
Master 2 Pure and Applied Mathematics Université de Nice 2018-2019
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Introduction

This course will be an introduction to spectral methods in linear partial differential equations. Many
of the partial differential equations coming from physics have a similar form. Consider for instance the
heat equation

∂tu = ∆u, (1)

the wave equation
∂2
t u = ∆u, (2)

or the Schrödinger equation
i∂tu = (−∆ + V )u, (3)

where V ∈ C∞(Rn;R).
In these equations, the left-hand side is rather simple, involving one or two derivatives in time of u,

while the right-hand side involves a differential operator applied to u. A good way of finding solutions
to equations having such a structure is to use separation of variables, namely, to look for solutions of the
form

u(t, x) = v(t)w(x). (4)

For example, if one looks for a solution of (1) of the form (4), then an easy computation shows that there
must exist λ ∈ R such that we have

v′ = λv (5)

∆w = λw, (6)

so that u(t, x) = eλtw(x).
Solving equation (5) is easy for any λ, but solving equation (6) is not always trivial: the lambdas for

which solutions exist will depend on the space of functions with which we are working. For instance, if
we work in Rn, we may want to restrict ourselves to functions that are L2, or if we work in a domain Ω,
we may want to consider only functions that vanish at the boundary of Ω...

At first glance, the separation of variables may look like a naive method, giving only very special
solutions of equations like (1), (2) or (3). This is not the case: we will show that, working in well-chosen
functional spaces, any initial condition may be ”decomposed” as a linear combination of eigenfunctions.
For instance, in Rd, any function can be decomposed into plane waves, which are eigenfunctions of the
Laplacian: this is the point of Fourier transform, which we now recall.

Review of Fourier transform

The Schwartz space and its dual

If α ∈ Nn is a multi-index, with |α| := α1 + α2 + ...+ αn and if x ∈ Rn, we write xα := xα1
1 xα2

2 ...xαnn . If
u ∈ C |α|(Rn), we also write

∂αu(x) =
∂|α|u(x)

∂xα1
1 ...∂xαnn

Definition 0.1. The Schwartz space is

S(Rn) := {u ∈ C∞(Rn); sup
x∈Rn

|xα∂βu(x)| <∞ for all α, β ∈ Nn}.
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For any α, β ∈ Nn, we define the seminorm | · |α,β on S by

|u|α,β = sup
x∈Rn

|xα∂βu(x)|.

Definition 0.2. Let uj , u ∈ S. We say that uj → u in S if

|uj − u|α,β → 0 for all α, β ∈ Nn.

Definition 0.3. The space of tempered distributions S ′(Rd) is the topological dual of S. In other
words, T ∈ S ′ if T : S → C is linear, and uj → u in S implies that T (uj)→ T (u).

Definition and properties of the Fourier Transform

If u ∈ S(Rn), we define its Fourier transform Fu : Rn → C by

(Fu)(ξ) :=
1

(2π)n/2

∫
Rn
e−ix·ξu(x)dx

and its inverse Fourier transform F−1u : Rn → C by

(F−1u)(ξ) :=
1

(2π)n/2

∫
Rn
eix·ξu(x)dx.

Theorem 0.1 (Plancherel’s formula). Let u ∈ S(Rn). Then Fu and F−1u belong to L2(Rn),
and we have

‖u‖L2(Rn) = ‖Fu‖L2(Rn) = ‖F−1u‖L2(Rn). (7)

Thanks to Plancherel’s formula, F and F−1 can be uniquely defined as unitary operators from L2(Rn)
to L2(Rn). By duality, the Fourier transform can also be extended to S ′(Rd).

The Fourier transform has the following properties:

Theorem 0.2. Let u, v ∈ S(Rn). We have

1. ∫
Rn
u(x)v(x)dx =

∫
Rn

(Fu)(ξ)(Fv)(ξ)dξ.

2.
F−1(Fu) = u.

3. For any multi-index α ∈ Nn, we have

F(∂αu) = (iξ)αF(u)

4. If u, v ∈ S(Rn), we have
F(u ∗ v) = (2π)n/2(Fu)(Fv).

5. Let θ > 0 and fθ(x) := e−|x|
2/(2θ). We then have for all ξ ∈ Rn

(Ffθ)(ξ) = θn/2e−θ
|ξ|2

2 .

How to use these lecture notes

The sections of these lecture notes are divided in three categories:
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• The essential ones are indicated by a ♥. You should master them all perfectly, and, if you don’t
understand something about them, send me an e-mail at maxime.ingremeau@unice.fr.

• The complementary ones are indicated by ♣. They are important, and you should know them for
the exam, but you can skip them at first reading, because they are not essential for the rest of the
course.

• The hardest ones are indicated by ♠, and you don’t need to know them perfectly for the exam.
However, you should read them at some point, because they contain interesting results and per-
spectives, and because they contain enlightning applications of the results of the other sections.

References

These lecture notes were largely inspired by the lecture notes of Konstantin Pankrashkin [4], but I also
borrowed from many other sources. Will you be able to find them all ?
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Chapter 1

Spectral theory for elliptic equations
in bounded domains

1.1 Sobolev spaces (♥)

Some good introductory references on Sobolev spaces are [1] and [3] (and many others). For Sobolev
spaces in Lipschitz domains, there are fewer references (one can see, for instance, [2]).

Definition of Sobolev spaces

Let Ω be an open subset of Rn. For any k ∈ N, we define the spaces Hk(Ω) as follows:

Hk(Ω) := {f ∈ L2(Ω) such that ∀α ∈ Nn, |α| ≤ k, we have ∂αf ∈ L2(Ω)}.

In this definition, the derivatives are taken in the sense of distributions. For instance, f ∈ H1(Ω) if and
only if there exists g1, ..., gn ∈ L2(Ω) such that for any ϕ ∈ C∞c (Ω), we have∫

Ω

f∂iϕ = −
∫

Ω

giϕ ∀i = 1, ..., n.

The spaces Hk(Ω) can be equipped with the scalar product

〈f, g〉Hk(Ω) :=

∫
Ω

fg +
∑

1≤|α|≤k

∫
Ω

∂αf∂αg.

Equipped with this scalar product, Hk(Ω) is a separable Hilbert space. The associated norm is

‖f‖Hk(Ω) := ‖f‖L2(Ω) +
∑

α;1≤|α|≤k

‖∂αf‖L2(Ω).

Sobolev embeddings when Ω = Rn

Theorem 1.1 (Sobolev embeddings in Rn). Let n ≥ 2, k ∈ N.

• If 2k < n, then Hk(Rn) ⊂ Lp(Rn) with a continuous embedding, for any p ∈
[
2; 2n

n−2k

]
.

• If 2k = n, then Hk(Rn) ⊂ Lp(Rn) with a continuous embedding for any p ∈ [2,∞).

• If 2k > d, then Hk(Rd) ⊂ C`b(Rd), with a continuous embedding, where ` is the only integer
such that 0 ≤ ` < k − n

2 < `+ 1.

Here, C`b(Rd) is the set of functions in C`(Rd) which are bounded, as well as all its derivatives of
order ≤ `.
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Regularity of Ω Let j ∈ N. We say that a function f is Cj,1 if it is differentiable j times, and its j-th
derivatives are Lipschitz continuous.

Definition 1.1. Let n ≥ 2, and j ∈ N. An open set Ω ⊂ Rn is said to be a Cj,1 domain if, for
any x0 ∈ ∂Ω, we may find a hyperplane H ⊂ Rn with normal ~n, numbers h, r > 0 and a function
f : H → R which is Cj,1 such that, if we set

C = {x+ y~n ∈ Rn;x ∈ H, |x− x0| ≤ r,−h < y < h},

we have
Ω ∩ C = {x+ y~n ∈ Rn;x ∈ H, |x− x0| < r, − h < y < g(x)}

(∂Ω) ∩ C = {x+ y~n ∈ Rn;x ∈ H, |x− x0| < r, y = g(x)}

A C0,1 domain will be called a Lipschitz domain.

Most of the domains we will consider will be smooth (that is to say, ∂Ω will be a smooth submanifold
of Rn). However, we also want to consider Lipschitz domains so as to treat the case of polygons, which
appear naturally in numerical simulations, and in some theoretical questions.

Extending functions

Theorem 1.2. Let n ≥ 2, k ∈ N, and let Ω ⊂ Rn be a Lipschitz domain. Then there exists a
bounded operator T : Hk(Ω)→ Hk(Rn) such that, for any f ∈ Hk(Ω), we have

Tf|Ω ≡ f.

Traces on the boundary If Ω ⊂ Rd is a Lipschitz domain, then its boundary ∂Ω can be naturally
endowed with a measure.

Theorem 1.3. Let n ≥ 2, and let Ω ⊂ Rn be a Lipschitz domain. There exists a unique
continuous operator γ : H1(Ω)→ L2(∂Ω) such that, if f ∈ H1(Ω) ∩ C(Ω), we have γf = f|∂Ω.

More generally, if Ω ⊂ Rn is a Ck,1 domain, there exists a unique continuous operator γ(k) =

(γ
(k)
0 , ..., γ

(k)
k−1) : Hk(Ω)→

(
L2(∂Ω)

)k
such that, if f ∈ Hk(Ω) ∩ Ck−1(Ω), we have

γ(k)f = (f|∂Ω, ∂nf|∂Ω, ..., ∂
k−1
n f|∂Ω),

where ∂n = n · ∇ denotes the derivative in the direction of the outgoing normal to ∂Ω.

Theorem 1.4 (Green’s identities). Let Ω ⊂ Rd be a Lipschitz domain u ∈ H2(Ω), v ∈ H1(Ω).
We have

〈∆u, v〉L2(Ω) = −〈∇u,∇v〉L2(Ω) + 〈γ(2)
1 u, γ

(1)
0 v〉L2(Ω).

If furthermore, v ∈ H2(Ω), we have

〈∆u, v〉L2(Ω) − 〈∆v, u〉L2(Ω) = 〈γ(2)
1 u, γ

(1)
0 v〉L2(Ω) − 〈γ

(2)
1 v, γ

(1)
0 u〉L2(Ω).

We denote by C∞c (Ω) the set of smooth functions in Ω whose support is strictly included in Ω.

Definition 1.2. The space Hk
0 (Ω) is the closure of C∞c (Ω) for the Hk(Ω) norm.

From Theorem 1.3, we deduce the following proposition.

Proposition 1.1. Let Ω ⊂ Rn be a Ck,1 domain. Then Hk
0 (Ω) = Ker γ(k).

In particular, if Ω is a Lipschitz domain, and if f ∈ C(Ω)∩H1(Ω). Then f ∈ H1
0 (Ω) if and only

if f vanishes on ∂Ω.
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Sobolev embeddings in compact domains Recall that a linear operator T between two Banach
spaces E and F is compact if the image of any bounded set of E by T is a compact set of F for the
strong topology.

Theorem 1.5 (Sobolev embeddings in Rn). Let n ≥ 2, k ∈ N, and let Ω ⊂ Rd be a bounded
Lipschitz domain.

• If 2k < n, then Hk(Ω) ⊂ Lp(Ω) with a continuous embedding, for any p ∈
[
1; 2n

n−2k

]
. This

embedding is compact if p ∈
[
1; 2n

n−2k

)
.

• If 2k = n, then Hk(Ω) ⊂ Lp(Ω) with a compact embedding for any p ∈ [1,∞).

• If 2k > d, then Hk(Ω) ⊂ C`(Ω), with a compact embedding, where ` is the only integer such
that 0 ≤ ` < k − n

2 < `+ 1.

Note that the embedding of H1(Ω) in L2(Ω) is always compact. In particular, if (un) converges
weakly to u in H1(Ω), then (un) converges strongly to u in L2(Ω).

Proposition 1.2 (Poincaré’s inequality). Let Ω ⊂ Rn be an open set bounded in one direction.
Then there exists C > 0 such that for any f ∈ H1

0 (Ω), we have∫
Ω

|f |2 ≤ C
∫

Ω

|∇f |2.

This proposition implies that, on H1
0 (Ω), the norm ‖f‖H1(Ω) and the norm ‖f‖H1

0 (Ω) := ‖∇f‖L2(Ω)

are equivalent.

1.2 Elliptic equations (♥)
Let Ω be a bounded Lipschitz domain, and let V ∈ C(Ω). Consider the Dirichlet problem{

−∆u+ V u = f in Ω
u = 0 on ∂Ω.

(1.1)

A classical (or strong) solution of (1.1) is a function u ∈ C2(Ω) satisfying the first PDE pointwise,
and the Dirichlet condition on the boundary. This implies that f ∈ C(Ω). However, we will want to
consider (1.1) for less regular f , typically for f ∈ L2(Ω). To do so, we need to consider weak solutions
of (1.1).

Definition 1.3. Let Ω be a Lipschitz domain, let V ∈ C(Ω), and let f ∈ L2(Ω). A weak solution
of (1.1) is a function u ∈ H1

0 (Ω) which satisfies∫
Ω

∇u · ∇ϕ+

∫
Ω

V uϕ =

∫
Ω

fϕ, ∀ϕ ∈ H1
0 (Ω).

Note that, if u is a strong solution of (1.1), then it is also a weak solution of (1.1). Furthermore, if
u ∈ C2(Ω) is a weak solution of (1.1), then u is a strong solution of (1.1).

Remark 1.1. The notion of weak solution of (1.1) still makes sense when V ∈ L∞(Ω), and when f is
in the topological dual of H1

0 .

We will also consider the Neumann problem{
−∆u+ V u = f in Ω
∂nu = 0 on ∂Ω.

(1.2)
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Definition 1.4. Let Ω be a Lipschitz domain, let V ∈ C(Ω), and let f ∈ L2(Ω). A weak solution
of (1.2) is a function u ∈ H1(Ω) which satisfies∫

Ω

∇u · ∇ϕ+

∫
Ω

V uϕ =

∫
Ω

fϕ, ∀ϕ ∈ H1(Ω).

Proposition 1.3. Let Ω be a Lipschitz domain, let V ∈ C(Ω), V ≥ 0, and let f ∈ L2(Ω).

1. The problem (1.1) admits a unique weak solution.

2. Suppose furthermore that there exists c > 0 such that V ≥ c. Then the problem (1.2) admits
a unique weak solution.

Proof. 1. Consider the symmetric bilinear map

B(u, v) =

∫
Ω

∇u · ∇ϕ+

∫
Ω

V uϕ.

We have

B(u, u) ≤
∫

Ω

|∇u|2 + ‖V ‖L∞
∫

Ω

|u|2 ≤ C‖u‖2H1(Ω) ≤ C
′‖u‖2H1

0 (Ω)

for some C,C ′ > 0, by Poincaré’s inequality . On the other hand, we have

B(u, u) ≥
∫

Ω

|∇u|2 = ‖u‖H1
0 (Ω).

Therefore, B defines a scalar product on H1
0 which is equivalent to the usual one. Now, u 7→

∫
Ω
fu

defines a continuous linear map on H1
0 (Ω), by Poincaré’s inequality. By Riesz representation theorem,

there exists a unique v ∈ H1
0 (Ω) such that for all u ∈ H1

0 (Ω), we have B(u, v) =
∫

Ω
uf . The result follows

for the Dirichlet problem.
2. The proof is similar for the Neumann problem, by considering the same bilinear map, but acting

on H1(Ω). The assumption that V ≥ c > 0 is used to say that

B(u, u) ≥
∫

Ω

|∇u|2 + c

∫
Ω

|u|2 ≥ c′‖u‖2H1(Ω).

Note that the second part of the proposition is false when V ≡ 0. For instance, when f ≡ 0, any
constant function is a solution to the Neumann problem, so we do not have uniqueness.

Elliptic regularity

Theorem 1.6 (Interior elliptic regularity). Let Ω ⊂ Rn be a Lipschitz domain, and let ω b Ω.
Let V ∈ L∞(Ω). There exists C > 0 such that, if f ∈ L2(Ω) and if u is a weak solution of (1.1)
or of (1.2), then u ∈ H2(ω), and we have

‖u‖H2(ω) ≤ C
(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
. (1.3)

Furthermore, if f, V ∈ C∞(Ω), then u ∈ C∞(Ω).

Before proving the theorem, let us recall the Niremberg translation method. If g is a function on Rn
and if h ∈ Rn, we write

(τhg)(x) := g(x+ h)

Dhg :=
τhg − g
|h|

.

Note that we have
Dh(g1g2) = (Dhg1)τhg2 + g1Dhg2.
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Let ω is an open set of Rd. If f, g ∈ L2(ω), and if fg ≡ 0 in a neighbourhood of size h of ∂ω, we have∫
ω

fDhg =
1

|h|

∫
ω

fτhg −
1

|h|

∫
ω

fg

=
1

|h|

∫
ω+h

gτ−hf −
1

|h|

∫
ω

fg

=

∫
ω

gD−hf

(1.4)

Lemma 1.1. Let Ω ⊂ Rn, ω b Ω be open sets. Suppose that g ∈ Lp(Ω), and that there exists a
constant C > 0 such that for all h ∈ Rn with |h| small enough, we have

‖Dhg‖L2(ω) ≤ C.

Then we have g ∈ H1(ω), and ‖∇g‖ω ≤ Cn.

Proof of the lemma. We want to bound the quantity ‖∇g‖L2(ω) = supϕ∈C∞c (ω)

∫
u∇ϕ.

By the assumption and Hölder’s inequality, we have
∫
ω

(Dhu)ϕ ≤ C‖ϕ‖L2(ω).
Now, let ϕ ∈ C∞c (ω). We extend it by zero in Ω. For h small enough, we have

C‖ϕ‖L2(ω) ≥
∫

Ω

(Dhu)ϕ

=

∫
Ω

u(D−hϕ).

Taking h = tej , where ej is the j-th vector in the canonical basis of Rn, and let t→ 0. We obtain that∫
u∂jϕ ≤ C‖ϕ‖L2(ω). The result follows.

Lemma 1.2. There exists C > 0 such that for all ϕ ∈ H1(Ω), we have

‖Dhϕ‖L2 ≤ C‖∇ϕ‖L2 .

Proof. The proof is left as an exercise.

Proof of the theorem. First of all, let us consider the case when V ≡ 0.
Let χ ∈ C∞c (Ω), with χ ≥ 0 and χ ≡ 1 on ω. Using (1.4), we have for |h| small enough∫

Ω

fD−h
(
χ2Dhu

)
=

∫
Ω

(
−∆u

)
D−h

(
χ2Dhu

)
=

∑
1≤j≤n

∫
Ω

(
∂ju
)
∂jD−h

(
χ2Dhu

)
=

∑
1≤j≤n

∫
Ω

[
χ2
∣∣∂jDhu

∣∣2 + 2χ∂jχ
(
Dhu

)(
Dh∂ju

)]
.

Using the inequality ab ≤ εa2 + b2

4ε , valid for any a, b ∈ R, ε > 0, we deduce that∫
Ω

∣∣∣2χ∂jχ(Dhu
)(
Dh∂ju

)∣∣∣ ≤ ε∫
Ω

χ2
∣∣∂jDhu

∣∣2 +
1

ε

∫
Ω

|∂jχ|2
∣∣Dhu

∣∣2
≤ ε

∫
Ω

χ2
∣∣∂jDhu

∣∣2 +
C

ε

∫
Ω

Dhu
∣∣2.

Therefore, we deduce that there exists C > 0 such that∫
Ω

χ2|Dh∇u|2 ≤ C
∫

Ω

|Dhu|2 + C

∫
Ω

|fD−h
(
χ2Dhu

)
|
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Using Lemma 1.2 several times and noting that ‖∇u‖L2(Ω) = ‖f‖L2(Ω), we have that∫
Ω

χ2|Dh∇u|2 ≤ C
∫

Ω

|Dhu|2 + C
∣∣∣ ∫

Ω

fD−h
(
χ2
)
τ−h
(
Dhu

)∣∣∣+ C
∣∣∣ ∫

Ω

fχ2DhD−hu
∣∣∣

≤ C
∫

Ω

|∇u|2 + 2C
∣∣∣ ∫

Ω

τh(χ)fD−h(χ)τ−h
(
Dhu

)∣∣∣+ C‖f‖L2‖χDh∇u‖L2

≤ C
∫

Ω

|Dhu|2 + C ′‖f‖L2‖χDhu‖L2(Ω) + C‖f‖L2‖χDh∇u‖L2

≤ C‖f‖2L2(Ω) + C ′‖f‖L2(Ω)‖∇u‖L2(Ω) + εCε‖χDh∇u‖2L2(Ω) +
C

4ε
‖f‖2L2(Ω).

Taking ε small enough, we deduce that

‖χDh∇u‖L2(Ω) ≤ C ′′′‖f‖L2(Ω)

for some C ′′′ > 0. The proof of (1.3) then follows from Lemma 1.1 when V = 0. When V 6= 0, (1.3)
follows from the result when V = 0, by replacing f by f − V u.

The second part of the statement is proven by an easy induction.

Theorem 1.7 (Elliptic regularity up to the boundary). Let Ω ⊂ Rn be a smooth domain, V ∈
L∞(Ω). There exists C > 0 such that, if f ∈ L2(Ω) and if u is a weak solution of (1.1) or of
(1.2), then u ∈ H2(Ω), and we have

‖u‖H2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
. (1.5)

Furthermore, if f, V ∈ C∞(Ω), then u ∈ C∞(Ω).

Proof. Admitted. One can see [1, 6.3.2] for a proof.

1.3 Spectral theory for compact self-adjoint operators (♥)

Let H be a separable Hilbert space. Recall that a continuous linear operator T : H −→ H is called

• compact if for any A ⊂ H closed, T (A) is a compact subset of H;

• self-adjoint if, for all v, w ∈ H, we have

〈Tv,w〉 = 〈v, Tw〉;

• positive if 〈Tv, v〉 ≥ 0 for all v ∈ H.

Theorem 1.8 (Spectral decomposition of compact self-adjoint operators). Let T be a compact
self-adjoint operator on H. We may find a sequence of real numbers (λk) going to zero, called the
eigenvalues of T , and a sequence of vectors vk ∈ H forming a Hilbert basis of H, such that

Tvk = λkvk.

Note that if a compact self-adjoint operator is positive, then all its eigenvalues are positive.

Theorem 1.9 (The min-max formula). Let T be a positive compact self-adjoint operator on H,
and let λk be its eigenvalues, in decreasing order: λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0. We have

λ1 = sup
v∈H,v 6=0

〈v, Tv〉
‖v‖2

.

More generally, we have

λk = inf
u1,...,uk−1∈H

sup
v∈H,v 6=0

v⊥V ect(u1,...,uk−1)

〈v, Tv〉
‖v‖2

.
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Proof. Let us write

µk := inf
u1,...,uk−1∈H

sup
v∈H,v 6=0

v⊥V ect(u1,...,uk−1)

〈v, Tv〉
‖v‖2

and show that µk = λk.
Let us choose a Hilbert basis of eigenvectors (vk) as in Theorem 1.8, and define Vk := Vect(v1, ..., vk).

If v ∈ Vk, we may write v =
∑k
i=1 αivi, so that

〈v, Tv〉
‖v‖2

=

∑k
i=1 |αi|2λi∑k
i=1 |αi|2

≥ λk.

Since, for any u1, .., uk ∈ H, we may find v ∈ Vk ∩Vect(u1, ..., uk)⊥, v 6= 0 we deduce that µk ≥ λk.
Now, taking u1 = v1, ... uk−1 = vk−1, we have that

µk ≤ sup
v∈H,v 6=0
v⊥Vk−1

〈v, Tv〉
‖v‖2

.

But any v ∈ H perpendicular to Vk−1 can be written as v =
∑+∞
i=k αivi, so that

〈v, Tv〉
‖v‖2

=

∑∞
i=k |αi|2λi∑∞
i=k |αi|2

≤ λk.

We deduce that µk ≤ λk, and hence, µk = λk.

1.4 Diagonalisation of the Dirichlet and Neumann Laplacian in
a bounded domain (♥)

Theorem 1.10. Let Ω ⊂ Rd be a bounded Lipschitz domain.

1. There exists a sequence 0 < λD1 ≤ λD2 ≤ ... ≤ λDk ≤ ..., and an orthonormal basis (ϕk)k≥1

of L2(Ω), with ϕk ∈ C∞(Ω) satisfying{
−∆ϕk = λDk ϕk in Ω
ϕk = 0 on ∂Ω

in the weak sense.

2. There exists a sequence 0 = λN1 ≤ λN2 ≤ ... ≤ λNk ≤ ..., and an orthonormal basis (ψk)k≥1

of L2(Ω), with ψk ∈ C∞(Ω) satisfying{
−∆ψk = λNk ψk. in Ω
∂nψk = 0 on ∂Ω

in the weak sense.

Actually, using Theorem 1.7, we can show that if the domain Ω is regular enough, the functions ϕk
and ψk will be strong solutions of their elliptic equations.

The set {λD/Ni , i ∈ N} is called the spectrum of the Dirichlet/Neumann Laplacian. We will see a
more general definition of the spectrum of an operator in the next chapter.

Proof. 1. If f ∈ L2(Ω), let Tf be the unique solution in H1
0 (Ω) to the equation −∆(Tf) = f , given by

Proposition 1.3. The operator T is then bounded. Now, let ι denote the compact embedding of H1
0 (Ω)

into L2(Ω). The operator T̃ :=
(
ιT
)

: L2(Ω) −→ L2(Ω) is then a compact operator.

Let us check that T̃ is self-adjoint. Let f, g ∈ L2(Ω). We have

∫
Ω

(T̃ f) · g =

∫
Ω

(∇T̃ f) · ∇T̃ g since T̃ g is a weak solution

=

∫
Ω

(T̃ g) · f since T̃ f is a weak solution.

12



The operator T̃ is thus self-adjoint. Therefore, by Theorem 1.8, there exists a non-increasing sequence
of numbers (uk)k≥1 going to zero, and an orthonormal basis (ϕk)k≥1 of L2(Ω), such that T̃ϕk = ukϕn.

Now, we have ∫
Ω

fT̃ f = −
∫

Ω

(
∆T̃ f

)
T̃ f =

∫
Ω

∣∣∇T̃ f ∣∣2 ≥ 0.

We deduce from this that the uk are all ≥ 0. Furthermore, if f 6= 0, then
∫

Ω
fT̃ f > 0, so that the un

are all strictly positive.
From the equation T̃ϕk = ukϕk, we deduce that

−∆ϕk =
1

uk
ϕk.

We thus set λDk = 1
uk

. The functions ϕk are in C∞(Ω), by Theorem 1.7. This concludes the proof of
the first point.

2. The proof of the second point is similar, by taking Tf to be the unique weak solution of (−∆ +
1)(Tf) = f . Note that we have λN1 = 0, because constant functions ψ satisfy −∆ψ = 0, and the correct
boundary conditions.

Example 1.1 (The Dirichlet Laplacian in a rectangle). Let Ω = (0, a)× (0, b). We look for solutions of{
−∆ϕ = λϕ in Ω
ϕ = 0 on ∂Ω.

of the form ϕ(x, y) = f(x)g(y). We thus have

−f ′′(x)g(y)− f(x)g′′(y) = λf(x)g(y),

so that we must formally have −λ = f ′′(x)
f(x) + g′′(y)

g(y) .

Therefore, we look for f and g such that f ′′(x) = λ1f(x), f(0) = f(a) = 0, g′′(x) = λ2g(x),
g(0) = g(b) = 0, and then take λ = λ1 + λ2.

We must therefore have f(x) = sin
(
nπx
a

)
, g(y) = sin

(
pπy
b

)
, n, p ∈ N.

By the theory of Fourier series, the functions
(

sin
(
nπx
a

)
sin
(
pπy
b

))
n,p∈N

form an orthogonal basis

of L2(Ω).
Therefore, the Dirichlet spectrum of −∆ in Ω is{(nπ

a

)2
+
(pπ
b

)2
;n, p ∈ N

}
,

and the multiplicity of each eigenvalue is the number of different choices of (n, p) ∈ N2 giving the same
eigenvalue.

Adapting the proof of Theorem 1.9, we obtain the following characterization of the Dirichlet and
Neumann eigenvalues:

Theorem 1.11 (The max-min formula for the Laplacian). Let Ω ⊂ Rd be a Lipschitz domain,
and let (λDk )k∈N and (λNk )k∈N be as in Theorem 1.10. We have

λDk = sup
u1,...,uk−1∈L2(Ω)

inf
v∈H1

0(Ω),v 6=0

v⊥V ect(u1,...,uk−1)

‖∇v‖2L2(Ω)

‖v‖2L2(Ω)

λNk = sup
u1,...,uk−1∈L2(Ω)

inf
v∈H1(Ω),v 6=0

v⊥V ect(u1,...,uk−1)

‖∇v‖2L2(Ω)

‖v‖2L2(Ω)

13



1.5 Dependence of the eigenvalues on the domain (♣)

In this section, if Ω ⊂ Rd is a Lipschitz domain, we will denote by λk(Ω) and µk(Ω) the Dirich-
let/Neumann eigenvalues given in Theorem 1.10, to emphasize their dependence on the domain Ω.

Lemma 1.3. Let Ω,Ω′ be Lipschitz domains with Ω ⊂ Ω′. Then, for every k ∈ N, we have

λk(Ω′) ≤ λk(Ω).

Proof. We use the max-min formula, extending functions in H1
0 (Ω) to functions in H1

0 (Ω′).

Note that no such monotonicity holds for Neumann eigenvalues. However, we have the following
result.

Lemma 1.4. Let Ω ⊂ Rd be a Lipschitz domain, and let Ω1,Ω2 ⊂ Ω be Lipschitz domains such
that Ω = Ω1 ∪ Ω2, and Ω1 ∩ Ω2 = ∅. Then for any k ∈ N, we have

λNk (Ω1 ∪ Ω2) ≤ λNk (Ω).

Proof. With the hypotheses we made, we have L2(Ω) = L2(Ω1 ∪ Ω2), and H1(Ω) ⊂ H1(Ω1 ∪ Ω2). We
therefore have

λNk (Ω1 ∪ Ω2) = sup
u1,...,uk−1∈L2(Ω1∪Ω2)

inf
v∈H1(Ω1∪Ω2),v 6=0

v⊥V ect(u1,...,uk−1)

‖∇v‖2L2(Ω)

‖v‖2L2(Ω)

≤ sup
u1,...,uk−1∈L2(Ω)

inf
v∈H1(Ω),v 6=0

v⊥V ect(u1,...,uk−1)

‖∇v‖2L2(Ω)

‖v‖2L2(Ω)

= λNk (Ω).

Putting together Lemmas 1.3 and 1.4, we have that for any k ∈ N

λNk (Ω1 ∪ Ω2) ≤ λNk (Ω) ≤ λDk (Ω) ≤ λDk (Ω1 ∪ Ω2).

We end this discussion with a continuity result for the Dirichlet eigenfunctions.

Proposition 1.4. Let (Ωj)j∈N be an increasing sequence of Lipschitz domains of Rd, and suppose
that Ω = ∪∞j=1Ωj is a Lipschitz domain. Then for any k ∈ N,

λDk (Ωj) −→ λDk (Ω).

This result is particularly important from a numerical point of view. In practice, a domain Ω is
approximated by simpler shapes, for instance, polygons. This proposition says that, from a spectral
point of view, the approximation will be good if the polygons are all included in Ω.

Proof. Lemma 1.3 tells us that, for any k ∈ N, λDk (Ω) ≤ λDk (Ωj). Take k ∈ N, ε > 0, and let us show
that there exists j0 ∈ N such that for all j ≥ j0, λDk (Ωj) ≤ λDk (Ω) + ε.

Let u1, ..., uk ∈ H1
0 (Ω) denote the mutually orthogonal first k eigenvalues of the Dirichlet Laplacian

on Ω, with eigenvalues λD1 (Ω), ..., λDk (Ω), and U = Vect(u1, ..., uk). We have, for any u ∈ U ,

‖∇u‖L2(U) ≤ λDk (Ω)‖u‖L2(Ω).

Using the density of C∞c (Ω) in H1
0 (Ω), we can approximate the functions u1, ..., uk by functions

v1, ..., vk ∈ C∞c (Ω) such that v1, ..., vk are linearly independent, and ‖∇v‖L2(U) ≤
(
λDk (Ω) + ε

)
‖v‖L2(Ω)

for all v ∈ Vect(v1, ..., vk). Let K be a compact set containing all the supports of the v1, ..., vk. By
assumption, there exists j0 such that for all j ≥ j0, K ⊂ Ωj .
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Now, let j ≥ j0, and let w1, ..., wk−1 ∈ L2(Ωj). There exists a function v ∈ Vect(v1, ..., vk) which is
orthogonal to w1, ..., wk−1 in L2(Ωj). Therefore, we have

inf
v∈H1

0(Ωj),v 6=0

v⊥V ect(w1,...,wk−1)

‖∇v‖2L2(Ωj)

‖v‖2L2(Ωj)

≤ λDk (Ω) + ε,

and we may conclude the proof using the max-min principle.

1.6 Weyl’s law (♠)

Let Ω ⊂ Rd be a Lipschitz domain, and let

ND/N
Ω (λ) = ]{k ∈ N;λ

D/N
k (Ω) ≤ λ}.

The aim of this section is to prove the following result.

Theorem 1.12 (Weyl’s law). Let Ω ⊂ Rd be a Lipschitz domain. We have

lim
λ→∞

ND
Ω (λ)

λd/2
=

ωd
(2π)d

Vol(Ω),

where ωd is the voume of the d-dimensional unit ball.

Note that Weyl’s law also holds for Neumann eigenvalues, but the proof is harder. Weyl’s law was
proven by Hermann Weyl in 1911. It can be considered as the first result of semiclassical analysis, i.e.,
result about the behaviour of (λk(Ω), ϕk) as k → ∞. Although most results in semiclassical analysis
involve complicated properties of the open set Ω (for instance, involving the billiard dynamics in Ω),
Weyl’s law involves only the volume of Ω, and its dimension. Refinements of Weyl’s law exist in certain
cases, involving the area of ∂Ω.

Proof. Step 1: Weyl’s law holds for a rectangular box
This step is proven by recurrence on the dimension. The result is trivial when d = 1. Let d ≥ 2.
Let Ω =

∏d
i=1(0, ai). We have seen that the Dirichlet spectrum of Ω is made of the numbers

{ d∑
i=1

(πni
ai

)2

;n1, ..., nd ∈ N
}
,

while the Neumann spectrum is made of the same numbers, but where the ni are also allowed to take
value 0. Therefore, if we write

D(λ) := {(x1, ..., xd) ∈ [0,∞)d;

d∑
i=1

(πxi
ai

)2

≤ λ},

we have
ND

Ω (λ) = ]D(λ) ∩ Nd

NN
Ω (λ) = ]D(λ) ∩ (N ∪ {0})d.

If (n1, ..., nd) ∈ D(λ)∩Nd, then the unit cube [n1−1;n1]× ...× [nd−1, nd] is included in D(λ). There
are exactly ND

Ω (λ) such cubes, which are all disjoint. Therefore, we have

Vol(D(λ)) ≥ ND
Ω (λ).

On the other hand, we have

D(λ) ⊂
⋃

(n1,...,nd)∈D(λ)∩(N∪{0})d
[n1, n1 + 1]× ...× [nd, nd + 1],

so that
Vol(D(λ)) ≤ NN

Ω (λ).
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Finally, note that

NN
Ω (λ)−ND

Ω (λ) ≤ ]Nd ∩ {(x1, ..., xd) ∈ [0,∞)d;

d∑
i=1

(πxi
ai

)2

≤ λ;∃i ∈ {1, ..., d}, xi = 0},

which is the cardinal of a union of d intersections of (d − 1)- dimensional ellipsoids with Nd−1. By the
recurrence hypothesis, this is O(λd−1).

Therefore, we have

Vol(D(λ)) ≤ NN
Ω (λ) ≤ ND

Ω (λ) +O(λd−1) ≤ Vol(D(λ)) +O(λd−1).

Therefore we have

NN
Ω (λ) ∼ ND

Ω (λ) ∼ Vol(D(λ)) = λd/2
ωd

(2π)d

d∏
i=1

ai,

which concludes the first step.
Step 2: Weyl’s law holds for finite unions of rectangular boxes
Let Ω1, ...,Ωm be disjoint open rectangular boxes, and suppose that there exists Ω a Lipschitz open

set such that Ω = Ω1 ∪ ... ∪ Ωm. Let us show that Weyl’s law holds for Ω. We have

ND
Ω1

(λ) + ...+ND
Ωm

(λ)

λd/2
=
ND

(Ω1∪...∪Ωm)(λ)

λd/2

≤ N
D
Ω (λ)

λd/2
by Lemma 1.3

≤ N
N
Ω (λ)

λd/2

≤
NN

(Ω1∪...∪Ωm)(λ)

λd/2
by Lemma 1.4

=
NN

Ω1
(λ) + ...+NN

Ωm
(λ)

λd/2
,

and we conclude this step by taking the limit λ→∞, using the previous step, and noting that Vol(Ω) =
Vol(Ω1) + ...+ Vol(Ωm).

Step 3: End of the proof
For any ε > 0, we find two open sets Ωε and Ω′ε as in the previous step, such that Ωε ⊂ Ω ⊂ Ω′ε, and

Vol(Ω′ε\Ωε) < ε.
Using the monotonicity properties of the eigenvalues, we have

ND
Ωε

(λ)

λd/2
≤ N

D
Ω (λ)

λd/2
≤
ND

Ω′ε
(λ)

λd/2
≤
NN

Ω′ε
(λ)

λd/2
.

Now, by the previous step, we may find λε such that for all λ ≥ λε, we have

ND
Ωε

(λ)

λd/2
≥ ωd

(2π)d
Vol(Ωε)− ε ≥

ωd
(2π)d

Vol(Ω)− 2ε

NN
Ω′ε

(λ)

λd/2
≤ ωd

(2π)d
Vol(Ω′ε) + ε ≤ ωd

(2π)d
Vol(Ω) + 2ε.

We therefore have, for λ large enough,

ωd
(2π)d

Vol(Ω)− 2ε ≤ N
D
Ω (λ)

λd/2
≤ ωd

(2π)d
Vol(Ω) + 2ε,

which concludes the proof of the theorem.
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Chapter 2

Operators in Hilbert spaces

In this chapter, we fix a separable Hilbert space H, and we will denote by Id the identity operator on H.

2.1 Operators and Adjoints (♥)

Definition 2.1. A (linear) operator T on H is a linear map from a subspace D(T ) to H. The
set D(T ) is then called the domain of T .
A linear operator is called bounded if

sup
v∈D(T ),v 6=0

‖Tv‖
‖v‖

<∞.

If T is a bounded linear operator with D(T ) = H, we say that T is a continuous operator. The
space of continuous operators is denoted by L(H). It is a Banach space, equipped with the norm

‖T‖H→H := sup
v∈D(T ),v 6=0

‖Tv‖
‖v‖

Most of the time, we will consider operators T such that D(T ) is dense in H. Note that a bounded
linear operator such that D(T ) is dense in H can be uniquely extended to a continuous operator.

2.1.1 Closable operators (♥)

Let T be a linear operator in H. We denote by

Gr(T ) := {(v, Tv); v ∈ D(T )} ⊂ H ×H

its graph.
If T1, T2 are operators on H we will write

T1 ⊂ T2 if Gr(T1) ⊂ Gr(T2).

We then say that T2 is an extension of T1.

Definition 2.2. Let T be a linear operator in H. We say that T is

• closed if Gr(T ) is a closed subspace of H×H.

• closable if the closure of its graph, Gr(T ) is still the graph of an operator. We then write T
for the operator such that Gr(T ) = Gr(T ), and T is then called the closure of T .

The following lemma, whose proof is trivial, gives a criterion for an operator to be closed.
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Lemma 2.1. Let T be a linear operator in H. T is closed if and only if, for any sequence
xn ∈ D(T ) such that

xn −→ x ∈ H
Txn −→ y ∈ H,

we have x ∈ D(T ) and Tx = y.

Example 2.1. By the closed graph theorem, an operator T with D(T ) = H is closed if and only if it is
bounded.

Example 2.2 (Multiplication operators). Let H = L2(Rd), and take f ∈ L∞loc(Rd). We define Mf by

D(Mf ) := {g ∈ L2(Rd)|(fg) ∈ L2(Rd)}, Mfg = fg.

Then Mf is a closed operator. Indeed, let gn ∈ D(Mf ) with gn −→ g and fgn −→ h. Up to extracting a
subsequence, we may suppose that gn(x) −→ g(x) almost everywhere. Therefore, f(x)gn(x) −→ f(g)g(x)
almost everywhere. We must therefore have fg = h ∈ L2(Rd), so that g ∈ D(Mf ).

Example 2.3. Let H = L2(R), T1f = f ′, with D(T1) = C∞c (R), and T2(f) = f ′, with D(T2) = H1(R).
Let us show that T1 = T2.

Let us show that T2 is closed. Let fn ∈ H1(R) be such that fn −→ f in L2(R), and f ′n −→ g in
L2(R). One then easily shows that we must have f ∈ H1(R), and f ′ = g. Therefore, T2 is closed.

We have T1 ⊂ T2, which shows that T1 is closable. Now, let (f, g) ∈ Gr(T2), that is to say, f ∈
H1(R), g = f ′. Since C∞c (R) is dense in H1(R), we may find a sequence fn ∈ D(T1) such that fn −→ f
in L2(R) and f ′n −→ g in L2(R). This shows that T1 = T2.

Example 2.4. Let H = L2(R), and let g(x) = e−x
2

, so that g ∈ H. We define an operator T by
D(T ) = C0(R) ∩ L2(R), and Tf = f(0)g. Let us show that T is not closable.

Take f ∈ D(T ), f 6= 0. We may find two sequences fn, gn ∈ D(T ) such that fn and gn converge to
f , but fn(0) = 1 for all n, while gn(0) = 0 for all n. We therefore have Tgn = 0, but Tfn = g. If the
operator were closable, the two limits would have to be equal.

2.1.2 Adjoints (♥)

Proposition 2.1. Let T ∈ L(H). There exists a unique operator T ∗ ∈ L(H), such that for all
v, w ∈ H, we have

〈Tv,w〉 = 〈v, T ∗w〉.

Proof. Let w ∈ H. The map v 7→ 〈Tv,w〉 is a continuous linear map from H to C. Therefore, by Riesz’s
representation theorem, there exists a unique vector, denoted by T ∗w, such that we have 〈Tv,w〉 =
〈v, T ∗w〉 for all v ∈ H.

Let us check that w 7→ T ∗w is linear. Let w1, w2 ∈ H, λ ∈ C. We haven for all v ∈ H,

〈v, T ∗(λw1 + w2)〉 = 〈Tv, λw1 + w2〉 = λ〈Tv,w1〉+ 〈Tv,w2〉 = λ〈v, T ∗w1〉+ 〈v, T ∗w2〉.

Since this is true for all v ∈ H, we deduce that T ∗(λw1 + w2) = λT ∗w1 + T ∗w2, so that T ∗ is linear.
For any w ∈ H, we have ‖T ∗w‖ = sup

‖v‖≤1

|〈v, T ∗w〉| = sup
‖v‖≤1

|〈Tv,w〉| ≤ sup
‖v‖≤1

‖Tv‖‖w‖. Therefore, T ∗

is bounded.

If T is not a bounded operator, we define its adjoint in a similar way, as follows:

Definition 2.3. Let T be an operator in H with D(T ) = H. Its adjoint is an operator T ∗ with
domain

D(T ∗) := {w ∈ H;D(T ) 3 v 7→ 〈Tv,w〉 ∈ C is continuous}.

By Riesz representation theorem, for any w ∈ D(T ∗), there exists a unique vector w′ ∈ H such
that for all v ∈ D(T ), we have 〈Tv,w〉 = 〈v, w′〉. We then set T ∗w := w′, and T ∗ is a linear
operator.
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Note that the assumption that D(T ) is dense in H is essential here: otherwise, T ∗w would not be
uniquely defined, since we could add any vector in D(T )⊥ to T ∗w. The two definitions of adjoints
coincide when T is bounded.

Define the linear map
J : H×H 3 (x, y) 7→ (y,−x) ∈ H ×H.

Lemma 2.2. Let T be a linear operator with a dense domain. We have

Gr(T ∗) = (J(Gr(T )))⊥.

Proof. Let (x, y) ∈ Gr(T ∗), and let (u, v) ∈ Gr(T ). We have

〈(x, y), J(u, v)〉H×H = 〈x, v〉 − 〈y, u〉
= 〈x, Tu〉 − 〈T ∗x, u〉 = 0

Therefore, we have Gr(T ∗) ⊂ (J(Gr(T )))⊥.
Let (x, y) ∈ (J(Gr(T )))⊥. For all u ∈ D(T ), we have 〈x, Tu〉 = 〈y, u〉. Therefore, the map u 7→ 〈x, Tu〉

is continuous, so that x ∈ D(T ∗), and we have y = T ∗x. We therefore have Gr(T ∗) ⊃ (J(Gr(T )))⊥.

In particular, T ∗ is always a closed operator.

Lemma 2.3. Let T be a closable operator with a dense domain. Then D(T ∗) is dense in H

Proof. Let u ∈ D(T ∗)⊥. We thus have, for all w ∈ D(T ∗)

〈J(w, T ∗w), (0, u)〉H×H = 〈T ∗w, 0〉 − 〈w, u〉 = 0.

Therefore, we have (0, u) ∈ (J(Gr(T ∗))⊥ = J((J(Gr(T ∗))⊥)⊥ = Gr(T ∗), because J is an involution,
which commutes with ⊥. Since T is closable, we deduce that u = 0.

Note that we have also proved that (T ∗)∗ = T .

Proposition 2.2. Let T be a closable operator on a Hilbert space H, and let z ∈ C. We have

ker(T ∗ − z) = Ran(T − z)⊥

Ran(T − z) = ker(T ∗ − z)⊥.

Proof. The second identity follows from the first one, by taking the orthogonal complement. Let us prove
the first point. Let v ∈ ker(T ∗ − z). Since D(T ∗) is dense, this is equivalent to 〈(T ∗ − z)v, w〉 = 0 for all
w ∈ D(T ). This is equivalent to having 〈v, (T − z)w〉 = 0 for all w ∈ D(T ). Therefore, v ∈ ker(T ∗ − z)
if and only if v ∈ Ran(T − z)⊥.

Definition 2.4. Let T be a linear operator on H with domain D(T ). T is said to be

• symmetric if for all v, w ∈ D(T ), we have

〈Tv,w〉 = 〈v, Tw〉.

In other words, we have T ⊂ T ∗.

• self-adjoint if D(T )= D(T ∗) and T is symmetric. In other words, we have T = T ∗.

Example 2.5. Let Mf be as in Example 2.2. We have (EXERCISE) (Mf )∗ = Mf . In particular, Mf

is self-adjoint if and only if f is real-valued.

19



Example 2.6 (Free Laplacian in Rd). Let H = L2(Rd), and T be given by D(T ) = H2(Rd), Tf = −∆f .
By integration by parts, T is symmetric.

By the Riesz representation theorem, f ∈ D(T ∗) if and only if there exists g ∈ L2(Rd) such that for
all h ∈ H2(Rd), we have ∫

Rd
(−∆h)f =

∫
Rd
hg.

In particular, we have −∆f = g in the sense of distributions, so that f ∈ H2(Rd). We deduce that
D(T ∗) = D(T ), so that T is self-adjoint.

2.2 A short introduction to quantum mechanics (♠)

In classical mechanics, the motion of a particle is governed by Newton’s equation. Namely, if x(t) ∈ R3

denotes the position of the particle at time t, it satisfies the equation1

d2x(t)

dt2
= f(t),

where f is a force, which, in the absence of friction, takes the form f(t) = −∇V (x(t)).

Abstract quantum mechanics in Hilbert spaces In quantum mechanics, a particle is no longer
considered as a point in R3, but as a vector in a Hilbert space. Actually, the state of any physical system
(a particle, a system of particles, me, the whole universe) is described by a vector v in a (separable)
Hilbert space H. More precisely, we ask that ‖v‖ = 1, and we consider that v and eiθv represent the
same physical state, for any θ ∈ R.

The state of a system generally depends on time, and its time dependence is given by Schrödinger’s
equation, which can be written, in well-chosen units, as

i
d

dt
v(t) = Hv(t). (2.1)

Here, H is a self-adjoint operator on H, called the (quantum) Hamiltonian.
Given a physical system, one wants to measure real numbers out of it. For instance, in classical

mechanics, one wants to measure the speed, position, energy, angular momentum... of a system of
particles.

In quantum mechanics, the quantities one can measure, called observables, are given by self-adjoint
operators. The value of an observable A measured for a state v is in general not deterministic. Namely,
if one prepares several times the same state v, and measures several times the observable A, one will not
find the same value. However, for a large number of experiments, one will on average find the value

〈v,Av〉. (2.2)

Beware that, making a measurement on a system affects it: it is no longer in the same state after the
measurement.

Quantum mechanics for a single particle Very often, one is interested in the motion of a single
particle (for instance, an electron). A natural choice of Hilbert space is then H = L2(R3), or more
generally, H = L2(Rd). A state ψ ∈ L2(R3) has the following physical interpretation. It does not have
a definite position as a classical particle does, but only a probabilistic position. Namely, the probability
that, when we measure the position of the particle, we find it in an open set Ω ⊂ R3 is given by∫

Ω

|ψ(x)|2dx.

This corresponds to taking, in (2.2), the observable of multiplication by 1Ω. Note that the condition
that ‖ψ‖ = 1 ensures that the total probability is one.

The quantum Hamiltonian governing the motion of an electron is often a Schrödinger operator, of
the form

H = −h2∆ + V,

1Here, we choose a system of units such that the mass of the particle is equal to 1.
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for some measurable function V , called the potential, which has the same expression as in classical
mechanics.

The Schrödinger equation then takes the expression of a partial differential equation

i
∂ψ(t, x)

∂t
= −∆ψ(t, x) + V (x)ψ(t, x).

2.3 The resolvent and the spectrum (♥)

Definition 2.5. Let T be a linear operator on H. The resolvent set of T is the subset of C

ρ(T ) := {z ∈ C; (T − zId) : D(T )→ H is invertible, with a bounded inverse}.

The spectrum of T is defined as
σ(T ) = C\ρ(T ).

When z ∈ σ(T ) is such that ker(T − z) 6= {0}, we say that z is an eigenvalue for T . The
multiplicity of z is then dim ker(T − z). The set of eigenvalues is denoted by σp(T ).

In the sequel, we will often write T − z instead of T − zId.

Lemma 2.4. Let T be a closed operator. We then have the following equivalence.

z ∈ ρ(T )⇐⇒
{

ker(T − z) = {0}
Im(T − z) = H.

Proof. The =⇒ inclusion is obvious. Suppose that ker(T − z) = {0} and Im(T − z) = H. The inverse of
T − z, (T − z)−1 is thus defined everywhere. Since the graph of T − z is closed, the graph of (T − z)−1

is also closed. By the closed graph theorem, (T − z)−1 is a continuous operator, so that z ∈ ρ(T ).

Definition 2.6. Let Ω ⊂ C be an open set, and let T (z) be a family of operators in L(H)
depending on z ∈ Ω. We say that the map Ω 3 z 7→ T (z) ∈ L(H) is holomorphic if, for any
v1, v2 ∈ H, the map Ω 3 z 7→ 〈T (z)v1, v2〉 is holomorphic.

Proposition 2.3. Let T be a linear operator. The set ρ(T ) is open, the set σ(T ) is closed.
The map ρ(T ) 3 z 7→ RT (z) := (T −z)−1 ∈ L(H), called the resolvent is holomorphic. It satisfies
the identities

RT (z1)−RT (z2) = (z1 − z2)RT (z1)RT (z2) (2.3)

RT (z1)RT (z2) = RT (z2)RT (z1) (2.4)

d

dz
RT (z) = RT (z)2. (2.5)

for all z, z1, z2 ∈ ρ(T ).

Proof. If z, z0 ∈ ρ(T ), we have

T − z = (T − z0)(Id− (z − z0)RT (z0)). (2.6)

If |z − z0| < RT (z0), then the right-hand side is invertible, with inverse (T − z0)
∑∞
k=0(z − z0)kRkT (z0)),

which is a bounded operator.
Therefore, ρ(T ) is an open set, and we have

(T − z)−1 = (T − z0)

∞∑
k=0

(z − z0)kRkT (z0)).

21



This shows that ρ(T ) 3 z 7→ RT (z) ∈ L(H) is holomorphic. Differentiating with respect to z, we obtain

d

dz
(T − z)−1 = (T − z0)

∞∑
k=0

(k + 1)(z − z0)kRk+1
T (z0)).

Taking the value at z = z0, we obtain (2.5).
From (2.6), we obtain that (T − z0)−1 =

(
Id − (z − z0)RT (z0)

)
RT (z), from which (2.3) follows.

Finally, (2.4) follows from the symmetries in (2.3).

Proposition 2.4 (The spectrum of a bounded operator). Let T ∈ L(H). Then σ(T ) 6= ∅, and

σ(T ) ⊂ {z ∈ C; |z| ≤ ‖T‖}.

Proof. Let z ∈ C with |z| > ‖T‖. We may write (T − z) = −z
(
Id− 1

zT
)
. Since ‖T/z‖ < 1, this operator

is invertible, with inverse

(T − z)−1 = −
∞∑
k=0

T k

zk+1
. (2.7)

Let us show that the spectrum is non-empty. Suppose for contradiction that σ(T ) = ∅. Then, by
Proposition 2.3, for any v, w ∈ H, C 3 z 7→ 〈v, (T − z)−1w〉 ∈ C is holomorphic. Furthermore, by (2.7),
it goes to zero at infinity. Therefore, by Liouville’s theorem, it must be constant equal to zero. We
therefore have RT (z) = 0, which is absurd, since RT (z) : H → D(T ) is invertible.

2.3.1 The spectrum of multiplication operators (♥)

Let H = L2(Rd), and f ∈ L∞loc(Rd), and Mf be defined as in Example 2.2. The essential range of f is
defined as

ess ranf :=
{
λ ∈ C | ∀ε > 0,Leb{x; |f(x)− λ| < ε} > 0

}
.

Proposition 2.5. We have

σ(Mf ) = ess ranf

σp(Mf ) =
{
λ ∈ C | Leb{x; f(x) = λ} > 0

}
.

Proof. Let λ /∈ ess ranf . Then M1/(f−λ) is a bounded operator, and it is the inverse of Mf − λ, so that
λ /∈ σ(Mf ).

Conversely, let λ ∈ ess ranf . Let Ωn := {x ∈ Rd; |f(x)− λ| < n−1}, which has positive measure. We
let vn ∈ L2(Rd) be the indicator function of Ωn. We have vn ∈ D(Mf ), and

‖(Mf − λ)vn‖2 =

∫
Ωn

|f(x)− λ|2dx ≤ 1

n2
‖vn‖2,

so that (Mf − λ) cannot have a bounded inverse. Therefore, λ ∈ σ(Mf ).
Finally, note that λ ∈ σp(Mf ) if and only if there exists g ∈ L2(Rd), g 6= 0 such that f(x)g(x) = λg(x)

for almost every x ∈ Rd. Therefore, g must vanish for every x with f(x) 6= λ, so that {x; f(x) = λ}
must have positive measure. Conversely, if {x; f(x) = λ} has positive measure, any function supported
on {x; f(x) = λ} is an eigenfunction.

2.3.2 The spectrum of a self-adjoint operator (♥)

Proposition 2.6. Let T be a self-adjoint operator. Then σ(T ) ⊂ R, and we have for all z ∈ C\R

‖(T − z)−1‖ ≤ 1

=z
. (2.8)
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Proof. Let z ∈ C\R, and v ∈ H. We have

〈v, (T − z)v〉 = 〈v, Tv〉 − <z〈v, z〉 − i=z〈v, z〉.

Since T is self-adjoint, 〈v, Tv〉 is real. Therefore, we have

|=z|‖v‖2 ≤ |〈v, (T − z)v〉| ≤ ‖v‖ · ‖(T − z)v‖,

so that
‖(T − z)v‖ ≥ |=z|‖v‖. (2.9)

Therefore, ker(T − z) = {0}, and Ran(T − z) = H by Proposition 2.2. Equation (2.9) also implies that
Ran(T − z) is closed. Indeed, let yn be a sequence in Ran(T − z), converging to some y ∈ H. There
exists xn ∈ H such that yn = (T − z)(xn). We have ‖xn−xm‖ ≤ 1

=z‖yn− ym‖, so that (xn) is a Cauchy
sequence. It is thus convergent, and since T is self-adjoint, T − z is closed, so that y ∈ Ran(T ).

By Lemma 2.4, we have z ∈ ρ(T ), and (2.8) follows from (2.9).

Proposition 2.7. Let T ∈ L(H) be a self-adjoint operator. Write

m := inf
v∈H\{0}

〈v, Tv〉
‖v‖2

M := sup
v∈H\{0}

〈v, Tv〉
‖v‖2

.

Then σ(T ) ⊂ [m,M ], and m,M ⊂ σ(T ).

Proof. We have already proved that σ(T ) ⊂ R. Let λ > M . We have 〈v, (λ − T )v〉 ≥ (λ −M)‖v‖2, so
that λ − T is invertible with a bounded inverse, by the same argument as in the proof of the previous
Proposition. We therefore have σ(T ) ⊂ (−∞,M ]. We show similarly that σ(T ) ⊂ [m,+∞).

Let us show that M ∈ σ(T ). We will then deduce that m ∈ σ(T ), by replacing T by −T .
Let u, v ∈ H. The map bilinear map (u, v) 7→ 〈u, (M − T )v〉 is positive, so that, by the Cauchy-

Schwarz inequality, we have

|〈u, (M − T )v〉|2 ≤ 〈u, (M − T )u〉〈v, (M − T )v〉

Taking the supremum over u ∈ H with ‖u‖ = 1, we obtain

‖(M − T )v‖ ≤ ‖M − T‖〈v, (M − T )v〉.

Now, by definition of M , there exists a sequence vn ∈ H with ‖vn‖ = 1 such that 〈vn, T vn〉 −→ M ,
so that ‖(M − T )vn‖ −→ 0. Therefore, M − T cannot be invertible with a bounded inverse. We deduce
that M ∈ σ(T ).

Remark 2.1. If T ∈ L(H) and m,M are as in Proposition 2.7, then

‖T‖ = max(|m|, |M |).

Indeed, we have |m|, |M | ≤ ‖T‖. On the other hand, by Cauchy-Schwarz inequality, we have

|〈u, Tv〉|2 ≤ |〈u, Tu〉||〈v, Tv〉|.

Taking the supremum over u, v ∈ H with ‖u‖, ‖v‖ = 1, we deduce that ‖T‖ ≤ max(|m|, |M |).
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2.4 Criteria for self-adjointness (♣)

2.4.1 The Kato-Rellich theorem (♣)

Theorem 2.1. Let T be a closed symmetric operator on H. The following assertions are equiv-
alent:

1. T is self-adjoint.

2. ker(T ∗ + i) = ker(T ∗ − i) = {0}.

3. Ran(T + i) = Ran(T − i) = H.

Proof. The implication 1. =⇒ 2. is easy: a self-adjoint operator cannot have non-real eigenvalues.
Let us prove that 2. =⇒ 3. Recall that by Proposition 2.2, we have ker(T ∗ ± i) = Ran(T ∓ i)⊥. It is

therefore sufficient to show that Ran(T ± i) is closed. Let v ∈ H. We have

‖(T ± i)v‖2 = ‖Tv‖2 + ‖v‖2 ± i(〈Tv, v〉 − 〈v, Tv〉) = ‖Tv‖2 + ‖v‖2,

since T is symmetric. Now, let wn ∈ Ran(T ∓ i) converge to some w ∈ H. By assumption, there exists
vn ∈ D(T ) such that wn = (T ∓ i)vn. By the previous equality, we deduce that vn and Tvn are Cauchy
sequences. T being closed, vn converges to v ∈ D(T ), Tvn converges to Tv, and we have w = (T ± i)v,
which proves 3.

Let us prove that 3. =⇒ 1. Let v ∈ D(T ∗). We want to show that v ∈ D(T ). Since T ± i is surjective,
we may find w ∈ D(T ) such that (T − i)w = (T ∗ − i)v. We have T ⊂ T ∗, so that (T ∗ − i)(v − w) =
(T − i)w − (T ∗ − i)w = 0.

We have Ran(T + i) = H, so that ker(T ∗ − i) = {0}. Therefore, v = w belongs to D(T ).

Definition 2.7. Let A be a self-adjoint operator on H, and let B be an operator on H with
D(A) ⊂ D(B). We say that B is relatively bounded with respect to A if there exists a, b > 0 such
that for any v ∈ D(A), we have

‖Bv‖ ≤ a‖Av‖+ b‖v‖. (2.10)

The infimum of all a > 0 such that (2.10) holds is called the relative bound of B with respect to
A.

Theorem 2.2 (Kato-Rellich). Let A be a self-adjoint operator, and let B be a symmetric operator,
relatively bounded with respect to A, with a relative bound < 1. The operator A+B with domain
D(A+B) = D(A) is self-adjoint.

Proof. Let a ∈ (0, 1), b > 0 be such that

‖Bv‖ ≤ a‖Av‖+ b‖v‖ ∀v ∈ D(T ).

Let us fix λ > b. We have for any v ∈ D(A)

‖(A+B ± iλ)v‖2 = ‖(A+B)v‖2 + λ2‖v‖2 ± iλ(〈(A+B)v, v〉 − 〈v, (A+B)v〉) = ‖(A+B)v‖2 + λ2‖v‖2,

Therefore, using the fact that (a+ b)2 ≤ 2a2 + 2b2, we have

‖(A+B ± iλ)v‖ ≥ 1

2
‖(A+B)v‖+

λ

2
‖v‖

≥ 1

2

(
‖Av| − ‖Bv‖

)
+
λ

2
‖v‖

≥ 1− a
2
‖Av‖+

λ− b
2
‖v‖.

(2.11)

Step 1 Let us show that (A + B), with domain D(A), is a closed operator. Let (vn) ∈ D(A) be
such that (vn) and wn := (A + B)vn converge in H. By (2.11), (Avn) is a Cauchy sequence, so it it is
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convergent. Since A is closed, vn converges to some v ∈ D(A), and Avn converges to Av. Since B is
relatively bounded with respect to A, (Bvn) is a Cauchy sequence, so it converges to w ∈ H. We have
to show that w = Bv. This is not trivial, since we did not assume that B is closable. Let h ∈ D(A). We
have

〈w, h〉 = lim
n→∞

〈Bvn, h〉 = lim
n→∞

〈vn, Bh〉 = 〈v,Bh〉 = 〈Bv, h〉.

Since this is true for every h ∈ D(A), and D(A) is dense in H, we deduce that w = Bv.
Step 2 Let us show that, for λ large enough, A + B ± iλ is bijective. We have, for any v ∈ D(A),

‖(A± iλ)v‖2 = ‖Av‖2 + λ2‖v‖2, so that

‖Bv‖ ≤ a‖Av‖+ b‖v‖ ≤ a‖(A± iλ)v‖+
b

λ
‖(A± iλ)v‖ =

(
a+

b

λ

)
‖(A± iλ)v‖.

Let us choose λ large enough so that a + b
λ < 1. We then have ‖B(A ± iλ)−1‖ < 1. Therefore, we

may write
A+B ± iλ =

(
1 +B(A± iλ)−1

)
(A± iλ).

(A± iλ) is bijective, and B(A± iλ)−1 is also bijective. Therefore, A+B± iλ is bijective, which concludes
the proof.

2.4.2 Self-adjointness of Schrödinger operators (♣)

Theorem 2.3. Let d ≤ 3. Let V ∈ L2(Rd) + L∞(Rd) be real valued. Then the operator T =
−∆ + V with D(T ) = H2(Rd) is self-adjoint.

Proof. Let f ∈ S(Rd), and let λ ∈ C\R. We have

f(x) =
1

(2π)d/2

∫
Rd

(
Ff
)
(ξ)eix·ξdξ

=
1

(2π)d/2

∫
Rd

(|ξ|2 + λ)
(
Ff
)
(ξ)

1

|ξ|2 + λ
eix·ξdξ.

Noting that, since d ≤ 3, the map ξ 7→ 1
|ξ|2+λ belongs to L2(Rd), we have

|f(x)| ≤ 1

(2π)d/2

∥∥(|ξ|2 + λ)f̂(ξ)
∥∥
L2(Rd)

∥∥∥ 1

|ξ|2 + λ

∥∥∥
L2(Rd)

=
1

(2π)d/2

∥∥∥ 1

|ξ|2 + λ

∥∥∥
L2(Rd)

‖ −∆f‖L2(Rd) +
λ

(2π)d/2

∥∥∥ 1

|ξ|2 + λ

∥∥∥
L2(Rd)

‖f
∥∥
L2(Rd)

.

By density, we obtain that for any f ∈ H2(Rd) and any λ ∈ Rd, we have

‖f‖L∞ ≤ aλ‖ −∆f‖+ bλ‖f‖,

where aλ := 1
(2π)d/2

∥∥∥ 1
|ξ|2+λ

∥∥∥ and bλ := λ
(2π)d/2

∥∥∥ 1
|ξ|2+λ

∥∥∥.

Now, by assumption, we can write V = V1 + V2, with V1 ∈ L∞(Rd), and V2 ∈ L2(Rd). We have, for
any f ∈ H2(Rd),

‖V f‖ ≤ ‖V1f‖+ ‖V2f‖ ≤ ‖V1‖∞‖f‖+ ‖V2‖2‖f‖∞
≤ ‖V2‖2aλ‖ −∆f‖+

(
bλ + ‖V1‖∞

)
‖f‖.

By taking λ large enough, we may assume that aλ < 1. We may then apply the Kato-Rellich theorem
to conclude.

Example 2.7 (The Coulomb potential). Let q ∈ R, and let d = 2 or d = 3. Consider the potential
V (x) = q

|x| . For any bounded domain Ω ⊂ Rd containing the origin, we have 1ΩV ∈ L2(Rd), while

(1− 1Ω)V ∈ L∞(Rd). Therefore, −∆ + V is self-adjoint on H2(Rd).
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Chapter 3

The spectral theorem

3.1 Three versions of the spectral theorem (♥)

Let T be a bounded self-adjoint operator on H. If P (X) =
∑n
j=0 ajX

j is a polynomial in one variable,
we define

P (T ) =

n∑
j=0

ajT
j ,

where T 2 = T ◦ T , T 3 = T ◦ T ◦ T ,...

Lemma 3.1. Let T ∈ L(H), and let P ∈ C[X]. We have

σ(P (T )) = P (σ(T )).

Proof. Let λ ∈ C. We may write P (X) − λ = α
∏n
i=1(X − λi), where α, λ1, ..., λn ∈ C and the λi are

solutions of P (λi)− λ = 0.
We have P (T )−λ = α

∏n
i=1(T −λi), which is invertible if and only if each of the operators T −λi is

invertible. Therefore, λ ∈ σ(P (T )) if and only if there exists λi ∈ σ(T ) such that P (λi) = λ. This shows
the result.

Lemma 3.2. Let T ∈ L(H), and P ∈ C[X]. We have

‖P (T )‖H→H = sup
λ∈σ(T )

|P (λ)|.

Proof. By Lemma 3.1, we have supλ∈σ(T ) |P (λ)| = supµ∈σ(P (T )) |µ|.
By Proposition 2.7 and Remark 2.1, this quantity is equal to ‖P (T )‖.

Continuous functional calculus

Let T ∈ L(H), and let C(σ(T )) denote the space of complex-valued continuous functions on the compact
set σ(T ). By the Stone-Weierstrass theorem, for any function f ∈ C(σ(T )), there exists a sequence
Pn ∈ C[X] such that ‖Pn − f‖C0(σ(T )) −→ 0. We define the operator

f(A) = lim
n→∞

PN (A).

Thanks to Lemma 3.2, the limit exists and is independent of the choice of Pn.
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Proposition 3.1. Let T ∈ L(H). The map C(σ(T )) 3 f 7→ f(T ) ∈ L(H) has the following
properties:

1. (αf + βg)(T ) = αf(T ) + βg(T ).

2. (f · g)(T ) = f(T )g(T ).

3. f(T ) = f(T )∗.

4. If f ≥ 0, then for all v ∈ H, we have 〈v, f(T )v〉.

5. ‖f(T )‖ = ‖f‖∞.

6. If f(z) = 1
z−z0 for some z0 ∈ ρ(T ), then f(T ) = RT (z0).

Proof. The first five points follow from Lemma 3.2, while the last point follows from the second one.

Continuous functional calculus for semi-bounded operators It is actually possible, for any self-
adjoint operator T , not necessarily bounded, to build a map C0(σ(T )) 3 f 7→ f(T ) ∈ L(H) having the
same properties as in Proposition 3.1, where C0(σ(T )) is the space of functions in C(σ(T )) which vanish
at infinity.

For simplicity, we will not do the construction for general operators, but only for a wide class of
self-adjoint operators, which includes the Laplacian with any reasonable boundary conditions.

Definition 3.1. Let T be a self-adjoint operator. We say that T is semi-bounded from below if
there exists c ∈ R such that, for all v ∈ D(T ), we have

〈v, Tv〉 ≥ c‖v‖2. (3.1)

If T is semi-bounded from below and c is as in (3.1), then for any λ0 < c, we have λ0 ∈ ρ(T ), by
the same argument as in the first part of the proof of Proposition 2.7. The operator (T − λ0)−1 is then
self-adjoint (cf the exercises), and bounded by definition.

From now on, all the operators we will consider will be semi-bounded from below, even though this
assumption is never necessary.

Lemma 3.3. The map rλ0 : σ(T ) 3 λ 7→ (λ − λ0)−1 is a bijection, and we have σ(Rλ0(T )) =
rλ0(σ(T )).

Proof. It is clear that rλ0 is a bijection. Now, if λ 6= 0, we have

(T − λ0)−1 − λ : −λ(T + λ0)−1
[
T −

(
λ0 −

1

λ

)
Id
]
.

Therefore, λ 6= 0 is in σ((T −λ0)−1) if and only if λ = 1
λ0−x for some x ∈ σ(T ). Since 0 /∈ σ((T −λ0)−1)

by definition, the result follows.

If f ∈ C0(σ(T )), then f ◦ r−1
λ0
∈ C(σ(T − λ0)−1), and we simply define

f(T ) :=
(
f ◦ r−1

λ0

)(
(T − λ0)−1

)
. (3.2)

Thus defined, the map C0(σ(T )) 3 f 7→ f(T ) ∈ L(H) has the same properties as in Proposition 3.1.

Remark 3.1. If f ∈ C0(R), then we can define f(T ) := f|σ(T )(T ). In particular, f(T ) = 0 if and only
if f vanishes on σ(T ).
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Borelian functional calculus

Let v ∈ H. The map C0(R) 3 f 7→ 〈v, f(T )v〉 is continuous, and is positive when f is positive. Therefore,
by the Riesz representation theorem, there exists a finite positive measure µv, supported on σ(T ) such
that for all f ∈ C0(R),

〈v, f(T )v〉 =

∫
R
f(λ)dµv(λ). (3.3)

The measure µv is called the spectral measure at v. Note that we have

µ(R) = ‖v‖2. (3.4)

By the polarization identities, we can find, for any v, w ∈ H, a complex-valued measure µv,w such
that for all f ∈ C0(R), we have

〈v, f(T )w〉 =

∫
R
f(λ)dµv,w(λ). (3.5)

Thanks to equation (3.5), we can define 〈v, f(T )w〉 for any f ∈ L∞(µv,w). In particular, if M ⊂ R is
a Borelian set, and if χM is its characteristic function, then χM (T ) ∈ L∞(µv,w) for all v, w ∈ H, so that
χM (T ) is well-defined.

Proposition 3.2. Let T be a self-adjoint operator. The operators χM (T ) satisfy the following
properties

1. χM (T ) is a projection.

2. χ∅(T ) = 0, χσ(T )(T ) = Id.

3. χM∩N (T ) = χM (T )χN (T )

4. If (Mn)n∈N are mutually disjoint Borelian sets, and if v ∈ H, then

χ∪n∈NMn
(T )v =

∑
n∈N

χMn
(T )v.

5. Let a < b ∈ R χ(a,b)(T ) = 0 if and only if σ(T ) ∩ (a, b) = ∅.

6. For any λ ∈ R, we have Ranχ{λ}(T ) = ker(T − λ).

The family of operators χM (T ) is called the projection-valued measure associated to T , or the
projection-valued spectral measure of T .

Proof. The first four points follow by noting that χ2
M = χM , χ∅ = 0, χσ(T ) = 1 on σ(T ), χM∩N = χMχN

and, if (Mn)n∈N are mutually disjoint Borelian sets, then χ∪n∈NMn
=
∑
n∈N χMn

. We then simply apply
the definition (3.5).

For the fifth point, it is clear from the definition of χM (T ) that if σ(T )∩(a, b) = ∅, then χ(a,b)(T ) = 0.
The converse follows from point 5 in Proposition 3.1.

For the last point, note that v ∈ ker(T − λ) if and only if (T − ζ)−1v = (λ− ζ)−1v for all ζ ∈ ρ(T ).
Using the continuous functional calculus for (T − ζ)−1, this is equivalent to having 〈v, f(T )v〉 = f(λ),
that is to say, to having χ{λ}v = v.

L2 functional calculus

Definition 3.2. Let T be a self-adjoint operator on H. Let L ⊂ H. We say that L is

• an invariant subspace for T if, for any z ∈ C\R, we have (T − z)−1(L) ⊂ L.

• a cyclic subspace for T with cyclic vector v ∈ H if we have

L = Span{(T − z)−1v; z ∈ C\R}.
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Remark 3.2. 1. If L is invariant for T , then L⊥ is also invariant for T . Indeed, if v ∈ L and
w ∈ L⊥, we have

〈v, (T − z)−1w〉 = 〈(T − z)−1v, w〉 = 0,

since (T − z)−1v ∈ L.

2. If L is invariant for T , and v ∈ D(T ) ∩ L, then Tv ∈ L. Indeed, let z ∈ C\R. There exists w ∈ H
such that v = (T − z)−1w. We may write w = w0 + w1, with w0 ∈ L, and w1 ∈ L⊥. We therefore
have v = (T − z)−1w0 + (T − z)−1w1, and the first term belongs to L while the second belongs to
L⊥. Therefore, we must have w ∈ L. Now, we have

Tv = zv + (T − z)v = zv + w ∈ L.

3. If L is a cyclic subspace for T with cyclic vector v, then L is the smallest T -invariant subspace
containing T . Note that the fact that L is a vector space follows from (2.3).

4. If L is an invariant subspace for T , then the restriction of T to L defines a self-adjoint operator.
(The proof is left as an easy exercise).

Lemma 3.4. Let T be a self-adjoint operator on H, and suppose that H is cyclic for T with
cyclic vector v. Then there exists a unitary isomorphim U : H → L2(σ(T ),dµv) with the following
properties

• Let h : σ(T ) −→ R be given by h(s) = s. A vector w ∈ H belongs to D(T ) if and only if
hUw belongs to L2(σ(T ),dµv).

• For any ψ ∈ UD(T ), we have UTU−1ψ = hψ.

Proof. Consider the map Θ : C0(R) −→ L2(R,dµv) given by Θ(f) = f . We have

〈Θf,Θg〉 =

∫
σ(T )

fgdµv

= 〈v, f(T )∗g(T )v〉 = 〈f(T )v, g(T )v〉.

Let us write M := {f(T )v; f ∈ C0(R)} ⊂ H. We have just shown that the map

U : H ⊃M −→ C0(R) ⊂ L2(R,dµv) U(f(T )v) = f

is one-to-one and isometric.
Now, since H is a cyclic subspace, M is dense in H. C0(R) is dense in L2(R,dµv). Therefore, U can

be extended in a unique way to a one-to-one isometric map from H to L2(R,dµv).
Let f, f1, f2 ∈ C0(R), and write w1 = f1(T )v, w2 = f2(T )v. We have

〈w1, f(T )w2〉 = 〈f1(T )v, f(T )f2(T )v〉
= 〈v,

(
f1ff2

)
(T )v〉

=

∫
R
ff1f2dµv

= 〈Uw1,MfUw2〉,

where Mf denotes the multiplication by f in L2(R,dµv). We therefore have, for any f ∈ C0(R) and
ψ ∈ L2(R,dµ),

fψ = Uf(T )U∗ψ.

In particular, if ζ ∈ C\R, consider the map rζ(z) = (z − ζ)−1. We have

rζψ = U(T − ζ)−1U∗ψ.

Therefore, U must be a bijection from Ran
(
(T − ζ)−1

)
= D(T ) to Ran(Mrζ ). But we have

Ran(Mrζ ) = {ψ ∈ L2(R,dµv);hψ ∈ L2(R,dµv)} = D(Mh).
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The first point follows.
Now, let ψ ∈ U(D(T )). By what precedes, there exists ϕ such that ψ = rζϕ. We have

Trζ(T )U∗ϕ = (T − ζ)rζ(T )U∗ϕ+ ζrζ(T )U∗ϕ = U∗ϕ+ ζrζ(T )U∗ϕ,

so that
UTU∗ψ = UTU∗rζϕ = UTrζ(T )U∗ϕ

= UU∗ϕ+ ζUrζ(T )U∗ϕ

= (1 +
ζ

x− ζ
)ϕ = xrζϕ = hψ

Theorem 3.1. Let T be a self-adjoint operator on H. There exists a set N ⊂ N, a finite measure
µ on N × σ(T ), and a unitary isomorphism U : H → L2(N × σ(T ),dµ) with the following
properties

• Let h : N × σ(T )→ R be given by h(n, s) = s. A vector v ∈ H belongs to D(T ) if and only
if hUv belongs to L2(N × σ(T ),dµ).

• For any ψ ∈ UD(T ), we have UTU−1ψ = hψ.

This theorem says that, any self-adjoint operator is unitarily equivalent to a multiplication operator
in some L2 space.

Proof. Using Remark 3.2, we may find a family of subspaces Hn ⊂ H indexed by N = N or N finite,
such that the Hn are mutually orthogonal, with

H = ⊕n∈NHn,

and each Hn is cyclic with a cyclic vector vn such that ‖vn‖ = 2−n.
Indeed, we pick a first vector v1 ∈ H, with ‖v1‖ = 1, and build a cyclic vector space out of it. We

then take a vector v2 ∈ H⊥1 , with ‖v2‖ = 1/2, and build a cyclic vector space out of it. Since the space
H is separable, this procedures ends after a finite or countable number of steps.

We then consider the restriction Tn of T toHn. It is a self-adjoint operator, and we may apply Lemma
3.4 to it. We obtain a measure µn, with µn(R) = 4−n. We then simply define µ by µ(n × Ω) = µn(Ω),
which defines a finite measure. Similarly, U is defined acting component by component, and has the
required properties.

Remark 3.3. This construction is not at all intrinsic.

Corollary 3.1. Let v ∈ H. We have v ∈ D(T ) if and only if x 7→ x is in L2(R,dµv).

Definition 3.3. Let T be a self-adjoint operator on H, and let N,µ, U be as in Theorem 3.1. If
f ∈ C(σ(T )), let f̃ : N × σ(T ) −→ R be given by f̃(n, s) = f(s). Note that f̃ ∈ L∞loc(N × σ(T )).
We then define the operator f(T ) on H by D(f(T )) = U∗D(Mf̃ ), and f(T ) = U∗Mf̃U .

We leave it as an exercise to show that this definition does not depend on the construction made in
Theorem 3.1, and is coherent with the definition of f(T ) presented before when f ∈ C0(σ(T )).

3.2 Useful formulas for the spectral projectors (♣)

Lemma 3.5. Let fn, f be Borelian functions, such that ‖fn‖L∞ ≤ c for some c independent of
n, and such that fn(x) −→ f(x) for all x ∈ R.
Let T be a self adjoint-operator on H, and let v ∈ H. Then

fn(T )v −→ f(T )v.

30



Proof. We have

‖fn(T )v‖2 = 〈v, |fn(T )|2v〉 =

∫
R
|fn(λ)|2dµv(λ).

By the dominated convergence theorem, this converges to
∫
R |f(λ)|2dµv(λ) = ‖f(T )v‖2.

Let w ∈ H. By the dominated convergence theorem, we have

〈w, fn(T )v〉 =

∫
R
fn(T )dµv,w(T ) −→

∫
R
f(T )dµv,w(T ) = 〈w, f(T )v〉.

Therefore, we have

‖fn(T )v − f(T )v‖2 = 〈f(T )v − fn(T ), f(T )v〉+ 〈fn(T )v, fn(T )v〉 − 〈fn(T )v, f(T )v〉 −→ 0,

which proves the result.

Proposition 3.3. Let T be a self-adjoint operator on H, and λ ∈ R. For any v ∈ H, we have

χ{λ}(T )v = −i lim
ε→0

ε(T − λ− iε)−1v

Proof. Consider the function fε(x) := − iε
x−λ−iε . It satisfies ‖fε‖L∞ ≤ 1, fε(λ) = 1, and fε(x) −→ 0 if

x 6= λ. Therefore, we may apply the previous lemma to conclude.

Proposition 3.4 (Stone’s formula). Let T be a self-adjoint operator on H, and a < b ∈ R. For
any v ∈ H, we have

1

2

(
χ(a,b) + χ[a,b]

)
v =

1

π
lim
ε→0

∫ b

a

=R(λ+ iε)vdλ.

Proof. For any ε > 0, we set

fε(x) :=
1

π

∫ b

a

= 1

x− λ− iε
dλ

=
1

π

∫ b

a

ε

(λ− x)2 + ε2
dλ

=
1

π

(
arctan

(b− x
ε

)
− arctan

(a− x
ε

))
.

Therefore, we have ‖fε‖L∞ ≤ 1, and fε(x) −→ 0 if x /∈ [a, b], fε(x) −→ 1 if x ∈ (a, b), and fε(x) −→ 1/2
if x ∈ {a; b}. The result follows by applying Lemma 3.5.

Proposition 3.5. Let T be a self-adjoint operator on H, let λ ∈ C and let v ∈ H. We have

d(λ, σ(T ))‖v‖ ≤ ‖(T − λ)v‖

Proof. If λ ∈ σ(T ), then the statement is trivial. Suppose that λ /∈ σ(T ). The statement is then
equivalent to

‖(T − λ)−1‖ ≤ 1

d(λ, σ(T ))
, (3.6)

which is a refinement over (2.8).
The map x 7→ 1

x−λ belongs to C0(σ(T )), and its supremum is given by 1
d(λ,σ(T )) . The statement

therefore follows from Proposition 3.1.

Corollary 3.2 (Weyl’s criterion). Let T be a self-adjoint operator on H, and let λ ∈ R. Then
λ ∈ σ(T ) if and only if there exists a sequence vn ⊂ D(T ) with ‖vn‖ = 1 such that (T−λ)vn −→ 0.
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Proof. The ”if” part follows from the previous proposition.
For the ”only if” part, note that λ ∈ σ(T ) if and only if for any ε > 0, we have χ(λ−ε,λ+ε)(T ) 6= 0, as

can be seen using point 5 in Proposition 3.2.
Since χ(λ−ε,λ+ε)(T ) is an orthogonal projection, we may find for each ε > 0, a vε such that ‖vε‖ = 1

and χ(λ−ε,λ+ε)(T )vε = vε.
We have (T − λ)vε = (T − λ)χ(λ−ε,λ+ε)(T )vε = fε(T )vε, where

fε(x) = χ(λ−ε,λ+ε)(x)(λ− x),

so that ‖fε‖L∞ = ε. We therefore have (T − λ)vε −→ 0.

3.3 The measure-theoretic decomposition of the spectrum (♣)

Definition 3.4. Let µ be a finite positive Borelian measure on R. We say that µ is

• pure point if it is supported on a countable set, i.e., there exists a countable set A ⊂ R such
that µ(R\A) = 0. Such a measure can be written as µ =

∑
i αiδxi , where αi > 0. The xi

are called the atoms of µ.

• continuous if it has no atom, i.e., if we have µ({x}) = 0 for all x ∈ R.

• absolutely continuous if there exists a function f ∈ L1(R) such that dµ = f(x)dx. By the
Radon-Nikodym theorem, this is equivalent to having µ(A) = 0 for all Borelian sets with
zero Lebesgue measure.

• singular continuous if µ is continuous, but is supported on a set of zero Lebesgue measure.

By the Lebesgue decomposition theorem, any finite positive Borelian measure µ on R can be decom-
posed in a unique way as

µ = µpp + µac + µsc,

where µpp is pure point, µac is absolutely continuous, and µsc is singular continuous.
Let us define the subspaces

Hpp := {v ∈ H;µv is pure point}
Hac := {v ∈ H;µv is absolutely continuous}
Hsc := {v ∈ H;µv is singular continuous}.

Proposition 3.6. The spaces Hpp,Hac and Hsc are closed vector spaces, are mutually orthogonal,
and we have

H = Hpp ⊕Hac ⊕Hsc.

Furthermore, if Πpp,Πac and Πsc denote the orthogonal projections on these spaces, we have

ΠppD(T ) ⊂ D(T ), T
(
ΠppD(T )

)
⊂ Hpp

ΠacD(T ) ⊂ D(T ), T
(
ΠacD(T )

)
⊂ Hac

ΠscD(T ) ⊂ D(T ), T
(
ΠscD(T )

)
⊂ Hsc.

(3.7)

Thanks to (3.7), we see that T defines self-adjoint operators when restricted to the subspaces Hpp,
Hac, Hsc. We denote them by Tpp, Tac and Tsc respectively. We define

σpp(T ) := σ(Tpp), σac(T ) := σ(Tac), σsc(T ) := σ(Tsc).

Proof. First of all, let us note that, if vn ∈ H is a sequence converging to some v ∈ H, and if A ⊂ R is a
Borelian set, we have µvn(A) = 〈vn, χA(T )vn〉 −→ 〈v, χA(T )v〉 = µv(A).

We easily deduce from this that Hpp,Hac and Hsc are closed.
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Next, suppose that v, w belong to two different spaces. We have v = χsupp(µv)(T )v, so that

|〈v, w〉| = |〈χsupp(µv)(T )v, w〉|
= |〈χsupp(µv)(T )v, χsupp(µv)(T )w〉|
≤ |〈χsupp(µv)(T )v, χsupp(µv)(T )v〉|1/2|〈χsupp(µv)(T )w,χsupp(µv)(T )w〉|1/2

= |〈v, χsupp(µv)(T )v〉|1/2|〈w,χsupp(µv)(T )w〉|1/2

= µw(supp(µv)) = 0.

Therefore, the spaces Hpp,Hac and Hsc are mutually orthogonal.
Let v ∈ H. We may decompose µv as µv = µpp,v+µac,v+µsc,v. Let us write Πpp,v := χsupp(µpp,v)(T ),

Πac,v := χsupp(µac,v)(T ), Πsc,v := χsupp(µsc,v)(T ), so that v = Πpp,vv + Πac,vv + Πsc,vv.
Now, if f ∈ C0(R), we have

〈Πpp,vv, f(T )Πpp,vv〉 = 〈v, (χsupp(µpp,v)f)(T )〉,

so that µΠpp,vv is purely punctual. The other components are dealt with similarly, and we obtain that
H = Hpp ⊕Hac ⊕Hsc.

Finally, let v ∈ D(T ). By Corollary 3.1, the measure µv has a finite second moment. This implies
that its purely punctual, absolutely continuous and singular continuous parts do also have finite second
moments, so that ΠppD(T ) ⊂ D(T ),ΠacD(T ) ⊂ D(T ),ΠscD(T ) ⊂ D(T ).

Finally, if v ∈ D(T ) ∩Hi for i = pp, sc or ac, then we have

〈Tv, f(T )Tv〉 = 〈Πi,vTv, f(T )TΠi,vv〉
= 〈v,

(
x2f(x)χi,v(x)

)
(T )v〉,

so that Tv ∈ Hi

Lemma 3.6. Let (zi)i∈I denote the set of eigenvalues of T . We have

Hpp = ⊕i∈I ker(T − zi).

Proof. If v ∈ ker(T − zi) for some i ∈ I, then µv = δzi , so that v ∈ Hpp. Since Hpp is a closed vector

space, we have ⊕i∈I ker(T − zi) ⊂ Hpp.
Conversely, if v ∈ Hpp, we have µv =

∑
j∈J αjδj for some countable set J . Since µv(R) = ‖v‖, we

may find for any ε > 0 a finite subset Jε such that
∑
j∈J\Jε |αj | < ε. We can write

v =
∑
j∈Jε

χzj (T )v + w,

where w =
∑
j∈J\Jε χzj (T )v. We have µw =

∑
j∈J\Jε αjδzj , so ‖w‖ = µw(R) ≤ ε. Therefore, v can be

ε-approximated by a finite linear combination of eigenfunctions, which proves the result.

3.4 From spectral measures to long time behaviour (♠)

In this section, we work in the Hilbert space H = L2(Rd), and study the family of operators e−itH . The
basic properties of this family of operators are given in the exercise sheet. The following theorems are
called the RAGE theorems, after Ruelle, Amrein, Georgescu and Enss.

Theorem 3.2. Let H be a self-adjoint operator on H, and let ψ ∈ Hpp. We have

lim
R−→∞

sup
t≥0

∫
B(0,R)

|e−itHψ|2(x)dx = ‖ψ‖2

lim
R−→∞

sup
t≥0

∫
Rd\B(0,R)

|e−itHψ|2(x)dx = 0.
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Proof. First of all, note that e−itH is unitary, so we have

‖ψ‖2 =

∫
B(0,R)

|e−itHψ|2(x)dx+

∫
Rd\B(0,R)

|e−itHψ|2(x)dx.

Therefore, the two equations above are equivalent, and we will only prove the first one.
When ψ is an eigenfunction, we have Hψ = λψ for some λ ∈ R, so e−itHψ = e−iλtψ, and the result

follows from the fact that limR−→∞
∫
B(0,R)

|ψ|2 = ‖ψ‖2.

Suppose now that ψ is a finite linear combination of eigenfunctions:

ψ =

n∑
k=1

αkψk,

where Hψk = λkψk. We have

‖e−itHψ‖L2(Rd\B(0,R)) =
∥∥e−itH n∑

k=1

αkψk
∥∥
L2(Rd\B(0,R))

≤
n∑
k=1

|αk|
∥∥e−itHψk∥∥L2(Rd\B(0,R))

=

n∑
k=1

|αk|
∥∥ψk∥∥L2(Rd\B(0,R))

.

For any ε > 0, we may find R large enough such that this quantity is smaller than ε
∑n
k=1 |αk|. This

proves the result for finite linear combinations of eigenfunctions.
Now, if ψ ∈ Hpp, by Lemma 3.6, for any ε > 0, we may find α1, ..., αn ∈ R and eigenfunctions

ψ1, ..., ψn such that

ψ =

n∑
k=1

αkψk + ϕ,

where ‖ϕ‖ ≤ ε. We have

‖e−itHψ‖L2(Rd\B(0,R)) ≤
∥∥e−itH n∑

k=1

ψ
∥∥
L2(Rd\B(0,R))

+ ‖e−itHϕ‖L2(Rd\B(0,R))

≤
∥∥e−itH n∑

k=1

ψ
∥∥
L2(Rd\B(0,R))

+ ε.

Taking the supremum over t, the limit R −→∞ and then taking ε to zero finishes the proof.

Theorem 3.3. Let H be a self-adjoint operator on H, and let ψ ∈ Hac. We have, for any
ϕ ∈ L2(Rd)

lim
t−→∞

∫
Rd
ϕ(x)

(
e−itHψ

)
(x)dx = 0.

In other words, e−itHψ converges weakly to zero.

Proof. We have ∫
Rd
ϕ(x)

(
e−itHψ

)
(x)dx = 〈ϕ, e−itHψ〉

=

∫
R
e−itλdµϕ,ψ(λ).

We claim that µϕ,ψ is absolutely continuous. Indeed, let A have zero Lebesgue measure. We have

|µϕ,ψ(A)| = |〈ϕ, χA(H)ψ〉|
= |〈χA(H)ϕ, χA(H)ψ〉|
≤ |〈χA(H)ϕ, χA(H)ϕ〉|1/2|〈χA(H)ψ, χA(H)ψ〉|1/2

= µϕ(A)1/2µψ(A)1/2 = 0.
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By the Riemann-Lebesgue lemma, the Fourier transform of an absolutely continuous measure goes to
zero at infinity. The result follows.
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Chapter 4

The spectrum of Schrödinger
operators

4.1 Discrete and essential spectrum (♥)

Definition 4.1. Let T be a self-adjoint operator on H. We define its discrete spectrum as

σdisc(T ) = {λ ∈ σ(T ) : ∃ε > 0 with dim Ranχ(λ−ε,λ+ε)(T ) <∞}.

The essential spectrum of T is then defined as

σess(T ) = σ(T )\σdisc(T ).

Lemma 4.1. Let λ ∈ R. λ belongs to the discrete spectrum of T if and only if λ is an isolated
eigenvalue of T of finite multiplicity.

Proof. Let λ ∈ σdisc(T ). Then there exists ε0 > 0 such that χ(λ−ε,λ+ε)(T ) does not depend on ε for
0 < ε < ε0. This operator is not zero, since λ ∈ σ(T ). Therefore, we have

χ{λ}(T ) = lim
ε→0

χ(λ−ε,λ+ε)(T ) 6= 0.

Using Proposition 3.2, point 6, we obtain that λ is an eigenvalue with finite multiplicity. Now, since
χ(λ−ε0,λ) = 0 and χ(λ,λ+ε0) = 0, we have σ(T ) ∩ (λ − ε0, λ + ε0) = {λ}, so that λ is isolated in the
spectrum.

Conversely, suppose that λ is an isolated eigenvalue of finite multiplicity. There exists ε0 > 0 such
that σ(T ) ∩ (λ − ε0, λ + ε0) = {λ}, so that χ(λ−ε0,λ)(T ) = χ(λ,λ+ε0)(T ) = 0. Since dim Ranχ{λ}(T ) =
dim ker(T − λ) is finite, we have

dim Ranχ(λ−ε0,λ+ε)(T ) = dim Ranχ(λ−ε0,λ)(T ) + dim Ranχ{λ}(T ) + dim Ranχ(λ,λ+ε0)(T ) <∞.

Example 4.1. Let T be a compact operator. Then σess(T ) = {0}.
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Proposition 4.1 (Weyl’s criterion for essential spectrum). Let λ ∈ R. Then λ ∈ σess(T ) if and
only if there exists a sequence vn ⊂ D(T ) such that

1. ‖vn‖ = 1

2. vn converges weakly to zero

3. ‖(T − λ)vn)‖ −→ 0.

Such a sequence is called a singular Weyl sequence. Furthermore, the first two conditions can
actually be replaced by 1’. vn is orthonormal sequence.

Proof. Suppose that λ is such that there exists a sequence vn satisfying the three conditions. By Weyl’s
criterion, we know that λ ∈ σ(T ). Suppose for contradiction that λ ∈ σdisc(T ). Let Π be the orthogonal
projector on ker(T −λ). It is finite-dimensional, hence compact, so Πvn −→ 0. In particular, there exists
n0 such that for all n ≥ n0, we have ‖(Id−Π)vn‖ ≥ 1/2.

One the one hand, λ being isolated in the spectrum, there exists c > 0 such that

‖(T − λ)(Id−Π)vn)‖ ≥ c‖(Id−Π)vn)‖ ≥ c/2.

On the other hand, we have ‖(T − λ)(Id−Π)vn)‖ = ‖(Id−Π)(T − λ)vn)‖ −→ 0, which gives us the
desired contradiction.

Conversely, suppose that λ ∈ σess(T ). We then have dim Ranχ(λ−ε,λ+ε)(T ) = ∞ for all ε > 0.
Therefore, we may find a sequence εn going to zero such that dim RanχIn\In+1

(T ) =∞ for all n, where
In = (λ− εn, λ+ εn).

For each n, we choose a vn ∈ RanχIn\In+1
with ‖vn‖ = 1. The vectors vn are then orthogonal to

each other, and hence converge weakly to zero. We have

‖(T − λ)vn‖ = ‖(T − λ)χIn\In+1
vn‖ ≤ εn,

which goes to zero.

Theorem 4.1 (Stability of the essential spectrum). Let A,B be self-adjoint operators on H.
Suppose that there exists z ∈ ρ(A) ∩ ρ(B) such that K(z) := (A− z)−1 − (B − z)−1 is a compact
operator. Then σess(A) = σess(B).

Note that, using the resolvent identities, if K(z) is a compact operator for some z ∈ ρ(A) ∩ ρ(B),
then K(z) is compact for all z ∈ ρ(A) ∩ ρ(B).

Proof. Let λ ∈ σess(A), and let (vn) be an associated singular Weyl sequence. Let us write wn :=
1

‖(B−z)−1vn‖ (B − z)
−1vn, and show that wn is a singular Weyl sequence for B. We have

1

z − λ
(B − λ)(B − z)−1vn =

(
(B − z)−1 − 1

λ− z

)
vn

=
(

(A− z)−1 − 1

λ− z

)
vn −K(z)vn

=
1

z − λ
(A− λ)(A− z)−1vn −K(z)vn −→ 0,

since K is compact, and vn converges weakly to zero. Now, since K(z)vn −→ 0, we have

‖(B − z)−1vn‖ ∼ ‖(A− z)−1vn‖ −→
1

λ− z
,

by the previous computations. We therefore have ‖(B − λ)wn‖ −→ 0. Finally, one easily shows that wn
converges weakly to zero.
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Definition 4.2. Let A be a self-adjoint operator, and B be a closable operator. We say that B
is A-compact if there exists z ∈ ρ(A) such that B(A− z)−1 is compact.

By the resolvent identities, we see that if B(A−z)−1 is compact for some z ∈ ρ(A), then it is compact
for all z ∈ ρ(A).

Lemma 4.2. Suppose that B is A-compact. Then B is relatively bounded with respect to A, with
relative bound 0.

Proof. The key of the proof is to show that

lim
λ→∞

‖B(A− iλ)−1‖ = 0. (4.1)

Suppose that (4.1) holds. Then, for any a > 0, we can find λ > 0 such that for any v ∈ H, we have

‖B(A− iλ)−1v‖ ≤ a‖v‖.

Since (A− iλ)−1 is a bijection from H to D(A), we deduce that for any w ∈ D(A), we have

‖Bw‖ ≤ a‖(A− iλ)w‖ ≤ a‖A‖w + aλ‖w‖,

which shows that B is relatively bounded with respect to A, with relative bound ≤ a for any a > 0.
Let us prove (4.1). Suppose for contradiction that (4.1) does not hold. Then there exists c > 0 such

that, for any n ∈ N, we may find vn ∈ H such that ‖B(A − in)−1vn‖ ≥ c‖vn‖2 for every n ∈ N. Write
wn := (A− in)−1vn. We have

‖vn‖2 = ‖(A− in)wn‖2 = ‖Awn‖2 + n2‖wn‖2.

Therefore,
‖Bwn‖2 ≥ c‖Awn‖2 + cn2‖wn‖2.

We may change the normalization to assume that ‖Bwn‖2 = 1. Therefore, Awn is bounded, and wn
converges to zero.

Let z ∈ ρ(A). The sequence (A − z)wn is bounded, so we may extract a converging subsequence
from Bwn = B(A− z)−1(A− z)wn. The limit is then some vector u with ‖u‖ = 1. But we have shown
that wn −→ 0. Therefore, since B is closable, we must have u = B(0H) = 0H, which gives the desired
contradiction.

Theorem 4.2. Let A be a self-adjoint operator on H, and let B be a symmetric operator on
H. Suppose that B is A-compact. Then the operator A + B with domain D(A + B) = D(A) is
self-adjoint, and we have

σess(A+B) = σess(A).

Proof. The fact that A+B is self-adjoint follows from Theorem 2.2, and from Lemma 4.2.
To show that σess(A+B) = σess(A), we use Theorem 4.1, noting that for z /∈ R, we have

(A− z)−1 − (A+B − z)−1 = (A+B − z)−1B(A− z)−1.

4.1.1 Essential spectrum of Schrödinger operators (♥)

Definition 4.3. Let d ≤ 3, and let V : Rd −→ R be a measurable function. We say that V
belongs to the Kato class if for every ε > 0, we can find V1 ∈ L∞(Rd) and V2 ∈ L2(Rd) such that
V = V1 + V2, and ‖V1‖∞ ≤ ε.

Theorem 4.3. Let T = −∆, with D(T ) = H2(Rd). Let V belong to the Kato class. Then MV

is relatively compact with respect to T . In particular, σess(−∆ + V ) = [0,+∞).
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Proof. Let z ∈ C\R. For any f ∈ L2(Rd), we have

F
(
(T − z)−1f

)
(ξ) = (|ξ|2 − z)−1

(
Ff
)
(ξ).

We therefore have (T − z)−1f = Gz ? f , where Gz ∈ L2(Rd) is the function such that FGz(ξ) =
(2π)−d/2(|ξ|2 − z)−1, and where ? denotes the convolution product.

Let ε > 0, V1 ∈ L∞(Rd), V2 ∈ L2(Rd) be such that ‖V1‖L∞ < ε and V = V1 + V2. The operator
V2(T − z)−1 is an integral operator, with integral kernel K(x, y) = V2(x)Gz(x− y). We have∫

Rd

∫
Rd
|K(x, y)|2dxdy =

∫
Rd

∫
Rd
|V2(x)|2|Gz(x− y)|2dxdy

=

∫
Rd
|V2(x)|2dx

∫
Rd
|Gz(y)|2dy

= ‖V2‖2L2‖Gz‖2L2 <∞.

Therefore, V2(T − z)−1 is a Hilbert-Schmidt operator, hence compact (cf the exercises)
We have ‖V1(T − z)−1‖ ≤ ε‖(T − z)−1‖, which goes to zero with ε. The operator V (T − z)−1 is the

limit of a sequence of compact operators. It is therefore compact (cf the exercises), which concludes the
proof.

Example 4.2 (Essential spectrum of the Coulomb operator). Let d = 2 or d = 3. The potential V = q
|x|

can be written as V = V|B(0,R) + V|Rd\B(0,R). For R large enough, we have ‖V|Rd\B(0,R)‖L∞ ≤ ε, while

V|B(0,R) ∈ L2(Rd). Therefore, we have σess(−∆ + V ) = [0,+∞).

Theorem 4.4. Let V ∈ L∞(Rd). Suppose that there exists α ∈ R such that the set Ω := {x ∈
Rd;V (x) < α} has finite Lebesgue measure. Then the operator −∆ + V with domain H2(Rd) is
self-adjoint, and has purely discrete spectrum in (−∞, α).

Proof. Let us write U := (V −α)1Ω, and W = V −U . The potential U belongs to L2, since it is bounded
with a support of finite measure. In particular, U is in the Kato class, so U(−∆ − z)−1 is compact for
any z ∈ C\R. Now, for any z ∈ C\R, we have

U(−∆ +W − z)−1 = U(−∆− z)−1 + U(−∆− z)−1W (−∆ +W − z)−1,

so that U(−∆ +W − z)−1 is compact. We deduce that

σess(−∆ + V ) = σess(−∆ +W ).

But , since W ≥ α, we have σ(−∆ +W ) ⊂ [α,+∞). Therefore, σess(−∆ + V ) ⊂ [α,+∞).

4.1.2 Negative eigenvalues of Schrödinger operators (♣)

Proposition 4.2. Let V ∈ L1(R2) ∩ L∞(R2) be such that∫
R2

V (x)dx < 0.

Then the operator −∆ + V has at least one negative eigenvalue.

Remark 4.1. One can show that such a general result cannot hold when d ≥ 3, because of Hardy’s
inequality.

Proof. The potential V belongs to the Kato class, so σess(−∆ + V ) = [0,∞). If we can find ψ ∈
D(−∆ + V ) = H2(R2), such that 〈v, (−∆ + V )v〉 < 0, then this will show the existence of a negative
eigenvalue. Indeed, we have 〈v, (−∆ + V )v〉 =

∫
σ(−∆+V )

λdµψ, so this quantity can be negative only if

σ(−∆ + V ) ∩ (−∞, 0) 6= ∅.
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Let ε > 0. Consider ψε(x) = e−|x|
ε/2. We have

〈ψε,−∆ψε〉 =

∫
R2

|∇ψε(x)|2dx

=
ε2

4

∫
R2

|x|2ε−2e−|x|
ε

dx

= π
ε2

2

∫ +∞

0

r2ε−1e−r
ε

dr

= π
ε

2

∫ +∞

0

ue−udu = cε.

On the other hand, ∫
R2

|ψε|2V (x)dx −→ c′
∫
R2

V (x)dx < 0

Therefore, for ε > 0 small enough, ψε satisfies 〈ψε, (−∆ + V )ψε〉 < 0.

Rellich’s theorem

We will not prove the following theorem, which says that a Schrödinger operator cannot have positive
eigenvalues, when the potential decays fast enough at infinity.

Theorem 4.5 (Rellich). Let V ∈ C∞c (Rd). If u ∈ H2(Rd) satisfies

(−∆ + V )u = λu

for some λ ≥ 0, then we have u ≡ 0.

Therefore, when V ∈ C∞c (Rd), the Schrödinger operator has only finitely many eigenvalues. However,
in the next section, we will define its scattering resonances, which often play the role of ”generalized
eigenvalues”.

4.2 Scattering theory and resonances (♠)

In this section, we will always work in d = 3 dimensions, for simplicity.

4.2.1 The free resolvent in dimension 3 (♠)

For =λ > 0, consider the meromorphic family of operators

R0(λ) := (−∆− λ2)−1 : L2(R3)→ L2(R3).

As an easy application of a the spectral theorem, we have

‖R0(λ)‖L2→L2 ≤ 1

|λ|=λ
.

Proposition 4.3. For any f ∈ L2(R3), and any λ with =λ > 0, we have

(
R0(λ)f

)
(x) =

∫
R3

R0(x, y;λ)f(y)dy, (4.2)

where

R0(x, y;λ) =
eiλ|x−y|

4π|x− y|
.
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Proof. We have f = (−∆− λ2)R0(λ)f , so, applying the Fourier transform, we obtain

Ff(ξ) = (|ξ|2 − λ2)F
(
R0(λ)f

)
(ξ),

so that (
R0(λ)f

)
= F−1

( 1

|ξ|2 − λ2
Ff
)

=
1

(2π)3/2
F−1

( 1

|ξ|2 − λ2

)
? f.

Therefore, (4.2) holds, with R0(x, y;λ) = R0(x− y, λ), where

R0(x;λ) =
1

(2π)3/2
F−1

( 1

|ξ|2 − λ2

)
=

1

(2π)3

∫
R3

eix·ξ

|ξ|2 − λ2
dx

=
1

(2π)3

∫ +∞

0

∫
S2

eirx·ω

r2 − λ2
r2drdω.

Now, we have ∫
S2

eirω·xdω =
2π

ir|x|
(
eir|x| − e−ir|x|

)
. (4.3)

Indeed, Note that the left-hand side of (4.3) is a function of r and |x|, but not of x/|x|. We may therefore
assume that x = (0, 0, |x|) in the canonical basis of R3. Working in spherical coordinates, we obtain∫

S2

eirω·xdω =

∫ 2π

θ=0

∫ π

ϕ=0

eir|x| cosϕ sinϕdϕdθ

= 2π
[eir|x| cosϕ

ir|x|

]π
ϕ=0

=
2π

ir|x|
(
eir|x| − e−ir|x|

)
.

Using (4.3), we obtain

R0(x, λ) =
1

(2π)2i|x|

∫ +∞

0

r

r2 − λ2
(eir|x| − e−ir|x|

)
dr

=
1

8iπ2|x|

∫
R

r

r2 − λ2
(eir|x| − e−ir|x|

)
dr

=
1

8iπ2|x|

∫
R

r

r2 − λ2
eir|x|dr − 1

4iπ

∫
R

r

r2 − λ2
e−ir|x|dr

Now, the map r 7→ r
r2−λ2 e

ir|x| is meromorphic, with simple poles at r = ±λ. It goes to zero when
r →∞ with =r ≥ 0, so we can use the residue theorem to obtain∫

R

r

r2 − λ2
eir|x|dr = 2iπRes

( r

r2 − λ2
eir|x|

)∣∣∣
r=λ

= 2iπ
λ

2λ
eiλ|x| = iπeiλ|x|

Similarly, we have ∫
R

r

r2 − λ2
e−ir|x|dr = −2iπ

(−λ)

−2λ
eiλ|x| = −iπeiλ|x|,

so that

R0(x, λ) =
1

8iπ2|x|
2iπeiλ|x| =

eiλ|x|

4π|x|
,

which proves the result.
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The map λ 7→ R0(x, y;λ) is holomorphic in all C, smooth in x and y, but it decays when |x−y| −→ ∞
only when =λ > 0. Therefore, for any ρ ∈ C∞c (R3), the map

ρR0(λ)ρ : L2(R3) −→ H2(R3)(
ρR0(λ)ρf

)
(x) =

∫
R3

ρ(x)
eiλ|x−y|

4π|x− y|
ρ(y)f(y)dy

is well defined for all λ ∈ C. In other words, the map R0(λ) : L2
comp(R3) −→ H2

loc(R3), initially defined
for =λ > 0, can be holomorphically continued to C.

Remark 4.2. Here, we defined R0(λ) for =λ > 0, and we extended it to =λ ≤ 0. We could also have
started by defining R0(λ) for =λ < 0, and then extend it to =λ ≥ 0. The two procedures don’t give the
same result!

The first procedure gives what is called the outgoing resolvent, sometimes denoted by R0(λ + i0), to
recall that it was first defined for =λ > 0, while the second one is called the incoming resolvent, and is
sometimes denoted by R0(λ− i0).

4.2.2 Scattering resonances (♠)

From now on, we fix V ∈ C∞c (R3).

Lemma 4.3. There exists C(V ) > 0 such that, for all λ ∈ C with =λ > C(V ), (−∆ + V − λ2)
is invertible

Proof. First of all, note that for all λ ∈ C with =λ > 0, we have

(−∆ + V − λ2)R0(λ) = Id+ V R0(λ). (4.4)

Multiplication by V is a bounded operator, and R0 is small if =λ is large enough. Therefore,
‖V R0(λ)‖L2→L2 < 1 for =λ large enough. We may hence invert Id + V R0(λ) by a Neumann series
for =λ >> 1. The result follows.

Equation (4.4) still holds when =λ ≤ 0, as an identity between operators from L2
comp(R3) to L2

loc(R3).

Theorem 4.6. Let V ∈ C∞c (R3). The map

λ 7→ (−∆ + V − λ2)−1 : L2
comp(R3) −→ L2

loc(R3)

extends as a meromorphic family of operators to z ∈ C. Its poles are called the (scattering)
resonances of −∆ + V . If λ ∈ C is a resonance, then ker(−∆ + V − λ2) is finite dimensional.

Proof. We start with a few resolvent identities.

Lemma 4.4. Let ρ ∈ C∞c (R3) such that ρ = 1 on the support of V . The following identities hold
for all λ ∈ C, as identities between operators from L2

comp to L2
loc:(

I − V R0(λ)(1− ρ)
)−1

= Id+ V R0(λ)(1− ρ)

(−∆ + V − λ2)R0(λ) =
(
Id+ V R0(λ)(1− ρ)

)(
Id+ V R0(λ)ρ

)
.

Proof. For the first formula, we invert
(
I − V R0(λ)(1 − ρ)

)
by a Neumann series, noticing that all the

terms vanish starting from the third.
The second equality is proven as follows:

(−∆ + V − λ2)R0(λ) = Id+ V R0(λ)ρ+ V R0(λ)(1− ρ)

=
(
Id+ V R0(λ)(1− ρ)

)(
Id+ V R0(λ)ρ

)
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Lemma 4.5. Let Ω ⊂ C be a connected open set, and (K(z))z∈Ω be a holomorphic family of

compact operators. Suppose that there exists z0 ∈ Ω such that
(
Id + K(z0)

)−1
exists. Then

the family (
(
Id + K(z)

)−1
)z∈Ω is meromorphic and has poles of finite rank. In other words,

(
(
Id +K(z)

)
is invertible on C\S, where S is a discrete set, and at each z ∈ S, ker

(
Id +K(z)

)
has finite rank.

Sketch of proof. We first work in a neighbourhood of a point z0 such that
(
Id +K(z0)

)
is invertible. We

may then use a connectedness argument to show that the conclusions are valid on all of C.
We may find r > 0 such that for all z ∈ B(z0, r), we have ‖K(z) − K(z0)‖ < 1/4. Since K(z0) is

compact, we may find a finite rank operator F such that ‖K(z0)−F‖ < 1/4. Therefore, ‖K(z)−F‖ < 1/2,
so that Id +K(z)− F is invertible, with an analytic inverse. We then write

Id +K(z) =
(
Id +K(z)− F

)(
Id +

(
Id +K(z)− F

)−1
F
)
.

Therefore, Id+K(z) is invertible if and only if g(z) :=
(

Id+
(
Id+K(z)−F

)−1
F
)

is invertible. Using

the fact that F has finite rank, we may then show that g(z) is invertible if and only if the determinant
of some finite matrix depending analytically on z does not vanish. This proves the result.

By the first equation in Lemma 4.4, Id+V R0(λ)(1−ρ) is always invertible. Therefore, by the second
identity in Lemma 4.4, (−∆ + V − λ2) is invertible if and only if

(
Id+ V R0(λ)ρ

)
is invertible.

z 7→
(
Id + V R0(λ)ρ

)
is a holomorphic family of operators. Furthermore, since V R0(λ)ρ maps L2

into H2, and since H2 embeds compactly in L2, V R0(λ)ρ : L2(R3)→ L2(R3) is compact. We saw in the
first question that

(
Id + V R0(λ)ρ

)
is invertible for =λ >> 1. Therefore, we may apply Lemma 4.5 to

conclude that ρ(−∆ + V − λ2)−1ρ extends to λ ∈ C as a meromorphic family of operators.
Let us check that its poles do not depend on ρ.

(
Id+ V R0(λ)ρ

)
is not invertible at λ if and only if

there exists u ∈ L2(R3) such that u = −V R0(λ)ρu. Since u must be supported on the support of V , the
precise choice of ρ we make does not matter.

Remark 4.3. It is not hard to see that the scattering resonances of −∆ + V with positive imaginary
part correspond precisely to the square roots of the negative eigenvalues of −∆ + V .

Furthermore, Rellich’s theorem can be improved to show that −∆ + V has no resonances on the real
axis.
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