M2 Agrégation - UE 8.

TD: Calcul de valeurs propres.

Liste non exhaustive des points à connaître :

- Valeurs propres des matrices, rayon spectral et propriétés, localisation des valeurs propres.
- Méthode de la puissance, de la puissance inverse.
- Méthode QR pour la recherche de valeurs propres.
- Méthode de Jacobi.

I. Méthode de la puissance

On se donne une norme euclidienne $\|\cdot\|$ sur \mathbb{K}^n , $n\in\mathbb{N}^*$. Soit A une matrice carrée d'ordre $n\in\mathbb{N}^*$ On considère l'algorithme suivant

$$\mathcal{P}_1$$

- Initialisation : On choisit un vecteur initial q_0 tel que $\|q_0\|=1$.
 Itération : On définit pour $k\geq 1$:
 la suite $x_k=Aq_{k-1}$ $q_k=\frac{x_k}{\|x_k\|}$.

$$- q_k = \frac{x_k}{\|x_k\|}$$

Théorème I.1. [LT2] Soit A une matrice carrée d'ordre $n \in \mathbb{N}^*$ non nulle, et λ_1 sa valeur propre de plus grand module de multiplicité $p \ge 1$. On suppose qu'il n'y a pas de valeur propre λ de A telle que $\lambda \neq \lambda_1$ et $|\lambda| = |\lambda_1|$. On note ses valeurs propres $\lambda_1, \lambda_2, \dots, \lambda_n$ ordonnées de telle sorte que

$$|\lambda_1| = |\lambda_2| = \dots = |\lambda_p| > |\lambda_{p+1}| \ge \dots \ge |\lambda_n|.$$

On suppose de plus que A est diagonalisable. Si on considère la suite définie par l'algorithme \mathcal{P}_1 avec $q_0 \notin Ker(A^* - \bar{\lambda}_1 Id)^{\perp}$, alors on a:

- $-\left(\frac{\bar{\lambda}_1}{|\lambda_1|}\right)^k q_k \text{ admet une limite lorsque } k \to +\infty \text{ qui est un vecteur propre de norme unité associé}$ $\stackrel{.}{a} \lambda_1.$ $-\|Aq_k\| \text{ tend vers } |\lambda_1| \text{ lorsque } k \to +\infty.$ $-\frac{x_{k+1}(j)}{q_k(j)} \text{ tend vers } \lambda_1 \text{ lorsque } k \to +\infty, \text{ pour } 1 \leq j \leq n, \text{ si } q_k(j) \neq 0, \text{ où } y(j) \text{ est la } j\text{-ième}$ -composante de y.

De plus, le facteur de convergence de chacune de ces suites est $\left|\frac{\lambda_{p+1}}{\lambda_1}\right|$, où p est la multiplicité de la valeur propre λ_1 .

Démonstration. cf. exercices.

Ce théorème s'étend au cas où la matrice n'est pas diagonalisable (cf. [LT2] et exercices).

Grâce à cette méthode, on ne calcule a priori qu'une seule valeur propre de A, la plus grande en

On peut aussi utiliser une variation de l'algorithme reposant sur l'utilisation de la norme infinie et une renormalisation à chaque étape légèrement différente. L'algorithme devient :

- Initialisation : On choisit un vecteur initial q_0 tel que $\|q_0\|_{\infty}=1$. Itération : Pour $k\geq 1$, on définit la suite $x_k=Aq_{k-1}$, $q_k=\frac{x_k}{\alpha_k}$, où α_k est choisi tel qu'il existe $j_k\in\{1,\cdot,n\}$ tel que $q_k(j_k)=\|q_k\|_{\infty}=1$.

Dans ce cas, on a le

Théorème I.2. [LT2, Fi] Soit A une matrice carrée d'ordre $n \in \mathbb{N}^*$ non nulle, et λ_1 sa valeur propre de plus grand module de multiplicité $p \geq 1$. On suppose qu'il n'y a pas de valeur propre λ de A telle que $\lambda \neq \lambda_1$ et $|\lambda| = |\lambda_1|$. On note ses valeurs propres $\lambda_1, \lambda_2, \dots, \lambda_n$ ordonnées de telle sorte que

$$|\lambda_1| = |\lambda_2| = \dots = |\lambda_p| > |\lambda_{p+1}| \ge \dots \ge |\lambda_n|.$$

On suppose de plus que A est diagonalisable. On considère la suite définie par l'algorithme \mathcal{P}_2 avec $q_0 \notin Ker(A^* - \overline{\lambda}_1 Id)^{\perp}$. Alors on a:

- q_k admet une limite lorsque $k \to +\infty$ qui est un vecteur propre de norme unité associé à λ_1 .
- $(Aq_k)(j_{k+1})$ tend vers λ_1 lorsque $k \to +\infty$.

II. La méthode de la puissance inverse

En appliquant la méthode de la puissance à la matrice A^{-1} , on peut approcher la valeur propre de plus petit module et un vecteur propre associé.

En appliquant la méthode de la puissance à $(A - \mu Id)^{-1}$, on peut obtenir une valeur approchée de la valeur propre la plus proche de μ et un vecteur propre associé.

II.1. Recherche de la valeur propre de plus petit module

On considère l'algorithme :

 \mathcal{P}_3

- Initialisation : On choisit un vecteur initial q_0 tel que $||q_0||_{\infty} = 1$.
- Itération : pour $k \ge 1$,
 - on définit la suite (x_k) comme la solution du système $Ax_k = q_{k-1}$,
 - $-\alpha_k = x_k(j_k) \text{ avec } j_k \in \{1, \cdots, n\} \text{ tel que } |x_k(j_k)| = ||x_k||_{\infty} \text{ et } q_k = \frac{x_k}{2}$

Théorème II.1. Si A est une matrice diagonalisable de valeur propre unique (au sens du théorème I.1) de plus petit module λ_n et si $q_0 \notin Ker(A^* - \lambda_n Id)^{\perp}$, alors q_k a pour limite un vecteur propre de l'espace propre associé à λ_n et

$$\lim_{k \to +\infty} \alpha_k = \frac{1}{\lambda_n}.$$

II.2. RECHERCHE DE LA VALEUR PROPRE LA PLUS PROCHE D'UN NOMBRE DONNÉ

On se donne un nombre μ . On considère la matrice $(A - \mu Id)$ et on applique l'algorithme de la puissance inverse à $(A - \mu Id)$.

On considère l'algorithme :

$$\mathcal{P}_{A}$$

- Initialisation : On choisit un vecteur initial q_0 tel que $||q_0||_{\infty} = 1$. Itération : pour $k \ge 1$, On définit la suite (x_k) comme la solution du système $(A-\mu Id)x_k = q_{k-1}$ $\alpha_k = x_k(j_k)$ avec $j_k \in \{1, \dots, n\}$ tel que $|x_k(j_k)| = ||x_k||_{\infty}$ et $q_k = \frac{x_k}{\alpha_k}$.

Théorème II.2. Soit A est une matrice diagonalisable. Si λ est la valeur propre de A la plus proche $de \mu avec$:

$$|\lambda - \mu| < |\lambda_i - \mu|, \quad pour \ tout \ \lambda_i \in Sp(A) \setminus \{\lambda\}$$
 (1)

et si $q_0 \notin Ker(A^* - \bar{\lambda}Id)^{\perp}$, alors q_k a pour limite un vecteur propre de l'espace propre associé à λ et

$$\lim_{k \to +\infty} \alpha_k = \frac{1}{\lambda - \mu}.$$

III. La méthode de Jacobi

Cette méthode permet de calculer toutes les valeurs propres d'une matrice symétrique réelle d'ordre n donnée. On cherche à diagonaliser A par une suite de transformations semblables orthogonales. On construit une suite de matrices $(A^{(k)})$ avec $A^{(0)} = A$ et on passe de $A^{(k)}$ à $A^{(k+1)}$ par une transformation telle que $A^{(k+1)} = (Q^{(k)})^T A^{(k)} \dot{Q}^{(k)}$ où $Q^{(k)}$ est une matrice orthogonale choisie pour annuler un élément hors diagonale $(A^{(k)})_{p,q}$ (et par symétrie on annule aussi $(A^{(k)})_{q,p}$). En général on choisit celui de plus grand module. Soient p,q deux entiers distincts et θ un réel donnés. On définit la matrice orthogonale

On considère l'algorithme suivant :

 \mathcal{J}

- Initialisation : $A^{(0)} = A$,
- Itération : $k \ge 0$.
 - Trouver $(p_0, q_0) \in \{1, \dots, n\}^2$ telle que $p_0 \neq q_0$ et

$$|a_{p_0,q_0}^{(k)}| = \max\{|a_{p,q}^{(k)}|, (p,q) \in \{1,\cdots,n\}^2, p \neq q\},\$$

— Construire la matrice orthogonale $O_{p_0,q_0}^{(k)}$ de la rotation d'angle $\theta_k \in]-\frac{\pi}{4},0[\cup]0,\frac{\pi}{4}[$, tel que :

$$\cot(2\theta_k) = \frac{a_{q_0,q_0}^{(k)} - a_{p_0,p_0}^{(k)}}{2a_{p_0,q_0}^{(k)}},$$

- Construire $A^{(k+1)} = O_{p_0,q_0}^{(k)T} A^{(k)} O_{p_0,q_0}^{(k)}$

Théorème III.1. Soit $A \in \mathcal{M}_n(\mathbb{R})$, une matrice symétrique et $(A^{(k)})_{k \in \mathbb{N}}$ la suite de matrice définie par \mathcal{J} . Alors la suite $(A^{(k)})_{k\in\mathbb{N}}$ converge vers une matrice diagonale D ne contenant que les valeurs propres de A. De plus, les vecteurs colonnes du produit des matrices O_{pq} construites à chaque itération convergent vers les vecteurs propres associés.

Démonstration. cf. [LT2], [Ci] ou [Fi] et exercices.

IV. La méthode QR.

Une autre façon d'obtenir toutes les valeurs propres est d'exploiter la décomposition QR. Voici le principe de la méthode QR. On considère l'algorithme :

QR

- Initialisation : $A^{(0)} = A$, Itération : $k \ge 0$. Calculer $R^{(k)}$ et $Q^{(k)}$ tels que $A^{(k)} = Q^{(k)}R^{(k)}$ (i.e. on effectue la décomposition QR de $A^{(k)}$),
 - Construire $A^{(k+1)} = R^{(k)}Q^{(k)}$,

La matrice $A^{(k)}$ ainsi construite a les mêmes valeurs propres que la matrice A de départ. Voici le théorème de convergence :

Théorème IV.1. Soit A une matrice d'ordre n inversible et dont les valeurs propres sont toutes de modules différents, tels que $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n| > 0$. Alors la suite des termes diagonaux des matrices $(A^{(k)})$ construite par QR converge vers les valeurs propres de A, $\lim_{k\to +\infty} (A^{(k)})_{i,i} = \lambda_i, 1 \leq i \leq n$ et si de plus A est symétrique, alors la suite $(A^{(k)})$ converge vers une matrice diagonale.

V. Exercices

Ex 1. Démonstration du théorème I.1 [LT2]

- 1) Dans le cas où la valeur propre λ_1 est simple, remarquer que $q_k = \frac{A^k q_0}{\|A^k q_0\|}$, et exprimer q_k dans une base de vecteurs propres. En déduire le résultat énoncé et que le facteur de convergence est de $\left|\frac{\lambda_2}{\lambda_1}\right|$.
 - 2) Montrer que le résultat analogue lorsque λ_1 est une valeur propre de multiplicité p.

Ex 2. Puissance inverse [LT2]

Démontrer les théorèmes II.1 et II.2.

Ex 3. Extension de la méthode de la puissance au cas où la matrice n'est pas diagonalisable [LT2].

- 1) Élever un bloc de Jordan de taille r à la puissance k et déterminer le terme prépondérant.
- 2) Dans le cas où λ_1 est valeur propre simple, montrer que si le bloc de Jordan de la valeur propre λ_2 est de taille r, le facteur de convergence est équivalent à $\frac{k^{r-1}}{(r-1)!} \frac{\lambda_2^{k-r+1}}{\lambda_1^k}$.

Ex 4. Démonstration de la méthode de Jacobi [LT2], [Ci], [Fi]

- 1) Si une matrice \hat{A} est symétrique, montrer que la matrice $B = O_{pq}^T \hat{A} O_{pq}$ est symétrique et vérifie $\sum_{i,j} b_{ij}^2 = \sum_{i,j} \hat{a}_{ij}^2.$
- 2) Si $\hat{a}_{pq} \neq 0$, montrer qu'il existe une unique valeur de $\theta \in]-\frac{\pi}{4},0[\cup]0,\frac{\pi}{4}]$ telle que $b_{pq}=0$ et que c'est la solution de l'équation $\cot a(2\theta)=\frac{\hat{a}_{qq}-\hat{a}_{pp}}{2\hat{a}_{p,q}}$. On a alors que $\sum_{i=1}^n b_{ii}^2=\sum_{i=1}^n \hat{a}_{ii}^2+2\hat{a}_{pq}^2$.

Remarque V.1. Il y a plusieurs manières de choisir le couple (p,q). La plus classique est de prendre $|(A^{(k)})_{p,q}| = \max_{i \neq j} |(A^{(k)})_{i,j}|$.

On revient aux notations du théorème III.1 et on note $A^{(k)} = D^{(k)} + E^{(k)}$, où $D^{(k)}$ est la diagonale de $A^{(k)}$ et on note $||A||_S = \sum_{i,j} |a_{i,j}|^2$. On se place dans le cas de la remarque V.1.

3) Montrer que $||E^{(k+1)}||_S^2 = ||E^{(k)}||_S^2 - 2|(A^{(k)})_{p,q}|^2$; en déduire que $||E^{(k)}||_S^2 \le \rho^{2k} ||E^{(0)}||_S^2$, où $\rho^2 = 1 - \frac{2}{n(n-1)}$, puis que $\lim_{k \to +\infty} ||E^{(k)}||_S = 0$.

- 4) Montrer que $b_{q,q} \hat{a}_{q,q} = \tan(\theta)\hat{a}_{p,q}$ et $b_{p,p} \hat{a}_{p,p} = -\tan(\theta)\hat{a}_{p,q}$.
- 5) En déduire que $(D^{(k)})$ converge vers une matrice D telle que Sp(D) = Sp(A).

Ex 5. Tests d'arrêt

Proposer des tests d'arrêt pour tous les algorithmes présentés.

Références:

- [Ci] P. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation, Dunod.
- [Fi] F. FILBET, Analyse numérique, Dunod.
- [LT1] P. LASCAUX, R. THÉODOR, Analyse numérique matricielle appliquée à l'art de l'ingénieur, tome 1, Dunod.
- [LT2] P. LASCAUX, R. THÉODOR, Analyse numérique matricielle appliquée à l'art de l'ingénieur, tome 2, Dunod.
 - [S] M. SCHATZMAN, Analyse Numérique, Dunod.