Vector bundles on Fano threefolds and K3 surfaces

Arnaud Beauville

Université Côte d'Azur

April 2020

Tyurin's observation

X Fano threefold (over \mathbb{C}), $S \in |K_X^{-1}|$ smooth K3 surface.

 $\mathcal{M}_X, \mathcal{M}_S$ components of the moduli space of simple vector bundles on X and S (exist as an algebraic space).

 \mathcal{M}_S smooth, admits a **symplectic structure** (Mukai).

Theorem (Tyurin, 1990)

Assume $H^2(X, \mathcal{E}nd(E)) = 0$ for all E in \mathcal{M}_X .

- 1) E_S is simple, hence res : $\left\{ \begin{array}{c} \mathcal{M}_X \to \mathcal{M}_S \\ E \mapsto E_S \end{array} \right. defined.$
- 2) res is a local isomorphism onto a Lagrangian subvariety of \mathcal{M}_S (:= Lagrangian immersion).

Problem: How to check $H^2(X, \mathcal{E}nd(E)) = 0$?

Proof of Tyurin's result

Exact sequence
$$0 \to K_X \to \mathcal{O}_X \to \mathcal{O}_S \to 0$$
 \longrightarrow $0 \to K_X \otimes \mathcal{E} nd(E) \to \mathcal{E} nd(E) \to \mathcal{E} nd(E_S) \to 0$. Since $H^2(\mathcal{E} nd(E)) = H^1(K_X \otimes \mathcal{E} nd(E)) = 0$, get $\operatorname{End}(E_S) = \mathbb{C}$ and $0 \to H^1(X, \mathcal{E} nd(E)) \to H^1(S, \mathcal{E} nd(E_S)) \to H^1(X, \mathcal{E} nd(E))^* \to 0$, hence $T_E(\mathcal{M}_X) \hookrightarrow T_{E_S}(\mathcal{M}_S)$, and $\dim \mathcal{M}_X = \frac{1}{2} \dim \mathcal{M}_S$.
$$H^1(X, \mathcal{E} nd(E))^{\otimes 2} \longrightarrow H^1(S, \mathcal{E} nd(E_S))^{\otimes 2} \downarrow \downarrow$$

$$\downarrow T_E(\mathcal{M}_X) \text{ isotropic} : H^2(X, \mathcal{E} nd(E)) \xrightarrow{0} H^2(S, \mathcal{E} nd(E_S))$$

$$\downarrow T_F \downarrow \mathcal{E} H^2(S, \mathcal{O}_S).$$

Serre construction

 $C \subset X$ smooth, $K_C = (K_X \otimes L)_{\mid C}$ for L ample on $X \leadsto$ extension:

$$0 \to \mathcal{O}_X \xrightarrow{s} E \to \mathcal{I}_C L \to 0 \,, \quad \mathsf{rk}(E) = 2 \,, \quad Z(s) = C \,, \quad E_{|C} = N_C \,.$$

Proposition

Assume: $H^1(N_C) = 0$, and

 $H^0(X,K_X\otimes L)\to H^0(C,K_C)$ and $H^0(X,L)\to H^0(C,L_{|C})$ onto.

Then: $H^2(X, \mathcal{E}nd(E)) = 0$. Moreover the E obtained in this way fill up a Zariski open subset of \mathcal{M}_X .

Idea of proof : Straightforward. \otimes extension by $E^* \cong E \otimes L^{-1}$:

$$0 \to E^* \to \mathcal{E} \textit{nd}(E) \to \mathcal{I}_C E \to 0$$

and prove $H^2(E^*) = H^2(\mathcal{I}_C E) = 0$ using exact sequences.

Last statement \leftarrow deformation theory.

Remark: Surjectivity easy. Serious condition: $H^1(N_C) = 0$.

The examples

The rest of the talk will be devoted to examples. Set-up:

$$X \subset \mathbb{P}$$
, $K_X = \mathcal{O}_X(-i)$: $i = \mathsf{index} = 1$ or 2. $\mathsf{Pic}(X) = \mathbb{Z} \cdot \mathcal{O}_X(1)$.

Index 2:
$$X_d \subset \mathbb{P}^{d+1}$$
, $3 \leqslant d \leqslant 5$: $X_3 \subset \mathbb{P}^4$, $X_{2,2} \subset \mathbb{P}^5$, $X_5 \subset \mathbb{P}^6$.

$$\text{Index 1: } X_{2g-2} \subset \mathbb{P}^{g+1} \text{, } g \in \{3,10\} \cup \{12\} \text{: } X_4 \subset \mathbb{P}^4 \text{, } X_{2,3} \subset \mathbb{P}^5 \text{, } \dots$$

Fix
$$L = \mathcal{O}_X(j)$$
, $j = 1$ or 2. $K_C = (K_X \otimes L)_{|C|} \Rightarrow K_C = \mathcal{O}_C(j - i)$.

Then $j - i \in \{-1, 0, 1\}$. This gives 3 possibilities for C:

- **1** i = 2, j = 1: *C* conic in X_d (index 2);
- 2 i = j = 1 or 2: C elliptic, $L = \mathcal{O}_X(i)$;
- **3** i = 1, j = 2: C canonical in X_{2g-2} (index 1).

Hypothesis: To simplify, $Pic(S) = \mathbb{Z} \cdot \mathcal{O}_S(1) \Rightarrow E$ and E_S stable.

Warm-up: conics in index 2 Fano threefolds

$$X_d \subset \mathbb{P}^{d+1}$$
, $K_X = \mathcal{O}_X(-2)$, $S := X \cap Q$, $L = \mathcal{O}_X(1)$, C conic.

- $H^1(N_C) = 0$, dim $\mathcal{M}_X = 5 d$.
- $d=3: \mathcal{M}_X \cong F(X)$ (by conic \mapsto residual line). $\mathcal{M}_S \cong S^{[2]} \ (\text{4 coplanar points} \mapsto \text{residual subscheme}).$ $\text{res}: F(X) \hookrightarrow S^{[2]}, \ \ell \mapsto \ell \cap Q.$
- d = 4: $S_{2,2,2} \subset X_{2,2}$: $\mathcal{M}_X \xrightarrow{\text{res}} \mathcal{M}_S$ $\downarrow_{2:1} \qquad \qquad \downarrow_{2:1}$ $\ell = \{Q \supset X\} \hookrightarrow \Pi = \{Q \supset S\}$
- d = 5: $X_5 = \mathbb{G}(2,5) \cap \mathbb{P}^6$. $\mathcal{M}_X = \mathcal{M}_S = \{[E]\}$, restriction of universal quotient bundle on $\mathbb{G}(2,5)$.

Elliptic curves in index 2 Fano threefolds

C normal elliptic curve: $C_{d+2} \subset X_d \subset \mathbb{P}^{d+1}$.

Then
$$(K_X \otimes L)_{|C} = \mathcal{O}_C \implies L = \mathcal{O}_X(2)$$
, extension

$$0 \to \mathcal{O}_X \to E \to \mathcal{I}_C(2) \to 0$$
. $S = X_d \cap Q \subset \mathbb{P}^{d+1}$.

- 1) Every X_d contains an elliptic curve C_{d+2} .
- 2) E Ulrich bundle : $H^{\bullet}(E(-i)) = 0$ for $1 \le i \le 3$. $\left(\iff \exists \text{ linear resolution of length } c = \operatorname{codim}(X, \mathbb{P}^{d+1}) \right.$ $0 \to \mathcal{O}_{\mathbb{P}}(-c)^{\bullet} \to \cdots \to \mathcal{O}_{\mathbb{P}}(-1)^{\bullet} \to \mathcal{O}_{\mathbb{P}}^{\bullet} \to E \to 0 \right)$
- 3) $H^1(N_C)=0$, res : $\mathcal{M}_X \hookrightarrow \mathcal{M}_S$ Lagrangian immersion; dim $\mathcal{M}_X=5$, $\mathcal{M}_S\cong_{\mathit{bir}} \mathsf{OG}_{10}$.

Sketch of proof

Proposition

- 1) Every X_d contains an elliptic curve C_{d+2} .
- 2) *E* Ulrich bundle : $H^{\bullet}(E(-i)) = 0$ for $1 \le i \le 3$.
- 3) $H^1(N_C) = 0$, res : $\mathcal{M}_X \hookrightarrow \mathcal{M}_S$ Lagrangian immersion; dim $\mathcal{M}_X = 5$, $\mathcal{M}_S \cong_{bir} \mathsf{OG}_{10}$.

Ideas of the proof: 1) Deform $C_{d+1} \bigcup_{p} \ell$.

- 2) $H^{\bullet}(E(-i)) = 0$ follows from $0 \to \mathcal{O}_X \to E \to \mathcal{I}_C(2) \to 0$.
- 3) $H^1(N_C) \cong H^0(N_C^*) = H^0(E_{|C}^*); = 0$ using linear resolution.
- Then $E_S(-1)$ has $\det = \mathcal{O}_S$, $c_2 = 4 \iff \mathcal{M}_S \cong_{bir} \mathsf{OG}_{10}$.

Example: the cubic threefold

For $X_3 \subset \mathbb{P}^4$, linear resolution $0 \to \mathcal{O}_{\mathbb{P}}(-1)^6 \xrightarrow{M} \mathcal{O}_{\mathbb{P}}^6 \to E \to 0$ with M skew-symmetric, hence X given by $\mathsf{Pf}(M) = 0$.

Proposition (Iliev, Markushevich, Tikhomirov): $\mathcal{M}_X \cong_{bir} J(X)$.

(More precisely (Druel): $\overline{\mathcal{M}}_X \stackrel{\sim}{\longrightarrow} \operatorname{Bl}_{F(X)} J(X)$.)

Now fix $S = S_{2,3}$, defined by Q = F = 0 in \mathbb{P}^4 .

X varies in $\Pi_5 := |\mathcal{I}_S(3)| = \{aF + LQ = 0\} \cong \mathbb{P}^5$, L linear.

Proposition

 \exists Lagrangian fibration $h: \mathcal{M}_S \dashrightarrow \Pi_5$, $h^{-1}(X) = \mathcal{M}_X \ (\cong_{\textit{bir}} J(X))$.

Proof: For F general in \mathcal{M}_S , $\mathcal{O}_Q(-1)^6 \xrightarrow{M} \mathcal{O}_Q^6 \to F \to 0$,

M skew-symmetric with entries in $H^0(\mathcal{O}_Q(1))=H^0(\mathcal{O}_{\mathbb{P}^4}(1))$ \leadsto

$$0 \to \mathcal{O}_{\mathbb{P}}(-1)^{6} \xrightarrow{M} \mathcal{O}_{\mathbb{P}}^{6} \to E \to 0, \ E_{|S} = F, \ X = \mathsf{Supp}(E)). \quad \blacksquare$$

The (rational) Lagrangian fibration

That is: a general vector bundle $F \in \mathcal{M}_S$ determines a cubic $h(F) = X \supset S$, plus a vector bundle $E \in \mathcal{M}_X$ such that $E_S = F$.

A recent improvement

Theorem (Saccà, February 2020)

There exists a projective hyperkähler manifold \mathcal{M}'_S and a birational map $\varphi: \mathcal{M}'_S \stackrel{\sim}{\dashrightarrow} \mathcal{M}_S$ such that $h \circ \varphi: \mathcal{M}'_S \to \Pi_5$ is a Lagrangian fibration, with fiber J(X) over $X \in \Pi_5$.

Idea:
$$S \subset \mathbb{P}^4: Q = F = 0$$
. Rational Lagrangian fibration $h: \mathcal{M}_S \cong_{bir} \mathrm{OG}_{10} \dashrightarrow \Pi_5$, with $\Pi_5 = \{X: aF + LQ = 0\}$. Consider the nodal cubic fourfold $V: F + TQ = 0$ in \mathbb{P}^5 . Then $X = V \cap H$, with $H: \{aT = L\}$. Thus $\Pi_5 \cong (\mathbb{P}^5)^*$. For a smooth or 1-nodal cubic fourfold $V \subset \mathbb{P}^5$, Saccà constructs a projective hyperkähler manifold \mathcal{M} and a Lagrangian fibration $h: \mathcal{M} \to (\mathbb{P}^5)^*$ with $h^{-1}(H) = J(V \cap H)$ for $V \cap H$ smooth. (This extends the construction of Laza-Saccà-Voisin for general V).

Elliptic curves in index 1 Fano threefolds: an example

$$X=X_{2,2,2}\subset \mathbb{P}^6,\ S=X\cap H=S_{2,2,2}\subset \mathbb{P}^5.$$
 Some geometry: $|\mathcal{I}_X(2)|:=\Pi\ (\cong\mathbb{P}^2)\supset \Delta_7=\{\text{singular quadrics in }\Pi\}.$ $ho:\ \tilde{\Delta}\xrightarrow{2:1}\Delta_7:\ \tilde{\Delta}=\{(q,\sigma)\},\ q\in\Delta_7,\sigma \text{ family of 3-planes}\subset q.$ $|\mathcal{I}_S(2)|=\Pi\supset\Delta_6.\ \pi:\Sigma\xrightarrow{2:1}\Pi \text{ branched along }\Delta_6,$ $\Sigma=\{(q,\tau)\},\ q\in\Pi,\tau \text{ family of 2-planes}\subset q.$
$$\tilde{\Delta}\xrightarrow{r}\Sigma \qquad r:\tilde{\Delta}\to\Sigma, \qquad (q,\sigma)\mapsto (q\cap H,\sigma_H).$$
 $|\text{Image}=\pi^{-1}(\Delta_7).$

Fact: Δ_7 everywhere tangent to Δ_6 , hence $\pi^{-1}(\Delta_7)$ has 21 nodes.

Take
$$C = C_{2,2} \subset \mathbb{P}^3$$
. Then: $H^1(N_C) = 0$; $\mathcal{M}_X = \tilde{\Delta}$, $\mathcal{M}_S = \Sigma$, res: $\mathcal{M}_X \to \mathcal{M}_S$ identified with $r: \tilde{\Delta} \to \Sigma$, thus **not injective**.

Index 1, canonical curve

$$X_{2g-2} \subset \mathbb{P}^{g+1}$$
, $K_X = \mathcal{O}_X(1)$: $X_4 \subset \mathbb{P}^4$, $X_{2,3} \subset \mathbb{P}^6$, ... $C \subset \mathbb{P}^{g+1}$ canonical, genus $g+2$. Then $L = \mathcal{O}_X(2)$ \leadsto extension $0 \to \mathcal{O}_X \to E \to \mathcal{I}_C(2) \to 0$. $S = X \cap H$.

- 1) $X \supset C$ canonical of genus g + 2, with $H^1(N_C) = 0$.
- 2) res : $\mathcal{M}_X \to \mathcal{M}_S$ is a Lagrangian immersion.
- 3) dim $\mathcal{M}_X = 5$, $\mathcal{M}_S \cong_{\textit{bir}} OG_{10}$.
- (Note: for g = 3, we must assume that X is general.)

Sketch of proof

The proof for $g \geqslant 4$ relies on a result of Brambilla and Faenzi, who construct directly the vector bundle E as a flat deformation of E:

$$0 \to \mathcal{I}_A(1) \to \mathcal{E} \to \mathcal{I}_B(1) \to 0$$

where A and B are general conics.

Since $g \geqslant 4$, $\mathcal{I}_A(1)$ and $\mathcal{I}_B(1)$ are globally generated, hence so are \mathcal{E} and E. Hence for general $s \in H^0(E)$, Z(s) is a smooth curve C.

$$K_C = K_{X|C} \otimes \det N_C = \mathcal{O}_C(1), \quad H^0(\mathcal{I}_C(1)) = H^1(\mathcal{I}_C(1)) = 0 \implies C$$
 canonically embedded in \mathbb{P}^{g+1} .

Brambilla and Faenzi prove $H^2(\mathcal{E}nd(E))=0$ ($\Leftrightarrow H^1(N_C)=0$).

Tyurin's theorem \Rightarrow res : $\mathcal{M}_X \to \mathcal{M}_S$ Lagrangian immersion.

$$E(-1)_{|S}$$
 has $c_1=0$, $c_2=4$ \Rightarrow $\mathcal{M}_S\cong_{\textit{bir}} \mathsf{OG}_{10}$.

Example: $X_{2,3}$

 $X = V_3 \cap Q \subset \mathbb{P}^5$. Another way to construct $C \subset X \subset \mathbb{P}^5$ canonical of genus 6: $C = S_5 \cap Q$, with $S_5 \subset V_3$.

Facts

- 1) For V cubic fourfold, $V \supset S_5 \iff V$ pfaffian, i.e.
- $\exists \ 0 \to \mathcal{O}_{\mathbb{P}}^6(-1) \xrightarrow{M} \mathcal{O}_{\mathbb{P}}^6 \to F \to 0$, M skew-symmetric, F rank 2 bundle on V, V defined by $\mathsf{Pf}(M) = 0$.
- 2) For s general in $H^0(F)$, $Z(s) = S_5$. Hence $F_{|X} \in \mathcal{M}_X$.
- 3) The pfaffian cubics form a hypersurface \mathcal{C}_{14} in $|\mathcal{O}_{\mathbb{P}}(3)|$.
- 4) For V general in C_{14} , F unique.

Remark: I do not know if this gives the same component \mathcal{M}_X as the Brambilla-Faenzi construction.

$X_{2,3}$ (continued)

Let $\Pi_6:=|\mathcal{I}_X(3)|=\{V_3'\supset X\}\cong \mathbb{P}^6$, and $\mathscr{P}_f:=\Pi_6\cap \mathcal{C}_{14}$. Then

Proposition

$$\mathcal{M}_X \cong_{bir} \mathcal{P}_f$$
.

Proof: $\mathcal{P}f \dashrightarrow \mathcal{M}_X : V$ general \leadsto unique F on $V \leadsto F_{|X}$. $\mathcal{M}_X \dashrightarrow \mathcal{P}f$: For general $E \in \mathcal{M}_X$, resolution

$$0 \to \mathcal{O}_Q(-1)^6 \xrightarrow{M} \mathcal{O}_Q^6 \to E \to 0$$
, V defined by $Pf(M) = 0$.

 $S=X_{2,3}\cap H$: Im (\mathcal{M}_X) Lagrangian subvariety in $\mathcal{M}_S=\operatorname{OG}_{10}(S)$. Recall Lagrangian fibration $h:\mathcal{M}_S\dashrightarrow \Pi_5$.

Proposition

 $p: \mathcal{M}_X \xrightarrow{\text{res}} \mathcal{M}_S \xrightarrow{h} \Pi_5$ is generically finite.

$X_{2,3}$ (continued)

Proof:
$$p \cong_{bir} \bar{q}: \mathcal{P}f \dashrightarrow \Pi_5$$
, $V (\supset X) \mapsto V \cap H \supset S$. $q: \Pi_6 \dashrightarrow \Pi_5$, $V \mapsto V \cap H$. Not defined only at $o:=H \cup Q$ $\Longrightarrow q = \text{projection from } o$, $q^{-1}(x) = \langle o, x \rangle$. $\bar{q}^{-1}(x) = \langle o, x \rangle \cap \mathcal{P}f$ finite for x general.

THE END