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The quantum cohomology algebra of a. projective manifold X is the cohomology,

H *(X, Q) endowed with a different algebra structure, which takes into account the geometry
of rational curves in X. We show that this algebra takes a remarkably simple form for
complete intersections when the dimension is large enough with respect to the degree. As

a consequence we get a number of enumerative formulas relating lines, conics and twisted
cubics on X. :

Introduction

The quantum cohomology algebra of a projective manifold X is the cohomology of
X endowed with a different algebra structure, which takes into account the geometry of
rational curves in X. This structure has been first defined heuristically by the mathe-
matical physicists [1, 2]; a rigorous construction (and proof of the associativity, which
is highly non trivial) has been achieved recently by Ruan and Tian [3].

When computed e.g. for surfaces, the quantum cohomology looks rather complicated
[4]. The aim of this note is to show that the situation improves considerably when the
dimension becomes high with respect to the degree. Our main result is:

Theorem. Let X ¢ P™ 7 be a smooth complete intersection of degree d,, ... ,d_)

and dimension n>3, withn 223" (d,~ 1)~ 1. Letd=d, ...d_and 8=y, (d,~1).

The quantum cohomology algebra H *(X, Q) is the algebra generated by the hyperplane
class H and the primitive cohomology H"(X, Q) , with the relations:

H**1=q% . a%HY, H.a=0,
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Quantum cohomology of complete intersections

o B=(o|P) g H - dPH,

fora, Be H" (X, Q), .
The method applies more generally to a large class of Fano manifolds (see
Proposition 1 below). It is actually a straightforward consequence of the definitions,

) d d . . .
except for the exact value of the coefficientd ! ... d ", which requires some standard

computations in the cohomology of the Gras<manman Still I believe that the sxmphcxty
of the result is worth noticing. -

As the referee pointed out, we get actually more than an abstract presentation of the
quantum cohomology algebra by generators and relations. The point is that the powers
of the generator H have a simple geometric interpretation: ,deno‘ting by

Hp ceH? (X, Z) the class of a codimension p linear section, one has for p <n

k-p ' k-p
- P — -k
HP_HP+(24)HP_k, H,=H? (>, LHHP™F,
i=0 i=0

wherek=n+r+ I—Z d;and d/; is the number of lines in X meeting two general linear

spaces of codimension n —i and k + i — 1 respectively (formula (1.7) and Remark 1
below). This allows to write down explicitely the quantum product in the basis (Hp ).

We get from this a number of enumerative formulas: for instance we find that the number
of conics passing through 2 general points in a hypersurface of degree d and dimension

2d-3 is % d!(d - 1)}, while the number of twisted cubics through 3 general points in
a hypersurface of degree d and dimension 3d - 6 is d!((d - DH2.

1 would like to thank A. Bruno, R. Donagi, G. Ellingsrud Iand Peng Lu for their useful comments.
During the preparation of this paper I had long and vivid discussions with Claude Itzykson, while his health
was declining very rapidly ~ till he died on May 22. I would like to dedicate this paper to his memory.

1. Quantum cohomology of Fano manifolds

I am considering in this paper Fano manifolds with b, =1, i.e. smooth compact

complex manifolds X such that H 2(X, Z) is generated by an ample class H and the
canonical class K, is — kH for some positive integer k. I will use the following properties

of the quantum cohomology product on H *(X, Z) or H *(X, Q) (proved in [3]):
(1.1) it is invariant under smooth deformations;
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(1.2) it is associative, compatible with the grading mod. 2, and anticommutative. It is
compatible with the intersection form ( |) on H *(X, Z), i.e. one has (x| yz) = ( xy |2)
forx,y,z in H'(X, Z). Theelement 1 € H °(X Z) is still a unit.

(1.3) the product x -y of two homogeneous elements is defined by
X y=Q@- Pty +.. +(x-y)j+ ves' s

where (x - ), is the ordinary cohomology product, and (x - Y); s a class of degree
deg (x) +deg () - 24j.

(1.4)  Assume that the moduli space 5!/[] of maps f: P! X. of degree j (i.e. such
that deg 7 "H =j ) has the expected dimension 7 + kj, choose any smooth. compactifi-
catian_ -9—!7{] of .71/6 such that the evaluation maps ¢; : .’/Efg S X (OS i S 2 ) defined by
e, (f)=f(i) extend to M . Then the "instanton correcti‘on" (x, . y)}L is deﬁned by

(x,5,2 ((x }’) lz) geox eiy 32

(1.5) Kx, j}, ze HY(X, Z) are classes of subvarieties 4, B, C.of X which are in general
position, it follows easily from (1.4) that the triple product{ x, y, z ) is the number of

curves of degree j meeting 4, B and C (counted with multlphcxty abc if the curve meets
A, resp. B, resp. C in g, resp. b, resp. ¢ distinct points).

To avoid confusion I will denote by rI eH? (X,Z) for 0<p<n the pth
powei of H in the ordinary cohomo!ogy, and reserve the notations x-y or
x* @, veH X, Q)) exclusively for the quantum prbduct. One has Hy = 1, H = H,
and H_is d timesthe class of a point, where d is (by definition) the degree of X.

The following result is a direct consequence of Property (1.3):

Propesition 1, Let X be a pr0jectzve manifold, of dimension n2 2 of degree d.
Assume: S

(i) The ordinary cohomology algebra H X, Qs spanned by Hand H (X Q)
(i) One has Ky =—kHwith k > 2

Gi)If n=2k-1, H "X, Qis nonzero.
GV If n=2%-2,dim H"(X, Q) # L

386 * Matemarnueckas hu3uKa, aHaNK3, reomerpuﬂ, 1995, 1. 2, Ne 3/4



- Quantum cohomology of complete inteisections

There exls;s an integer W(X ) such that the quantum cohomology algebra H (X, Q)
s the algebra generared by Hand H"(X, Q) , with the relations:

H"“'zp'(X)H"“—k, Hoa=0, a-B=@|p)H" - LX) H"™*) ®

’ﬁ)ra Pe H"X, Q.
(Recall that the pmmmve cohomoiegy H™X, Q), s by definition equal to

- H™X, Q) if n is odd, and to the orthogonal of H, if n is even.)

Let p'vbe an integer, with- =k < p< g . Accofding to (1.3), one has

H H

. 1.6
k+p- 1 =H +§Hp" (1.6)

k+p

' for‘_ so_'m‘e’ number {D € Q (which is zero for p < 0). Imersecﬁng b()th. sides with

. i '
H, _p Bives [=—(HH Hk+p 1)(502‘}1%[:[_”’,(“_?).
* From' (1 6) one obtains inductively, for < & < p <2 ,
/k‘+ P . :
Hy, =H" P (3 0yHP . » 17

i=0
If n<2k-2, wecan iapply this w_ith p=n-k+1; sincean+1:0 we thain
: - o . n+l-k
H':'“#u(X-)H”““" with u(X) 3oL (1.8)
- - . i=0 o

If n=2k-2,the 'p‘roduc’t H- H Belongs bto H "X, Q). We will see below

“ ~ that under the hypoth_esis (iv) one has for all v e H" (X Q, H-a=0, hence

: (H-H, |o)=(H ol |H, ): O’.' Th_erefore, H- H’ is proportional to Hy , wich means
3

that (1. 6) and (1.7) stlll hold for p =k - 1, yielding again (1. 8)
If n= 2k—1 one ﬁnds H- H [ H k+m for some integer m. If m is nonzero

H is mvertxble inH (X Q), since H - H™(X, Q) is zero for degree reasons, this implies
”(X Q= O Therefore under the hypothesns (iii) we obtain again (1.8). , '
Let o€ H™X, Q)O ; let us prove that H - o is zero. If n# 2k — 2 this is clear for

degree reasons. Assume ‘n=2k- 2;then H-a beiongs' toH 'G(X, Q). If o # 0, there
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exists by hypothesis (iv) an element B in H"(X, Q)c not propomonal to «; the

equality (H - o) B = (H - B) a leads indeed to H-a=0. : _
Let o, Be H™X, Q), - By (1.3) and (1.7), there exas&sanumber g € Q such that '

- B= (am)ZH"-qH" 2

Mnlnplymg by H and using (1 8) yxelds q* - (a | B) E——) , which gives the last o
relation (R).
Finally, we just have to remark that the Q-algebra spanned by Hand H (X Q)ﬁ w1th

the relations (R) has the same dimension as H (X, Q), so that all relations follow from _
®). B | U e

Rem a rks. 1) Assume moreover that lhe ‘varic'ty of lines'contained in X has the .
expected dimension n + k-3, and that H is very ample i.e. is the class of a hyperplane
section of X =PV Then according to (1. 5) d/ is the number of lines i inX meetmg

two general linear snaces of codnmensnon n- p and k+p-1 respectwely For instance,
£y 18 the uumber of lines passing through a pointin a general linear section of cod1mens10n B

1-20fX

2DIf nis equal t0 2k — 2 or 2k — 1, the result of Prop. 1 does not necessarily hold
if one assumes only (i) and (ii). Consider for instance a general linear section of

codimension 3 of the Grassmannian G(2 5) This is a Fano threefold of index k=2,
degree d = 5, which satisfies the hypotheses (1) and (ii) of the Proposmon (but not (m)) .

For such 2 threefold one has by (1. 3)H H [H + ¢, with c-d(H H )2
Emm'H*’ Hy+ 4 andH3 H +(+ H (1. 7)wededuce e

H4= (2[ +[)H2+¢—[2

Easy geometric computations give [ =3, [ = 5 ¢ =10, hence c -5 = 1#0.

Now let X be a general linear sectxon of codxmensxon 2 of G(2, 5) Th!S is a Fano
fourfold of mdex k= 3 Whlch sat:sﬁcs (1) and (ii). Let ¢ and ¢, be: the classes in

“H (X Q) of the traces of the specnal Schubert cycles in G(2 5) (see §2 below for the :
, notatzon) One has H ¢ . A simple. computat on (using (1.4)) gives H - H SC

from whxch ‘one-can construct a class aE H (X Q)o with H- o # 0.
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Quantum cohomology of complete intersections

3) Condition (iv) in its current form has been shown to me by A. Bruno. In an earlier
version I used a weaker condition (for n =2k - 2): -

(iv) the cohomology class of the subvariety of X spanned by the lines passing
through a general point is proportional to H n-

Using (1.4) one shows that this cohomology class is equal to (ll H-H ,so that (iv)’

is essentially equivalent to the result of Prop. 1 (in particular, (iv) implies (iv)" ).
2. Complete intersections

Let X be a smooth complete intersection in P"*" of degree (d,, ... , d ) and

dimension n >3, with n> 2 Z (di — 1) — 1. To prove the theorem, we can assume in

view of (1.1) that X is general; then the variety of lines (resp. conics, resp. twisted
cubics) contained in X has the expected dimension: see for instance [S], where the proof
(given for the case of twisted cubics) adapts immediately to the easier cases of lines and
conics. Let us check that the hypotheses of Prop. 1 are satisfied. Condition (i) holds by

the weak Lefschetz theorem. One has K, = - kH, withk=n+1- Z (d; - 1); there-

fore, the inequality on n ensures that (i) holds. The space H "(X, Q) is nonzero except
for odd-dimensional quadrics [6], so condition (iii) holds as well. Finally, if
H "X, Q) is of dimension 2 for n even, it is of type .’21 R %) ; by [6], this is possible
only for even-dimensional quadrics, which gives (iv).

Therefore, the quantum cohomology of X is given by Prop. 1; to achieve the proof
of the Theorem it remains to compute the number p(X ) = Z {U . Recall that d§) is the

number of lines in X meeting two general linear spaces of codimension n —p and

k + p — 1 respectively (Remark 1). This number had been computed by Libgober [7]; I
will give here a different proof.

Let V be a complex vector space, of dlmensmn N;let us denote by G = G(2,V) the

Grassmannian of lines in the projective space P (V )* On G we have a tautologu.al exact
sequence

0>85>0,®, V—)Q—)O

where the sub- and quotient bundles § and Q are of rank 2 and N — 2 respectively.
The Chern classes ¢, ..., ¢, _, of Q arerepresented by the special Schubert

cycles:

We use the naive convention, i.e. P (V) is the variety of lines in V.

MaTe'Mamuecxaﬂ hH3sKKa, aHaU3, reomerpuﬂ,’1995, 1.2, Ne3/4 | E 389



Arngud Beauville

c—cl{[eGl[ﬂ =0 },

p+1
where Hp +1 18 afixed linear subspace of P (V') of codimension p + 1. In pérticular,

the subvariety of lines in G meeting two general linear spaces of codimension p + 1 and
g + 1 has cohomology class cp €y

Letfe SV ™ bea ‘homogeneous polynomial of degree d"on P (V) It defines, by |

restriction a global section f of S S wich vanishes exactly at the points oF G where S

the corresponding line is contained in the hypersurface f=0. In other words, the
subvariety of lines contained in this hypersurface is the zero locus of

feH O(G,_ ség* ). If f is general enough, it has the expected codimension 4 + 1,
and therefore its cohomology class is the top Chern class ¢ l(SdS* ). Hence the
cohomology class of the varxety of lines contained in our complete intersection X is

cd+1(S s* ).. cdH(S r§”* )Therefore we find

djcd+1(s ST d+1(g rs” )n—l— k-2+p
G

(recallthatk=n+r+ledi).- |
We will compute this number using the Chern classes x = cl(S "), y= 2(5' ™, or

rather the virtual classes (i, B such that x = o + B, y = af. The Schubert cycles ¢, are
then given by ’ '

1+c1+...+cN‘2=(1~x+y)—1=(1—‘a)’l(i‘—ﬁ)v,‘l—_—.

| S - ﬁ) ,
a-Bll-a -Ij_'ﬁf_’ )

hence
P+1_ p+1
¢ =2 TP ﬁ—~;
|2 -,a—ﬁ
d : .
the Chern class ¢, +1(S s* ) is equal to H( ja+{d- j)ﬂ) To mtecrate we use

the tollowmg lemma:
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Quantum cohomology of complete intersections

Lemma. Let P € Cla, B] be a symmetric homogeneous polynomial of degree
2(N - 2) (so that P (o, B) is a polynomial of maximum degree in the Chern classes x

and y). ﬂwan’(a, B) is the coefficient of o1 ﬁN_ Vin - % (a-B )2P (e, B).
G

This is probably well-known; let me give a quick proof for the sake of completeness.
p+l_ap+1l o
Put ¢, = of BT for all p. The (usual!) cohomology algebra of G is the algebra

of symmetric polynomials in o, 3, modulo the ideal generated by Cy_; and ¢y [8].
Consider the linear form which associates to a symmetric polynomial P (a, B ) the

N—IBN—I

coefficient of « in —%(a—ﬁ)zP (o, B). It &{anishes on the ideal

(cN_'l, ¢y ) and on the polynomials of degree < 2N — 4, hence factors through a linear

form /: H N - 4(G, Q) = Q, necessarily proportional to J. . Letus evgluate these two
‘ G

forms on the polynomial ¢ 12\/— 5 - One has (o - B )2c 12\,_2 = (aN_ - BN_ 1)2 , hence -
‘ [(c 12v-2) = 1; on the other hand, j c %,_ » is the number of lines in P (V') through 2
G

points, that is 1. This proves the lemma.

- Let us apply the lemma to the. polynomial F(a, B )c,

1-pCk-24p> where
e—-1 X . : :
Fa,p)=Y a, a’/B°7/ is a symmetric homogeneous polynomial of degree
L J=1

e = Z (d; + 1). One has

(a;B)ch-_l_ ck_2+p:(an"ll_ﬁn-—p)(dk—l‘-f:p_ﬁk_l.,.p):

P

:an+k—1+ﬁn+k—1 __an—ka—1+p_a-k—l+an-—p.

Since N=n+r+1, the coefficient of oaV-1pgN-1 in
R . : Vs .
(@=-B) F(a, B)cn_l_pck_%p is 2a,_, .4 = 2a,,,; if moreover F (o, B ) is

divisible by (o, B ), the first coefficient is zero (recall that k > g 2 1). Applying this
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. . a d, ~% d o
[ k! 12 5 = I 1 XY -
to the polynomial F {x, B ) Cdl+i(§ t§7) .. Cdr+1(3 S7) we get {”—ar

+p?’
that is
n+l-k
D fa’*f’ﬁe 7= P——TE ﬂ(;a+(d ~j)B). @
p:() i=1 7—0

. : r .

Taking =B =1 gives p(X) = 2 [ = H d fi , which achieves the proof of the
i=1

Theorem. Note that I 1bgober s formula (2.1) gives explicit expressions for the [ s for

instance
;
w=T14:', 2.2
i=1 '
r d-j |
1 .
=1Tai 3 % @y
i=1 1<i<r
1<j <4,
and so on.

3. Application I: enumerative formulas -

Let X be a smooth projective manifold satisfying the hypotheses of Proposition 1; it
follows from ti;at Proposition that all the triple products ( & - » H_); canbe computed
in terms of the mteﬂers !; If the variety of lines, conics or tw;sted cubics in X has the
expected dimension, this gives some nice enumerative formulas which we are going to
describe.

Let p,g,7 be stmve integers <nsuchthatp+qg+r=n-+k; we arrange them
s0 that p < g <r. Since 2k > n by hypothesis this implies p < kand k<p+¢q < 2k
(hence g 2 k). Therefore,

g-k
H-H=HP #7- (me F=(nx)- Z[)Hp+q P
i=0 i=0

hence
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-k
(H,H,H)=H, HI|H)=d(pX)- Zf).
- i=0
Using the equalities =/ _, _, _, and the convention [i=0 for i >n+1-k, we
find '

Proposition 2. Assume that the variety of lines contained in X has the expected
dimension n+k—3 . Let p, q, r be positive integers such that p<q<r<n and
p+q+r=n+2k The number of lines in X meeting three general linear spaces of

n —
codimension p, q and r respectively inP"* " is d Z L.
i=0

Actually this could also be obtained by a computation in the Grassmannian as in
§ 2. This is probably also the case for the next results, though the computation would
be much more involved.

Let us look at conics. Let p, g, r be positive integers such that p + g + r=n + 2k;
as above we assume p < g < r < n. Moreover, we will assume k£ < n, which excludes
only the trivial case of quadrics [9]. This implies p < k and therefore

n-gq
2k <p+q < 3k . We have as before H - H -(Z[)Hp+q k. smcer 7~k
i=0
n—r
=H,, . k+(Z[)H _r,weobtam
j=0

(H,,H,,H)= (H ‘H |H)= d(Z/)(Zf)

L i=0 j=0

Proposition 3. Assume that X is not a quadric, and that the variety of conics
contained in X has the expected dimension n + 2k — 3. Let p, q, r be positive integers
suchthat p<q<r<nand p+q+r=n+2k The number of conics in X meeting

three general linear spaces of codimension p, q and r respectively in P"*7 is

d(Z[)(Z/).

i=0 Jj=0
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This has to be taken with a grain of salt in the case p = I, g = r = n, because every
hyperplane meets a conic twice, so the above number must be divided by 2 . SinceAHn
is d times the class of a point we find that the number of conics in X through 2 general

4(2, : N |
p0ints i 5 57 where 4, is fne number of lines through a general point in the intersection

m X with a general finear space of codimension & — 2. For complete mtersactxons formula
{2.2) gives:

Corollary. Let X be a smooz‘h complefe intersection of degree (d,, ... ,d ) in

PR within=2Z (d = 1) — 1. The number of conics in X passmg through 2 general

ie. Let X be a cubic threefold, P, O two general points in X, L, M twe

ey

. We find that there are 6 conics in X through P and Q - a fact that can

ecked geometrically (the line (P, 0) meets X along a third point R; conics
P and Q are in one-to-one correspondence with lines through R). Similarly
tion 3 we find 14 conics through P m etmg L and M.

mputation for twisted cubics is very similar. Let p, g, r be posifive mtegers

+n. Wehave
gr:ub .
H, = (HP - (2[)5*” £y \,‘?€~'{;L§>H‘f*">=
i=0 i=0
: & p—k g -k 2% _
~~(p(X>2—u<X>};f B (X) 23“(2@) DAL La ity
Jj=0 i=0 i=0 j=0 A
-k ) p+q~3k
=(u(X)- Zf)(u(fﬂ z/)( gt C 0 GVH ).
i=0 . j=0 m=0
Reasoning as above we_get:

Proposition 4. Assume that the variety of twisted cubics contained in X has the
z}wected dimension n+ 3k - 3. Let p, q, r be positive integers suchthatp < q<r<n
nd p+ q +r=n+ 3k The number of twisted cubics in X meeting three generdl linear

spaces of codimension p, q and r respectively in 2"t 7 is

(5
s
S
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Quantum cohomology of complete intersections

Zf)(Zf)(Z

i=0 j=0 m=0

In particular:

Corollary. Let X be a smooth complete intersection of degree @,..,d)in
P"*7, withn=3%X (d — 1) = 3. Then the number of twisted cubics in X passing through

" 3 general pomts zs H (d ).

VE xample. Going back to our cubic threefold we find that the number of twisted
cubics through 3 general pomts is 24; this can be checked geometrically, as' shown io
me by S. Verra. :

| 4 Application II: the primitive cohomology

. So far we have only considered the subalgebra of H * (X, Z) generated by H. In this
last section I would like to look at the remaining part. Because of the relations (R), the

only interesting triple produ_ct which ,appeér.s is { H, I,'a, B -)1 fora, e H" (X, Z)O'.
Sincer-a=(Hk¥[())-a:——[oa,u'eget' , ’ ‘ | | '
| (H,, 0, B)=(H, a|p)=-4 A @

; Let us translate this geometrxcally using (1.4). We suppose glven a smooth subvariety
Yof X, of codimension k and degree dY » such. that the variety I" of lines in X meeting A

Y is smooth, of dimension n — 2. For instance we can take for Y a general linear section
‘of codimension k in X; if k = n — 1, we can take for Ya line. The correspondence

g
R_—-) X

PV with R.:= (@, x)eTxX|xeL}
gives rise to a homomorphlsm 9o=p,q" H (X Z) > H" 2 (F 7). By definition

this is a morphlsm of Hodge structures ie. ‘P(, maps H?: Pa (X) ifto H P-Lgq-1()
for p + q n. k
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(

z’d

BeH (X, 7).

Pro ”Qf)‘hg\, . 8, Une has ({P (a) g (P (B}} -

Let us choose 2 desingularization F of the variety of lines in X; as above it has the
expected dimension n + & ~ 3, We denote ‘by U the natural family of lines above F and
by ¢: U — X the natura! map. The moduli space .;9’»{ of degree 1 maps Pl — Xhas a

naturz! smooth compactification, namely Ml =Ux, U Xp U; the map e, : .M'i - X
(0 <i<72) is obtained by composing the projection p; , , with g. The inverse image of
Y under eg is is then identified with the fibered product R x- R, in such a way that the

evaluation map ¢, : R xR — X is g o p, . (1.4) yields

P
s D\ 5 # td
({,o;,ﬁ,l—j e ae,p.

Rxr R
Since R is 2 P-bundle over I and the class q His transversa! to the fibres, the map
A Hﬂ_z( , £) OH" T, 2= H" (R, 2) given by ?\,(y,ﬁ) ==; - q H_fp._& is

an isomorphism, which satisfies p, A (y, 8) = v. Let us write
*

ga=p o) -gH+pa , g B=p ¢@) -gH+PP .
Letm=pop, =p o p, be the projection of R x R onto I'. One has

ﬂzbc:fvaa T m{a‘apgd+ﬂ:a

For degree reasons the last terms disappear in the pmducc e o e,‘ B, and we get

. . §° E :3' c B %
(Y, 0,B), = (o @ | o @) jMH*quH’
LxL

i

where L is a general line intersecting ¥. The value of the integra! is obviously I; since
the cohomology class of Yis 7;—’ H, , the result follows from (4.1) .
E x ample. Letus go back to our favorite example, the cubic threefold, taking for

Yagenericiine in X. ThenT is 2 smooth curve; the map ¢ : H (X,Z2) — Hl(F,Z) gives
rise to @ morphism @ : JX — JT, where JI is the Jacobian of I and JX the intermediate
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Jocobian of x (see e.g. uo]) the formula (0 (@) | @ (B) = ~2(a|B) for a,

C BeH: 3 (X, Z) given by Proposition 5 means that the principal Dalflm’a«?ﬁﬁ of I
“induces twice the principal polarization of JX . One deduces easily from this that c*?w
, mrennedmzp Jacobion JX is zsamomhaf {as a mmvma‘ly polarized Ahﬁugm )

 the Prym variety associated to ¥ and the natural mvalz,i;wn of T which maps a I

‘to the third line cut down on X by the 2-plane spanned by Yand L ~ a fundamental fact
for the geometry of the cubic threefold, due o Mumford (see Appendix C of [10]).
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KnanToBpie KOPOMONOTUY MOMHBIX Nepecedenuii

A, BoBuaab

Anre0pa KBAHTOBLIX KOTOMOACIHI IIDOEKTUBHOrQ MHOroo0pasus X —

3TO HPOCTPAHCTRO KOrOMOACTHit H “(X, Q), cHaeHHOe HeCTaHAADTHOH
CTPYKTYDO#% aArefpel, KOTODas COAEXMT HUMDODMAIKIC O reOMeTpuy
palMOHarsHEIX KPUBLIX HA X, TT0Ka3aso, ¥To 3Ta aarefpa NDMHEMAeT
3aMEYATEARHO NIDOCTOH BYA B CAyvae, X0raa X — IOAHOE nepecevesne
¥ PazMepHoCTs X AOCTATOYHO BeAUKA IO CPABHEHHMIO €0 cTenentio X. B
KaueCTBe CAeACTBHS ITOAVYEH DSA (DOPMYA HCYMCAMTEABHOR FeOMETDHH,
CBA3BIBAIOIIYX NDSMEIE, KOHUKM M CKDVYEHHEIE KYOUKHY Ha X.
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KBaHTOBi KOroMoJiorii NOBHUX Nepepisis
"A. BoBiaab
“Aare0pa KBaHTOBHX KOrOMOAOTIH IIPOEKTHBHOIO MHOTOBHAY X — 1ie
npocTip Koromoaorii H *(X, Q) 3 HemanAapmtﬁo CTPYKTYPOIO arreGpu,
* AXa MICTUTh iH(OPMALI0 PO reOMeTpil0 pallicCHAABHMX KpHBHX Ha X.
Tloka3aHo, 10 [d aareOpa HaOyBa€ Ay)Xe HPOCTHH BHFASA, SKIO X —
~ MOBHUH Iepepi3 i BUMIPHICTh X AOCTATHBO BEAHKA MOPIBHAHO 3i CTyme-

HeM X, SIK BUCHOBOK OA€PKaHO psip, (POpMyA 0GYHCAIOBAABHOI reOMeTpii,
ki 3B'43y10TH IIpSIMl KOHiKY Ta CKpyyeHi Ky6Giku Ha X.
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