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Abstract
We prove the holomorphic linearizability of germs of biholomorphisms of (Cn, 0), fixing
the origin, point at which the linear part has nontrivial Jordan blocks under the following
assumptions: the eigenvalues are ofmodulus less or equal than 1, are non-resonant and satisfy
not only a classical Diophantine condition but also new Diophantine-like conditions related
to quasi-resonance phenomena.

Keywords Local analytical linearization · Small divisors · Jordan blocks

1 Introduction andMain Results

Let F be a germ of biholomorphism of (Cn, 0) fixing the origin and let F ′(0) be its linear
part (Jacobian matrix) at the origin. Let spec(F ′(0)) = {λ1, λ2, . . . , λn} be eigenvalues of
F ′(0). We define the set of resonant multi-indices of spec(F ′(0)) as follows:

Res[spec(F ′(0))] =
n⋃

j=1

Res j [spec(F ′(0))],

Res j [spec(F ′(0))] = {α ∈ Z
n+(2) : λα − λ j = 0},

where Z
n+(k) = {α ∈ Z

n+ : |α| ≥ k}, λ = (λ1, λ2, . . . , λn) and λα = λ
α1
1 . . . λ

αn
n for

α = (α1, α2, . . . , αn) ∈ Z
n+ and |α| = ∑n

i=1 |αi |. The non-resonant multi-indices is the
complement of resonant multi-indices in Z

n+(2).
We say that F is formally linearizable at the origin if there exists a formal power series

transformation, fixing the origin,which is tangent to the identity�(z) = z+ϕ≥2(z) ∈ C[[z]]n
such that

�−1 ◦ F ◦ �(z) = F ′(0)z. (1.1)
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Here, ϕ≥2 vanishes at order ≥ 2 at the origin. If the linear part F ′(0) is diagonal,
the well known Poincaré–Dulac theorem [1] ensures that if there is no resonance (i.e.,
Res[spec(F ′(0))] = ∅), then F is formally linearizable. As the coefficients of the formal
solution of (1.1) involves products of form (λα −λ j )

−1, when the degree |α| goes to infinity,
its convergence in a neighborhood of the origin is very related to the so-called small divisors
problem, which usually occurs when infα |λα − λ j | = 0 for some j ∈ {1, . . . , n}.

The pioneering work of Siegel [8], followed by Zehnder [13], shows that the Diophantine
condition (for some fixed positive C0, σ )

|λα − λ j | > C0|α|−σ for all j = 1, 2, . . . , n, α ∈ Z
n+(2) (1.2)

is sufficient to ensure the analyticity of � at the origin. This Diophantine condition has been
weakened by Rüssmann [7] (and by Brjuno [2] for vector fields) to: for all m ≥ 2,

|λα − λ j | ≥ 1

�(m)
for all 1 ≤ j ≤ n and |α| = m,

where � : N → R is a function satisfying: for all m ∈ N,

m ≤ �(m) ≤ �(m + 1),
∞∑

m=1

Log�(m)

m2 < ∞.

It is a major achievement due to J.-C. Yoccoz who proved the necessity of this condition
for holomorphic linearization of non-resonant biholomorphism of (C, 0) [12]. While previ-
ous results concern the linearization problem of a single holomorphic map, Gramchev and
Yoshino [5], Stolovitch [10] also obtained results on simultaneous linearization of a family
of commuting biholomorphisms of (Cn, 0).

All of results above require the linear part of the holomorphic map to be semi-simple.
Little is known about the (non)linearizability of F in the analytic category. We mention the
work of Ueda [11] in which a new proof of the holomorphic conjugacy to a “lower triangular
polynomial map” with contracting linear parts is given, that is when

max
1≤ j≤n

|λ j | < 1. (1.3)

In particular, this ensures the holomorphic linearization in the non-resonnant case. In dimen-
sion n = 2, Yoccoz [12, pp. 86–87] proved that in general the analytic linearization can not be
achieved when the linear part is a single Jordan block associated to an eigenvalue on the unit
circle. In dimension n = 3 and n = 4, Delatte and Gramchev [3] gave a positive answer for
biholomorphic germswhose linear parts have one nontrivial 2-dimensional Jordan block, pro-
vided that their eigenvalues satisfy some non-resonant andDiophantine-like conditions. They
also gave an example to show the need of an arithmetic condition for the convergence to hold.
Their proofs rely on very explicit computations of the solution of the homological equation.

The main purpose of the present paper is to extend their positive answers to any dimension
with linear parts having possibly nontrivial Jordan blocks of any dimension. In this situation,
the explicit computations of Delatte–Gramchev cannot be carried on and a more conceptual
framework had to be developed for that purpose. As D. Delatte and T. Gramchev also gave
a divergent example in 3-dimension where |λ1| > 1 > |λ2|, λ2 = λ3, thus in what follows,
we assume

max
1≤i≤n

|λi | ≤ 1. (1.4)

Let us state our main theorem. If the linear part F ′(0) of F is not semi-simple, then a
preliminary linear change of variables allows us to assume that it is a typical Jordan normal
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form:
F ′(0) = �ε = � + εN , (1.5)

where� = diag{λ1, . . . , λn} is the diagonal matrix, N is an upper triangular nilpotent matrix
where all non-zero entries are 1 and lie on the upper-diagonal place whose corresponding
eigenvalues are not modulus 1. By dilation of coordinates, ε 
= 0 can be made arbitrarily
small. Let {μi }mi=1 be the set of distinct modulus of its eigenvalues, and without loss of
generality we can suppose that:

1 = μ1 > μ2 > · · · > μm . (1.6)

We emphasize that since 1 is a modulus then �ε is a not a strict contraction. According to
(1.6) we rearrange the eigenvalues by denoting {1, 2, . . . , n} =⋃m

i=1 Ii , for each 1 ≤ i ≤ m,
j ∈ Ii when |λ j | = μi . Thus Ii

⋂ I j = ∅ if i 
= j . For a fixed multi-index α ∈ N
n , we

write (α1, α2, . . . , αn) = (A1, A2, . . . , Am) and Ai = (αli+1, αli+2, . . . , αli+ni
), where

l1 := 0, li+1 := li + ni , ni := |Ii |, for i ≤ m.

Thus we have |Ai | = ∑ni
j=1 αli+ j and n = ∑m

i=1 ni . Correspondingly, we can also denote
(λ1, . . . , λn) = (�1, . . . , �m) and (z1, . . . , zn) = (Z1, . . . , Zm) in a similar way. Thus for
all i = 1, . . . ,m we have:

�
Ai
i =

ni∏

j=1

λ
αli+ j
li+ j , Z Ai

i =
ni∏

j=1

z
αli+ j
li+ j . (1.7)

If there is no confusion, for a fixed 1 ≤ i ≤ m, we will usually write i j for li + j so that
αi j

stands for αli+ j for j = 1, 2, . . . , ni . In order for convenience, we will use all of those
settings above for �ε when we mention it in the following of this paper.

Let us introduce the definition of the quasi-resonance:

Definition 1.1 Let {μi }mi=1 be distinct positive numbers satisfying (1.6). For each 3 ≤ i ≤ m,
we call Quasi-Resonance (w.r.t μi ) a relation of the form if:

i−1∏

j=2

μ
κ j
j = μi , (1.8)

for some tuple of non-negative integers {κ j }2≤ j≤i−1.

Remark 1.1 Quasi-resonance phenomenon happens only when m ≥ 3. Notice that if there is
a tuple of non-negative integers {κi }1≤i≤m such that

∑m
i=1 κi ≥ 2 and

∏m
i=1 μ

κi
i = μd for

some 3 ≤ d ≤ m, then we must have κ j = 0 for all j ≥ d .

Remark 1.2 The non-resonance implies that for all 3 ≤ i ≤ m and k ∈ Ii , for all A j ∈ N
n j

such that |A j | = κ j and
∑i−1

j=1 |A j | ≥ 2, 2 ≤ j ≤ i − 1, we have

�
A1
1 ·

i−1∏

j=2

�
A j
j 
= λk .

This will be useful in the proof of convergence.

In order to achieve the convergence of the linearization, we need to give the Diophantine-like
assumptions for each quasi-resonance.
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Definition 1.2 We say that � satisfies a QR-Diophantine condition (QR stands for Quasi-
Resonant) if the following holds: For each 3 ≤ i ≤ m where there is a quasi-resonance (w.r.t
μi ), we have: ∣∣∣∣∣∣

�
A1
1 ·

i−1∏

j=2

�
A j
j − λk

∣∣∣∣∣∣
≥ C0

⎛

⎝|A1| +
i−1∑

j=2

κ j

⎞

⎠
−σ

, (1.9)

for all k ∈ Ii ,
∑i−1

j=1 |A j | ≥ 2 and |A j | = κ j , 2 ≤ j ≤ i − 1.

Theorem 1.1 Let F(z) = �εz + f (z) be a holomorphic map in a neighborhood of 0 in C
n,

f has the order greater or equal than 2 at the origin. Assume the linear part (1.5) is non-
resonant. If ε 
= 0 is sufficiently small, then there is a unique transformation z = �(ζ) =
ζ + φ≥2(ζ ), biholomorphic in a neighborhood of 0, which solves the linearization problem
F ◦ � = � ◦ �ε near the origin, if one of the following conditions is satisfied:

(I) If there is no quasi-resonance, then there exists two positive numbers C0, σ > 0 such
that for all λi , i ∈ I1,

∣∣∣�A1
1 − λi

∣∣∣ ≥ C0(|A1|)−σ , ∀ |A1| ≥ 2, (1.10)

and for any i, j ∈ Ik, k ≥ 2, we have
∣∣∣�A1

1 λi − λ j

∣∣∣ ≥ C0(|A1| + 1)−σ , ∀ |A1| ≥ 1. (1.11)

(II) If there is a quasi-resonance, then besides (1.10) and (1.11), we also assume � satisfies
the QR-Diophantine condition (1.9).

Remark 1.3 Assuming we have (1.6), then there are only finite numbers of quasi-resonance.
In fact, for each i = 3, 4, . . . ,m, there are at most finite tuples of non-negative integers
{κ(i) : κ(i) ∈ N

i−2} satisfying (1.8).

Remark 1.4 Theorem 1.1 also holds for ε = 0 but reduces readily to Siegel linearization
theorem. In that case, the proof simplifies considerably as we obtain immediately Proposition
5.1 from the Diophantine conditions.

The main idea for proof of the convergence is to estimate the solutions of homological
equations L f = g, that is the “linearized version” of the conjugacy equation. In order to do
that, we decompose the set of monomials along two sets called Poincaré slice and Siegel slice
respectively. We then decompose the Taylor expansion of any germ of holomorphic function
at the origin accordingly. We show that these slices are invariant sets of the homological
operator. This enables to solve the projected equations L fP = gP and L fS = gS . The aim
of this decomposition is that on the Siegel slice we will encounter small divisors but we
have arithmetic conditions to control it, while on the Poincaré slice, we have the complicated
remainders brought by Jordan blocks but we do not encounter small divisors so that we have
a uniform bound for the solution to the homological equation restricted to that set. The details
will be seen in Sect. 3.

The paper is organized as follows: In Sect. 2 we introduce some basic notations and def-
initions of norms that we would need to use in the KAM scheme. Section3 introduces the
homological operator as well as Poincaré slice and Siegel slice. In Sect. 4, we deal with the
estimation of the remainders in the homological equation which is brought by nontrivial
Jordan blocks. In Sect. 5, we give the most important estimation of the solution to the homo-
logical equation, which will be used several times in the proof of the convergence in the
Sect. 6.
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2 Notations and Preliminaries

For an integer k ≥ 1, and ρ > 0, 0 < δ < r ≤ 1,

• Pn
k denotes the C-space of homogeneous polynomial vector fields on C

n and of degree
k,

• pnk denotes the C-space of homogeneous polynomials on C
n of degree k,

• On denotes the ring of germs at 0 of holomorphic functions in C
n ,

• C[[z]]≥k =
{
f | f (z) =∑α∈Zn+(k) fαzα, fα ∈ C

}
.

When z ∈ C
n, |z| := max1≤i≤n |zi |. Denote BR = {z ∈ C

n : |zi | ≤ ri ,∀ 1 ≤ i ≤
n} for R = (r1, r2, . . . , rn) with positive numbers ri . For a formal power series g(z) ∈
C[[z]] denote ḡ(z) =∑α∈Zn+ |gα|zα , the common polydisc norm is |g|R = ḡ(r1, r2, . . . , rn)
corresponding with BR . The order at 0, ord0(g) of such a g is the lowest integer k such that
gα 
= 0 for some |α| = k. We set an asymmetric ball: for two disjoint sets I and J such
that I

⋃
J = {1, 2, . . . , n}, where actually λ j , j ∈ J corresponds to the Jordan block. We

denote
Br ,ρ = {z ∈ C

n : |zi | < r , i ∈ I and |z j | < ρ, j ∈ J }, (2.1)

and Br := Br ,r if the context is clear. We introduce two Banach algebras:

H(Br ,ρ) =
{
g(z) =

∑
α∈Zn+

gαz
α, gα ∈ C : |g|r ,ρ < +∞

}
,

with the polydisc norm corresponding to Br ,ρ :

|g|r ,ρ := ḡ(r , ρ), zi = r if i ∈ I , z j = ρ if j ∈ J .

Let U ⊇ Br ,ρ be an open set. Let O2(U ) be the space of all holomorphic functions in U of
order ≥ 2. If f ∈ O2(U ), we set ‖ f ‖U := supz∈U | f (z)|. For all vector-valued functions
F = ( f1, . . . , fn), the norm |F |r ,ρ (resp. ‖F‖U ) denote the maximum of the norm of its
components. Let us define

H(U ) = { f ∈ C(U ) ∩ On
2 (U ) : ‖ f ‖U < +∞} .

To simplify the notation, we also denote ‖F‖r = ‖F‖Br . By Cauchy estimates, we have:

‖g‖r−δ ≤ |g|r−δ ≤
(r

δ

)n ‖g‖r , for all g ∈ On
2 (Br ). (2.2)

For an n × n matrix M , we set |M | := max1≤i, j≤n |mi j |. For z ∈ C
n , we have:

|Mz| ≤ n|M ||z|. (2.3)

We introduce two basic inequalities (e.g. [9, p. 149]) which will be used in Sect. 4:

| f |r−δ ≤
(
r − δ

r

)k
| f |r , if f ∈ O2(U ) and ord0( f ) ≥ k,

∣∣∣∣
∂ f

∂zi

∣∣∣∣
r

≤ k

r
| f |r , if f ∈ Pk

n .

(2.4)

We shall write f≥k to emphasize that f has order ≥ k at the origin.
At last, we introduce a domain and a normwhich is need in the proof of convergence (here

ε is fixed):

Dr := Br ∪ �ε(Br ), ‖g‖C1,r := max{‖g‖Dr , ‖Dg‖Dr }.
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3 Representation of the Homological Operator and Its Decomposition

Let F(z) = �εz + f≥2(z) be a germ of biholomorphism of (Cn, 0). Let �(y) = y + φ(y)
be a linearizing change of variables: F ◦ � = �(�εz). Hence, φ, which vanishes at order
≥ 2 at the origin, solves φ ◦ �ε − �εφ = f≥2(I + φ). Hence, it is natural to introduce the
homological equation/operator:

Lϕ := ϕ ◦ �ε − �εϕ = g, g ∈ H(Br )
n . (3.1)

We want first to find a formal solution ϕ ∈ C[[z]]n and then we want to estimate ϕ with
respect to a given g. With the above settings, we can rewrite Lϕ in (3.1) as:

Lϕ = (� − εN )ϕ + Rεϕ := Lεϕ + Rεϕ, (3.2)

where
�ϕ = ϕ ◦ � − �ϕ, Rεϕ = ϕ ◦ (� + εN ) − ϕ ◦ �. (3.3)

Given a formal power series f (z) =∑α fαzα , we have

� f (z) =
∑

α

(�α fα)zα, N f (z) =
∑

α

(N fα)zα, (3.4)

where �α = diag{λα − λ1, . . . , λ
α − λn} is a diagonal matrix. As �ε is Jordan matrix, the

matrix �α and N are commuting for each α ∈ Z
n+(2). Thus due to the nilpotency of N and

the non-resonance of the eigenvalues of �ε , (� − εN ) is invertible at the formal level (i.e.
on C[[z]]n≥2), we have

(�α − εN )−1 = �−1
α +

d−1∑

s=1

εs�−s−1
α Ns, (3.5)

where d is the nilpotency order of N .
Hence, emphasizing the remainder operator Rε , Eq. (3.1) reads:

ϕ = (� − εN )−1g − (� − εN )−1Rεϕ. (3.6)

The abstract equation above plays an important role in the estimation of the solution to
the homological equation. The main difficulty in the Jordan block case is to estimate the
remainder termRε . To overcome this difficulty, we introduce the most important idea: (S,P)-
decomposition, which is inspired by Delatte and Gramchev [3, p. 10, Definition 2.4]. The
important idea is to find two disjoint subsets S and P of Z

n+(2) such that the following
conditions holds:

(i) Z
n+(2) = S

⋃
P, S

⋂
P = ∅,

(ii) Invariance: L±1S ⊂ S, L±1P ⊂ P .
(iii) The inverse L−1

S of restriction of the operator on Siegel slice LS := L|S , is related to
small divisors problem, but Diophantine conditions for α ∈ S gives a control;

(iv) Poincaré slice LP := L|P does not involve in any small divisors, thus we have a uniform
estimate of its inverse L−1

P .

Throughout the whole article, with an abuse of notations, S and P denote both the sets of
multi-indices and the function with monomials corresponding only to those sets of multi-
indices.
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We rewrite ϕ ∈ C[[z]]n along such a decomposition:

ϕ(z) =
∑

α∈Zn+(2)

ϕαz
α = ϕS(z) + ϕP(z),

ϕS(z) =
∑

α∈S
ϕαz

α, ϕP(z) =
∑

α∈P

ϕαz
α.

(3.7)

Let us define the sets S and P according to the different cases of Theorem 1.1.
In case (I), as there is no quasi-resonance, we decomposeZ

n+(2) for�ε in (1.5) as follows:

S :=
{

α ∈ Z
n+(2) :

m∑

i=2

|Ai | ≤ 1

}
,

P :=
{

α ∈ Z
n+(2) :

m∑

i=2

|Ai | > 1

}
.

(3.8)

In case (II), there are quasi-resonances. For i ≥ 3, let us denote

QRi =
⎧
⎨

⎩κ(i) =
(
κ

(i)
2 , κ

(i)
3 , . . . , κ

(i)
i−1

)
∈ N

i−2 :
i−1∏

j=2

μ
κ

(i)
j
j = μi

⎫
⎬

⎭

the set of quasi-resonances w.r.tμi .According to (1.6), then for each 3 ≤ i ≤ m, there exists
at most finite quasi-resonances, i.e., �|QRi | < ∞. By non-resonance condition we also have:

�
A1
1 ·

i−1∏

j=2

�
A j
j 
= λk,

for all k ∈ Ii ,
∑i−1

j=1 |A j | ≥ 2 and |A j | = κ
(i)
j , 2 ≤ j ≤ i − 1. Denote the subsets of Z

n+(2)
as the following:

S1 := {α ∈ Z
n+(2) : |A j | = 0, for 2 ≤ j ≤ m

}
,

S2 :=
{

α ∈ Z
n+(2) :

m∑

l=2

|A j | = 1

}
,

(3.9)

and for any κ ∈ QRi and i ≥ 3,

Si,κ := {α ∈ Z
n+(2) : |A j | = κ j for 2 ≤ j ≤ i − 1, |A j | = 0 for i ≤ j ≤ m},

Si :=
⋃

κ∈QRi

Si,κ , 3 ≤ i ≤ m. (3.10)

We define the (S, P)-decomposition to be:

S :=
m⋃

i=1

Si , P :=
m⋂

i=1

Sci , (3.11)

where Sci denotes the complement of Si in Z
n+(2).

Remark 3.1 The idea for defining these slices is to select α ∈ Z
n+(2) such that |λα| = |λi |.

Let us check that the first two properties (i), (ii) of our decomposition. The last two properties
will be seen in the following sections.
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Lemma 3.1 The homological operator (3.2)aswell as decomposition (3.3)have the following
invariance property: For each Siegel slice Si , i = 1, 2, . . . ,m, we have:

L±1Si ⊂ Si .

On Poincaré slice we have:
L±1P ⊂ P.

Proof Recalling (3.4), we observe that �(ϕ) and N (ϕ) preserve each monomial of ϕ. Hence
the operators � and N satisfy the invariance property. For the remainder part, first we need
to know the specific form of the linear part (1.5). Assume there is only one Jordan block
corresponding to�t , here we use the notations of (1.7) and replace lt + j by t j for simplicity.
Let us write

ϕ(z) =
∑

α∈Zn+(2)

ϕαz
α =

∑

A∈Zn+(2)

ϕAZ
A.

By (3.3), we have:

Rεϕ(z) = ϕ ◦ (� + εN ) − ϕ ◦ �

=
∑

A

ϕA

∏

1≤ j≤m
j 
=t

(� j Z j )
A j

[nt−1∏

l=1

(λtl ztl + εztl+1)
αtl · (λtnt ztnt )

αtnt −
nt∏

l=1

(λtl ztl )
αtl

]
.

(3.12)
We claim that the operatorRε does not change the total degree of those variables correspond-
ing to the Jordan block and it keeps each monomial of those variables corresponding to the
diagonal eigenvalues.
In fact, for a monomial z

αt1
t1 . . . z

αtnt
tnt

the variables of which correspond to �t , assume its total

degree |At | = ∑nt
l=1 αtl = κ for some κ . By binomial expansion, for each 1 ≤ l ≤ nt − 1

we have:
(
λtl ztl + εztl+1

)αtl =
αtl∑

sl=0

(
αtl

sl

)(
λtl ztl
)sl (εztl+1

)αtl −sl . (3.13)

Let Ãt = (α̃t1 , . . . , α̃tnt ) be the exponent of one of the new monomials in the variables
zt1 , . . . , ztnt appearing in the bracket of the formula (3.12). Each new monomial coming
from the product in the bracket in (3.12), is obtained by choosing different sl in (3.13), that
is,

α̃t1 = s1,

α̃tl+1 = αtl − sl + sl+1,

α̃tnt = αtnt−1 − snt−1 + αtnt ,

for 1 ≤ l ≤ nt − 2. This directly shows:

| Ãt | =
nt∑

l=1

α̃tl = s1 +
nt−2∑

l=1

(
αtl − sl + sl+1

)+ αtnt−1 − snt−1 + αtnt

=
nt∑

l=1

αtl = |At | = κ.

Thus the total degree of all of the new monomials corresponding to �t does not change and
the degree of each one of the other variables is kept fixed, which proves our claim.
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Similarly, if there are two blocks corresponding to �t and �s , then

Rεϕ(z) = ϕ ◦ (� + εN ) − ϕ ◦ �

=
∑

α

ϕα

∏

1≤ j≤m
j 
=t,s

(
� j Z j
)A j

nt−1∏

l=1

(
λtl ztl + εztl+1

)αtl · (λtnt ztnt
)αtnt

·
ns−1∏

l=1

(
λsl zsl + εzsl+1

)αsl · (λsns zsns
)αsns

−
∑

α

ϕα

∏

1≤ j≤m
j 
=t,s

(
� j Z j
)A j

nt∏

l=1

(
λtl ztl
)αtl ·

ns∏

l=1

(
λsl zsl
)αsl .

Observe that if we restricted the operator on

|At | = κt , |As | = κs, (3.14)

for some fixed integers κt , κs , then for the new exponents of monomials produced, | Ãt |, | Ãs |
will be maintained, i.e.,

| Ãt | = κt , | Ãs | = κs . (3.15)

Actually we find that once the linear part has a Jordan block, the total degree of the corre-
sponding monomials will always be maintained, moreover, each monomial of the variables
corresponding to diagonal part is kept fixed. Considering the way of choosing the Siegel slice
(3.9) and (3.10), we can deduce that for each 1 ≤ i ≤ m, (Rε)±1Si ⊂ Si . Thus actually we
have:

L±1Si ⊂ Si .

On Poincaré slice, considering the choice of the Siegel slice (3.9) and (3.10) are all based
on |A j | = a for some fixed a = 0, 1 or a = κ j in (3.10). Combining (3.14) and (3.15), when
an α ∈ Sc1

⋂
Sc2, we have the corresponding indices | Ã j | 
= 0, 1 for one of j ∈ {2, . . . ,m},

thus
Rε
(
Sc1
⋂

Sc2

)⋂(
S1
⋃

S2
)

= ∅. (3.16)

On the other hand, for each 3 ≤ i ≤ m and α ∈ Sci,κ , we have either | Ã j | 
= κ j for some

j ∈ {2, . . . , i − 1}, or | Ã j | 
= 0 for some j ≥ i . This means Rε(Sci,κ )
⋂

Si,κ = ∅, and
naturally we have

Rε

⎛

⎝
⋂

κ∈QRi

Sci,κ

⎞

⎠ ⊂
⋂

κ∈QRi

Rε
(
Sci,κ
)
,

thus

Rε

⎛

⎝
⋂

κ∈QRi

Sci,κ

⎞

⎠
⋂
⎛

⎝
⋃

κ∈QRi

Si,κ

⎞

⎠ = ∅, i.e. Rε
(
Sci
)⋂

(Si ) = ∅.

Similarly we have

Rε

(
m⋂

i=3

Sci

)
⋂
(

m⋃

i=3

Si

)
= ∅. (3.17)
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Combining (3.16) and (3.17) we have

Rε

(
m⋂

i=1

Sci

)
⋂
(

m⋃

i=1

Si

)
= ∅. (3.18)

This directly shows that

RεP = Rε

(
m⋂

i=1

Sci

)
⊂

m⋂

i=1

Sci = P.

Thus the lemma is proved. ��
This shows that our (S, P)-decomposition satisfies the invariance property (i), (ii). The left
two properties will be proved in the following sections. To summarize, (S, P)-decomposition
allows us to consider it separately within the two slices in order to get a final convergence of
the solution to the convergent linearization problem.

4 Estimate of the Remainder OperatorR�

In order to simplify the notations and statements, we will first consider the case of a single
Jordan block. We assume it corresponds to �d for some fixed integer d ≥ 2. In this case, the
asymmetric ball (2.1) reads:

Br ,ρ = {z ∈ C
n : |zi | < r for i /∈ Id , |z j | < ρ for j ∈ Id}. (4.1)

Using notations from (1.7), we will replace li + j by i j .
In this section we give a crucial estimate for the homological operator restricted to the

Poincaré slice:

Lemma 4.1 Let ε be small enough (depending only on �). Then there is a constant C̃ which
depends only on �, such that, for any ϕ ∈ H(Br ,ρ)n,

|Rεϕ|r ,ρ ≤ εC̃|ϕ|r ,ρ . (4.2)

Proof First suppose there is only one single Jordan block in (1.5). Then by Taylor formula
we have

Rεϕ(z) = ϕ(�z + εNz) − ϕ(�z) =
∫ 1

0
Dϕ(�z + tεNz) · (εNz)dt . (4.3)

Let us write ϕ = (ϕi )i=1,...,n with ϕi =∑k≥2 ϕi
k where ϕi

k ∈ pkn . Since N is nilpotent, only
those derivatives of the variables corresponding to �d make contributions to the integral in
(4.3). Since |λ j | < 1, j ∈ Id , we may choose ε sufficiently small such that |λ j |+ε < 1, j ∈
Id . For all 0 < t < 1 we have

(� + tεN )Br ,ρ ⊂ �ε(Br ,ρ) ⊂ Br ,(μd+ε)ρ .

Applying the Cauchy estimates for polydisc norm (2.4) to each partial derivative
∂ϕi

k
∂z j

, j ∈ Id
from Br ,(μd+ε)ρ to Br ,ρ , for all i = 1, 2, . . . , n and k ≥ 2:

|Rεϕi
k |r ,ρ =

∣∣∣∣
∫ 1

0
Dϕi

k(�z + tεNz) · (εNz)dt

∣∣∣∣
r ,ρ

≤
∣∣∣∣∣∣

∫ 1

0

nd−1∑

j=1

∂ϕi
k

∂zd j

(�z + tεNz) · εzd j+1dt

∣∣∣∣∣∣
r ,ρ
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≤
nd−1∑

j=1

∣∣∣∣∣
∂ϕi

k(�
ε)

∂zd j

∣∣∣∣∣
r ,ρ

· ∣∣εzd j+1

∣∣
r ,ρ

≤
nd−1∑

j=1

∣∣∣∣∣
∂ϕi

k

∂zd j

∣∣∣∣∣
r ,(μd+ε)ρ

· ερ

≤ ε(nd − 1)ρ
k

(μd + ε)ρ
|ϕi

k |r ,(μd+ε)ρ ≤ ε(nd − 1)
k

μd + ε

[
(μd + ε)ρ

ρ

]k
|ϕi

k |r ,ρ
= ε(nd − 1)(μd + ε)k−1k · |ϕi

k |r ,ρ . (4.4)

For a constant a, 0 < a < 1, we consider a function ha(x) = ln(ax−1x) = (x−1) ln a+ln x ,
its derivative is h′

a(x) = ln a + 1
x , so ha(x) has maximum at x0 = − 1

ln a . Let k0 be the one
who satisfies ha(k0) = max{ha([x0]), ha([x0] + 1), ha(2)}, thus for all k ≥ 2 we have
ha(k) ≤ ha(k0). Now if we suppose

ε <
1 − μd

2
, (4.5)

then for μd + ε <
1+μd
2 := a < 1, we have for all k ≥ 2:

(μd + ε)k−1k ≤ exp ha(k0),

where k0 and a depend only on �. By this estimate and observing that ϕi = ∑k≥2 ϕi
k , for

each i = 1, 2, . . . , n we obtain

|Rεϕi |r ,ρ ≤ εC̃ |ϕi |r ,ρ, (4.6)

where the constant C̃ = C̃(nd , λd) which depends only on nd and λd . With the estimates
above, it can be seen easily that, in case of several Jordan blocks, we consider in (2.1) with
|zi | < r corresponding to variables of diagonal part and |z j | < ρ corresponding to variables
in Jordan blocks. Then there will be several summations in Eq. (4.4), and C̃ will depend on
the dimension and eigenvalues of those corresponding blocks. Thus the lemma is proved. ��
Remark 4.1 Although ϕ does not need to be restricted on the Poincaré slice in the previous
lemma, we shall only use this estimate on Poincaré slice.

5 Estimate of the Solution to the Homological Equation

In this section, for the convenience of convergence proof we will consider the ball Br = Br ,r .
Our main purpose is to solve and estimate the solution of the homological equation (3.1).
According to invariance property (ii) of (S, P)-decomposition, we consider it along the two
separate slices:

L(ϕP + ϕS) = gP + gS ⇒ LϕP = gP ,LϕS = gS. (5.1)

Suppose that the linear part (1.5) satisfies the corresponding QR-Diophantine conditions,
our main goal is to prove the following proposition:

Proposition 5.1 Suppose ε is sufficiently small and �ε satisfies the conditions in Theorem
1.1, then there exists a constant C2 which depends on κ, σ,�, n,C0 so that for a holomorphic
map g≥2 ∈ H(Br ), there is a unique solution ϕ ∈ H(Br−δ) of the homological equation
(3.1) which satisfies the following estimate:

‖ϕ‖r−δ ≤ C2 · δ−(ϑ+n)‖g‖r , for all 0 < δ < r ≤ 1, (5.2)

where ϑ is the positive constant in Eq. (5.25) which depends only on κ, σ, n.
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We need to state some basic lemmas first for its proof. First, on the Poincaré slice we have a
formal solution and we estimate it.

Lemma 5.1 The restriction to the Poincaré slice of the homological equation (5.1) has a
unique solution ϕP ∈ H(Br )n w.r.t any given gP ∈ H(Br )n. Suppose ε is sufficiently small,
then we have the following estimate:

|ϕP |r ≤ CP |gP |r , (5.3)

where CP = C(�, n, κ) depends only on �, n and κ .

Proof First we suppose there is only one single Jordan block. The restriction of the
homological equation (3.2) to the Poincaré slice is:

LϕP = (� − εN )ϕP + RεϕP = gP . (5.4)

Throughout this proof, let α ∈ P ⊂ Z
n+(2). We claim that for each i = 1, 2, . . . , n, there

exists a constant γi > 0 depending on � and κ such that

|λα − λi | ≥ γi . (5.5)

In fact, by the (S, P)-decomposition (3.8) and (3.11), we have:

|λα| 
= |λi | for all i = 1, 2, . . . , n. (5.6)

Equation (1.6) indicates that |λα| tends to zero as |∑ j /∈I1
α j | goes to infinity. Combining

the non-resonant condition

|λα − λi | 
= 0 for all i = 1, 2, . . . , n, (5.7)

and (5.6), there exists an integer Mi such that we have |λα − λi | ≥ 1
2 |λi | when |α| ≥ Mi .

Denote

γi := min

{
inf|α|<Mi

|λα − λi |, 1
2
|λi |
}

,

by (5.7) we have γi > 0, thus the claim (5.5) is proved.
The n × n-dimension diagonal matrix �α on Poincaré slice is:

�α = diag{λα − λ1, λ
α − λ2, . . . , λ

α − λn}.
Denote

γp := max
1≤i≤n

γ −1
i , (5.8)

by (5.5) we have:

|�−1
α | ≤ max

1≤i≤n
{|λα − λ1|−1, |λα − λ2|−1, . . . , |λα − λn |−1} ≤ max

1≤i≤n
γ −1
i = γp.

According to the Eq. (3.5), we suppose

εγp ≤ 1

2
. (5.9)

Then for all α ∈ P we have:

|(�α − εN )−1| =
∣∣∣∣∣

nd−1∑

s=0

�−s−1
α (εN )s

∣∣∣∣∣ ≤
nd−1∑

s=0

|�−1
α |s+1εs ≤ 2γp(1 − 2−nd ) := �(�, κ),

(5.10)
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For a given gP ∈ H(Br )n on the Poincaré slice, by (S, P)-decomposition (3.11) and (2.3),
using (5.10) on P we have:

∣∣(� − εN )−1gP

∣∣
r =
∣∣∣∣∣(� − εN )−1

∑

α∈P

gαz
α

∣∣∣∣∣
r

≤
∑

α∈P

|gα| ∣∣(�α − εN )−1
∣∣ r |α|

≤ �(�, κ)
∑

α∈P

|gα|r |α| = �(�, κ)|gP |r .
(5.11)

The Eq. (5.4) reads as:
(
I + (� − εN )−1Rε

)
ϕP = (� − εN )−1gP .

By the estimates above and Lemma 4.1, if we choose ε sufficiently small such that |(� −
εN )−1Rε | < 1, then the operator I + (� − εN )−1Rε is invertible at a formal level and we
have:

ϕP = (I + (� − εN )−1Rε
)−1

(� − εN )−1gP ,

thus the existence is proved.
Let us estimate the solution. We rewrite (5.4) as:

ϕP = (� − εN )−1gP − (� − εN )−1RεϕP ,

taking the polydisc norm of the ball Br on both sides and by Lemma 4.1 we obtain:

|ϕP |r = ∣∣(� − εN )−1gP − (� − εN )−1RεϕP

∣∣
r

≤ ∣∣(� − εN )−1gP

∣∣
r + ∣∣(� − εN )−1RεϕP

∣∣
r

≤ �(�, κ)|gP |r + �(�, κ)
∣∣RεϕP

∣∣
r

≤ �(�, κ) |gP |r + ε�(�, κ)C̃ |ϕP |r ,

where C̃ = C̃(nd , λd) comes from (4.2) which depends only on �.
To summarize, on the Poincaré slice, if ε is sufficiently small such that

ε�(�, κ)C̃ < 1 (5.12)

and (5.9) are satisfied, then there is a constant C(�, κ) = �(�, κ)C̃ which depends on �

and κ such that:

|ϕP |r ≤ �(�, κ)

1 − ε · C(�, κ)
|gP |r .

If there is more than one Jordan block in �ε , then the estimate in (5.10) will depend on the
maximum of nd where Id corresponds to Jordan blocks. Thus the lemma is proved. ��
Remark 5.1 We need to mention that this idea can not be applied on Siegel slice, because we
will encounter small divisor there. In fact, on Siegel slice the estimate of |(� − εN )−1| in
(5.10) is related to the multi-indices α, which tends to infinity as |α| goes to infinity. So we
can not choose ε sufficiently small to satisfy (5.12).

Before we start to estimate the solution of the homological equation restricted on the Siegel
slice, we need to introduce the lexicographic order for monomials.

Definition 5.1 Given two exponent vectors α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn).
One has

(α1, α2, . . . , αn) ≺ (β1, β2, . . . , βn)
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if either |α| < |β|, or |α| = |β| but αi < βi for the smallest i for which αi 
= βi . Then
naturally we have a relation order “less than: ≺” in Z

n+(2). The lexicographic order of a
monomial zα11 . . . zαnn is defined as:

LO
(
zα11 . . . zαnn

) := α = (α1, . . . , αn).

For any finite subset W ⊂ Z
n+(2) and a power series fW (z) = ∑

α∈W
fαzα, define

LO( fW ) := max
α∈W LO(zα),

where the maximum is taken under the relation order ≺.

With this definition, we have the following lemma:

Lemma 5.2 On Siegel slice (3.11), the operator Rε is nilpotent. i.e., there exists a finite
integer η = η(κ, n) which depends only on κ and n such that:

(Rε)ηgS = 0, for all gS ∈ H(Br )
n .

Proof First we consider the case of a single Jordan block �d . Recall that each Siegel slice is
(3.10), on S1 and S2 we have:

gS1(z) =
∞∑

|A1|=2

gA1 Z
A1
1 , gS2(z) =

∞∑

|A1|=1

m∑

i=2

∑

|Ai |=1

gA1,Ai
Z A1
1 Z Ai

i .

By (3.12) and direct calculation we obtain:

RεgS1 = 0 (5.13)

For any i 
= d we haveRε(Z A1
1 Z Ai

i ) = 0. Note that the operatorRε acts only on monomials,
thus

Rε
(
gS2(z)
) =

∞∑

|A1|=1

∑

|Ad |=1

gA1,Ad
(Rε)
(
Z A1
1 Z Ad

d

)
.

For each j ∈ Id , j 
= nd and |A j | = 1, by observing that

Rε
(
Z A1
1 Z

A j
j

) = Rε
(
Z A1
1 z j
) = εZ A1

1 z j+1,

we have:

(Rε)nd
(
gS2(z)
) =

∞∑

|A1|=1

gA1,Ad1
εnd−1Rε

(
Z A1
1 znd
) = 0. (5.14)

When there is a quasi-resonance κ ∈ QRi , we have:

gSi,κ
(z) =

∑

α∈Si,κ
gαZ

A1
1 Z A2

2 . . . Z Ai−1
i−1 . (5.15)

For each quasi-resonance, we consider the monomial Z A1
1 Z A2

2 . . . Z Ai−1
i−1 for a fixed

α = (A1, A2, . . . , Ai−1, 0) which belongs to the slice Si,κ . First we observe that

Rε
(
Z A1
1 Z A2

2 . . . Z Ai−1
i−1

) 
= 0 iff 2 ≤ d ≤ i − 1. Actually we have:

Rε
(
Z A1
1 Z A2

2 . . . Z Ai−1
i−1

)
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=
∏

1≤ j≤i−1
j 
=d

(
� j Z j
)A j

[nd−1∏

i=1

(
λdi zdi + εzdi+1

)αdi · (λdnd zdnd
)αdnd −

nd∏

i=1

(
λdi zdi
)αdi
]

.

(5.16)

We only expand terms of non zero exponent αdi 
= 0 through binomial expansion. In order to
simplify notations, in the following we suppress d and substitute nd , di by n, i respectively.
For the first product in the bracket of (5.16), we distribute the first parentheses of the product
as:

n−1∏

i=1

⎛

⎝(λi zi )
αi +

αi−1∑

si=0

(
αi

si

)
(λi zi )

si (εzi+1)
αi−si

⎞

⎠ · (λnzn)
αn (5.17)

= (λ1z1)
α1

n−1∏

i=2

(λi zi + εzi+1)
αi · (λnzn)

αn+ (5.18)

α1−1∑

s1=0

(
α1

s1

)
(λ1z1)

s1(εz2)
α1−s1 ·

n−1∏

i=2

(λi zi + εzi+1)
αi · (λnzn)

αn . (5.19)

We notice that all of the lexicographic orders of those terms in (5.19), by Definition 5.1 are
strictly less than LO(zα11 zα22 . . . zαnn ), because the degree of z1 decreases at least 1. Let us
focus on the term (5.18), we also expand the first parentheses of the product in (5.18):

(λ1z1)
α1

n−1∏

i=2

(λi zi + εzi+1)
αi · (λnzn)

αn

= (λ1z1)
α1

n−1∏

i=2

⎛

⎝(λi zi )
αi +

αi−1∑

si=0

(
αi

si

)
(λi zi )

si (εzi+1)
αi−si

⎞

⎠ · (λnzn)
αn

= (λ1z1)
α1(λ2z2)

α2

n−1∏

i=3

(λi zi + εzi+1)
αi · (λnzn)

αn+ (5.20)

(λ1z1)
α1

α2−1∑

s2=0

(
α2

s2

)
(λ2z2)

s2(εz3)
α2−s2 ·

n−1∏

i=3

(λi zi + εzi+1)
αi · (λnzn)

αn . (5.21)

Similarly we find that all of the lexicographic orders of thosemonomials in the term of (5.21),
by Definition 5.1 are strictly less than LO(zα11 zα22 . . . zαnn ), because the degree of z2 decreases
at least 1 and the degree of z1 is the same. As for term (5.20), we continue to expand the first
parentheses in the product left. Thus when we expand all of the n − 1 parentheses one by
one, we can find that except from the first term

n∏

i=1

(λi zi )
αi , (5.22)

the lexicographic order of all the other terms produced in (5.17) decreases, for that there is
always one i in {1, 2, . . . , n−1} such that the degree of zi decreases at least 1 and the degree
of the previous z j ’s, j ≤ i − 1 keep the same. And the term (5.22) of the original degree is
eliminated in the bracket in (5.16). With these observations above, recall that we suppress d

123



Journal of Dynamics and Differential Equations

before, by Definition 5.1 we conclude that:

LO
(
Rε
(
Z A1
1 Z A2

2 . . . Z Ai−1
i−1

))
< LO

(
Z A1
1 Z A2

2 . . . Z Ai−1
i−1

)
.

for a fixed α = (A1, A2, . . . , Ai−1, 0). Since the formula (5.16) also tells that the new
monomials produced byRε still have the same indices of A j , j 
= d, the remainder operator
only changes the exponents of the variables corresponding with �d . Thus we apply the
remainder operatorRε at most for a finite time, we will get the only one term which has the
smallest lexicographic order:

Z A1
1 . . . z

κ
(i)
d

nd . . . Z Ai−1
i−1 , (5.23)

for an index α ∈ Si,κ with fixed A j , j 
= d . It is obvious that if we apply the remainder
operatorRε to (5.23) once again, it turns into zero. Thus for each Ad , there exists an integer
ηAd such that

(Rε)ηAd

(
Z A1
1 Z A2

2 . . . Z Ai−1
i−1

)
= 0.

While on each Siegel slice Si,κ , we have a finite Ad such that |Ad | = κ
(i)
d , thus denote

ηi,κ := max
|Ad |=κ

(i)
d

ηAd ,

and we have
(Rε)ηi,κ gSi,κ

= 0. (5.24)

Since we have proved the nilpotency of the remainder operator Rε on each Siegel slice
Si,κ , note that the whole Siegel slice S in (3.11) is a finite and disjoint union of Si,κ , κ ∈ QRi .
Considering �|QRi | < ∞ and

gS =
m∑

i=1

gSi
= gS1 + gS2 +

m∑

i=3

∑

κ∈QRi

gSi,κ
,

combining (5.13), (5.14) and (5.24), there exists a finite number

η(κ, n) := max

⎧
⎨

⎩1, nd , max
κ∈QRi
3≤i≤m

ηi,κ

⎫
⎬

⎭

such that:
(Rε)ηgS = 0.

Thus we have proved our conclusion for only one single Jordan block.When there are several
Jordan blocks, the monomial having the smallest lexicographic order in (5.23) will be the
product of several monomials with the smallest lexicographic orders which corresponds to
different blocks. Thus the lemma is proved. ��

With this lemma above, we can solve and estimate the homological equation restricted on
Siegel slice.

Lemma 5.3 The restriction to the Siegel slice of the homological equation (5.1) has a unique
solution ϕS w.r.t gS for any given gS ∈ H(Br )n. Moreover, we have the following estimate:

|ϕS|r−δ ≤ CS · δ−ϑ |gS|r , for all 0 < δ < r ≤ 1, (5.25)

where ϑ is a positive constant which depends only on κ, σ, n and CS is a constant which
depends only on κ, σ,�, n,C0.

123



Journal of Dynamics and Differential Equations

Proof First we consider the linear part having only one single Jordan block �d . Without loss
of generality, in order tomake this proof simpler wewill suppose that only the first eigenvalue
belongs to the unit circle, i.e., I1 = {1}. If I1 has more that one element, we give the similar
assumption of Diophantine conditions and this makes no essential difference to our proof.

Similar to Poincaré slice case, by (S, P)-decomposition (3.11), on S1 we have:

�α = diag{λα1
1 − λ1, λ

α1
1 − λ2, . . . , λ

α1
1 − λn}.

By condition (1.10), we have

|λα1
1 − λ1| ≥ C0|α1|−σ , and |λα1

1 − λi | ≥ 1 − |λi | for 2 ≤ i ≤ n.

Recall that S2 = {α ∈ Z
n+(2) :∑m

l=2 |A j | = 1}, if α ∈ S2 then in the diagonal matrix

�α = diag{λα − λ1, λ
α − λ2, . . . , λ

α − λn},
α has and only has one |A j | = 1, j ≥ 2, thus for i, j ≥ 2 by (1.11) we have:

|λα1
1 λi − λ j | ≥ |λ j − λi | for |λi | 
= |λ j |,∣∣λα1
1 λi − λ j

∣∣ ≥ C0(α1 + 1)−σ for λi 
= λ j but |λi | = |λ j |,
|λα1

1 λ j − λi | ≥ |λ j ||λα1
1 − 1| ≥ |λ j | · C0|α1 + 1|−σ for λi = λ j .

Finally, for each 3 ≤ i ≤ m, we fix a κ(i) ∈ N
i−2. Let α ∈ Si,κ , then by the QR-Diophantine

condition of quasi-resonance (1.9) we have:
∣∣∣∣∣∣
λ

α1
1 ·

i−1∏

j=2

�
A j
j − λk

∣∣∣∣∣∣
≥ C0

⎛

⎝|α1| +
i−1∑

j=2

κ
(i)
j

⎞

⎠
−σ

,

for all k ∈ Ii ,
∑i−1

j=1 |A j | ≥ 2 and |A j | = κ
(i)
j , 2 ≤ j ≤ i − 1. Thus we can get the estimate

|�−1
α | on each Siegel slice Si,κ , which will be used below.
With the observations above, let us estimate |(�α − εN )−1| when α ∈ S. In order to

simplify the following estimate, we denote ω(α1) := C−1
0 |α1|σ . We can assume ω(α1) ≥ 1

even if this means |α1| is large enough. According to (3.5), by our previous choice (5.9) there
exists a constant γs which depends on �, κ such that when α ∈ S1 we have:

|w−1
0 | := |(�α − εN )−1| =

∣∣∣∣∣∣

n−1∑

k=0

�−k−1
α (εN )k

∣∣∣∣∣∣
≤

n−1∑

k=0

|�−1
α |k+1εk ≤ γsn · ω(α1)

n . (5.26)

On the other hand, when α ∈ S2, we have:

|w−1
1 | := |(�α − εN )−1| =

∣∣∣∣∣

n−1∑

k=0

�−k−1
α (εN )k

∣∣∣∣∣ ≤
n−1∑

k=0

|�−1
α |k+1εk ≤ γsn · ω(α1 + 1)n .

(5.27)
Although this means increasing γs , we can assume that γsn ≥ 1 so that the right hand side
above is greater that 1.

For 3 ≤ i ≤ m, suppose there is quasi-resonance κ ∈ QRi with α ∈ Si,κ . Then, we have:

|w−1
κ | := |(�α−εN )−1| =

∣∣∣∣∣

n−1∑

k=0

�−k−1
α (εN )k

∣∣∣∣∣ ≤
n−1∑

k=0

|�−1
α |k+1εk ≤ γsn·ω

⎛

⎝α1 +
i−1∑

j=2

κ j

⎞

⎠
n

.

(5.28)
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Similar to the Poincaré slice, the homological equation restricted on Siegel slice is:

LϕS = (� − εN )ϕS + RεϕS = gS, for a given gS ∈ H(Br )
n . (5.29)

We write the formal solution of it:

ϕS = (I + (� − εN )−1Rε
)−1

(� − εN )−1gS.

By (3.3) and (3.4), for a given gS =∑α∈S gαzα , we have �Rε = Rε�. Indeed, we have

�RεgS = gS(�
2 + εN�) − gS(�

2) − �(gS(� + εN ) − gS(�))

Rε�gS = gS(�
2 + εN�) − �gS(� + εN ) − gS(�

2) − �gS(�).

On the other hand, RεNϕ = Nϕ(� + εN ) − Nϕ(�) = NRεϕ.
Hence, by observing (3.5), (�− εN )−1 andRε are pairwise commuting. Then according

to Lemma 5.2, the inverse of the operator I + (� − εN )−1Rε does exist as a finite sum:

(
I + (� − εN )−1Rε

)−1 =
∑

j≥0

(−1) j
(
(� − εN )−1Rε

) j =
η−1∑

j=0

(−1) j (� − εN )− j (Rε
) j

.

Thus we have proved the existence of the formal solution to the homological equation
restricted on Siegel slice (5.29).

By Lemma 3.1 we can estimate it on each Siegel slices Si separately. First on S1, by
equation (5.26) we have:

|ϕS1 |r−δ =
∣∣∣
(
I + (� − εN )−1Rε

)−1
(� − εN )−1gS1

∣∣∣
r−δ

=
∣∣∣∣∣∣

∞∑

α1=2

(�α − εN )−1gα1,0z
α1
1

∣∣∣∣∣∣
r−δ

≤
∞∑

α1=2

|w0|−1|gα1,0|(r − δ)α1

≤ CS1 ·
∞∑

α1=2

ω(α1)
n
(
r − δ

r

)α1

|gα1,0|rα1 .

And we have

1 − δ

r
≤ 1 − δ ≤ e−δ when 0 < δ < r ≤ 1. (5.30)

Let h(x) := xne−δx , x ≥ 2, then h′(x) = (n−δx)xn−1e−δx , thus h(x) achieves itsmaximum
at x0 = n

δ
, i.e.,

h(x) ≤ h(
n

δ
) = δ−n · nne−n . (5.31)

Combining (5.30) and (5.31) we obtain:

|ϕS1 |r−δ ≤ CS1

∞∑

α1=2

ασn
1 e−δα1 |gα1,0|rα1 ≤ CS1 · δ−σn |gS1 |r . (5.32)

Note that among the estimates abovewe do not change the notationCS1 , because it is constant
which only depends on σ,�, n, κ,C0 and it does not influence the convergence proof in
Sect. 6.

On S2, according to Lemma 5.2 we have:

|ϕS2 |r−δ =
∣∣∣
(
I + (� − εN )−1Rε

)−1
(� − εN )−1gS2

∣∣∣
r−δ

123



Journal of Dynamics and Differential Equations

=
∣∣∣∣∣∣

n−1∑

j=0

∞∑

α1=1

n∑

i=2

(−1) j (�α − εN )−( j+1)gα1,ei

(Rε
) j (

zα11 zi
)
∣∣∣∣∣∣
r−δ

.

Since the sum for index j is a finite sum, it will produce at most finite monomials of form
zα11 zi for a fixed α1, we also assume |(�α − εN )|−1 ≥ 1, by (5.27), (5.30) and Cauchy
estimates we have:

|ϕS2 |r−δ ≤ CS2 ·
∞∑

α1=1

n∑

i=2

|w1|−n |gα1,ei
|(r − δ)α1+1

≤ CS2

∞∑

α1=1

ω(α1 + 1)n
2
(
r − δ

r

)α1+1

|gα1,ei
|rα1+1,

where CS2 is a constant which only depends on σ,�, n, κ,C0. Thus by (5.31) we obtain:

|ϕS2 |r−δ ≤ CS2 ·
∞∑

α1=2

ασn2
1 e−δα1 |gα1,ei

|rα1+1 ≤ CS2 · δ−σn2 |gS2 |r . (5.33)

Finally, let us consider the slice Si,κ . For a fixed κ ∈ QRi , by Lemma 5.2 and (5.30) we
have:

|ϕSi,κ
|r−δ =

∣∣∣
(
I + (� − εN )−1Rε

)−1
(� − εN )−1gSi

∣∣∣
r−δ

=

∣∣∣∣∣∣∣∣

η−1∑

j=0

(−1) j (� − εN )−( j+1)(Rε) j
∞∑

α1=0

∑

2≤ j≤i−1
|A j |=κ j

gαz
α1
1 Z A2

2 . . . Z Ai−1
i−1

∣∣∣∣∣∣∣∣
r−δ

=

∣∣∣∣∣∣∣∣

η−1∑

j=0

∞∑

α1=0

∑

2≤ j≤i−1
|A j |=κ j

(�α − εN )−( j+1)gα

(Rε
) j (

zα11 Z A2
2 . . . Z Ai−1

i−1

)
∣∣∣∣∣∣∣∣
r−δ

.

Similar to the estimate on S2, since the sum for index j is finite and is related to η, it will
produce atmost finitemonomials of form zα11 Z A2

2 . . . Z Ai−1
i−1 for a fixedα1, we can also assume

|(�α − εN )|−1 ≥ 1, by (5.28), (5.30) and (5.31) we have:

|ϕSi,κ
|r−δ ≤ CSi,κ

∞∑

α1=0

∑

2≤ j≤i−1
|A j |=κ j

∣∣∣∣∣∣
ω

⎛

⎝α1 +
i−1∑

j=2

κ j

⎞

⎠
ηn∣∣∣∣∣∣

|gα|(r − δ)
α1+∑i−1

j=2 κ j

≤ CSi,κ ·
∞∑

α1=0

⎛

⎝α1 +
i−1∑

j=2

κ j

⎞

⎠
σηn (

r − δ

r

)α1+∑i−1
j=2 κ j

|gα|rα1+∑i−1
j=2 κ j

≤ CSi,κ · δ−σηn |gSi,κ
|r .

(5.34)

With the above estimates on these Siegel slices, combining (5.32), (5.33) and (5.34), by
the invariance Lemma 3.1 we have:

|ϕS|r−δ =
∣∣∣∣∣

m∑

i=1

ϕSi

∣∣∣∣∣
r−δ

= ∣∣ϕS1

∣∣
r−δ

+ ∣∣ϕS2

∣∣
r−δ

+
∣∣∣∣∣∣

m∑

i=3

∑

κ∈QRi

ϕSi,κ

∣∣∣∣∣∣
r−δ
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≤ CS1 · δ−σn |gS1 |r + CS2 · δ−σn2 |gS2 |r +
m∑

i=3

∑

κ∈QRi

CSi,κ · δ−σηn |gSi,κ
|r

≤ CS · δ−ϑ |gS|r ,
whereCS depends only on κ, σ,�, n,C0 and ϑ = max{σn, σn2, σηn}, which depends only
on κ, η, σ, n. Thus the lemma is proved. ��

With those lemmas above, eventually we obtain the estimate of the solution to the
homological equation (3.1).

Proof of Proposition 5.1 Suppose ε sufficiently small so that it satisfies (5.9) and (5.12), i.e.,

ε < min{(2γp)
−1, (n�(�, κ)C̃)−1}. (5.35)

Combining (2.2), (5.3) and (5.30), from Lemmas 5.1 and 5.3 we conclude that:

‖ϕ‖r−δ ≤ |ϕ|r−δ = |ϕP |r−δ + |ϕS|r−δ ≤ CP · |gP |r−δ + CS ·
(

δ

2

)−ϑ

|gS|r− δ
2

≤ C2 ·
(

δ

2

)−ϑ (
|gP |r− δ

2
+ |gS|r− δ

2

)
= C2 ·

(
δ

2

)−ϑ

|g|r− δ
2

≤ C2 ·
(

δ

2

)−ϑ

·
(
2r

δ

)n
‖g‖r ≤ C2 · δ−(ϑ+n)‖g‖r .

here we use r ≤ 1 and we also keep the notation of the constant C2, which depends only on
κ, σ,�, n,C0. Thus the proposition is proved.

6 Convergence Proof

With all of the preparations above, in order to proof the holomorphic linearization, we can
use verbatim the proof by the Newton iteration method as introduced by Zehnder [13]. We
shall recall its main points without proof.

We first give the most important lemma in our convergence proof. The main idea comes
from Zehnder [13]:

Lemma 6.1 Let ε satisfies (5.35), g ∈ H(Br ) for some 0 < r ≤ 1, then the homological
equation (3.1) has a unique solution ϕ ∈ H(Dr ), moreover, the following estimate holds for
all 0 < δ < r ≤ 1 :

‖ϕ‖C1,r−δ ≤ C3δ
−τ‖g‖r . (6.1)

where τ = ϑ + n + 1, which depends only on κ, σ, n and C3 is a constant depending on
κ, σ,C0, |�ε | and |(�ε)−1|.
Proof Since ϕ is holomorphic on Br−δ and solves there the holomological equation (5.1),
then ϕ ◦ �ε is also holomorphic there. According to the estimate (5.2), we have

‖ϕ ◦ �ε‖r−δ ≤ |�ε |‖ϕ‖r−δ + ‖g‖r−δ ≤ (|�ε |C2 + 1) · δ−(ϑ+n)‖g‖r ,
since δ < 1. And by Cauchy estimate we have

‖Dϕ‖r−δ ≤ 2δ−1‖ϕ‖r− δ
2

≤ 2ϑ+n+1C2 · δ−(ϑ+n+1)‖g‖r ,
‖Dϕ ◦ �ε‖r−δ ≤ ‖D(ϕ ◦ �ε)‖r−δ|(�ε)−1| ≤ 2δ−1|(�ε)−1|‖ϕ ◦ �ε‖r− δ

2

≤ |(�ε)−1|(|�ε |C2 + 1)2ϑ+n+1 · δ−(ϑ+n+1)‖g‖r ,
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where C2 comes from the estimate (5.2) which depends only on κ, σ,�, n,C0. Thus we
can choose a suitable constant C3 which is much greater than the coefficients above, which
concludes the proof. ��

6.1 Idea

We consider the linearization problem with � = I d + φ≥2, where φ≥2 ∈ H(Br ). We try to
solve the equation F(�) = 0, where

F(�) := F ◦ � − � ◦ �ε.

Since F(I d) = f , which is small near 0, we are dealing with a perturbation problem. Since
f contains only terms of order ≥ 2, then by eventually conjugating by an homothety, we can
assume without loss of generality, that f is holomorphic on |z| < 1, and that

‖ f ‖1 < δ0, (6.2)

for δ0 as small as we want, to be chosen later on. AssumingF(�) to be small, we are looking
for a better approximation � + v, which makes F(� + v) smaller. By Taylor expansion on
Banach space we have:

F(� + v) = F(�) + F ′(�)v + R(�, v),

where

F ′(�)v := d

dt
F(� + tv) |t=0 = DF ◦ � · v − v ◦ �ε, (6.3)

and the high order term R(�, v) is given by

R(�, v) =
∫ 1

0
(1 − t)

d2

dt2
F(� + tv) · v2dt =

∫ 1

0
(1 − t)

d2

dt2
f (� + tv) · v2dt . (6.4)

Wewouldhave to solveF(�)+F ′(�)v = 0 such thatF(�+v) = O2(F(�)).Unfortunately,
because of small divisors the linear operator F ′(�) given by (6.3) has no right-inverse on
the space of holomorphic map on a fixed domain. We need to construct a sufficiently good
approximating right-inverse of F ′(�). Following Rüssmann [6] we have

DF(�)(z) = DF ◦ �(z) · D�(z) − D� ◦ �ε(z) · �ε. (6.5)

Let us set:
v := D� · ϕ.

Combining (6.3) and (6.5) we obtain

F ′(�)v = DF(�) · ϕ + D� ◦ �ε(�εϕ − ϕ ◦ �ε).

Consequently

F(� + v) = F(�) + D� ◦ �ε(�εϕ − ϕ ◦ �ε) + R(�, v) + DF(�) · ϕ. (6.6)

By Lemma 6.1, we are able to solve the equation F(�) + D� ◦ �ε(�εϕ − ϕ ◦ �ε) = 0 in
case that D� ◦ �ε is invertible. According to (6.6) we still have F(� + v) = O2(F(�)).
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6.2 Set Up

With the linear operator defined in (3.1), we shall define inductively the iteration �ν , for
ν = 0, 1, 2, . . . as follows: �0 = I d , and for ν ≥ 0, set

�ν+1 = �ν + vν,

vν = D�ν · ϕν,

ϕν = L−1((D�ν ◦ �ε)−1F(�ν)).

(6.7)

With this formula and (6.6) we then have:

F(�ν+1) = DF(�ν) · ϕν + R(�ν, vν), (6.8)

which is O2(F(�ν)). The domains Brν are defined with

rν = 1

2
(1 + 2−(ν+1)), ν ≥ 0.

Clearly limν→∞ rν = 1
2 , and Brν+1 ⊂ Brν for all ν ≥ 0. The sequence of small numbers, εν ,

is defined by
εν+1 = Cν+1ε2ν , ν ≥ 0,

whereC is a large constant dependingonκ, σ,C0, n, |�ε |, |(�ε)−1|whichwill be determined
later on. For ε0 sufficiently small, the sequence εν tends rapidly to 0, actually for all ν ≥ 0,
(refer to the explicit calculation in [4]) we have:

εν = C−(ν+2)(C2ε0)
2ν

. (6.9)

In particularly we then have

εν+1 ≤ 1

2
εν ≤ εν − εν+1. (6.10)

With all of these preparations above, we can get the induction lemma.

6.3 Induction

We shall prove that if ε0 is sufficiently small (that is to say C is sufficiently large), then the
following inductive lemma holds true for all ν ≥ 0, defined by (6.7) inductively. It follows
verbatim from Zehnder [13]:

Lemma 6.2 [13] For all ν = 0, 1, 2, . . .. we have:
(1.ν) �ν is holomorphic on Drν , �ν(0) = 0, D�ν(0) = 1, and

‖�ν − id‖C1,rν ≤ ε0 − εν.

(2.ν) F(�ν) is holomorphic on Brν , and

‖F(�ν)‖rν ≤ ε2ν .

(3.ν) vν is holomorphic on Drν+1 , vν(0) = 0, Dvν(0) = 0, and

‖vν‖C1,rν+1
≤ εν+1 ≤ εν − εν+1.
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From (3.ν), ν = 0, 1, 2, . . . we can conclude, by (6.7) vν = �ν+1 − �ν that �(z) :=
limν→∞ = I d +∑ν−1

k=0 vk = limν→∞ �ν converges uniformly for z ∈ B 1
2
. Hence � is

a holomorphic map defined on B 1
2
. From (1.ν) we have �(0) = 0, D�(0) = 1. As a

consequence of (2.ν) we have on B 1
2
,F(�) = limν→∞ F(�ν) = 0, which proves our main

Theorem 1.1.
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