© Springer-Verlag 1986

Sur l'anneau de Chow d'une variété abélienne

Arnaud Beauville

Mathématiques, Université de Paris-Sud, Bâtiment 425, F-91405 Orsay Cedex, France

Soit A une variété abélienne de dimension q sur C. On pose $CH_0(A) = CH(A) \otimes_{\mathbf{Z}} \mathbf{Q}$, où CH(A) désigne l'anneau de Chow de A (gradué par la codimension). Pour $k \in \mathbb{Z}$, on note k la multiplication par k dans A.

Les automorphismes k^* de $CH_0(A)$ jouissent des mêmes propriétés formelles que les opérations d'Adams en K-théorie. Le but de cette note est de montrer que, tout comme les opérations d'Adams, les opérateurs k* se diagonalisent simultanément dans $CH_{\mathbf{o}}(A)$. Plus précisément:

Théorème. Pour $s \in \mathbb{Z}$, notons $CH_s^p(A)$ le sous-espace de $CH_0^p(A)$ formé des classes x telles que $\mathbf{k}^*x = k^{2p-s}x$ pour tout $k \in \mathbb{Z}$. On a

$$CH_{\mathbf{Q}}^{p}(A) = \bigoplus_{s=p-q}^{s=p} CH_{s}^{p}(A)$$
.

La démonstration est donnée au Par. 1; elle est basée sur la transformation de Fourier étudiée dans [1], dont nous rappelons ici les propriétés essentielles. Au Par. 2 nous essayons d'interpréter géométriquement les espaces $CH_p^p(A)$; nous n'y parvenons malheureusement que pour quelques-uns d'entre eux. Cette difficulté limite les applications du théorème; nous en donnons une au Par. 3, en précisant un résultat de Bloch et Srinivas sur le groupe de Griffiths des variétés abéliennes de dimension 3.

1. Démonstration du théorème

Notons \hat{A} la variété abélienne duale de A, et l la classe dans $Pic(A \times \hat{A})$ du fibré de Poincaré. Soient π , $\hat{\pi}$ les projections de $A \times \hat{A}$ sur A et \hat{A} respectivement. La transformation de Fourier $\mathscr{F}: CH_{\mathbf{0}}(A) \to CH_{\mathbf{0}}(\hat{A})$

est définie par $\mathcal{F}(x) = \hat{\pi}_{\star}(e^l \cdot \pi^* x)$. Elle satisfait entre autres les formules suivantes [1]:

F1) Notons $\hat{\mathcal{F}}: CH_0(\hat{A}) \to CH_0(A)$ la transformation de Fourier pour \hat{A} ; on a $\hat{\mathscr{F}}\circ\hat{\mathscr{F}}=(-1)^g(-1)^*.$

F2) Soit $f: A \rightarrow A$ une isogénie. On a $\mathscr{F} \circ f^* = \hat{f}_* \circ \mathscr{F}$ et $\mathscr{F} \circ f_* = \hat{f}^* \circ \mathscr{F}$. En outre:

F3) Soit
$$x \in CH^p_{\mathbb{Q}}(A)$$
, écrivons $\mathscr{F}(x) = \sum_{q=0}^g y_q$, avec $y_q \in CH^q_{\mathbb{Q}}(\hat{A})$. On a $\mathbf{k}^* y_a = k^{g-p+q} y_a$.

En effet, notons $\tilde{\mathbf{k}}$ l'endomorphisme $(1, \mathbf{k})$ de $A \times \hat{A}$. Le théorème du carré entraîne l'égalité $\tilde{\mathbf{k}}^* l = kl$ dans $\operatorname{Pic}(A \times \hat{A})$. On a alors

$$\mathbf{k}^* \mathscr{F}(x) = \mathbf{k}^* \hat{\pi}_* (e^l \cdot \pi^* x) = \hat{\pi}_* (\tilde{\mathbf{k}}^* e^l \cdot \tilde{\mathbf{k}}^* \pi^* x)$$
$$= \hat{\pi}_* (e^{kl} \cdot \pi^* x) = \sum_q k^{q-p+q} y_q. \quad \Box$$

Proposition 1. Soit $x \in CH_{\mathbb{Q}}^p(A)$, et soit k un entier distinct de 0, 1 ou -1. Les conditions suivantes sont équivalentes:

- (i) $\mathscr{F}(x) \in CH_{\mathbf{0}}^{g-p+s}(\hat{A});$
- (ii) $x \in CH_s^p(A)$ (c'est-à-dire $\mathbf{m}^*x = m^{2p-s}x$ pour tout $m \in \mathbb{Z}$);
- (iii) $k * x = k^{2p-s}x$;
- (iv) $\mathbf{k}_{*}x = k^{2g-2p+s}x$;
- (v) $\mathscr{F}(x) \in CH_s^{g-p+s}(\hat{A}).$
- (i) \Rightarrow (ii): posons $y = (-1)^g (-1)^* \mathscr{F}(x)$. On a $y \in CH_{\mathbf{Q}}^{g-p+s}(\hat{A})$ et, d'après F1 et F2, $\hat{\mathscr{F}}(y) = x \in CH^p(A)$. Pour tout $m \in \mathbf{Z}$, on déduit alors de F3 l'égalité $\mathbf{m}^* x = m^{2p-s} x$.
 - (ii)⇒(iii): c'est clair.
 - (iii) \Rightarrow (iv): cela résulte de la formule $\mathbf{k}_* \mathbf{k}^* = k^{2g} Id_{CH(A)}$.
 - (iv)⇒(i): sous l'hypothèse (iv), on a, d'après F2,

$$\mathbf{k}^* \mathscr{F}(x) = \mathscr{F}(\mathbf{k}_* x) = k^{2g - 2p + s} \mathscr{F}(x); \tag{1}$$

comme $|k| \ge 2$, ceci impose $\mathscr{F}(x) \in CH_{\mathbf{0}}^{g-p+s}(\hat{A})$ en vertu de F3.

Ainsi les conditions (i) à (iv) sont équivalentes; si elles sont réalisées, on a $\mathbf{m}_* x = m^{2g-2p+s} x$ pour tout $m \in \mathbb{Z}$, ce qui d'après l'égalité (1) ci-dessus entraîne $\mathscr{F}(x) \in CH_s^{g-p+s}(\hat{A})$. La condition (v) est donc équivalente aux précédentes. \square

Démontrons maintenant le théorème. Soit $x \in CH^p_{\mathbb{Q}}(A)$; écrivons $(-1)^g(-1)^*\mathscr{F}(x) = \sum_{q=0}^g y_q$, avec $y_q \in CH^p_{\mathbb{Q}}(\hat{A})$. Par F3 on a $\mathbf{k}^*y_q = k^{g-p+q}y_q$ pour tout entier k, c'est-à-dire $y_q \in CH^p_{\mathfrak{q}}(\hat{A})$ avec s = p+q-g. La proposition 1 entraîne $\widehat{\mathscr{F}}(y_q) \in CH^p_{\mathfrak{s}}(A)$. Comme $x = \sum_q \widehat{\mathscr{F}}(y_q)$ d'après F1, le théorème en résulte. \square

2. Propriétés des espaces $CH_s^p(A)$

Indiquons d'abord quelques conséquences immédiates de la définition ou de la proposition 1:

Proposition 2. a) Si $x \in CH_s^p(A)$ et $y \in CH_t^q(A)$, on a $xy \in CH_{s+t}^{p+q}(A)$ et $x * y \in CH_{s+t}^{p+q-g}(A)$ (le symbole * désigne le produit de Pontriagin, cf. [1]). b) $\mathscr{F}(CH_s^p(A)) = CH_s^{q-p+s}(\hat{A})$.

c) Si $f: A \rightarrow B$ est un homomorphisme de variétés abéliennes, on a $f*CH_s^p(B) \subset CH_s^p(A)$ et $f_*CH_s^p(A) \subset CH_s^{p+c}(B)$, avec $c = \dim(B) - \dim(A)$.

D'autre part, la proposition 8 de [1] se traduit aussitôt comme suit:

Proposition 3. a) On a $CH_s^p(A) = 0$ pour s < 0 et $p \in \{0, 1, g-2, g-1, g\}$. b) Pour $p \le g-2$, les espaces $CH_s^p(A)$ sont nuls pour s < p-g+2. \square

La conjecture F_p de [1] équivaut à dire que l'on a $CH_s^p(A) = 0$ pour s < 0 (d'après la proposition 3, le premier cas à tester serait $CH_{-1}^2(A)$ pour dim(A) = 5). On peut résumer la situation par le triangle suivant, où le point d'interrogation désigne les espaces conjecturalement nuls:

$$\begin{array}{llll} CH_{\mathbf{Q}}^{0}(A) & = & CH_{\mathbf{Q}}^{0}(A) \\ CH_{\mathbf{Q}}^{1}(A) & = & CH_{\mathbf{Q}}^{1}(A) \oplus CH_{\mathbf{1}}^{1}(A) \\ CH_{\mathbf{Q}}^{2}(A) & = ? \oplus CH_{\mathbf{Q}}^{2}(A) \oplus CH_{\mathbf{1}}^{2}(A) \oplus CH_{\mathbf{2}}^{2}(A) \\ \vdots & \vdots & \vdots \\ CH_{\mathbf{Q}}^{g}(A) & = & CH_{\mathbf{Q}}^{g}(A) \oplus CH_{\mathbf{q}}^{g}(A) \oplus \dots \oplus CH_{\mathbf{q}}^{g}(A). \end{array}$$

La décomposition $CH^1_{\mathbf{Q}}(A) = CH^1_{\mathbf{Q}}(A) \oplus CH^1_{\mathbf{1}}(A)$ n'est autre que la décomposition bien connue $\operatorname{Pic}_{\mathbf{Q}}(A) = \operatorname{Pic}_{\mathbf{Q}}^0(A) \oplus \operatorname{Pic}_{\mathbf{Q}}^s(A)$, où $\operatorname{Pic}_{\mathbf{Q}}^s(A)$ est le sous-espace de $\operatorname{Pic}_{\mathbf{Q}}(A)$ (isomorphe à $NS_{\mathbf{Q}}(A)$) formé des fibrés symétriques. On observera au passage qu'il est bien nécessaire de tensoriser $\operatorname{Pic}(A)$ par \mathbf{Q} (ou au moins, dans ce cas, par \mathbf{Z} [1/2]) pour obtenir cette décomposition. Nous allons essayer de donner une interprétation analogue des autres termes. Soit s un entier tel que $0 \le s \le g$; notons P^s le sous-espace de $CH^s_{\mathbf{Q}}(A)$ engendré par les produits de s diviseurs algébriquement équivalents à zéro. On définit de la même manière le sous-espace \hat{P}^s de $CH^s_{\mathbf{Q}}(\hat{A})$.

Proposition 4. Soit d la classe dans $CH^1_{\mathbf{Q}}(A)$ d'un diviseur ample symétrique.

- a) On a $CH_s^s(A) = P^s$ et $CH_s^g(A) = d^{g-s}P^s$.
- b) Pour $s \le p \le g$ l'application $x \mapsto d^{p-s}x$ de P^s dans $CH_s^p(A)$ est injective.

D'après [1, p. 254, remarque 2], on a une décomposition

$$CH_{\mathbf{Q}}^g(A) = \bigoplus_{s=0}^g d^{g-s}P^s$$
.

Comme on a $d^{g-s}P^s \subset CH_s^g(A)$ (proposition 2), on conclut que cette inclusion est une égalité. D'autre part la proposition 6 (i) de [1] entraı̂ne $d^{g-s}P^s = \mathscr{F}(\hat{P}^s)$; en appliquant la proposition 2 b) et en inversant les rôles de A et \hat{A} , on en déduit $P^s = CH_s^s(A)$. Ceci prouve a); l'assertion b) résulte de [1, p. 253, corollaire 2].

La décomposition de $CH^g_{\mathbf{o}}(A)$ s'écrit donc

$$CH_{\mathbf{0}}^{g}(A) = \mathbf{Q} \cdot [o] \oplus d^{g-1}P \oplus ... \oplus P^{g};$$

pour un énoncé tenant compte de la torsion, voir [1, p. 254]. Si I désigne l'idéal de $CH_q^q(A)$ (pour le produit *, cf. [2]) engendré par les 0-cycles de degré 0, on a $I^{*r} = \bigoplus_{s \ge r} CH_s^q(A)$. Citons un corollaire, qui n'est pas sans évoquer le théorème du carré:

650 A. Beauville

Corollaire. Pour $a \in A$, notons T_a la translation $z \mapsto z + a$ de A. Soit $x \in CH_s^p(A)$, et soient a_1, \ldots, a_r des éléments de A. Si r > p - s, on a

$$(T_{a_1}^*-I)...(T_{a_r}^*-I)x=0.$$

En effet le premier membre est égal à $x*([-a_1]-[o])*...*([-a_r]-[o])$, donc appartient à $\sum_{t>p} CH_t^p(A)$, qui est nul. \square

Il résulte de la proposition 4 que les espaces $CH_s^p(A)$ sont non nuls pour $0 \le s \le p$; ils sont même, en vertu des résultats de Roitman [2, Par. 3], "très gros" (c'est-à-dire qu'ils ne peuvent être paramétrés par des variétés algébriques) dès que $s \ge 2$. A quoi ressemblent-ils? On dispose d'un homomorphisme $c: CH_Q^p(A) \to H^{2p}(A, \mathbb{Q})$; de plus, si $J^p(A)$ désigne la p-ième jacobienne intermédiaire de A et $J_Q^p(A) = J^p(A) \otimes_{\mathbb{Z}} \mathbb{Q}$, on dispose d'une application d'Abel-Jacobi $\alpha: \operatorname{Ker} c \to J_Q^p(A)$.

Proposition 5. On a $c(CH_s^p(A)) = 0$ pour $s \neq 0$, et $\alpha(CH_s^p(A) \cap \text{Ker } c) = 0$ pour $s \neq 1$.

Cela résulte immédiatement de la variance des opérations k^* , pour $k \in \mathbb{Z}$: si $x \in H^{2p}(A, \mathbb{Q})$ et $y \in J^p(A)$, on a $k^*x = k^{2p}x$ et $k^*y = k^{2p-1}y$. \square

On peut espérer que les applications $c_0: CH_0^p(A) \to H^{2p}(A, \mathbb{Q})$ et $\alpha_1: CH_1^p(A) \to J_{\mathbb{Q}}^p(A)$ soient toujours injectives. On sait que c_0 est injective pour p=0,1,g, et, un peu moins trivialement, p=g-1: ce dernier point résulte du diagramme commutatif

$$\begin{array}{ccc} CH_0^{g-1}(A) & \xrightarrow{c_0} & H^{2g-2}(A, \mathbb{Q}) \\ & & & & & \downarrow_{\mathscr{F}_h} \\ CH_0^1(\hat{A}) & \xrightarrow{c_0} & H^2(\hat{A}, \mathbb{Q}) \end{array},$$

où les flèches verticales sont bijectives (cf. [1]). On sait que α_1 est injectif (et d'ailleurs bijectif) pour p=1 et g.

3. Une application

Notons G(A) le groupe de Griffiths de la variété abélienne A (groupe des cycles homologiquement équivalents à zéro, modulo équivalence algébrique), gradué par la codimension. Tout comme la transformation de Fourier, la décomposition $CH^p_{\mathbb{Q}}(A) = \bigoplus_s CH^p_s(A)$ est évidemment compatible avec l'équivalence homologique ou algébrique. Elle induit donc une décomposition $G^p_{\mathbb{Q}}(A) = \bigoplus_s G^p_s(A)$, où $G^p_s(A)$ désigne le sous-espace de $G^p_{\mathbb{Q}}(A)$ formé des éléments x tels que $\mathbf{k}^*x = k^{2p-s}x$ pour tout $k \in \mathbb{Z}$.

Il résulte de la proposition 4 a) qu'on a $G_s^s(A) = 0$, et des remarques de la fin du Par. 2 que $G_0^{g-1}(A)$ est nul. Lorsque g=3, on conclut que le groupe de Griffiths G(A) est réduit à $G_1^2(A)$. Plus précisément, on a l'énoncé suivant, conjecturé dans [3]:

Proposition 6. Supposons g = 3. Pour $k \in \mathbb{Z}$, l'endomorphisme k^* de G(A) est la multiplication par k^3 .

Notons $CH_h^2(A)$ le sous-groupe de $CH^2(A)$ formé des cycles homologiquement équivalents à zéro. Soit $x \in CH_h^2(A)$; posons $y = \mathbf{k}^* x - k^3 x$. D'après ce qui précède,

y est algébriquement équivalent à zéro. De plus, si $\alpha: CH_h^2(A) \to J^2(A)$ est l'application d'Abel-Jacobi, on a $\alpha(y) = \mathbf{k}^*\alpha(x) - k^3\alpha(x) = 0$. Un corollaire du théorème de Merkuriev-Suslin [5, remarque 2] entraı̂ne alors que y est algébriquement équivalent à zéro. \square

Une conséquence de ce résultat (déjà obtenue dans [3] par une méthode toutà-fait différente) fait intervenir la variété de Kummer X de A. Rappelons sa définition: soit A' l'éclatée de A le long des points d'ordre 2; l'involution (-1)s'étend à A', et X est le quotient de A' par cette involution.

Proposition 7. Pour g=3, l'équivalence algébrique coïncide avec l'équivalence homologique dans $CH^2(X)$.

Rappelons que l'énoncé analogue est faux pour $CH^2(A)$, au moins lorsque A est générique [4].

Notons $\varepsilon: A' \to A$ l'éclatement, et $\pi: A' \to X$ le morphisme de passage au quotient. Soit x un élément de $CH^2(X)$ homologue à zéro; on a $\pi^*x = \varepsilon^*y$, où y est un élément de $CH^2(A)$ homologue à zéro et invariant par $(-1)^*$. On déduit de la proposition 6 qu'un multiple de y est algébriquement équivalent à zéro, d'où en appliquant π_* la même propriété pour x. On conclut comme ci-dessus, en observant que $J^2(X)$ est nulle. \square

Remarques. 1) Les propositions 6 et 7 sont peut-être vraies pour tout g: cela résulterait de l'injectivité de $c_0: CH_0^2(A) \to H^4(A, \mathbb{Q})$.

- 2) On calcule immédiatement, quel que soit g, l'anneau $CH_{\mathbf{Q}}(X)$: on a $CH_{\mathbf{Q}}^{p}(X) = \mathbf{Q}^{A_2} \oplus \sum_{s \text{pair}} CH_{s}^{p}(A)$, où A_2 désigne l'ensemble des points d'ordre 2 de A.
- 3) Soit A une variété abélienne définie sur un corps fini F de caractéristique p. S. Bloch m'a signalé que les méthodes de cet article, jointes à une compatibilité de la transformation de Fourier avec l'endomorphisme de Frobenius, impliquent $CH_s(A) = 0$ pour $s \neq 0$, c'est-à-dire $\mathbf{k}^* \mathbf{x} = k^{2r} \mathbf{x}$ pour tout $k \in \mathbf{Z}$ et tout $\mathbf{x} \in CH^r_{\mathbf{Q}}(A)$. Ce résultat est compatible avec une conjecture de C. Soulé, selon laquelle l'application $c: CH^r_{\mathbf{Q}}(A) \rightarrow H^{er}_{er}(A_{\mathbf{F}}, \mathbf{Q}_l)$ devrait être injective $(l \neq p)$; compte tenu de la fin du Par. 2, il entraîne d'ailleurs cette injectivité pour r = q 1.

Bibliographie

- Beauville, A.: Quelques remarques sur la transformation de Fourier dans l'anneau de Chow d'une variété abélienne. Algebraic geometry (Tokyo/Kyoto 1982), Lect. Notes Math. 1016, 238-260. Berlin, Heidelberg, New York: Springer 1983
- 2. Bloch, S.: Some elementary theorems about algebraic cycles on abelian varieties. Invent. Math. 37, 215–228 (1976)
- Bloch, S., Srinivas, V.: Remarks on correspondences and algebraic cycles. Am. J. Math. 105, 1235–1253 (1983)
- 4. Ceresa, G.: C is not algebraically equivalent to C^- in its Jacobian. Ann. Math. 117, 285–291 (1983)
- Murre, J.-P.: Un résultat en théorie des cycles algébriques de codimension deux. C. R. Acad. Sci. Paris, sér. I, 296, 981-984 (1983)

