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Abstract

We consider an embedded general complex torus Cn into a complex
manifold Mn+d with a unitary flat normal bundle NC . We show the
existence of (non-singular) holomorphic foliation in a neighborhood of C
in M having C as leaf under some conditions.

1 Introduction

Let ι : C → M be a holomorphic embedding of a compact complex manifold
C of dimension n in a complex manifold M of dimension n + d. We shall still
denote ι(C) by C. Let NC be its normal bundle. We assume that TM|C splits,
that is TM|C = NC ⊕ TC and that NC is unitary flat, that is admit locally
constant unitary transition matrices. We aim at giving sufficient conditions
ensuring the existence of a holomorphic foliation having C as a leaf in some
neighborhood of C in M . T. Ueda [Ued82] studied the case of an embedded
complex compact curve into a surface and showed, in the so called infinite type
case, the existence of such a foliation under a “Diophantine-like” condition of the
form: there exist M > 0,τ ≥ 0 such that for all l > 2, dist(1, N−l+1

C ) > Ml−τ .
Here the distance is the one defined on the Picard group of C. Recently, the
problem of existence of holomorphic foliation in a neighborhood of an embedded
compact manifold C of which it is a leaf has attracted lot of attention (e.g.
[CMS03, Koi15, Koi20, CLPT18, GS21]). The aim of this article is to provide
with a new range of such examples, namely embedded general tori in complex
manifold of any dimension. This problem is also related another one : the
existence of a neighborhood biholomorphic to a neighborhood of the zero section
in its normal bundle. The latter is related to Grauert’s “Formale Prinzip” in the
case of a flat normal bundle. This situation is quite different than when there is
“curvature”, as initiated by Grauert [Gra62] (negative case) or Griffiths [Gri66]
(positive case). This was first devised by V.I Arnold[Arn76] for elliptic curve
embedded in surfaces and generalized to an abstract situation by the first author
and X. Gong [GS21]. Very recently the problem of equivalence of neighborhoods
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was solved by the first author and X. Gong for embedded general complex tori
[GS22].

The main result of this article is the following.

Theorem 1.1. Let C be an n-dimensional complex torus, holomorphically em-
bedded into a complex manifold Mn+d. Assume that TM |C splits. Assume the
normal bundle NC has (locally constant) unitary transition functions. Assume
that NC is vertically strongly Diophantine (see Definition (2.3)). Then there
exists a non-singular holomorphic foliation of the germ of neighborhood of C in
M having C as a compact leaf.

In this note, following the approach of [GS22], we will show that under
some arthimetic assumption on some Stein covering of a complex torus, we can
“vertically linearize” a (holomorphic) neighborhood of the torus (and thus show
the existence of a nonsingular holomorphic foliation which have the torus as a
compact leaf).

The principal technical novelty is the following. Rather than employing
coverings by finite open sets and cocycle-type arguments, as inspired by Ueda, to
attain an L∞ estimate on a larger domain that is independent of the recurrence
procedure (see [GS21, p.37, (3.15)]), we apply a Hartogs-type lemma to the
double translations in n directions of the lattice of the fundamental domain.
The selection of these translations facilitates the embedding of the translation
of a larger domain (than the fundamental domain) within the convex hull of the
union of all these translated domains.

The organisation of the article is as follows. In Section 2, we revisit the
problem’s context as outlined in [GS22], and we establish essential lemmas for
subsequent use. Notably, the Hartogs-type lemmas 2.9 and 2.10 are elementary,
yet they appear to be novel in the context of the linearization problem, capital-
izing on the distinct features of the complex torus. Moving on to Section 3, we
provide a detailed proof of the main result.
Acknowledgment : The first author thanks X. Gong for discussions on the
subject.

2 Setting

Let U be a neighborhood of C in M such that U admits a smooth, possi-
bly non-holomorphic strong retract to C; namely there is a smooth mapping
R : U × [0, 1] → U such that R(·, 0) = Id on U , R(·, t) = Id on C, and
R(·, 1)(U) = C. Thus, π1(U, x0) = π1(C, x0) for x0 ∈ C. Since we are con-
sidering only unprecised neighborhoods of C in M , we will identify U and M .
Recall the following lemma in [GS22, Lemma 4.1] which relate the covering of
the submanifold and the covering of its neighborhood.

Lemma 2.1. Let C be a compact complex manifold. Let π : C̃ → C be a
holomorphic covering and π(x∗0) = x0. Suppose that (M,C) is a holomorphic
neighborhood of C. There is a neighborhood U in M of C and a holomorphic
neighborhood Ũ of C̃ such that p : Ũ → U is an extended covering of the cov-
ering π : C̃ → C and C (resp. C̃) is a smooth strong retract of U (resp. Ũ).
Consequently,

π1(Ũ , x
∗
0) = π1(C̃, x

∗
0), π1(U, x0) = π1(C, x0).
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Applying the above lemma to (NC , C) and a covering π|C̃ : C̃ → C, we have

a covering π̂ : ÑC → NC such that

C̃ ⊂ ÑC , π1(ÑC , x
∗
0) = π1(C̃, x

∗
0), π1(NC , x0) = π1(C, x0).

In the following, we will consider the case that C is a complex torus. We
will always add this assumption from now on.

Consider the fundamental domain

ω0 =


2n∑
j=1

tjej ∈ C
n : t ∈ [0, 1[2n

 ,

where ei(1 ≤ i ≤ 2n) is chosen such that C ≃ Cn/Λ where Λ :=
∑

1≤i≤2n Zei.
Without loss of generality, we can assume that ei(1 ≤ i ≤ n) is the standard
base of Cn (as a complex vector space).

Consider the cylinder

C̃ := C
n/

∑
1≤i≤n

Zei

such that the natural quotient map gives π : C̃ → C a holomorphic covering.
Note that by [GS22, Proposition 3.6], ÑC is (holomorphically) trivial if NC is
flat.

For ϵ > 0, define the Reinhardt domain Ωϵ by

ωϵ :=


2n∑
j=1

tjej : t = (t1, . . . , t2n) ∈ [0, 1[n×]− ϵ, 1 + ϵ[n

 ,

Ωϵ := {(e2πiζ1 , . . . e2πiζn) : ζ ∈ ωϵ}.
Ω+
ϵ = {(|z1|, . . . , |zn|), z ∈ Ωϵ}

=

{
(e−2πR1 , . . . , e−2πRn), R =

n∑
i=1

ti+nIm ei+n, t
′′ ∈]− ϵ, 1 + ϵ[n

}
.

With ∆r = {z ∈ C : |z| < r}, we also define

ωϵ,r := ωϵ ×∆d
r , Ωϵ,r := Ωϵ ×∆d

r . (1)

A function on ωϵ,r that has period 1 in all zj is identified with a function on
Ωϵ,r. In the following, we will denote by (h, v) the coordinates of Ωϵ,r. Also
we will call the h-components (resp. v-component) of an element of Ωϵ,r, its
horizontal (resp. vertical) component.

In the case of torus, we have the following result [GS22, Proposition 4.3] on
the classification of pair (C,M).

Proposition 2.2. Let C be the complex torus and π : C̃ = Cn/Zn → C be the
covering defined above. Let (M,C) be a neighborhood of C. Assume that NC is
flat. Then (M,C) is holomorphically equivalent to the quotient space of an open

neighborhood of C̃ in ÑC by the deck transformations of ÑC . Moreover, one
can take ωϵ0,r0 (for suitable choice of ϵ0, r0) such that (M,C) is biholomorphic
to the quotient of ωϵ0,r0 by τ01 , . . . , τ

0
n. Here for any 1 ≤ i ≤ n, τ0i is the

translation by ei+n when restricted to ωϵ × {0}. Let τj be the mapping defined
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on Ωϵ0,r0 corresponding to τ0j . Then τ1, . . . , τn commute pairwise wherever they
are defined, i.e.

τiτj(h, v) = τjτi(h, v) ∀i ̸= j

for (h, v) ∈ Ωϵ0,r0 ∩τ−1
i Ωϵ0,r0 ∩τ−1

j Ωϵ0,r0 . Notice that (M,C) is also biholomor-
phic to the quotient of Ωϵ0,r0 by τ1, . . . , τn.

On the other hand, let (M̃, C) be another such neighborhood having the cor-
responding generators τ̃1, . . . , τ̃n defined on Ωϵ̃0,r̃0 . Then (M,C) and (M̃, C)
are holomorphically equivalent if and only if there is a biholomorphic mapping
F from Ωϵ,r into Ωϵ̃,r̃ for some positive ϵ, r, ϵ̃, r̃ > 0 such that

F τ̃j(h, v) = τjF (h, v), j = 1, . . . , n,

wherever both sides are defined, i.e. (h, v) ∈ Ωϵ̃,r̃ ∩ τ̃−1
j Ωϵ,r ∩ Ωϵ,r ∩ F−1Ωϵ,r.

By identification of Cn/Zn = (C/Z)n = (C∗)n, we can identify ÑC as (C∗)n×
Cd (since ÑC is holomorphically trivial). We consider Ωϵ,r as an open subset
of (C∗)n × Cd. We assume from now on that NC is Hermitian flat. The deck

transformations of ÑC in this case (cf. [GS22, (4.7), (4.8)]) can be chosen to be
given by for any 1 ≤ j ≤ n,

τ̂j(h, v) = (Tjh,Mjv), τ̂0(h, v) := (h, v) (2)

for some diagonal matrix

Tj := diag(λj,1, . . . , λj,n),Mj := diag(µj,1, . . . , µj,d)

and (h, v) ∈ (C∗)n×Cd. We assume from now on that TM |C splits (i.e. TM |C =
TC ⊕NC). By construction, for (h, v) ∈ Ωϵ,r,

τj(h, 0) = (Tjh, 0).

Since TM |C splits, the differential of τj along C̃ give the deck transformations of

ÑC . In other words, τj in the horizontal direction is a higher-order perturbation
of (Tj ,Mj) (of order ≥ 2 in v).

Recall the notations λl = (λl,1, . . . , λl,n) and µl = (µl,1, . . . , µl,d). With
P = (p1, . . . , pn) ∈ Zn and Q = (q1, . . . , qd) ∈ Nd, we define

λPl µ
Q
l :=

n∏
i=1

λpil,i

d∏
j=1

µ
qj
l,j .

We will need the following sufficient condition to vertically linearize the Deck
transformations.

Definition 2.3. The pullback normal bundle ÑC is said to be vertically Dio-
phantine (resp. strongly Diophantine) if for all (Q,P ) ∈ Nd × Zn, |Q| > 1 and
all j = 1, . . . , d,

max
l∈{1,...,n}

∣∣∣λPl µQl − µl,j

∣∣∣ > D

(|P |+ |Q|)τ
, (3)

(resp.

∀1 ≤ l ≤ n,
∣∣∣λPl µQl − µl,j

∣∣∣ > D

(|P |+ |Q|)τ
(4)

) for some D > 0, τ > 0 (independent of P,Q).
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Remark 2.4. The vertically (resp. strongly) Diophantine condition is indepen-
dent of choice of generators as shown in [GS22, Proposition 4.7]. In particular,
it is equivalent to the condition that for all (Q,P ) ∈ Nd × Zn, |Q| > 1 and all
j = 1, . . . , d,

max
l∈{1,...,n}

∣∣∣λ−Pl µ−Q
l − µ−1

l,j

∣∣∣ > D

(|P |+ |Q|)τ
(5)

(resp.

∀l = 1, . . . n,
∣∣∣λ−Pl µ−Q

l − µ−1
l,j

∣∣∣ > D

(|P |+ |Q|)τ
(6)

) for some D > 0, τ > 0 (independent of P,Q).

If ÑC is vertically strongly Diophantine, then it is also strongly non-resonnant :

∀(Q,P ) ∈ N
d × Z

n, |Q| > 1, j = 1, . . . , d, l = 1, . . . , n, λPl µ
Q
l − µl,j ̸= 0.

Remark 2.5. Note that without any arthimetic assumption, Ueda [Ued82]
showed an example where there exists no regular foliation near an elliptic curve
C in a complex surface such that the elliptic curve is a leaf of the foliation, the
tangent bundle of the surface splits and the normal bundle of the elliptic curve
is trivial. In this example, there exist compact irreducible curves Ci such that Ci
is cohomolgous to miC with limi→∞mi = ∞. However, if the claimed regular
foliation exists, the leaves would be the only irreducible compact curves near C.

Definition 2.6. Set Ωϵ,r := Ωϵ ×∆d
r , and for ℓ ∈ N and 1 ≤ i ≤ n :

Ω̃
(±ℓ)
i,ϵ,r := Ωϵ,r ∪ τ̂±1

i (Ωϵ,r) ∪ · · · ∪ τ̂±ℓi (Ωϵ,r),

Ω̃(±ℓ)
ϵ,r = ∪ni=1Ω̃

(±ℓ)
i,ϵ,r . (7)

Denote by Aϵ,r (resp. Ã(±ℓ)
ϵ,r )the set of holomorphic functions on a neighborhood

of Ωϵ,r, (resp. Ω̃
(±ℓ)
ϵ,r ).If f ∈ Aϵ,r, we set

||f ||ϵ,r := sup
(h,v)∈Ωϵ,r

|f(h, v)|.

More generally, if U is open subset in (C∗)n × Cd and f is holomorphic in a
neighborhood of U , then

∥f∥U := sup
(h,v)∈U

|f(h, v)|.

As such, each f ∈ Aϵ,r can be expressed as a convergent Taylor-Laurent
series

f(h, v) =
∑

P∈Zn,Q∈Nd

fQ,Ph
P vQ

for (h, v) ∈ Ωϵ,r.
We have the following basic Cauchy estimate.

Lemma 2.7. If f =
∑
P∈Zn fP (v)h

P =
∑
Q∈Nd fQ(h)v

Q ∈ Aϵ,r and 0 < δ <
κϵ, δ ≤ δ0, then

|fQ(h)| ≤
supΩϵ,r

|f |
r|Q| . (8)

5



∥f∥ϵ−δ/κ,r ≤
C supΩϵ,r

|f |
δν

, (9)

∥∂P0

h f∥ϵ−δ/κ,r ≤
CC ′|P0| supΩϵ,r

|f |
δν+|P0|

, (10)

where C and ν depends only on n and δ0. Here, κ is some constant independent
of ϵ, r and C ′ depends only on ϵ.

Proof. The proof of the estimates (8) is given in Lemma 4.15 of [GS22]. To get
the estimate (9) and (10), we can modify the proof of Lemma 4.15 of [GS22] as
follows. We recall the notation

P+
ϵ =

{
n∑
i=1

tiImτi ∈ R
n : t ∈]− ϵ, 1 + ϵ[n

}
,

Ω+
ϵ =

{
(e−2πR1 , . . . , e−2πRn) : R ∈ P+

ϵ

}
.

According to [GS22, Lemma 4.12] and Cauchy estimates for polydiscs, we have
if (h, v) ∈ Ωϵ−δ,r, then for all s ∈ Ω+

ϵ and any fixed v,

|fP (v)hP | ≤

∣∣∣∣∣ 1

(2πi)n

∫
|ζ1|=s1,...,|ζn|=sn

f(ζ, v)
hP

ζP
dζ1 ∧ · · · ∧ dζn

ζ1 · · · ζn

∣∣∣∣∣ , (11)

Set sj = e−2πRj , |hj | = e−2πR′
j , R = (R1, · · · , Rn) and R′ = (R′

1, · · · , R′
n). By

[GS22, Lemma 4.13],

inf
(|ζ1|,··· ,|ζn|)=s∈Ω+

ϵ

sup
h∈Ωϵ−δ

∣∣∣∣hPζP
∣∣∣∣ = inf

R∈P+
ϵ

sup
R′∈P+

ϵ−δ

e−2π<R−R′,P> ≤ e−κδ
′|P |, (12)

where the positive constant κ depends only on Imτi and δ
′ = δ/κ. Thus

|fP (v)hP | ≤ sup
Ωϵ,r

|f |e−δ|P |. (13)

Similarly, we have

|∂P0

h f(h, v)| ≤
∑
P∈Zn

∣∣∣∣(PP0

)
fP (v)h

P−P0

∣∣∣∣
where P0 = (P0,1, · · · , P0,n) and(

P

P0

)
=

n∏
j=0

P0,j−1∏
i=0

(Pj − i).

The estimate follows by summing and using (13) which gives

|∂P0

h f(h, v)| ≤ C sup
Ωϵ,r

|f |
n∏
i=1

s
P0,i

i /δν+|P0|.
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Remark 2.8. Assume that each Mk is a unitary matrix. Then, all estimates
of Lemma 2.7 remain valid if one replaces Ωϵ,r by τ̂k(Ωϵ,r) for any 1 ≤ k ≤ n.

We will need the following type of Hartogs lemma.

Lemma 2.9. Fix ϵ > 0. Define

Ω′
ϵ := Ωϵ ∪ ∪i(TiΩϵ ∪ T 2

i Ωϵ) ∪ ∪i(T−1
i Ωϵ ∪ T−2

i Ωϵ)

which is a Reinhardt domain (i.e. a domain such that (e
√
−1θ1z1, · · · , e

√
−1θnzn)

is in Ω′
ϵ for every z = (z1, · · · , zn) ∈ Ω′

ϵ and θ1, · · · θn ∈ R). Consider its
logarithmic indicatrix ω′∗

ϵ = Ω′∗
ϵ ∩ Rn with Ω′∗

ϵ = {ξ ∈ Cn; (eξ1 , · · · , eξn) ∈ Ω′
ϵ}.

Denote φ(z1, · · · , zn) := (log |z1|, · · · , log |zn|). Let F ∈ O(Ω′
ϵ). The F can

be extended over the preimage of the convex hull Conv(ω′∗
ϵ ) of ω′∗

ϵ under φ.
Moreover, the L∞ norm of extended function is equal to the L∞ norm of F on
Ω′
ϵ.

Proof. Consider the following mapping ψ(z1, · · · , zn) = (ez1 , · · · , ezn). We have
for z ∈ Cn, θ ∈ Rn

φ ◦ ψ(z) = (Re z1, . . . ,Re zn), φ(ζ1e
iθ1 , . . . , ζne

iθn) = φ(ζ).

Since Ω′
ϵ is a Reinhardt domain, if ζ = ψ(z) ∈ Ω′

ϵ, then for θ ∈ Rn,

(ez1eiθ1 , . . . , ezneiθn) = ψ(z + iθ) ∈ Ω′
ϵ.

Hence, Ω′∗
ϵ is a tube and we have

ψ−1φ−1(ω′∗
ϵ ) = ω′∗

ϵ +
√
−1Rn = Ω′∗

ϵ .

ψ(Ω′∗
ϵ ) = Ω′

ϵ, φ(Ω′
ϵ) = ω′∗

ϵ .

Let us set Ω̃′
ϵ := ψ(Conv(ω′∗

ϵ ) +
√
−1Rn). We can summerize the inclusion of

open sets as follows.

Ω′∗
ϵ = ω′∗

ϵ +
√
−1Rn Conv(ω′∗

ϵ ) +
√
−1Rn Cn

Ω′
ϵ Ω̃′

ϵ Cn

ω′∗
ϵ Conv(ω′∗

ϵ ) Rn

etale

⊂ ⊂

etale ψ

⊂ ⊂

φ

⊂ ⊂

Let us consider the function ψ∗F . It is defined on Ω′∗
ϵ which is the tube over

ω′∗
ϵ . By a result of Bochner [Bo38], it extends over the tube over the convex hull

Conv(ω′∗
ϵ ) of ω′∗

ϵ . It is also the preimage of the convex hull Conv(ω′∗
ϵ ) under

φ ◦ ψ. On the other hand, for each variable, ψ∗F is 2π
√
−1 periodic over the

preimage of ω′∗
ϵ under φ◦ψ which is an open set in the connected preimage of its

convex hull. By identity theorem, the extension is unique and for each variable,
ψ∗F is 2π

√
−1 periodic which defines a holomorphic function on the preimage

of the convex hull Conv(ω′∗
ϵ ) of ω

′∗
ϵ under φ. Hence, F extends to holomorphic

function on Ω̃′
ϵ.

For the last statement, note that ψ∗|F |2 is subharmonic over ω′∗
ϵ +

√
−1Rn.

For any point in Conv(ω′∗
ϵ ), by definition, there exist x, y ∈ ω′∗

ϵ such that
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the segment L connecting x, y is contained in Conv(ω′∗
ϵ ) containing the given

point (see Figure 1 below). The restriction of ψ∗|F |2 over L +
√
−1Rn is still

subharmonic. In particular, by mean value inequality involving Poisson kernel
(see e.g. [Dem12, (4.12), Chap. I]),

sup
L+

√
−1Rn

ψ∗|F |2 = sup
∂L+

√
−1Rn

ψ∗|F |2

which implies

sup
ω′∗

ϵ +
√
−1Rn

ψ∗|F |2 = sup
Conv(ω′∗

ϵ )+
√
−1Rn

ψ∗|F |2.

This finishes the proof of last statement.

Lemma 2.10. Under the same notations of previous lemma 2.9, there exists
η > 0 depending on ϵ such that

∪iTiΩϵ+η ∪ ∪iT−1
i Ωϵ+η

is contained in the preimage of the convex hull Conv(ω′∗
ϵ ) of ω

′∗
ϵ under φ.

Proof. The statement is equivalent to

φ(∪iTiΩϵ+η ∪ ∪iT−1
i Ωϵ+η) ⊂ Conv(ω′∗

ϵ )

for some η > 0, which is invariant under the base change of Rn. In particular,
without loss of generality, we may assume that Tj corresponds to translation T̃j
by ej the standard basis of Rn and

ωϵ =]− ϵ, 1 + ϵ[n

where it is easy to check the statement.
The corresponding picture in dimension 2 is as follows. The domain bounded

by dashed lines is Conv(ω′∗
ϵ ). The greyed domain is T̃1ω

∗
ϵ+η. The union of

domains bounded by solid lines is ω′∗
ϵ = ω∗

ϵ ∪ ∪i(T̃iω∗
ϵ ∪ T̃ 2

i ω
∗
ϵ ) ∪ ∪i(T̃−1

i ω∗
ϵ ∪

T̃−2
i ω∗

ϵ ). To ease the illustration, we take ϵ = 0 in the picture.

Using the Caucly estimates 2.7, we may solve (with estimates) the (resp.
“inverse”) vertical cohomological operator defined as follows.

Definition 2.11. We define the (resp. “inverse”) vertical cohomological oper-

ator on Ãd
ϵ,r (resp. Ã′d

ϵ,r)(see Definition 2.6)

Lvi (G) := G ◦ τ̂i −MiG. (14)

(resp.
Lv−i(G) := G ◦ τ̂−1

i −M−1
i G. (15)

)

The proof of the following result is similar as [GS22, Proposition 4.17].
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L

T̃2ω
′∗
ϵ

T̃ 2
2 ω

′∗
ϵT̃−1

2 ω′∗
ϵ

T̃−2
2 ω′∗

ϵ

T̃1ω
′∗
ϵ

T̃ 2
1 ω

′∗
ϵ

T̃1ω
′∗
ϵ+η

Conv(ω′∗
ϵ )

ω′∗
ϵ

Figure 1: Domains and their translates by the T̃j ’s for ϵ = 0 and their convex

hull. When ϵ > 0, T̃ kj ω
′∗
ϵ overlaps both T̃ k−1

j ω′∗
ϵ and T̃ k+1

j ω′∗
ϵ .

Proposition 2.12. Assume NC is vertically Diophantine. Fix ϵ0, r0, δ0, ρ0 in
]0, 1[. Let 0 < ϵ < ϵ0, 0 < ρ < ρ0, 0 < r < r0, 0 < δ < δ0, and

δ
κ < ϵ. Suppose

that Fi ∈ Aϵ,r, i = 1, . . . , n, satisfy

Lvi (Fj)− Lvj (Fi) = 0 (16)

(resp.
Lv−i(Fj)− Lv−j(Fi) = 0 (17)

) defined by (14) (resp. (15)) on Ωϵ,r∩ τ̂−1
i Ωϵ,r∩ τ̂−1

j Ωϵ,r (resp. on Ωϵ,r∩ τ̂iΩϵ,r∩
τ̂jΩϵ,r). There exist functions G ∈ Ãϵ−δ/κ,re−ρ (resp. G′ ∈ Ã′

ϵ−δ/κ,re−ρ) such
that

Lvi (G) = Fi on Ωϵ−δ/κ,re−ρ . (18)

(resp.

Lv−i(G
′) = Fi on Ωϵ−δ/κ,re−ρ . (19)

) Furthermore, G satisfies

∥G∥ϵ−δ/κ,re−ρ ≤ max
i

∥Fi∥ϵ,r(
C1

δτ+ν
+

C1

ρτ+ν
), (20)

∥G ◦ τ̂i∥ϵ−δ/κ,re−ρ ≤ max
i

∥Fi∥ϵ,r(
C1

δτ+ν
+

C1

ρτ+ν
). (21)
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(resp. G′ satisfies

∥G′∥ϵ−δ/κ,re−ρ ≤ max
i

∥Fi∥ϵ,r(
C1

δτ+ν
+

C1

ρτ+ν
), (22)

∥G′ ◦ τ̂−1
i ∥ϵ−δ/κ,re−ρ ≤ max

i
∥Fi∥ϵ,r(

C1

δτ+ν
+

C1

ρτ+ν
). (23)

) for some constant κ,C1 that are independent of F, ρ, δ, r, ϵ and ν that depends
only on n and d.

Moreover, the solution G (resp; G′) is unique.

Proof. We only give the proof in the vertical cohomological operator case (14).
The proof of another case is similar.

Since Fi ∈ Aϵ,r, we can write

Fi(h, v) =
∑

Q∈Nd,|Q|≥2

∑
P∈Zn

Fi,Q,Ph
P vQ,

which converges normally for (h, v) ∈ Ωϵ,r. Note that Fi,Q,P are vectors, and
its kth component is denoted by Fi,k,Q,P . For each (Q,P ) ∈ Nd × Zn, each
i = 1, . . . , n, and each j = 1, . . . , d, let iv := iv(Q,P, j) be in {1, . . . , n} such
that the maximum is realized in Definition 2.3. Let us set

Gj :=
∑

Q∈Nd,2≤|Q|

∑
P∈Z

Fiv,j,Q,P

λPivµ
Q
iv
− µiv,j

hP vQ, j = 1, . . . .d. (24)

According to (16), we have

(λPivµ
Q
iv
− λiv,i)Fm,i,Q,P = (λPmµ

Q
m − λm,i)Fiv,i,Q,P . (25)

Therefore, using (25), the ith-component of Lvm(G) reads

Lvm(G)i =
∑

Q∈Nd,2≤|Q|

∑
P∈Zn

(λPmµ
Q
m − λm,i)

Fiv,i,Q,P

(λPivµ
Q
iv
− µiv,i)

hP vQ

=
∑

Q∈Nd,2≤|Q|

∑
P∈Zn

Fm,i,Q,Ph
P vQ.

Thus we have obtained, the formal equality :

Lvm(G) = Fm, m = 1, . . . , n. (26)

Let us estimate these solutions. Without loss of generality, we may assume that
τ ≥ 1. According to Definition 2.3 and formula (24), we have

max
j

(|Gj,Q,P |) ≤ max
i

|Fi,Q,P |
(|P |+ |Q|)τ

D
. (27)

Let (h, v) ∈ Ωϵ−δ/κ,re−ρ . According to (3) and Remark 2.8, we have by convexity

∥Gj,Q,PhP vQ∥ ≤ max
i

∥Fi∥ϵ,re−δ|P |−ρ|Q| (|P |+ |Q|)τ

D

≤ max
i

∥Fi∥ϵ,re−δ|P |−ρ|Q| (|P |τ + |Q|τ )2τ

D

≤ max
i

∥Fi∥ϵ,r(e−δ/2|P | (4τe)
τ

Dδτ
+ e−ρ/2|Q| (4τe)

τ

Dρτ
).
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Summing over P and Q, we obtain

∥G∥ϵ−δ/κ,re−ρ ≤ max
i

∥Fi∥ϵ,r(
C ′

δτ+ν
+

C ′

ρτ+ν
),

for some constants C ′, ν that are independent of F, ϵ, δ, ρ. Hence, G ∈ Aϵ−δ/κ,re−ρ .
Let us prove (21). Let B := 2maxℓ,j |µℓ,j |. Then, there is a constant D′

such that

max
ℓ∈{1,...,n}

∣∣∣λPℓ µQℓ − µℓ,j

∣∣∣ ≥ D′ maxk |λPk µ
Q
k |

(|P |+ [Q|)τ
. (28)

Indeed, if maxk |λPk µ
Q
k | < B, then Definition 2.3 gives (28) with D′ := D

B .
Otherwise, if

|λPk0µ
Q
k0
| := max

k
|λPk µ

Q
k | ≥ B,

then |µk0,i| ≤ B
2 ≤

|λP
k0
µQ
k0

|
2 . Hence, we have

∣∣∣λPk0µQk0 − µk0,i

∣∣∣ ≥ ∣∣∣|λPk0µQk0 | − |µk0,i|
∣∣∣ ≥ |µPk0µ

Q
k0
|

2
.

We have verified (28). Finally, combining all cases gives us, for m = 1, . . . , n,

|[G ◦ τ̂m]QP | =
∣∣GQ,PλPmµQm∣∣ ≤ max

ℓ
|Fℓ,Q,P |

|λPmµQm|
|λPivµ

Q
iv
− µiv,i|

≤ max
ℓ

|Fℓ,Q,P |
|λPmµQm|(|P |+ |Q|)τ

D′ maxk |λPk µ
Q
k |

≤ max
ℓ

|Fℓ,Q,P |
(|P |+ |Q|)τ

D′ .

Hence, G̃m := G ◦ τ̂m ∈ Aϵ−δ/κ,re−ρ . We can define G̃ ∈ Ãϵ−δ/κ,re−ρ such

that G̃ = G̃m ◦ τ̂−1
m on τ̂m(Ωϵ,r). We verify that G̃ extends to a single-valued

holomorphic function of class Ãϵ,r. Indeed, G̃i ◦ τ̂−1
i = G̃j ◦ τ̂−1

j on τ̂i(Ωϵ,r) ∩
τ̂j(Ωϵ,r), since the latter is connected and the two functions agree with G on

τ̂i(Ωϵ,r) ∩ τ̂j(Ωϵ,r) ∩ Ωϵ,r that contains a neighborhood of Ω̃ϵ × {0} in Cn+d.
The uniqueness follows from the uniqueness as formal solution.

The next proposition seems similar to the previous one except that it aims
at defining for each i a solution on some domain.

Proposition 2.13. Assume NC is vertically strongly Diophantine. For each
1 ≤ i ≤ n, let

Fi(h, v) =
∑

Q∈Nd,|Q|≥2

∑
P∈Zn

Fi,Q,Ph
P vQ,

be a formal power series in v, with Laurent series in h as coefficients. We
assume that they satisfy the formal relations, 1 ≤ i, j ≤ n, Lvi (Fj) = Lvj (Fi),

that is ∀(k,Q, P ) ∈ {1, . . . , n} × Nd × Zn

(λPi µ
Q
i − λi,k)Fj,k,Q,P = (λPj µ

Q
j − λj,k)Fi,k,Q,P .

11



Then, for each 1 ≤ i ≤ n, there exists a unique formal power series

G(i) :=

 ∑
Q∈Nd,|Q|≥2

∑
P∈Zn

G
(i)
k,Q,Ph

P vQ


1≤k≤n

such that Li(G
(i)) = Fi. (29)

Furthermore, if, for a given 1 ≤ i ≤ n, Fi is holomorphic on τ̂−2
i (Ωϵ,r) (resp.

on τ̂2i Ωϵ,r), then G
(i) is holomorphic on τ̂−2

i (Ωϵ− δ
κ ,re

−ρ) for any 0 < δ < κϵ and

0 < ρ and satisfies

∥G(i) ◦ τ̂−2
i ∥ϵ−δ/κ,re−ρ ≤ ∥Fi∥τ̂−2

i (Ωϵ,r)
(
C1

δτ+ν
+

C1

ρτ+ν
), (30)

∥G(i) ◦ τ̂−1
i ∥ϵ−δ/κ,re−ρ ≤ ∥Fi∥τ̂−2

i (Ωϵ,r)
(
C1

δτ+ν
+

C1

ρτ+ν
). (31)

for some constant κ,C1 that are independent of {Fi}i, ρ, δ, r, ϵ and ν that depends
only on n and d. Replacing Lvi by Lv−i yields, for each 1 ≤ i ≤ n a unique formal

power series G(−i) satisfying Lv−i(G
(−i)) = Fi with estimates

max
k=1,2

(
∥G(−i) ◦ τ̂ki ∥ϵ−δ/κ,re−ρ

)
≤ (

C1

δτ+ν
+

C1

ρτ+ν
)∥Fi∥τ̂2

i (Ωϵ,r), (32)

as above if Fi is holomorphic on τ̂2i (Ωϵ,r).

Proof. Indeed, for each 1 ≤ i ≤ n, the formal solution G(i) for the ith vertical
cohomological equation (29) is given by :

G
(i)
j :=

∑
Q∈Nd,2≤|Q|

∑
P∈Z

Fi,j,Q,P

λPi µ
Q
i − µi,j

hP vQ, j = 1, . . . .d. (33)

We recall that under strong Diophantine condition none of the denominator
vanishes. Thus the above formal solution is meaningful. Moreover, Diophantine
inequality yields

|Gi,Q,P | ≤ |Fi,Q,P |
(|P |+ |Q|)τ

D
. (34)

The rest of the proof is identical to that of Proposition 2.12.

Remark 2.14. Assume that ÑC is vertically strongly Diophantine. Let Fi ∈
Aϵ,r, i = 1, . . . , n. According to Definition 2.6, each Fi is holomorphic in a
neighborhood of Ωϵ,r. Let us express Fi as formal power series

Fi(h, v) =
∑

Q∈Nd,|Q|≥2

∑
P∈Zn

Fi,Q,Ph
P vQ

normally convergent on Ωϵ,r satisfying to Lvi (Fj) = Lvj (Fi) for all 1 ≤ i, j ≤
n. Assume furthermore that, for each 1 ≤ i ≤ n, Fi is also holomorphic a
neighborhood of τ̂−2

i (Ωϵ,r) ∪ τ̂−1
i (Ωϵ,r).

Let us set for ℓ ∈ N and 1 ≤ i ≤ n :

Ω̃
(±ℓ)
i,ϵ,r := Ωϵ,r ∪ τ̂±1

i (Ωϵ,r) ∪ · · · ∪ τ̂±ℓi (Ωϵ,r)

Ω̃(±ℓ)
ϵ,r = ∪ni=1Ω̃

(±ℓ)
i,ϵ,r . (35)
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Hence, for each 1 ≤ i ≤ n, Fi is holomorphic in a neighborhood of Ω̃
(−2)
i,ϵ,r . On the

one hand, according to Proposition 2.12, there exist a unique solution G holo-

morphic on Ω̃
(−1)

ϵ− δ
κ ,re

−ρ ∪ Ω̃
(1)

ϵ− δ
κ ,re

−ρ satisfying to Lvi (G) = Fi for all 1 ≤ i ≤ n.

On the other hand, according to Proposition 2.13, for each 1 ≤ i ≤ n, there
exists a unique solution G(i) holomorphic on neighborhood of τ̂−2

i (Ωϵ− δ
κ ,re

−ρ) ∪
τ̂−1
i (Ωϵ− δ

κ ,re
−ρ) to equation Lvi (G

(i)) = Fi. Since, for each i, τ̂−2
i (Ωϵ− δ

κ ,re
−ρ) ∪

τ̂−1
i (Ωϵ− δ

κ ,re
−ρ) intersects Ω̃

(−1)

ϵ− δ
κ ,re

−ρ ∪ Ω̃
(1)

ϵ− δ
κ ,re

−ρ along a single connected com-

ponent, G(i) is the holomorphic extension of G on τ̂−2
i (Ωϵ− δ

κ ,re
−ρ)∪τ̂−1

i (Ωϵ− δ
κ ,re

−ρ).

Hence, G is a holomorphic function on neighborhood of Ω̃
(−2)

ϵ− δ
κ ,re

−ρ with esti-

mates, for each 1 ≤ i ≤ n

sup
Ω̃

(−1)

ϵ− δ
κ

,re−ρ
∪Ω̃

(1)

ϵ− δ
κ

,re−ρ

∥G(h, v)∥ ≤ sup
Ωϵ,r

∥Fi∥(
C1

δτ+ν
+

C1

ρτ+ν
). (36)

sup
τ̂−2
i (Ω

ϵ− δ
κ

,re−ρ )∪τ̂−1
i (Ω

ϵ− δ
κ

,re−ρ )

∥G∥ ≤ sup
τ̂−2
i (Ωϵ,r)

∥Fi∥(
C1

δτ+ν
+

C1

ρτ+ν
). (37)

Similarly, assume that, for each 1 ≤ i ≤ n, F̃i is holomorphic in a neighborhood

of Ω̃
(2)
i,ϵ,r and satisfying to Lv−i(F̃j) = Lv−j(F̃i) for all i, j. Then there exists a

unique G̃ holomorphic on neighborhood of Ω̃
(2)

ϵ− δ
κ ,re

−ρ satisfying to Lv−i(G̃) = F̃i

with estimates similar to the above ones and written compactly as : for each
1 ≤ i ≤ n

sup
(h,v)∈Ω̃

(2)

i,ϵ− δ
κ

,re−ρ

∥G̃(h, v)∥ ≤ sup
Ωϵ,r∪τ̂2

i (Ωϵ,r)

∥F̃i∥(
C1

δτ+ν
+

C1

ρτ+ν
). (38)

3 Proof of the main result

We are interested in the existence of a non-singular holomorphic foliation of the
germ of neighborhood of C in M having C as a compact leaf. We refer to it
as a“horizontal foliation” if exists. The above-mentioned “horizontal foliation”
will be obtained if we can find Φ = Id+ ϕ be a biholomorphism of Ωϵ1,r1 (to be
chosen) such that for any i,

Φ ◦ τ̃i = τi ◦ Φ (39)

for some biholomorphism of Ωϵ1,r1 (to be chosen)

τ̃i(h, v) = (τ̃hi (h, v),Miv)

such that (M,C) is biholomorphic to the quotient of Ωϵ1,r1 by τ̃1, . . . , τ̃n. Such τ̃i
is called a vertical linearization of (M,C). In fact, the codimension d “horizontal
foliation” can be defined v =constant.Note that C is the leaf defined by {v = 0}.

Definition 3.1. A germ of neighborhood (M,C) is vertically linearized up to
order m if for all 1 ≤ i ≤ n

τi(h, v) = (Tih+ τ∗,hi,≥2,Miv + τ∗,vi,≥m)

where τ∗,•i,≥k denotes an analytic function on a neighborhood of Ωϵ,r, for some
0 < ϵ, r , vanishing at v = 0 at order ≥ k.
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Proposition 3.2. Under the Diophantine condition (3), a germ of neighborhood
(M,C) is vertically linearizable up to order m, for any m ≥ 2.

Proof. We argue by induction on m. Assume that a germ of neighborhood
(M,C) is vertically linearized up to order m ≥ 2, that is all 1 ≤ i ≤ n τi(h, v) =

(Tih+ τ∗,hi ,Miv+ τ∗,vi ) with ordv=0τ
∗,v
i ≥ m and τ∗i = (τ∗,hi , τ∗,vi ) ∈ An+d

ϵ,r . Let
us show that

Lvi ([τ
∗,v
j ]m) = Lvj ([τ

∗,v
i ]m) (40)

on Ωi,jϵ′,r′ = Ωϵ′,r′ ∩ τ−1
i (Ωϵ′,r′) ∩ τ−1

j (Ωϵ′,r′) for all 1 ≤ i, j ≤ n for some 0 <
ϵ′ < ϵ, 0 < r′ < r. Indeed, recalling that τi ◦ τj = τj ◦ τi on a neighborhood
(Ωϵ ∩ τ̂−1

i Ωϵ ∩ τ̂−1
j Ωϵ)× {0}, the vertical component of which reads

Miτ
∗,v
j − τ∗,vj (τ̂i) = Mjτ

∗,v
i − τ∗,vi (τ̂j)

+
(
τ∗,vi (τ̂j + τ∗j )− τ∗,vi (τ̂j)

)
−
(
τ∗,vj (τ̂i + τ∗j )− τ∗,vj (τ̂i)

)
.

The Taylor expansion at v = 0 of one of the two last line is

Dhτ
∗,v
i (τ̂j)τ

∗,h
j +Dvτ

∗,v
i (τ̂j)τ

∗,v
j + h.o.t.

The first term is order ≥ m+2, while the second is order ≥ 2m− 1. Hence, the
last two lines are of order ≥ m + 1 at v = 0 so that the truncation at degree
m of the equality gives the result. According to Proposition 2.12, there exists a
solution G ∈ Ãd

ϵ− δ
κ ,re

−ρ to

Lvi (G) = −[τ∗,vi ]m, i = 1, . . . , n.

Furthermore, since family {τ̂i}i is non-resonant, the solution G is unique and
homogeneous of degree m in the vertical direction. Let us set Φ(h, v) := (h, v+
G(h, v)). Then τ̃i := ΦτiΦ

−1 is vertically linearized up to order m + 1 on an
appropriate domain. Indeed, we have

Miv +MiG(h, v) + τ̃∗,vi (h, v +G(h, v)) = (Miv + τ∗,vi ) +G(τ̂i + τ∗i )

MiG(h, v) + τ̃∗,vi (h, v) + (τ̃∗,vi (h, v +G)− τ̃∗,vi (h, v)) = τ∗,vi (h, v) +G(τ̂i)

+(G(τ̂i + τ∗i )−G(τ̂i)).

Hence we have on an appropriate domain

τ̃∗,vi (h, v) =Lvi (G) + [τ∗,vi ]m

+ (G(τ̂i + τ∗i )−G(τ̂i)) + (τ∗,vi − [τ∗,vi ]m)

− (τ̃∗,vi (h, v +G(h, v))− τ̃∗,vi (h, v)).

According to [GS22, Lemma 4.18], the appropriate domain on which the previ-
ous equality holds is of the form Ωϵ̃,r̃ for some 0 < ϵ̃ < ϵ and 0 < r̃ < r if τ∗,v is
small enough on Ωϵ,r. In particular, it is a product domain with a neighborhood
of 0 ∈ Cd. As the first line of the right hand side is zero by construction, we
check that the other two lines are of order ≥ m + 1. Thus, τ̃∗,vi is of order
≥ m+ 1 at v = 0.
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By the identity theorem, the equation (39) implies that

Φ ◦ τ̃−1
i = τ−1

i ◦ Φ (41)

whenever both sides are well defined.
We want to find Φ(h, v) = (h, v) + ϕ(h, v) with ϕ of the form ϕ(h, v) =

(0, ϕv(h, v)). Denote
τ±1
i = (τhi,±, τ

v
i,±).

Assume that they are defined on Ωϵ0,r0 for suitable choice (sufficiently small)
ϵ0, r0 such that (C,M) is biholomorphic to the quotient of Ωϵ0,r0 by τj(1 ≤ j ≤
n). Assume also that they are all defined on (see (35))

Ω̃(−2)
ϵ0,r0 ∪ Ω̃(2)

ϵ0,r0 (42)

for the same choice ϵ0, r0.
Using the condition thatNC is unitary, we have that τ̂i(Ωϵ0,r0) = TiΩϵ0×∆d

r0 .
Applying Lemma 2.9 with ϵ0, there exists η > 0 depending on ϵ0 such that

∪ni=0TiΩϵ0+η ∪ ∪ni=0T
−1
i Ωϵ0+η

is contained in the preimage of the convex hull Conv(ω′∗
ϵ0) of ω

′∗
ϵ0 under φ with

the same notations of Lemma 2.9.
Define the higher order perturbations

τ̃∗,hi,± := τ̃hi,± − T±1
i , τ∗,hi,± := τhi,± − T±1

i ,

τ∗,vi,± := τvi,± −M±1
i .

The horizontal part of equation (39) is given by

T±1
i h+ τ̃∗,hi,± (h, v) = T±1

i h+ τ∗,hi,± (h, v + ϕv(h, v)), (43)

that is
τ̃∗,hi,± (h, v) = τ∗,hi,± (h, v + ϕv(h, v)), (44)

The vertical part of equation (39) is given by

M±1
i v+ϕv(T±1

i h+ τ̃∗,hi,± (h, v),M±1
i v) =M±1

i (v+ϕv(h, v))+τ∗,vi,±(h, v+ϕv(h, v)),
(45)

that is

ϕv(T±1
i h+ τ̃∗,hi,± (h, v),M±1

i v) =M±1
i ϕv(h, v) + τ∗,vi,±(h, v + ϕv(h, v)). (46)

We recall from Definition 2.11, the (resp. “inverse”) vertical cohomological op-
erator : Lvi (G) := G(Tih,Miv)−MiG(h, v) (resp. L

v
−i(G) := G(T−1

i h,M−1
i v)−

M−1
i G(h, v)).
Using equations (44) and (46), we have

Lvi (ϕ
v)(h, v) = τ∗,vi,+(h, v + ϕv(h, v))

−
(
ϕv(Tih+ τ∗,hi,+ (h, v + ϕv(h, v)),Miv)− ϕv(Tih,Miv)

)
. (47)

This is defined by developing the horizontal and vertical parts of equation (41).
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Remark 3.3. Under the Diophantine assumption, the formal linearization Φ is
unique. Indeed, if Φ is a equivalence between two vertically linear neighborhood,
then one has τ∗,vi,+ = 0 in the previous equality (47). If ϕv is of order m ≥ 2

at v = 0 then ϕv(Tih + τ∗,hi,+ (h, v + ϕv(h, v)),Miv) − ϕv(Tih,Miv) is of order
≥ m+2. Then, the previous equation (47) give Lvi ([ϕ

v]m+ [ϕv]m+1) = 0 for all
1 ≤ i ≤ n. Hence [ϕv]m = [ϕv]m+1 = 0 and ϕ is of order ≥ m+2. An induction
on m demonstrates the uniqueness of the formal linearization.

Using equations (44) and (46), we have

Lv−i(ϕ
v)(h, v) = τ∗,vi,−(h, v + ϕv(h, v)) (48)

− (ϕv(T−1
i h+ τ∗,hi,− (h, v + ϕv(h, v)),M−1

i v)− ϕv(T−1
i h,M−1

i v)).

According to Proposition 3.2, there exists a formal (power series in v, with
holomorphic coefficients in some Ωϵ′) solution to both (47) and (48). In the
following, we will estimate the L∞ norm to show that this formal solution is in
fact convergent. To do so, we will follow the majorant method in [GS21, Section
3.3]. Denote

(I)i,± := τ∗,vi,±(h, v + ϕv(h, v)); (49)

(II)i,± := ϕv(T±1
i h+ τ∗,hi,± (h, v + ϕv(h, v)),M±1

i v)− ϕv(T±1
i h,M±1

i v). (50)

The major difference compared to [GS21, Section 3.3] will be the estimates for
(II).

In the following, we will estimate [ϕv]k(k ≥ 2) by induction on k (which gives
the estimate for ϕv.) By identity theorem, we get the same ϕv either by the
vertical cohomological operator or the inverse vertical cohomological operator
if the solutions are holomorphic.

Let 0 < r1 and 0 < ϵ1 be positive constants to be chosen below sufficiently
small. Let us define the sequences rm+1 = rme

− 1
2m and ϵm+1 = ϵm − ϵ1

η
2mκ for

m > 1 and some η < κ
2 sufficiently small. We have rm+1 := r1e

−
∑m

k=1
1

2k and
ϵm+1 := ϵ1 − ϵ1

∑m
k=1

η
2mκ for m ≥ 1. We have, for m ≥ 1

rm > r1e
−1 =: r∞, ϵm > ϵ1(1−

η

κ
) =: ϵ∞ >

ϵ1
2
. (51)

Let us choose the value η
κ < 1

2 to be the smallest value η̃ from Lemma 2.10
corresponding to ϵ1

2 < ϵ̃ < ϵ1.
Our goal to find germs of holomorphic function at 0

A(t) =
∑
k≥2

Akt
k,

and for 1 ≤ i ≤ n,

B±ei(t) =
∑
k≥2

B±ei
k tk, 1 ≤ i ≤ n,

such that
sup

(h,v)∈∪n
i=0τ̂

±1
i (Ωϵk,rk

)

|[ϕv]k(h, v)| ≤ Akηk, (52)

sup
(h,v)∈τ̂±1

i (Ωϵk,rk
)∪τ̂±2

i (Ωϵk,rk
)

|[ϕv]k(h, v)| ≤ B±ei
k ηk, (53)
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for suitable chosen r1 (sufficiently small). Here, the sequence {ηm}m≥1 is defined
by η1 = 1 and for m ≥ 2

ηm :=
C1

ητ+ν
2m(τ+ν) max

m1+···+mp+s=m
ηm1

· · · ηmp
. (54)

where the constant C1 is defined in Proposition 2.12. Here we have 1 ≤ mi ≤
m− 1 and s ∈ N. We have

ηm ≤ max
1≤s≤m−1

(
C1

ητ+ν

)m−s+1

2(τ+µ)(2m−s) ≤ Dm, (55)

for some positive constant D.
Define as formal series

Jm−1A(t) := A2t
2 + · · ·+Am−1t

m−1,

A(t) =
∑
m≥2

Amt
m, B±ei(t) =

∑
m≥2

B±ei
m tm.

The idea is the following. Consider the Taylor development

ϕv(h, v) =
∑

Q∈Nd,|Q|≥2

ϕQ(h)v
Q.

Let [ϕv]k be the homogenous degree k part of ϕv

[ϕv]k(h, v) =
∑

Q∈Nd,|Q|=k

ϕQ(h)v
Q.

In the following, we will alway denote [•]k to indicate the homogenous degree k
part of some serie in v. Notice that

[Lv±i(ϕ
v)]k = Lv±i[ϕ

v]k.

The degree 2 part is
Lvi ([ϕ

v]2) = −[τ∗,vi,+(h, v)]2, (56)

whose right-handed-side term is independent of ϕv. Similarly, the degree 2 part
for the inverse vertical cohomological operator is

Lv−i([ϕ
v]2) = −[τ∗,vi,−(h, v)]2 =M−1

i [τ∗,vi,+(h, v)]2 ◦ τ̂−1
i , (57)

whose right-handed-side term is independent of ϕv. According to (40) and
Proposition 2.12, these two sets of equations on Ωϵ2,r2 have the same unique

solution [ϕv]2 on Ω̃
(−1)
ϵ2,r2 ∪ Ω̃

(1)
ϵ2,r2 = ∪ni=1 ∪1

k=−1 τ̂
k
i (Ωϵ2,r2), bounded there by

2C1

(
2
ηϵ1

)τ+ν
maxi ∥[τ∗,vi,+(h, v)]2∥ϵ1,r1(see e.g. (20)).

For each 1 ≤ i ≤ n, let us obtain a bound of G on τ̂2i (Ωϵ2,r2) (resp.
τ̂−2
i (Ωϵ2,r2)). Considering equation (57) (resp. (56)) on τ̂2i (Ωϵ2,r2) (as the
right hand side is well defined according to (42)) (resp. τ̂−2

i (Ωϵ2,r2)), Proposi-
tion 2.13 and Remark 2.14 provide a solution which analytically continued G
on τ̂2i (Ωϵ2,r2) ∪ τ̂i(Ωϵ2,r2) (resp. τ̂−2

i (Ωϵ2,r2) ∪ τ̂−1
i (Ωϵ2,r2)) bounded there by
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2C1

(
2
ηϵ1

)τ+ν
∥[τ∗,vi,− ]2∥τ̂2

i (Ωϵ1,r1
) (resp. 2C1

(
2
ηϵ1

)τ+ν
∥[τ∗,vi,+ ]2∥τ̂−2

i (Ωϵ1,r1
)). We

set

A2 := max
i

∥[τ∗,vi,+(h, v)]2∥ϵ1,r1

B±ei
2 := ∥[τ∗,vi,∓(h, v)]2∥τ̂±2

i (Ωϵ1,r1
).

We proceed by induction on m ≥ 2 as Taylor expansion at v = 0 of (47) shows
that for any m ≥ 2,

Lvi [ϕ
v]m = Pi(h; v, [ϕ

v]2, · · · , [ϕv]m−1) (58)

where Pi(h; v, [ϕ
v]2, · · · , [ϕv]m−1) is analytic in h ∈ Ωϵm−1,rm−1

and polynomial
in v, [ϕv]2, ..., [ϕ

v]m−1. To obtain the estimate (52) of homogeneous part of

degree m, [ϕv]m, on Ω̃
(−1)
ϵm,rm ∪ Ω̃

(1)
ϵm,rm , we invert and estimate the common so-

lution [ϕv]m to all vertical cohomological operators Lvi (resp. inverse vertical
cohomological operators Lv−i) from equation (58), i = 1, . . . , n. To do so, it is
sufficient by Proposition 2.12, to estimate the norm of the homogeneous part
of degree m of its right hand side (I)i,± + (II)i,±, on Ωϵm−1,rm−1

, for each 1 ≤
i ≤ n. We notice that, according to Cauchy estimates, the L∞-estimate of term
(II)i,± needs estimate of terms of degree m1 ≤ m− 1 on τ̂i(Ωϵm1

+η,rm1
) (resp.

τ̂−1
i (Ωϵm1+η,rm1

)). The latter is obtained by induction. Indeed by Lemma 2.9
and Lemma 2.10 together with the choice of η, this domain is contained in the
convex hull of the union, over j, of the union of τ̂j(Ωϵm1

,rm1
)∪ τ̂2j (Ωϵm1

,rm1
) (re-

lated to the coefficient of Bej (t)), τ̂−1
j (Ωϵm1

,rm1
)∪ τ̂−2

j (Ωϵm1
,rm1

) (related to the

coefficient ofB−ej (t)) and Ωϵm1 ,rm1
∪
(
∪nk=1τ̂k(Ωϵm1 ,rm1

)
)
∪
(
∪nk=1τ̂

−1
k (Ωϵm1 ,rm1

)
)

(related to the coefficient of A(t)). The estimate of the former is thus obtained
from the estimates on the latter as we remark, according to Lemma 2.9 that
the L∞−norm on the convex hull of the union is equal to the L∞−norm on the
union. The distance from τ̂i(Ωϵm1+η,rm1

) to the boundary of the convex hull is
bounded away from 0 independently of m1 if η is small enough.

We emphasize that the unitary flatness of the normal bundle assumption
allows not to change the radius rm1 in the “vertical direction” in this argu-
ment. We remark also that the usage of B±ei(t) is necessary since the do-
main τ̂i(Ωϵm+η′,rm) is not contained in the convex hull of the union over i of
the domains Ωϵm1 ,rm1

∪ τ̂i(Ωϵm1 ,rm1
) for any m ≥ m1 > 0 with some fixed

η′ > 0 independent of m1,m, as shown in Figure 1. In particular, we have
no L∞−estimate on this larger domain (i.e. τ̂i(Ωϵm+η′,rm) with some η′ > 0
independent of m1,m) which is needed to apply Cauchy’s estimate.

For each 1 ≤ i ≤ n, in order to obtain (53) for a suitable B−ei
m (resp.

Beim), we invert and estimate the solution of the vertical cohomological oper-
ator Lvi (resp. Lv−i) from equation (58). To do so, it is sufficient by Propo-
sition 2.13, to estimate the norm of the homogeneous part of degree m of its
right hand side, (I)i,+ + (II)i,+ (resp. (I)i,− + (II)i,−), on τ̂−2

i (Ωϵm−1,rm−1)
(resp. τ̂2i (Ωϵm−1,rm−1

)). We notice that, according to Cauchy estimates, the
L∞-estimate of term (II)i,+ (resp. (II)i,−) needs estimate of terms of degree
m1 ≤ m− 1 on τ̂−1

i (Ωϵm1+η,rm1
) (resp. τ̂i(Ωϵm1+η,rm1

)) which can be obtained
by induction since by Lemma 2.9 and Lemma 2.10, this domain is contained in
convex hull of the union over j of the union of τ̂j(Ωϵm1

,rm1
) ∪ τ̂2j (Ωϵm1

,rm1
) (re-

lated to the coefficient of Bej (t)), τ̂−1
j (Ωϵm1

,rm1
)∪ τ̂−2

j (Ωϵm1
,rm1

) (related to the
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coefficient ofB−ej (t)) and Ωϵm1 ,rm1
∪
(
∪nk=1τ̂k(Ωϵm1 ,rm1

)
)
∪
(
∪nk=1τ̂

−1
k (Ωϵm1 ,rm1

)
)

(related to the coefficient of A(t)) with estimates of norms.
Finally, we shall show that the coefficients of B±ei(t) and A(t) of degree

m are bounded from above by the (non-negative) coefficient of degree m of
a holomorphic function of t, Jm−1A(t) and Jm−1B±ei(t), that is their Tay-
lor polynomials of degree m − 1. This is used to proceed through a majorant
method. Using the implicit function theorem for a holomorphic functional equa-
tion system of a(t) and b±ei(t), the latter being power series dominating A(t)
and B±ei(t) respectively, we can conclude that they are both holomorphic at 0.

We will focus on the vertical cohomological equation (47). The case of the
inverse vertical cohomological equation (48) is obtained similarly. We omit the
”+” index in the following.

Let us estimate the norms of (I) and (II).
Denote Ndk := {Q ∈ Nd : |Q| ≥ k}. Let m ≥ 2, for Q ∈ Nd2, |Q| ≤ m, let us

set

EQ,m =

{
(m1,1, . . . ,m1,q1 , . . . ,md,1, . . . ,md,qd) ∈ N

|Q|
1 :

d∑
i=1

mi,1 + · · ·+mi,qi = m

}
.

For Q ∈ Nd2, we have

[
(v + ϕv(h, v))Q

]
m

=
∑

M∈EQ,m

d∏
j=1

[vj + ϕvj ]mj,1 · · · [vj + ϕvj ]mj,qj

where we have set ϕv = (ϕv1, . . . , ϕ
v
d) andM = (m1,1, . . . ,m1,q1 , . . . ,md,1, . . . ,md,qd).

Thus we have for any ϵ > 0 and r > 0 for which [ϕv]l is well defined l < m,

∥∥[(v + ϕv(h, v))Q
]
m

∥∥
ϵ,r

≤
∑

M∈EQ,m

d∏
j=1

∥∥[vj + ϕvj ]mj,1

∥∥
ϵ,r

· · ·
∥∥∥[vj + ϕvj ]mj,qj

∥∥∥
ϵ,r
.

(59)

Let M ′
i = (m

(i)
1,1, . . . ,m

(i)

1,q
(i)
1

, . . . ,m
(i)
d,1, . . . ,m

(i)

d,q
(i)
d

) ∈ N
|Q(i)|
1 with |Q(i)| ≤ mi

and mi =
∑d
j=1m

(i)
j,1 + · · ·+m

(i)

j,q
(i)
j

, i = 1, 2. Define the concatenation M ′
1 ⊔M ′

2

to be (M ′
1,M

′
2). Hence, we emphasize that the concatenation ⋃

2≤|Q1|≤m1

EQ1,m1

 ⊔

 ⋃
2≤|Q2|≤m2

EQ2,m2

 ⊂
⋃

2≤|Q|≤m1+m2

EQ,m1+m2 . (60)

By Cauchy estimate (8) applying to τi,j(1 ≤ j ≤ n+ d) implies that, if ϵ1 small
enough, there exists R > 0 such that

||τi,Q,j ||ϵ1 ≤ R|Q|

with
τi,j =

∑
Q∈Nd

τi,Q,j(h)v
Q

and τi = (τi,1, · · · , τi,d). Without loss of generality, we may assume that same
estimate holds on

Ω̃(−2)
ϵ1 ∪ Ω̃(2)

ϵ1 := ∪jT−2
j Ωϵ1 ∪ T−1

j Ωϵ1 ∪ Ωϵ ∪ T 1
j Ωϵ1 ∪ T 2

j Ωϵ1 .
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We recall that Ωϵj ,rj ⋐ Ωϵl,rl if l < j. Assuming by induction that (52)
holds for all m′ < m, we have

∥[(I)]m∥ϵm,rm ≤
m∑

|Q|=2

R|Q|
∑

M ′∈EQ,m

d∏
j=1

∥∥[vj + ϕvj ]mj,1

∥∥
ϵm,rm

· · ·
∥∥∥[vj + ϕvj ]mj,qj

∥∥∥
ϵm,rm

≤
m∑

|Q|=2

R|Q|
∑

M ′∈EQ,m

d∏
j=1

ηmj,1Amj,1 · · · ηmj,qj
Amj,qj

≤

 m∑
|Q|=2

ηQ,mR
|Q|(t+ Jm−1(A(t))|Q|


m

≤ Em[gm(t)]m, (61)

where we have set

ηQ,m := max
M ′∈EQ,m

(
d∏
i=1

ηmi,1 · · · ηmi,qi

)
, Em := max

Q∈Nd

2≤|Q|≤m

ηQ,m,

gm(t) :=

m∑
|Q|=2

R|Q|(t+ Jm−1(A(t))|Q|, g(t) :=
∑
|Q|≥2

R|Q|(t+A(t))|Q|.

Here [g(t)]m denotes the coefficient of tm in the power series g(t). We also define

G(t, U) :=
∑
|Q|≥2

R|Q|(t+ U)|Q|,

g±ei(t) :=
∑
|Q|≥2

R|Q|(t+B±ei(t))|Q| = G(t, B±ei(t)),

g±eim (t) :=

m∑
|Q|=2

R|Q|(t+ Jm−1(B±ei(t))|Q|.

We have

[(II)]m =
∑
P∈Nn

1
m1+m2=m

1

P !

[
∂Ph ϕ

v(Tih,Miv)
]
m1

[(
τ∗,hi (h, v + ϕv(h, v))

)P]
m2

=
∑
P∈Nn

1
m1+m2=m

1

P !
(∂Ph [ϕv]m1

)(Tih,Miv)
[
(I)

P
]
m2

Here, both indices m1 and m2 are ≥ 2 so that both m1 and m2 are less or equal
than m− 2. Assuming by induction that (52) holds for all m′ < m, we have

∥∥∥∥[(I)P ]
m2

∥∥∥∥
ϵm−1,rm−1

≤ Em2


 m2∑

|Q|=2

R|Q|(t+ Jm−1(A(t))|Q|

|P |

m2

.
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Indeed, [
(I)

P
]
m2

=

[
n∏
i=1

((I)i)
pi

]
m2

=
∑

∑
i(mi,1+···+mi,pi

)=m2

n∏
i=1

[(I)i]mi,1 · · · [(I)i]mi,pi
.

Here,(I)i means the i−th component of term (I). According to (60) and by
(61), we have∥∥∥∥∥
n∏
i=1

[(I)i]mi,1
· · · [(I)i]mi,pi

∥∥∥∥∥
ϵm−1,rm−1

≤
n∏
i=1

Emi,1

[
gmi,1

(t)
]
mi,1

· · ·Emi,pi

[
gmi,pi

(t)
]
mi,pi

≤ max
2≤|Q|≤m2

ηQ,m2

n∏
i=1

[
gmi,1

(t)
]
mi,1

· · ·
[
gmi,pi

(t)
]
mi,pi

.

Hence, we have

∑
∑

i(mi,1+···+mi,pi
)=m2

∥∥∥∥∥
n∏
i=1

[(I)i]mi,1 · · · [(I)i]mi,pi

∥∥∥∥∥
ϵm−1,rm−1

≤ Em2 [g(t)
|P |]m2 .

Now we estimate
[
∂Ph ϕ

v(Tih,Miv)
]
m1

where attention is put on the choice

of domain. By Cauchy estimate (10), we have by induction on m ≥ 2, for any
m1 < m,

||
[
∂Ph ϕ

v(Tih,Miv)
]
m1

||ϵm1
,rm1

≤
C(C ′)|P |(

∑
j,±B

±ej
m1 ηm1 +Am1ηm1)

C ′′ν+|P |

since τ̂i(Ωϵm1
+η,rm1

) is contained in the convex hull of the union, over j, of

the union of τ̂j(Ωϵm1
,rm1

) ∪ τ̂2j (Ωϵm1
,rm1

) (related to the coefficient of Bej (t)),

τ̂−1
j (Ωϵm1

,rm1
)∪τ̂−2

j (Ωϵm1
,rm1

) (related to the coefficient ofB−ej (t)) and Ωϵm1
,rm1

∪
∪nk=1τ̂k(Ωϵm1 ,rm1

)∪∪nk=1τ̂
−1
k (Ωϵm1 ,rm1

) (related to the coefficient of A(t)). Here
C ′′ is a constant independent of m. As a consequence, we have

|| [(II)]m ||ϵm−1,rm−1 ≤
∑

m1+m2=m

∑
P∈Nn

|P |≥1

C(C ′)|P |(Am1
+
∑
j,±B

±ej
m1 )ηm1

C ′′ν+|P | Em2 [g(t)
|P |]m2

≤
∑

m1+m2=m

C(Am1
+
∑
j,±B

±ej
m1 )ηm1

C ′′ν

Em2

∑
P∈Nn

|P |≥1

(C ′g(t)/C ′′)
|P |


m2

≤ C

C ′′ν

(
max

m1+m2=m
ηm1

Em2

)
×

×

(A(t) +∑
j,±

B±ej (t))

((
1

1− C ′g(t)/C ′′

)n
− 1

)
m

.

(62)
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Collecting estimates (61) and (62), we obtain

∥Lvi [ϕv]m∥ϵm−1,rm−1
≤
[
Emg(t) +

C

C ′′ν

(
max

m1+m2=m
ηm1

Em2

)
×

×(A(t) +
∑
j,±

B±ej (t))

((
1

1− C ′g(t)/C ′′

)n
− 1

)
m

.

We solve the vertical cohomological operator for (14) and obtain by Proposition
2.12 the following estimate :

∥[ϕv]m∥ϵm,rm ≤ C1

ητ+ν
2m(τ+ν)

[
Emg(t) +

C

C ′′ν

(
max

m1+m2=m
ηm1Em2

)

×(A(t) +
∑
j,±

B±ej (t))

((
1

1− C ′g(t)/C ′′

)n
− 1

)
m

. (63)

Note that we use that τ̂iτ̂j = τ̂j τ̂i to apply Proposition 2.12 to Lvi (ϕ
v). Using

definition (54), we obtain

∥[ϕv]m∥ϵm,rm ≤ ηm

g(t) + C

C ′′ν (A(t) +
∑
j,±

B±ej (t))

((
1

1− C ′g(t)/C ′′

)n
− 1

)
m

.

For each 1 ≤ i ≤ n, we consider the single inverse vertical cohomological
equation (48). By Proposition 2.13 and Remark 2.14, we obtain ,

∥[ϕv]m∥τ̂2
i (Ωϵm,rm ) ≤ ηm

g+ei(t) + C

C ′′ν (A(t) +
∑
j,±

B±ej (t))

((
1

1− C ′g+ei(t)/C ′′

)n
− 1

)
m

.

By (38), we also obtain the same estimate for ∥[ϕv]m∥τ̂i(Ωϵm,rm ). Similarly,

considering, for each 1 ≤ i ≤ n, the single vertical cohomological equation (47),
by Proposition 2.13 and Remark 2.14, we also have

∥[ϕv]m∥τ̂−2
i (Ωϵm,r1,m

) ≤ ηm

g−ei(t) + C

C ′′ν (A(t) +
∑
j,±

B±ej (t))

((
1

1− C ′g−ei(t)/C ′′

)n
− 1

)
m

.

By (37), we obtain the same estimate for ∥[ϕv]m∥τ̂−1
i (Ωϵm,rm ).

Let us consider the functional equation system, i = 1, . . . , n,

A(t) = G(t, A(t)) +
C

C ′′ν (A(t) +
∑
j,±

B±ej (t))

((
1

1− C ′G(t, A(t))/C ′′

)n
− 1

)
,

B±ei(t) = G(t, B±ei(t))+
C

C ′′ν (A(t)+
∑
j,±

B±ej (t))

((
1

1− C ′G(t, B±ei(t))/C ′′

)n
− 1

)
.

This equation system has a unique analytic solution vanishing at the origin at
order 2 as shown by the implicit function theorem. Notice that the coefficients
of the powers of A(t), B±ej (t) are non-negative. As A2 = B±ei

2 = [G(t, 0)]2 > 0,
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we obtain by induction that all coefficients of degree m ≥ 2 of A(t) and B±ej (t)
are non-negative.

We now can prove the theorem. Indeed by assumption, there are positive
constants M ′′, L such that ηm ≤M ′′Lm for all m ≥ 2. Since A(t) converges at
the origin, then Am ≤ Dm for some positive D. By the majorant construction
and previous estimates, we have ∥[ϕv]m∥ϵm,rm ≤ Am for all m ≥ 2. Hence,
according to (51), we have

||[ϕv]m|| ϵ1
2 ,r1e

−1 ≤M ′′(DL)m

for all m ≥ 2. Hence, ϕv converges near the torus. This proves the theorem.
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