g4, we have that
e Ep, 4 edlng,
= e 1 () (072 (e + 4) — 1) 37
+eTi% ) (07 (37 + A7 - eTH0) (138)
+e g @ p(OF, @) ety @ q(OF, 071y, (139)

Since (130) implies [0+ — 0llo g < %HAH@,ﬂJ, so that
b ib0 7
™ —e™lo.p.r < §|b|”A”(’),B,ra -1<b=<1,

which implies that [|e?%+ |0 g/ ,» < 2, we see that, in view of (135) and (136), the sum
of terms in (137) and (138) is smaller than ||A||%9 b Let us focus on (139), which
equals to

e 3% 075 p(©F. 071y + e - On-q(05.07')

=27 (OE)p(OF, O ') + 2% - (O g(OF, © )
207 — e 2?0)Ep(0F, 07y + (270 — 2?0 Hng (e, 07

Since Lemma 7.1 implies that |e-! lo.p <1+ %||A||@,,3), < % and

_ _ 3
10 -0 op,r <I1O0=1lopg,+107 = 1log, < SlAllogr,
we obtain that

i i
le”2% @~ —e3"Ol0p

< 2% —e 20 o g, + 10O —O)op
101 3

Allo.gr < 4Allo. -
100 2|I lo.sr <4lAlo.p,

o lA] +
< —-- -
16 4" 1Op

Similarly, we have
le2® —e2°07 o g < 4llAll0.p.r-
On the other hand, by Lemma 7.4, we see that

lem2? - (&) p(©8, ©'n) + 2 - (O g(©F, O 'Nllop, < le 2 Ep +e2ngllop., -

Hence (139) is bounded by lle™2%€p + e2ngllo.p . + IAlop.r(IPlosr +
llgllo,p,r). Combining with the errors in (137) and (138), (133) is shown. O
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7.2 Approximated cohomological equations—Proof of Theorem 4.7

For0 <ry <r < 4—1‘, let ¢ > O be sufficiently small such that (84) is satisfied, let
B, B+, ,3 be defined as in (59), and let r™ m =0,1,...,8, be defined as in (60).
Consider the holomorphic involution

e34E0y + p(e. )
u@n=| _; ’ . GmeC,p weOwr.p)
e 2 ENE 4 g(e ) !
given as in Sect. 6 (same with that in Theorem 4.7), with || pllo, .-, lgll0,8,r < 15-
The rest of this subsection is devoted to the proof of Theorem 4.7. The core of proof
is the resolution of the approximated cohomological equations (see Lemma 7.5).
At first, we see that the definition of O in (63) implies that

| "ED 1= 2. VO <In| <K +1, VEmEC,; we0s  (140)

| >

Indeed, recalling that B =166+ and § > 8086%, by (84), we have

1

Kp1= _mel oy el e ed (141)
In(r ™ /r)| IIn(§ + 55| 2
Hence, by Lemma 6.3, for 0 < |n| < K + 1, we have
Inlla(n) — a@)], 5 < (K +1)- 185 < 18(K + 1)e™ < 20 < %'

In view of Remark 6.6, we have
i i LI _
|elna(€n) _ elna(w)|w’ﬂ~ < eg|n|/3|em(01(én) a(w) _ 1|w,,5

k k
_ 1ol In*laEn) —el)] 5 <§
— 100 k! 2’
k=1

and hence, combining with (63), (140) is obtained.
Define px and gx € Ag,,(O) as

(p1<> _ <P0,0(§77) + Yici<k PLOEME + 112k po,j(én)n'j) (142)
gk )’ QO,O(EU)‘FZ]S[SK ‘Il,O(i:’?)él‘i‘Z]SjSK qo,j(én)n’ ’

Since |Ipllo.g.r» llgllo.pr < 15, We have
|Ing|

g (rD\[mePml g2
lp = pxllog,m la—akllo g0 < o\ =10 (143)
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[SPERNY

Lemma7.5 There is U = ( ) € (.AIEN) (Os))2, with i1,0 = vo,1 = 0 satisfying

49

. £30
D 5 < —,

” Os.B.rM 20

61

N N £32 1, i _i
[ + &0l 0 < S + 5K+ D5 e ng + e 26 pllopr

lalo, 5o (144)

(145)
such that
le2%D — ii(e2*n, e72°€) + px — poanllo, .o
61
e 6(K+1) i i
< — 4+ ———llezng +e "¢ pllog, (146)
80 S
lle™2% — (e2%n, €7 296) + gk — q1.0§ |l o, 5.,
61
€2 O6(K+1) i _i
<— 4+ ———llezng +e *Epllog. (147)
80 S
He_%“‘é (e%"‘ﬁ — Gi(e2%n, e72%E) + px — po,m)
61
+ery (e_%"‘ft—ﬁ(e%“n e3E) + gk — q1 oé) H <=
’ ’ O5.Br® 20"
(148)

Remark 7.6 As mentioned in Sect. 2.1, the aim of the KAM-like process is to eliminate
the main part of the perturbation and get a much smaller new perturbation.

A

In view of (143), we would like to construct U= (g) so that the change of

variables Id + U/ eliminates pxk and gg. This amounts to solve the cohomological
equations (arising as the “linearized equation” of the conjugacy equation),

e3%% — fi(e2%n, e 2E) + px — po.in =0,

eTI% — D(e2%n, eT2YE) + gk — q1.0E =0,

with pg 17 and g1 0& added to the new principal part. Based on the fact that 7| and 7 are
involutions and 71 017 isreversible w.r.t. p, we solve the above equations approximately,
with the errors estimated as in (146) and (147). Then, with the transformation Id + u,
the main parts of perturbations of 71, 72 and 71 o 1 are all eliminated approximately.

Proof Let us define i, ¥ by giving the coefficients: it; o = 09,1 =0,

froEn) — CHDECE f o (En)
claEn) _ g

1
aroEn) = 3 , 2<I<K, (149)
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. 1 fo &) — e UTDECE f (&) .

uO,](E’?) A E . e*ija(éﬂ) _ ela(gn) ) 0 S ] S K? (150)
. 1 groen) —UTDED g o (En)

v,0(n) = 3 I pp—ry , 0<Il<K, (151)
. 1 goj(En) — e UFDaC g, (&) .

o, (M) 1= 5 - = p—r ., 2<j<K, (152

with other coefficients being 0. Here, f, g are defined by (100) and (101). In view of
(149)—(152), we see that if i1; ; # 0, then

L foEm) — e G g ey

ul,](grl) = E e*i(l*j)ol(éﬂ) _ e*iﬂf(fﬂ) - ul,](én):
and if 9; ; # 0, then

= L gj(En) —e I DeE0g, 6

vly,/ (577) — z : e*i(l*]‘)a(én) — gia(SU) - vl,] (5’7)

Hence, according to the definition of O in (63) and Lemma 6.14, i1, 0 € AE . (Os).

With the coefficients in (149)—(152), we have, for [j = 0,1, j < K and (I, j) #
0, 1),

efaﬁl’j — e%(j_l)aﬁj,l
_ g =g U — U (153)
) ell—ja _ p—ia 2 eli—Da _ pia ’
andforlj =0,1,j < K, (. j) # (1,0,
e_%aﬁlyj - e%(j_l)aﬁj,l
39 f . _l—jtDa . L 5(j=Da 4. Li(j—l-Dag.
_ fl,] fl,j . 8j.l 8j.l (154)

2 ei(l—j)a _ eia 2 ei(j—l)a _ e—ia
According to Corollary 6.16, we have
i i _ i _
C = o'Em (e_za(s")nq + ez“@’”él)) € Az . (Os).

Replacing the coefficients of f and g in (153) and (154) and according to (111)—(114),
let us show that, for /j = 0 with [/, j < K,

. ) 1.3
FUN Lo pan ~ glo .
”ezavl,j — 2V l)aujwl +pLj— pl,j”OS”E,rU) < 16(r(7))l+f . (L J) #0,1),
(155)
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3_18% .
W, , j) #(1,0).

(156)

i ig-
_iga Ii—Da~ ~
lle 205141’]' — ez(J )an,l +4q,j _q[~j||(95,5,r(7> <

Here, p, g € Ag @ (Os) with p1,j and gy ; defined by

i g i iy iy A
—e723%Cri1,0 + e Crip 0+ €21 Co 1 — e721%e ™ Co 14

pl,O = (577) : 2(6”“ — e_ia)
1 i
+5 (Pro+e 3 q). 0= =K. (157)
A —ef%aC(),j_l +efijae%°‘(:‘0,j_1 + ef%jaCj_lyo — e%jaefia(:‘j_l,o
pPo,j ‘= 2(e—lje — g—ier)
1 i
+3 (poj+ed0teg0), 22 <K, (158)
N eéalel,o - eil“f%aélfl,o - e%laco,lq + e’%lo‘eiaéo,lfl
q1.0 == Z(eila _ ei"‘)
1 i
5 (qo+e 2 p) . 2212k, (159)
o1 = (&) - e%aCO,j+1 - fij"‘e_%“éo,jﬂ - e_%jacj+l,0 +€%j°‘ei°‘éj+1,o
qo0.j =151 2(e—ija — ¢id)
1 i
5 (a0 +e27pj0). 0= <K, (160)

and all other coefficients of p and g are defined as 0. Indeed, by (153), we have

) ) it i(—Da s
o —ligp e1® go—e"Dug
e —e oy = — g —
2 ela —e 10
P —i(l— 1)«
e 2% for—e fou
2 e —ila __ ei Z(Mk +Nk)
k=1

where, My 1= Mel®, My := Mze @ Ny := Nije', Ny := N3ze ! together
with

3i

e2¢ g i i
M = 2@ — 1) (6’ 2pro+e2'*qor — (Ene 10(CH-I,O) )
e;‘a . .
N = 2(0Tha — 1) (gl,o —e " pro—e'gos + (Sﬂ)eﬂaclﬂ,o) )
—L U+ L y ,
M3z = — 20 1) (67‘16]0,1 +e 2 pro+ (f’?)elaCO,lH) ,
e~ 2+ L y 4
N3 = — 2 — 1) <f0,l —e2%qos —e 2 pro — (gﬂ)elaCO,H—l) .
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By Corollary 6.5 and Remark 6.6, we obtain, for0 </ < K, w € (’)(r(7), B),

N ({2 ) TRNNS YUT. ) PR TP )]
I A 2 A A T S I A e L B T00°

and, by (140), for 0 < I < K| (e*i+De — 1)_1”08 b < 286~!. Then, by (112),
(113), we have

4 31 1.3
101 g6 5§ leTs
Nl 7.0 <4-—8"". . 161
; INtlo, 5.0 =4 1555~ G007 < Tea ™y (161)
On the other hand, we have
e%a —fa Lo —ia
M, = el — o) (e 2 pro+e2%qo — (§ne Cl+1,0)
1 _ i _i
= 2(ele — gy (Pl,o +ezltheg,  — Ene 2“C1+1,0) ,
1 ~ Do = (4N A
My =— 2l — ¢ ) (ffllalﬂl,o +ezl=Dagy, — (En)el(l+2)“C1+1,o) :
1 l(l—l)oz - —ia e
Mz = YT o) (ez qo. +e " pro+ (Ene? Co,z+1> ,
1 _i - _i -
My = — m (6 2(1+1)a610,l + pro+ (En)e 2(l—i_2)0(CO,l-i-1) .

Hence, adding the above terms, we have

4
1 _ _ Li=Da = L= =
pLo+ Y M= pio+ Yol oy [(Pz.o — Pro) + (82(1 Do —er¢ 1)O‘qo,l)]

k=1
(e pro — el pr o) + (e3H Vg — e 3HDagy )
+ z(eila _ e—ia)
e21Cy g — e 3% T9Cy 14y — e 24 Crpr g + €1%e39Cryn
+ (.?;‘n) ’ 2(eil°‘ _ e—ia)
_ prote 20Dy,
2
—e73%Cry10 + €e29Criy 0+ €31 Copq1 — e 3T Co
+ (.?;‘n) ’ z(eila _ e_i"‘)
= pro- (162)

By (161) and (162), we obtain (155) for the case (I, j) = ([,0), [ > 0. The proof is
similar for the case (I, j) = (0, j), j > 2. It is also similar for proving (156).
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Now we are going to show (146)—(148). Since (155) and (156) imply that

ign  a iy i . K5 les
le2%0 — it(e2%n, €72%8) + px — poan = Pllo, g0 < —5
31
Ciga i i . K6 leTs
lle™2% — D(e2%n, e 296) + gk — 1,06 — qllo, g0 < —
it is sufficient to prove
%
. . € g _i
1810, 3.0 1dll0, .00 < 155 T 0K + DS lle2ng + ™26 pllo s,
(163)
o
Cigea, g oA €
le™2%6p +e2ngll o, g o < 0 (164)

By (19), Lemma 3.3 and Corollary 6.4, we have

le'llopr i i
—— le2%ng + e Epllo o

ICo, 5,00 =
3 Lo —ig
< 5lle*"ng +e 2" pllop.r
which gives the estimates for the coefficients: for /j = 0,
ICLillo, g < == le2ng + e 1% pl
l,j (’)(S,ﬂ’r(7) 5(r(7))l+j nq )4 O,ﬂ,}"

Then, in view of (115), we have that

lex“g + p(e2n, e"2%§)llp, 5,0

< lle3% + p(e2®n, e 2%€) — Céll, 5,0 + ICEll o, 5.0
31
ete 3r(M i
< — 7% —2¢
=20t lez®ng + e 2% pllo.p.r

which gives the estimates for the coefficients: for /j = 0,
i ieig _i 1eig
le2*qrj + €39 pj i, jrms e 2 pj+e397% 100, 5.

31
g6 3r(M _i —(I+j
< (—80 + o lletng +e e pllos, | Py,

Recalling the coefficients in (157)—-(160), and combining with (140), we obtain

||131,j||(')3,,§,r(7>, ||qu,j||(95,/§,,<7)
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31
101 (e 3,0 i |
“2%g 2% p - (MHy—+
=200 (%—i_ 5 e 2°ng +e2%6pllo, g | (r )y~
108512 et + e Ty~ +))
+4. 1008 .§||e 2°ng + e? ép”@g,ﬁ,r@(” )

16

31
& i i .
< <—100 + 387 lez%ng + e‘zaspno,ﬁ,r) (rMy=+0,

which implies (163). By Corollary 6.18, we have, for/ > 1,

le™2%(pr_1.0 + e 2%, 1)
31

3 —iu+2 e
+Ene2 (qry1,0+ e 2" )apo,l+1)||@5,g,r(7) < 00T (165)
Moreover, we have
i — _%O‘C i %“C
—5a (577)3 1,0 + (Sn)eja e 1,0 O, (166)

’ z(ei(l—l)a _ e—ia) ’ z(ei(l+1)a _ ei‘)‘) =
 EpeTheese gy

ia _ei(l+1)ae—%ac_vl’0
’ 2(ei(l—l)a _ e_i“)

iy .
et e =0 (16D

o EmeitTVoCy, fo_—ebDaCy,
o » o L
e 2% . 2@l — i) + (En)e2® . 2@l — gy = (168)
o —$U-Da y—ia G, L e alDaie G
~sa Z(Eme ¢ 0L (gt © T

2(ei(l—l)oc _ e_io‘) Z(ei(l+1)<x _ eia)

In view of the definition of coefficients of p and ¢ in (157)-(160), we have, for
1<I<K,

e 2%pr10+ Eme2“gi1o
e i e Eneie
= (pr—10+e 207220 1) +

2 (@10 +e 20 141

_e—%acho + ei(l_l)ae%aélvo + E%(FIMCQ‘] _ 67%(171)0‘8_”6011
z(ei(l—])a _ efia)

+(Eme
(170)

i : i, = i i L=
eiaCZ,O _ el(l+1)aefiozcl’0 _ eflaC(),l +677(l+l)aelaC0,1

Z(Ei(lJrl)a _eia) (171)

+ (Emer”

Combining (165)—(169), we have (170) + (171)= 0, so that

31

iy A iy a 230
le™2%pi—1.0 + Eme*qrrr0ll o, 5,0 < 200 I1<I<K+1.
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Similarly, we have
31

_iga iga i el .
||(€7))€ 2 PO,]+1 +62 ‘ZO,]fl”oa’ﬁ,r(ﬂ < 2(7'(7))/ 1 S J S K + 1
Then, according to (141), we obtain (164) by
le™2%&p + e2*ngll o, 5.,
K+1 . )
<Y e proro+ EMeqiriole, g0 )
=1
K+1 ) )
“3%p 395, My
+ le(én)e 2% po,j+1 t ez qO,]—1|O§6)’8ﬂ+(r )
]:

61
n

2(K +1) o<’
< < —.
ET)

In view of (149) and (150), and recalling that ”f”O,;,B,rW) < % in Corollary 6.15,

we have
£ 65 e

101y (,, 101
100 ) 200y < semyE

larjllo, 5.0 < 100

Hence, recalling that § > SOeﬁ and (141), we have

K

K
lillo, 5,0 <Y ldcolle, 5,00+ lldo e, 5,067
5.8, 5.8, 5.8,
=2 j=0
49
6 £%0
< 2K - =6 ¢ < —.
5 20
49
£350

We have similarly, ||v||05’l§’r(7) < 20
In nit + €0, (it + £0)o,0 = O since i1 o = 1p,; = 0. For other terms, we have

K+1

LAy ]
; H (nit + §0)1,08 ’OJ,E,M
K+1
_ - i . I
= ; H (41,0 -En+Di-10) & ’OJ,B,r“)
1 Kl il+2)a 7 i(l=2)a 5
_ 1 Z fir10—e ﬁH‘OE LYo —e 81-1,0 Myl
=3 l+Da _ ia n l—Da _ g—ia
=1 Os.B.rD
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T fii0+€9g10) — € ((Eme fiii0+ e 810) QN
2 =1 ele —1 Os.8.rD
and similarly,
K+1
N Na ind
Z ”(nu +£0)o,jn HOa,B,r”)
j=1
(e™ fo,j—1 + ENe gy j11) — e fo i1 + Ene G, j11) M)
e—lja — 1 O3 fr®

| K+l
=3 >
j=1

Note that (§n)e™ w[fl-i-l o+e%g_10and e fy i1+ (En)e®go j41 are respectively
the coefficients of £/ and / in e 7%y f + ¢!*&g . Hence, in view of Lemma 6.20, we

have
K+1 K+1
feny gl Ay
Z; H (nit + £0)1,06 HOa,ﬁ,r”) + Z} H (nit +£0)o,jn Hoa,ﬁ,m
= =

a 01 » .
<2(K + 157! (1 + W) le™nf +e“6gllo.p.r

01\ (et
&

2K+ D51+ — +2lle2ng + e 2
<2( ) < 100)<40 le2"ng +e %‘pllogr>

61

€32 B —ig
< 1—+5(K+1)5 lez®ng +e 2" pllo.p.r-

This finishes the proof of Lemma 7.5.
A . ) ) "
Id + U is invertible on Cw!B and ¢(Cw,/§) C Cw’/3

By Lemma 7.5, we see that ¢ =
,5[. Indeed, according to (144),

forw € 05D, B) = 05N 1= (rD)2 + B, (rP)? —
(145) and (141), we have

|’nﬁ+$ﬁ+ﬁﬁ||05’5’r(7>
61 49
< S b SK + D8 e g + e Epllo s+ o
16 4 PROB T 400
61 49
pskLnsl e en 8
< — —_——  — .
16 200 10 400

Then, in view of the definition of the set given in (15), we have for any (&, ) € C” (;

withw € Osr D, B),

[ +aE ) +0E, ) —ol < |En—o|+ |niE, n) +EDE, n) + aE, n)IE, n)|
< B+lni+E0+adle, 0 <Bhred <p
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A ~ 49
E+aE ml, In+0E | <r? +e% <r,

noting that, under the condition (84),

&
©°

r—r
R

9 B )
2

1
£0 < g5 < <B—B, &% < £240052 <

Moreover, since i, U € AIE D (Os), we have, by Lemma 3.1, po ¢ = ¢ o p.

With ¢ = Id + U constructed above, we define 7; := ¢~ o 11 o ¢. For any
h = h(&n), we define the linear operator Lj, by:

[Lh (112)} &) = "ENep & ) + " EVypaE. ). (172)

1

Lemma 7.7 For 7y = ¢~ o1 o ¢, we have

- (E%a(m + po,1)n ) 2
T, — ((e;“@”) o te € (Azp,.7(0s))",

satisfying that

3 eraEn 4
TG
(€25 + po1) &

Os,2B+,7
61
e 22(K+1) i i
<5t lle**ng +e 2 pllog.r, (173)
. (24D + po ) e%
Lelam—( e, 0 <. a7
(6 + p(),l) g 05,24 F
Proof A direct computation yields that
fl=¢ loriop
LaEntni+Ed+ad) La(Enrnii+E0+00) _ - .
_ ezi ] AMr]—l—ez ) ’ AIA)A+P0¢> Hotio¢ ‘o o0,
e—ia(§ﬂ+nu+§v+uv)é_- 4 e—ia(én+nu+§v+uv)ﬁ +qop— bo Tio¢

withtf = ¢~ —1d + U defined as in the proof of Lemma 3.8. Recalling (142), we
see that

B e%“(fﬂ)_{_
aem—( §., Fro
(29" + po1)” &

0
= <<(E—£a@n) +q10) — (e 4 poyl)—l) E) (175)
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eZ“(S”)v—u(eZ“n ¢TIE) + px — po.1n (176)
e 1%EN G — H(e3%y, e I%E) + qx — g1 0k
P — Pk po¢—p
" 177
( —qK) <q0¢—q) 177
La(en+ni+eo+ad) _ taEn)
+ eZ e? )(77+v) (178)
(e~ 2¢¥(En+nu+§v+uv)_e 204(5;7))(%._’_“)
- (uo o —Z/l(ef"‘n,e_f"‘é)) + Uot 0. (179)

In what follows, we shall estimate the norms of terms (175)—(179) as well as their
image under L%. We emphasize that if a given term T e (Ayg +,;((’)3))2 satisfies
IT10;,26,,7 < D& with ¢ > 1 and some constant D > 0, then ||L%(T)||(93,2ﬂ+,; <

101 I I
00 D> < Des.

e Terms in (175)
In view of (120) in Corollary 6.19, we obtain, for w € Os(r, 28+),

(2% + po.1)(e™2% 4+ q1.0) — 1lw2p,
%

o0 (180)

i _i
=le2%10+ e 2%po,1 + Po,191,0lw,28, <

Since Corollary 6.5 implies that, for any (£, 1) € Cy28., @ € O5(F, 2B84),

[e3¢ED + po.1@Eml = e — |po,1lo,26, > <.
we see that (e~ 2% +¢1.0) — (€2% + po.1)~ ") () is analytic on O (7, 28..), and (180)
implies that

61

_i i - £
[(e72% + g1.0) — (€2% + po.1) ]|w,2;3+ < 40rD
Hence, (175)e (A2ﬂ+,;(05))2,
0 sg
N . —. 181
H(((e 20‘(5’7)+q1,0)—(62“@77)—}-170,1)l)f) y = 40 (181)
(95,2/3+,r

e Termsin (176)

(Os), which implies that

According to Lemma 7.5, i, 0 € AIE 0

e3ENG — (e, e 2“§)+pK—p01($n)n 2
Aag. 7(Os))”.
(6 2“(§")u—v(e2 n, e 3 $)+C]K—q10(§'77)§' € ( 2/3+,( 5))
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By (146)—(148), we obtain

e3%EN G (3, e 5E) + pyx — po1EM
e" 24N — §(e2%y, e 39) + gk — q1.0(ENE
61

£2 16K + 1)5™
<E+( +1)

Os5.2B4.F
1y 4 _i
le2%ng + e 2%Epllo.g.r

(182)
faEm g _ ey o3 o
Lo [0 0 — (e n, e72%) + px — poa(Emn _&7
P\ e 2%EMi — 5(e2n, e72%) + gk —qLoEME ) | o, 5 ;20
(183)
e Termsin (177)
In view of (143), we have p — pk, q — qx € Az, 7(Os), with
P — Pk &2
H( >‘ < —. (184)
q — gk Os.284,F 5
Since 7 = "+ and B> sﬁ, we have, by Lemma 6.11,
od —
<50$_5> € (Aog, 7(0))%,
satisfying that
49 %9 _ 1 61
"<p0¢_p>H Lo en e R W R (g
gop—gq Os2pe i (r—=0B 20 10 7 50(r —ry) 80

The last inequality follows from (97).
e Terms in (178)

In view of Lemma 7.5, we see that nii + §0 + i € Asg, 7(Os) and

nit + &0+ av 0,28, 7
61

49
<

2 FSK + 15 et g + e e pllops +
16 ngq PlO,B.r 200
8'% —1y fa —ly

45K+ 15 e g + e ¥ Eplo g, (186)

By Lemma 6.7, we obtain a(§n + nit + &0 + ud) — a(&§n) € Azg, 7(Os), and for
1<b<1, eibeEntnii+E0+aD) _ iba(5n) ¢ A2ﬁ+ =(0s), with

loeEn +nit + 50 + i0) — aEn)| o, 25, 5
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61
£32 i i
< +7K+ D8 ez%ng +e 2% plo.p.r,

plbaEntni+Ei+id) _ lba@m‘

Os,2B+,7
61

£32 i i
<5 HTEK+ D5 e ng +e % pllogr, —1=b=1.

Hence, we have

(e%§(§n+nﬁ+éﬁ+ﬁﬁ) — e%“({?"))(n + ) € (Usy (O
(e~ 30En+ni+E+ID) _ o~saEmy (g 4 o) 2B R0

satisfying that

(eza($n+nu+§v+uv) e3¥EMY(n 4+ D)
—seEntniEIHID) _ =30 (£ 4 )

Os.,28+,7

1y ia - 1 8%
< T+7(K+1)8 lez“ng +e 2% pllosr |-\ 7+ 57

()1

< E 2K + 18 Ve g + e Epllo.p., (187)

In order to obtain the estimate of the image under L% of this term, we shall follow

the scheme of the proof of Lemma 6.14. Developing e%”‘(') around &7,

e Entna+Ed+ad) _ ,salEn)

| it
i i n ~ A
= N Y (e 4 i+ §0 + D) — a(én)*
k>1 '

1 N A
= 2"/ En (it + £9)

+ %e%“@")a'@n)ﬁf)+e%“@”)ZOl @")( i+ ED + D))
=

i i* A
+ e2%6m Z T (@(En + nit + £0 + a0) — aEn)~. (188)
k=2 '

49

£25
Noting that ||z0]| 055 < 200" and (186) gives the rough estimates via (144):

49
£30

nit + &0 + il o;.26, .7 < 0"

(189)
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49

~ ~ A A 8T
lecEn + nit + &0 + @) — o (&) ||(95,2,3+,f

—_—, 190

<716 (190)
49

eiba(§n+ﬂﬁ+§ﬁ+ﬁﬁ) _ eiba(én) H < ﬂ’ _1 S b S 1’ (191)
O5,2B4.F 15

we have, in view of (188),

61
3

e%a(§n+nﬁ+§ﬁ+ﬁﬁ) _ e%ﬂl(éﬂ) _ ie%“(sn)a/(?gn)(nﬁ +£9) < _7 (192)
2

0532}34—’;
Indeed, according to Corollary 6.4, we have, for w € Os(7, 284),

5 5 k!2k+5

/ 6 (k) 267, 2<k<s, ifs>2
& EMlo2p, < 50 1P EMlop, < s o

As a consequence, (188) implies that, if s > 2, then,

i " ps ) an i 1 i
TR _ B @ 2 360 ) i+ £9)

Os.,2B4,F
101 6 &% 101 RN
fﬁ?ﬁ*ﬁ'zﬁ‘”;a(%)
koot B 20 100 e 2k k1 \ 16 3

Otherwise, for s = 1, it is bounded by

[l

100 .k \ 16 3
pret IOOk22 k!'\ 16 3

101 6 e%+101zzk+5 e % k+101z AN
— i — o — — — — — <
200 5 400 T 100 &~ gk \ 20 2

Similarly,

61

e*%a(§ﬂ+ﬁﬁ+5ﬁ+ﬁﬁ) _ e*%a(éﬂ) + ie%a(-’?n)a/(gn)(nﬁ + £9)
2

£
< —.
Os.2B+.F 3
(193)
_izaEn) s N N
Noting that L« | . 2ei o (En)(nit + 5}))77 = 0, we have
2\ S 29Ena/ (En) (it + £D)E

HHETENIEESD) _ o 3aEn) (5 1 )
Lo i A a an i
2 (eféa(§n+r]u+§v+uv) _ e*%¢(§ﬂ)) E+1)
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=L

o
2

(ge;a(én+ﬂ&+éﬁ+ﬁﬁ) _ e%a(é'l)) (1 + 8) — Le1%EM g/ (&) (it + ED)n )

o baEntnitEd+aD) _ e—%a(é’})) (& + i) + Lo 1%EN e/ (En) (ni + £D)&
Hence, by (192), (193) and Lemma 6.7, we have

o 3@ (ENHni+ED+AD) _ e%a(én)) (n + )

7 (ef%a(én+nﬁ+éﬁ+ﬁﬁ) — e*%a@’ﬂ) &+ i)
O§,2ﬂ+,7

e 194
3 150 = 5 (194)

e Terms in (179)

49

£30

Since [Ullp; g, »» < To

satisfies

, and according to Lemma 3.8, U=ao"'—1d+U

74112 6L
r ||u”(95,8ﬂ+,r<7) e
8

Ilosap,.r0 = = — @5, =

Then, by Lemma 6.9, we have that

AL _i &
||Ll(62“(én)77, e za(gn)§)||(95,4ﬁ+,r(6> < 10
s

~ L _i &
||L{(g20t($n)n’ e 2“@")5)||05,z,s+,r<5> < =

By Lemma 6.11, we have
Ip& +i,n+Dlo;sp, 00 IgE +it,n+0)llo; 8, 0

49
3r gt

£
10T 200

€
<=,

8
which, together with (191), implies that

(e%a(én+nﬁ+éﬁ+ﬁﬁ) — e%"f(g"))n + pE+i,n+D)
(g—%a(€n+nﬁ+§ﬁ+ﬁﬁ) _ g—%oc(én))g + Q(E + ﬁ, n+ f))

O5.2B+.7
2wDe% & %
< 4 < —.
15 4 20

Therefore, by Lemma 6.11, we obtain
It oty 0p —UEI*EMy, e 1%EVE) |0, 55, 7
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£ £ I3
< _ i (195)
8rMD —HByL 10 20 200
In a similar way, we have,

1otV o pllo, 28,7

i

< ||Z:{(e%°‘($77)n’ e*i“(&ﬂ)é_—) ||w,4ﬁ+,r(5)

£3 6r© 5
<

JEN 61
5 0O _mp 20 8 -

+H|h otV o g — Ue2*EMy, e_ia(sn)é)llw,zm,f
61

61

o
&l

(196)
With (175)—(179) estimated as above, we have (173) by combining (181), (182),
(184), (185), (187), (195), (196), and get (174) by combining (181), (183), (184),
(185), (194), (195), (196). Hence Lemma 7.7 is shown.

O
Proof of Theorem 4.7. By Lemma 7.7, we see that T| = ¢! o 71 o ¢ can be written as

7 = (e2EM 4 po 1)n n (?(S, 77))
(e%o‘(‘?”) + p0’1)7]$ CI(E, 77)
with p, g € Ayg, 7(Os) satistying that

. ol
(]
1) 105,284 7

3

5 3
I« (9], <
9/ 105,284 .7

2

‘0\
Q=

+22(K 4+ )8 e2%ng + e 2% pllo.g.r, (197)

(198)
Since lIpllo.g,r llgllo,pr < 15—0, (197) implies a rough estimate for p and g:

61 31
~ - E3
121l0s.28,.7 1G1l05 28, .7 <

31
£32 £32
— < —. 199
3 720 S 6 (199)
As in Sect. 7.1, with the well-defined fourth root
i i %
OEn) = (2 + po1Em)E T + o)
we define
v €0 e (06N 07 Enn). (200)
Since |po,1lw,p, < €, we can apply Proposition 7.2 with r = 7, r’ = r, and get

(0 0 F0Q)E.n) = <e5“+(5"’n+p+(«§, n)

e 3 ENE g (&, n)) ’
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R _(Og) satisfying

withay € .,42/3+ ;

oy (En) — a(En) = —i(e™2*E py 1 (&) — e2*E7 o 1 (Em)).
By Lemma 6.13, we obtain (64).
With ¥ := ¢ o ¢, which satisfies y o p = po ¢, letld = <Z> = ¢ —1d. In view
of the definitions of ¢ = Id + U in Lemma 7.5 and @ given in (200), we have that

[ ©— 1 (08, © ')

49

Since ||u||0515’r(7>, ||v||05’/§’r<7) < 0" by Lemma 7.4, we have

49

R _ R _ £50
14(OF, @ ')llo, gy res DO, O N0y p.re < 0 (201)
Moreover, by Lemma 7.1, we obtain that
1 3 3e
10 = 1oy 25, 7 107" = 1oy 28, 7 < ZPoillospr < 35— (202)

49
Combining (201) and (202), we obtain [lul|os,6, ., » VIO, < %
It remains to prove (65) and (66). By (131), (132) in Proposition 7.2, we obtain that

p"r’ q+ € Aﬁ+,r+ (05)3 and

3 -
lp+llos.psre < <1 + lepo,l ”O,ﬂ,r) IPllos.28,.7 + 11 P01 IIé,zﬁ,,,

3¢ 8% 1t —lg 2
< 1+W T+22(K+1)5 le2®ng +e 2%Eplip g, | +¢

6l
exn i i _i
<> +24(K + 187 je2%ng + e %Epllo o
ol

0+ hopi e < 5+ 24K + D5 g + ¢ 36 pllgy -
Moreover, by (133) in Proposition 7.2 and (198), (199), we have

i _i
le”2**&ps + e 2% ngyllos,py.re

< lle72%Ep + e2*nglloy 26, 7 + I poallopr (1Bl os.2p..7 + 1Gll0526,.7) + 1201115 5.

61 31 2
exn g &x & 6l
3

<% T8 T <F

sl

@ Springer



L. Stolovitch, Z. Zhao

It remains to show that

Y. €Chy for E.n) eCliy . o€ O fy). (203)

Recalling the definition of the set given in (15), we have

Copy = {(%1 meCilsn—ol < By [E] Inl < r+}.

49

. £30
Since lullog,ppres 10105, ey < - we have that

16+ uE. M) +vE M) — 0l < By + lInu+ v+ uvll g, r,
< Bi+e® ¥ < B,

49
|E +M($, 7])|7 |7]+U(§, 77)| < r++5% <r.

(203) is shown. O
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Appendix A: Proof of Lemma 6.11

Let ¢ :=max{|l fi — f2llo,pg" . llg1 — g2ll®,p7 7}, which is, by (98), smaller than

2
€—6. Let € O@F”, B”). In order to estimate its norm, let us first decompose the
following expression:

BN 4 f e DED Y 4 gr) —n(eHENE 1 fy e TBEN Y 4 g
=3 (ho@n+e ™ nfi + Mg+ fig)

120

—hioEn+ e 4+ Mg + frg0)) (204)

iba !

. (e &+ f2>
+ Y moEn+e M nfi+ e sg + fign (@6 + f) - @ + 1))

=1

(205)
+ similar expressions involving ho_; instead of A . (206)

e Terms in (204)
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Expanding %, o around &7 + e by £y + eV gy + g5 in (204), we obtain:
hioEn + e~ fi + €"Eg1 + fig1)
—hy, 0(5577 +e P+ ™ Eg + frg2)

=> 5 h(k)(én +e P fr+ kg + frga)
k>1

4 . . . k
: ((eﬂbaﬂfl +e™eg + fign) — (e P nfa+ PEgr + f2g2)> .
(207)

Combining Corollary 6.5 together with Remark 6.6 and (98), we obtain, for (&, ) €
C; 8 andm =1, 2:

0+ e fn + € E g + frngm —

<ln—-ol+ |eilba’7fm + elba";:gm + fngml

7”2 14

7 28 1 p B
2e8 R

<P 2T T oss
ﬁ’ 101 g p /
> 300 16 T256 ~ P

By Cauchy’s inequality, we have, for all (§, 1) € C,, B and k >1,

© ) k 7\ k
\h oEm = sup o) F) =(g) Molog.  Q08)

l—&n=5
We recall that, for |z| < 1,
d* ; ; 1 d* 1
Ckkk 2 (k)z__ — (] — )~ &+D
2 dzk naF\1=;) =19
k>k k>0

Hence, developing hl(kg around &n, we have, for k > 1,

Hh"‘) En+e P fr+ g + frg)|

‘ (k)

ﬂ//’r//

w,B —iba iba
k'(k ni e+ e+ foal

h(;z)
= E ¢ o le by 5 + ePE gy + frgo|F 7
L= (& — k) - k! k! @B
k
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2 ]; ﬂ/Z kfk
< lholop Y C,]{f (E) <1—)
>k

2\ B\
= (2) syt (2)

k=k
2 k ﬂ/ *(k+1)
Recalling that |w| < r”? — B”, by Lemma 3.3, we have, for —1 < b < I,

H " nfi+ " Egi + fign) — (7P nfr+ €™ Egr + frg2) ”w By

< |etencn-p |+ e - e
a)’ﬂ /‘r//
+ 10U = 281 — f2(81 — 8 llw,p7.r

25 1
< e3P (It = fallwprr + 181 — g2llw.pr.r)
+ ”fl - f2”w,ﬂ”,r””gl”a),ﬂ”,r” + ||f2||a),ﬂ”,r””g1 - g2”a),/3”,r”
1, B? 13

w’ﬂ//’r//

=0 e =S 210

R R I T (210)

Since % < % and according to (85), we have 1 — % > —100 and 1 —
N1 N\ —2 N —1 -1

26 B 99 B 26 B 27

Fﬁ(“?) > o> S0 that 3 (1—§> (I—F,?(l—?) ) < 35

Combining (209) and (210), together with (19), we obtain

[r0@n+ e n fi+ e+ frgn) = hion+ e n o + e + frgo)|

(l),ﬂ”,r//
<> i —Hh(’”@n +eT Py fy + Mgy + fr82)llwpr
k>1
—iba iba —iba iba k
[t nn v ee 4 fgn @ Pt e+ pe)|
26 7N\ —k+1)
< g T (35 (1-5)
k>1
—1
2 N\ —2 2 N\ —1
= g 22 () T2 2 (L
s 258 8 258 8
—1
< 25,3, = hlo, BT (211)

Hence, according to Lemma 3.3, for [ > 0,

| (ron+e ™ fitesgi+ fign — hoGn+e ™ nfo + e g + fr0))
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L@+ p)|

w’ﬂ//’r//
I
27¢ 95 B>
h s oarT l § _
25'3/” ”wﬁrr ( +16
On the other hand, (95) implies 21" B < ’/— .Indeed, since 0 < r”" < 1’ < 4 and

0 < B < 1,then 8,32 <@ ="y 1mplles

va o s s | (r/ _ r//)r// P
2r'p =2r" - 1684 < 884 < 8B < 8pB2 - A < 3 (212)
Therefore, according to (86), we have
~ 2 I
' —esPr — T r=r"=2B8r" > —r" - : 8r = g(”/—””)'
As a consequence, we have
k
Zr/—k (6231’”—{— :3_/2> _ r _ 8r’
= 16 v — o8By _ fi_/z 7' —r")
Thus, under (95), the || - [|®, g~ »-norm of (204) is bounded by
27 ; AN B
S o Sr (e ) <20 S
258’ =0 16 25 @ —r") B
5r/
|| lop .. (213)

P —
4(’,1 _ //) ’3/

To show (204)e Agr ,» (O) provided that fi, f2, g1, g2 € Agr ,» (O), it remains
to verify the analyticity on O(r”, B”) for the coefficients (204); ;,1, j > 0,1j = 0.
According to (207), (209) and (210), for >0,

hj o(En + e Py fi + g + fig1) — hioEn + e by
+eiba$gz + f282) € Agr  (O),

and, by (23) and (211), for [ > 0, for I, j > 0 with [j = 0,

‘(hi,o(gn +e P fi+ e Eg + fign)
_ 276 o
j O(}’”,ﬁ”) - 25[3/ r/ir//l+j :

—hjoEn+ e fo + e gy + f2g2)>l ;

@ Springer



L. Stolovitch, Z. Zhao

Note that, for / > 0,

C04o=3" 3 (€ e+ 7))

>0 0=k=l

' (hi,o@" +e i+ e Eg + fig)

—hjo(En+ e fo + e E gy + fzgz))

£ Y (@e+p)),, Ent

[ZO k>1
' (hi,o(éﬁ +e P nfi+ e Eg + fig)

—hjo(En+ e o + e E gy + fzgz))o i

[—k,0

and for j > 1,

2040, =" Y ((eib‘”é + fz)i)Ok
[0 0<k<j ’

' (h[,0(5’7 +e P fi+ e Egi + fig)

—hjo(En+ e o + e e gy + f282)>

+ L (@e+p)), et

i>0 k=1
' (hz',o(g’? +e P fi + g + fign)

—hjo(En+ e Py fr + e gy + fz&))k o’

0,j—k

where, by Lemma 6.5 and by (23), for [, j > 0 with/j =0,

‘((e“’“s + 1))

l,j O(}’”,ﬁ”)

Then we see that, for w € O”, ),

2

>0 0=k=l

' (hi,o(sn +e P nfi + e Eg1 + fig)

(€™ s+ 1)) @

k,0

—hjo(En + e fo + e e gy + fzgz))l_k o (w)‘
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270+ Dslhllo.p ogr” B2
3 J—
= 25[3/,,//[ Z € r! + 161/
>0

iba I 13
Y (™ + 1) )l%0 () -

' (hz",o(s’? +e P fi+ g + fign)

hioEn+e " nfr+e s + frg) (w)‘

_ 27¢ lhllo.p .

B n—A+k) (.12 _ pink B

<33 (M ) pragn . 2 W
J>0 k=1

I
275 |hllo.p B\ opr"  B?
= T sp 2\1m) 2t e)

k=1 =0

which implies the analyticity of (204); o under (95), and it is similar for that of (204)o_ ;.
Hence, (204)e Alg//’ru (0).

e Terms in (205)

Note that (19) and (208) imply that, for v € O(r”, B”), forl > 0,

IhioEn +e P nfi + e Eg1 + fig)llwpr v

n g .
<Y e fi 4 g1+ figally, g o
k>0
2\ ( oz B2 BN\E 101 lhllog
< |h / — 2e8Pp < TP D14
= ”°|‘”"SZ<;3’> (e "8 +256> =700 7 @19

k=0

In (205), we have, for [ > 1,

™€+ f) = €€ + ) lwpr.rr < chne‘b‘*s + K o = Ul g

k=1

1 B -k
Ck 8/5// k
<;1’( ’+16> g

” ! _ 7
(o384 P _ (38, L BZ
<€ ’+16+§> <e ST

<i(e¥r i prre) e (215)

/
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5
- . n 1687)2
*55— Recalling that ¢ < ’ST <! /38 )

Furthermore, by (95), we have ,3% < ﬂ% <
and using (212), we have

o1 (14 2p)r" N r'—r" _r’ —r” _ 7(r' —r”). 216)

1—
r’ r’ 8r’ 8r!

%5 + ﬂlz + g
r/
Therefore, the || - |0, g -»-norm of (205) is bounded by

> lhoEn + e P fi + e + fig) .
>1

@™ e + ) — @6 + ) llopr

9

-1
101¢ esPr’ + B2 4+ ¢
—_— h ! l _—
< IOOrAIIkOﬁ,rlgl 7
2 -2
0 g (1= S A B s
100, O r
101¢ 82,2 7 sllhllo.pr
. L 217
< 100r /” ”(’)ﬂ r! 72(7'/ _r//)2 < 5(,./_,.//)2 ( )

For [ > 0, we have that (205); o equals to

> 2 (hi,o(fﬂ +e P fi+ g + flgl))l_k .

j>1 0=<k=l
x (e + 0l = @+ ),
+2.0 (hi,o(gn +e P fi 4+ g + flgl))
[>1 k=1
< (@ + ) = @s + ) et
+2.0 ( ron+e " fi +€lba§gl + flgl))

i>1 k=1

x (@ + ) = @™+ p)f) @k,

I+k,0

[+k,0

and for j > 1, (205)9, ; equals to

> (hl',o@’?"'e_iba’?fl +e"Eg) +f1g1))

i1 0<k<j

x (@ + 0 = @s + )

0,j—k
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+ 2" (hro@n+ e nfi+ e + fign), "
[>1 k=1 ’

« ((eibozé__ + ) = (e + fz)[> (&)

4‘2:2:(lo@”+eﬂmﬂﬁ‘+5m$&-+ﬁgﬂ)

=1 k=1

X <(elbolé- +f1)i_ (eibct%- + f2)l~>0‘j+k (é:n)k

If f1. f2. g1, &2 € Agr v (O), then by (214)—(216) and (19), we see the analyticity of
(205);,9, since forw € OF”, B”),

Z > (roEn+e ™ nfi+e™eq + fign) (@)

> 0<k<l
x ((eibas + ) — (e + fz)l~ o (w)‘

~ 9 7
101 [|hllo.p . 1(e3Pr" + B% + )"l

Y Y poess
= 100 /i pri—k ri’k

i>1 0=k=l
281 2 -1
_ 1000+ Dlitloyrs s~y (eFr + 42 + ¢
- 100 7l 7’ ’

I>1

; ; (hroten+e™nfi +e™egi + fign), | @)

< (@54 ) = @5+ ) @0

~ 9 7
101 ikl 1esPr" + B2+ ) 7ls | o gop

- ZZ 100 r/lr//l+k rk

[=1 k=1
5 -1
_ ﬂ ||hI|O’IB/7r/ Zi e%ﬂr// + IB/Z + c Z (r//2 _ ,B//)k’
100 r/r//l 7 P r//2k
>

i>1
>0 (hro@n e nfi+ " 5g + fign) | @)
[=1 k=1

<@+ ) = @ s+ ) @

k
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~ 9 7
Zzgnhno,ﬁ/,w IesPr" + 7+ o) 's "

I>1 k=1 100 r/ir”k P

_ ﬁ//)k

5 -1
101 ||h||(9”5/7r/§ - e%ﬂr” + 13/2 +c (r//2 _ ﬂ”)k
= —— LN ———— A
100 rr't r! 712k
I>1 k>1

The proof for (205)o,; is similar, hence (205)e Agr ,» (O).

Combining (213), (217) and similar estimates obtained for expressions (206), we
obtain

I7(eP"E + f1, e + g1) — (P& + fo, e+ g2)ll 0 pr
! lar’ 5 7] 3 7]l
< —_— ! /’
7= \507 =) Zﬂ S O,p 1 (V/—V”)ﬂ/g O.p,r

since (95) implies that 8/ < B < o _r . This finishes the proof of Lemma 6.11. O
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