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a b s t r a c t

Let (X, Y ) be a randompair taking values inRd
× J , where J ⊂ R is supposed to be bounded.

We propose a plug-in estimator of the level sets of the regression function r of Y on X ,
using a kernel estimator of r . We consider an error criterion defined by the volume of the
symmetrical difference between the real and estimated level sets.We state the consistency
of our estimator, and we get a rate of convergence equivalent to the one obtained by Cadre
(2006) for the density function level sets.

© 2012 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the problem of estimating the level sets of a regression function. More precisely, consider a
random pair (X, Y ) taking values in Rd

× J , where J ⊂ R is supposed to be bounded. The goal of this paper is then to build
an estimator of the level sets of the regression function r of Y on X , defined for all x ∈ Rd by

r(x) = E [Y |X = x].

For t > 0, a level set for r is defined by

L(t) = {x ∈ Rd
: r(x) > t}.

Assume that we have an independent and identically distributed sample (i.i.d.) ((X1, Y1), . . . , (Xn, Yn)) with the same
distribution as (X, Y ). We then consider a plug-in estimator of L(t). More precisely, we use a consistent estimator r̂n of r ,
in order to estimate L(t) by

Ln(t) = {x ∈ Rd
: r̂n(x) > t}.

Most of the research works on the estimation of level sets concern the density function. One can cite the works of Cadre
(2006), Cuevas and Fraiman (1997), Hartigan (1987), Polonik (1995), Tsybakov (1997), Walther (1997). This large number of
works on this subject is motivated by the high number of possible applications. Estimating these level sets can be useful in
mode estimation (Müller & Sawitzki, 1991; Polonik, 1995), or in clustering (Biau, Cadre, & Pelletier, 2007; Cuevas, Febrero, &
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Fraiman, 2000, 2001). In particular, Biau et al. (2007) use an estimator of the level sets of the density function to determine
the number of clusters.

The same applications are possible with the regression function. Moreover, it is for instance possible to use an estimator
of the level sets of the regression function to determine the path of water flow from a digital representation of an area. In
the same vein, in medical imaging, people want to estimate the areas where some function of the image exceeds a fixed
threshold. In medical decision making, we can also find a lot of applications. For instance, the severity of the cancer is
characterized by a variable Y which directly impacts the choice of standard or aggressive chemotherapy. For osteosarcoma
(Man et al., 2005), Y is the percent necrosis in the tumor after a first round of treatment. If Y > 0.9 (this threshold has
been fixed by experts and is now the convention), the aggressive chemotherapy will be chosen. The problem is that Y is
measured using an invasive biopsy. If we can collect from the patient a feature vector X (which acquisition is easier), such
as gene expression levels, knowledge of the regression level sets would allow the choice of an efficient treatment planning
without a biopsy. Note that, in these examples, the use of a compact set J is fully justified. This is generally the case in most
practical situations, particularly in image analysis.

Despite the many potential applications, the estimation of the level sets of the regression function has not been widely
studied. Müller (1993) mentioned it briefly in his survey. Nowak and Willett (2007) obtained minimax rates (for different
smoothness classes) for estimators based on recursive dyadic partitions. Scott and Davenport (2007) use a cost sensitive
approach and a different measure of risk. Cavalier (1997) and Polonik and Wang (2005) used estimators based on the
maximization of the excess mass which was introduced by Müller and Sawitzki (1991) and Hartigan (1987). Cavalier
demonstrated asymptoticminimax rate of convergence for piecewise polynomial estimators using smoothness assumptions
on the boundary of the level sets. We used a different approach and construct a plug-in estimator using the kernel estimator
of the regression. The main advantage of our estimator is the simplicity of his calculation, inherited from the plug-in
approach. Moreover, our estimator does not require strong assumptions on the shape of level sets.

All our consistency results are in the sense of the symmetrical difference (Fig. 1), defined by
Ln(t)∆L(t) = (Ln(t) ∩ LC (t)) ∪ (LC

n (t) ∩ L(t)).

Fig. 1. Symmetrical difference (in black) between two sets A (in red) and B (in blue). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Our goal is to establish some consistency results under reasonable assumptions on r and r̂n. Using a kernel estimator for
r , we get a rate of convergence equivalent to the one obtained by Cadre (2006) for the density function.

This paper is organized as follows. The definition of our estimator and consistency results are given in Section 2. In
Section 3 we confront our estimator to simulated data. Finally, proofs are collected in Section 4.

2. Main results

2.1. Construction of the estimator

As announced, we use a plug-in approach. That is, given an estimator rn of r we estimate {x ∈ Λ : r(x) > t} by
{x ∈ Λ : rn(x) > t}. To estimate r , we choose to consider a kernel estimator.

Assume that we can write

r(x) =
ϕ(x)
f (x)

,

where f is the density function of X , and ϕ is defined by ϕ(x) = r(x)f (x).
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Let K be a kernel on Rd, that is a probability density on Rd. We denote h = hn and Kh(x) = K(x/h). From an i.i.d. sample
((X1, Y1), . . . , (Xn, Yn)), we define, for all x ∈ Rd,

ϕn(x) =
1

nhd

n
i=1

YiKh(x − Xi) and fn(x) =
1

nhd

n
i=1

Kh(x − Xi).

For all x ∈ Rd, the kernel estimator of r is then defined by

rn(x) =


ϕn(x)/fn(x) if fn(x) ≠ 0
0 otherwise.

The properties of this estimator are already well studied in the literature. For instance, the interesting reader can look at
Bosq and Lecoutre (1987) or Gasser and Müller (1979).

Under the assumption
A0 There exists t− < t such that L(t−) is compact. Besides, λ({r = t}) = 0 (where λ stands for the Lebesgue measure),

a first consistency result can be trivially obtained from a slight modification of Theorem 3 by Cuevas, González-Manteiga,
and Rodríguez-Casal (2006) and the consistency properties of the kernel estimator.

Proposition 2.1. Under Assumption A0, if K is bounded, integrable, with compact support and Lipschitz, and if h → 0 and
nhd/ log n → ∞, then

E λ (Ln(t)∆L(t)) →
n→∞

0.

Note that the last part of assumption A0means that the regression function cannot have a null derivative at the estimated
level set.

2.2. Rate of convergence

From now on,Θ ⊂ (0, supRd r) is an open interval. Let us introduce the following assumptions:
A1 The functions r and f are twice continuously differentiable, and, ∀t ∈ Θ, ∃0 < t− < t : infL(t−) f > 0;
A2 For all t ∈ Θ ,

inf
r−1({t})

∥▽r∥ > 0,

where, ▽ψ(x) stands for the gradient at x ∈ Rd of the differentiable function ψ : Rd
→ R.

The assumptions A1 on the regularity are inherited from the classical assumptions in kernel estimation (Bosq & Lecoutre,
1987). Note that ‘‘harder’’ assumptions on the regularity of r and f will not improve the obtained rate of consistency.
Moreover, let us mention that under Assumptions A1 and A2, we have (Proposition A.2 in Cadre (2006))

∀t ∈ Θ : λ(r−1
[t − ε, t + ε]) → 0 as ε → 0.

Let us now introduce the assumptions on the kernel K .
A3 K is a continuously differentiable with a compact support. Moreover, there exists a decreasing function µ : R+

→ R
such that K(x) = µ(∥x∥) for all x ∈ Rd.

We are now in a position to establish a rate of convergence for E λ(Ln(t)∆L(t)).

Theorem 2.1. Under Assumptions A0–A3, if nhd/(log n) → ∞ and nhd+4 log n → 0, then for almost all t ∈ Θ

E λ(Ln(t)∆L(t)) = O(1/
√

nhd).

Remarks. • Roughly speaking, the assumptions about the bandwidth impose to take h between ( log nn )
1
d and (n log n)

−1
d+4 .

Moreover, if we take h = O((n log n)
−1
d+4 ), we get

√

nhd = O


n

2
d+4

(log n)
d

2(d+4)



= O


n1/3

(log n)1/6


with d = 2,

that is a rate of the same order as Cadre (2001) in the density case.
• A remaining and crucial problem is the research of an optimal bandwidth h for our estimator. Indeed, if they are already

results in the literature about an optimal bandwidth for the estimation of r , this bandwidth is not necessarily optimal for
estimating L(t). However, in the simulations, we used a cross-validation procedure to choose a bandwidth.
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2.3. Discussion about the rate

In this section, we provide a short comparisonwith the estimator proposed by Cavalier. Indeed, we choose this estimator
because it is proven to be optimal (Cavalier, 1997).

The main idea of this estimator is that the level set L(t)minimizes the excess mass

M(G) =


G
f (x)dx − t ∗ λ(G).

Starting from this, Cavalier proposes to introduce estimators with piecewise-polynomial structure based on the
maximization of local empirical excess mass. Assuming that L(t) can be expressed as

L(t) = {x = (r, ϕ), 0 ≤ r < 2π},

with g a 2π-periodic continuous function on R, one starts by computing a piecewise-polynomial estimator ĝ of g . Then, the
estimate of L(t) is given by the closure of

{(r, ϕ) : 0 ≤ r < ĝ(ϕ), 0 ≤ ϕ < 2π}.

Note that this estimate is always star-shaped.
Depending on the used kind of design points, Cavalier obtains optimal rates of consistency.
If our estimator fails to get an optimal rate, its main advantage is its simplicity. Indeed, where getting the estimator ĝ of

g could be a little difficult, our estimator is really easy to implement. One only needs to do is compute a kernel estimation of
the regression function (with one of the various existing R packages) and use the results to estimate the level set. Moreover,
despite the regularity assumptions for f and r inherited from the use of a kernel estimator, our rate of consistency is obtained
for general shapes of level sets. For example, we do not require that the level sets are star-shaped.

3. Study of finite sample behavior

In this section, we illustrate our method on a simple simulated data set. Consider the function r defined on R2 (Fig. 2) by

r : (u, v) →
sin(u)+ sin(v)

log
√

u2 + v2 + 1
 .

Fig. 2. Representation of r .

Theoretically, our results are established for a function r defined on R2. However, in order to compute easily the volume of
the symmetrical difference,wewill restrict ourselves to a bounded square. LetX be a randompairwith a uniformdistribution
on the square [−20, 20] × [−20, 20]. The size of the square is large enough to contain the level sets we will consider. We
set Yi = r(Xi)+ εi, where (X1, . . . , Xn) is an i.i.d. sample distributed as X , and (ε1, . . . , εn) is an i.i.d. sample with a normal
distribution centered on 0 and with standard deviation 0.1 (X ≡ N (0, 0.1)).

3.1. Illustration of the rate

In this section we illustrate our theoretical rate of convergence obtained in Theorem 2.1. We use the function npreg of
the R package ‘‘np’’ to perform the kernel estimation function, and the bandwidth is given by h = (n log n)−1.1/6. Then, we
use a Monte Carlo approach to estimate the volume of the symmetrical difference (on the square [−20, 20] × [−20, 20]).
The error is then expressed in percents of the volume of the square.

For a level t = 1 and different values of n, we give the error multiplied by the rate of Theorem 2.1
√
nh2 in Fig. 3.

This figure seems to confirm the rate obtained in Theorem 2.1. Note that we consider a very large square, what can
decrease artificially the error. However, it does not really matter since it does not change the conclusion.



T. Laloë, R. Servien / Journal of the Korean Statistical Society ( ) – 5

Rate of consistency
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Fig. 3. Illustration of the rate: the curve represents the estimated error multiplied by
√
nh2 .

3.2. Selection of h by cross-validation

Nowwe use a simple cross-validation to select the bandwidth: for each value of nwe use half the dataset to compute the
kernel estimator with h (and the level set estimator) on a grid of 20 values between the limits allowed by the assumptions of
Theorem2.1 (see the first remark below Theorem2.1). Then, we use the remaining part of the dataset to evaluate the volume
of the symmetrical difference and select the optimal h. We compare the error obtained to the previous ones in Fig. 4.
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Fig. 4. Comparison of the error: the plain line stands for h = (n log n)−1.1/6 , and the dotted line for h selected by a cross-validation.

We see that our choice process of h does not improve the estimation of the level sets. If we compare the error multiplied
by

√
nh2 (Fig. 5), we see that we select a lower bandwidth.
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Fig. 5. Comparison of the rates: the plain line stands for h = (n log n)−1.1/6 , and the dotted line for h selected by a cross-validation.
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However, we cannot generalize about it sincewe are here in a very simple case.Moreover, we use a naive cross-validation
method. Looking formore efficientmethods to derive an optimal bandwidth for the level-set estimation is still an interesting
and opened question. For this, we could first think of the adaptation of method used for density level set estimation like
Rinaldo, Singh, Nugent, and Wasserman (2012) or Samworth and Wand (2010) for example.

4. Proofs

This section is dedicated to the proof of Theorem 2.1. From now on, c is a non-negative constant, which valuemay change
from line to line.

4.1. Proof of Theorem 2.1

In this proof, some arguments are classical result from the kernel density (or regression) estimation theory. For more
details, we refer the reader to the book by Bosq and Lecoutre (1987, Chapters 4 and 5).

From now on, we denote by ∂A the boundary of any subset A ⊂ Rd. Besides, we introduce H the (d − 1)-dimensional
Hausdorff measure (Evans & Gariepy, 2000). Recall that H agrees with ordinary ‘‘(k − 1)-dimensional surface area’’ on nice
sets (Proposition A.1 in Cadre (2006)). Finally, we setK =


K 2dλ.

4.1.1. Preliminary results
All the results in this sections are stated under Assumptions A0–A3. The proof of the theorem relies on the four following

lemmas.
Let us define

Ωn,c =


√

nhd sup
Ln(t)∪L(t)

|rn − r| ≥ c

log n


.

Lemma 4.1. If nhd+4/ log n → 0, then there exists Γ > 0 such that
√

nhdP(Ωn,Γ ) → 0.

Note that the condition nhd+4/ log n → 0 is satisfied under the assumptions of Theorem 2.1.

Proof of Lemma 4.1. As r is continuous, we have supL(t−) |r| < c . Assuming that infL(t−) f > 0, then, since supL(t−) |fn − f |
→ 0 a.s. under the assumptions of Lemma 4.1 (Bosq & Lecoutre, 1987), there exists θ > 0 such that infL(t−) fn > θ a.s. for n
large enough. So we can write

sup
L(t−)

|rn − r| = sup
L(t−)

ϕn − ϕ

fn
+ r

fn − f
fn


≤ c


sup
L(t−)

|ϕn − ϕ| + sup
L(t−)

|fn − f |


. (1)

We have

sup
L(t−)

|ϕn − ϕ| ≤ sup
L(t−)

|ϕn − Eϕn| + sup
L(t−)

|Eϕn − ϕ|.

We cover L(t−)with ℓn balls Bk = B(xk, ρn) (k = 1, . . . , ℓn) of radius ρn.
Consider x ∈ L(t−), we denote by Bk the ball containing x. Then we set, for x, x′

∈ L(t−),

An(x, x′) =
1
n

n
i=1

Yi

Kh(x − Xi)− Kh(x′

− Xi)

− E

1
n

n
i=1

Yi

Kh(x − Xi)− Kh(x′

− Xi)

,

which leads us to

sup
L(t−)

|ϕn − ϕ| ≤ sup
1≤k≤ℓn

|ϕn(xk)− Eϕn(xk)| + sup
x∈L(t−)

|An(x, xk)| + sup
L(t−)

|Eϕn − ϕ|. (2)

Then, since K is Lipschitz, there exists γ > 0 such that

|An(x, xk)| ≤ ch−d−γ ργn


1
n

n
i=1

|Yi| + E|Y |


≤ ch−d−γ ργn since Y is bounded.
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As a consequence, we have

P


sup

x∈L(t−)
|An(x, xk)| >

c
4


log n
nhd


≤ P


ch−d−γ ργn >

c
4


log n
nhd


.

One can choose

ρn = n−a, a > 0 and ργn = o


hd+γ


log n
nhd


,

such that

P


sup

x∈L(t−)
|An(x, xk)| > log n/

√

nhd


= 0. (3)

Then, using the arguments of the proof of Theorem 5.II.3 in Bosq and Lecoutre (1987), we obtain

∀ε > 0, P


sup
1≤k≤ln

|ϕn(xk)− Eϕn(xk)| > ε


< 2ℓne−

nhdε2
c .

If we set ε = ε0

log n/nhd, we have

P


sup

1≤k≤ln
|ϕn(xk)− Eϕn(xk)| > ε0


log n
nhd


≤ cℓnn−2ε0/c

≤ cn−2ε0/cρ−d
n .

Remember that ρn = n−a, with a > 0, one gets

√

nhdP


sup

1≤k≤ln
|ϕn(xk)− Eϕn(xk)| > ε0


log n
nhd


≤ cn1/2+ad−2ε0/c

√

hd (4)

which tends to 0 choosing ε0 >
(1/2+ad)c

2 .
Moreover, under A3, K is even which gives us

sup
L(t−)

|Eϕn − ϕ| = O


log n
nhd


,

and, using that nhd+4/ log n → 0 we obtain

√

nhdP


sup
L(t−)

|Eϕn − ϕ| ≥
c
2


log n
nhd


→ 0. (5)

From (2) and using (3)–(5) we obtain

√

nhdP


sup
L(t−)

|ϕn − ϕ| ≥ c


log n
nhd


→ 0.

From (1) and such as supL(t−) |fn − f | → 0 a.s., we conclude the proof. �

Consider t ∈ Θ . For all x ∈ L(t−), we define

Vn(x, t) = Var((Y − t)Kh(x − X)) and E rn(x) = Eϕn(x)/E fn(x).

For all x ∈ L(t−) such that Vn(x, t) ≠ 0, we set

tn(x) = E fn(x)


nh2d

Vn(x, t)
(t −Ern(x)).

Besides, we consider the sets

V t
n = r−1

[t, t + Γ

log n/nhd] ∩ L(t−) and V̄ t

n = r−1
[t − Γ


log n/nhd, t] ∩ L(t−).

Finally, we denote byΦ the distribution function of the standard normal N (0, 1), and we defineΦ(x) = 1 − Φ(x).
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Lemma 4.2. There exists c > 0 such that for all n ≥ 1, t ∈ R and x ∈ L(t−):

|P(rn(x) ≤ t)− Φ(tn(x))| ≤
c

√
nhd

.

Proof of Lemma 4.2. Set, for i = 1, . . . , n,

Zi(x, t) = (Yi − t)Kh(x − Xi), Z(x, t) = (Y − t)Kh(x − X).

By definition, we have Vn(x, t) = Var(Z(x, t)), and

P(rn(x) < t) = P


1
n

n
i=1

Zi(x, t) < 0



= P


1
n

n
i=1

(Zi(x, t)− E Z(x, t)) < −E Z(x, t)



= P


n

Vn(x, t)
1
n

n
i=1

(Zi(x, t)− E Z(x, t)) < tn(x)


.

Then, the Berry–Esseen inequality (Berry, 1941) gives us

|P(rn(x) < t)− Φ(tn(x))| ≤
c

nVn(x, t)3
E |(Y − t)Kh(x − X)− E(Y − t)Kh(x − X)|3 . (6)

Finally, under Assumptions A1 and A3, we have (see for example Bosq and Lecoutre (1987))

sup
x∈L(t−)

|(Y − t)Kh(x − X)− E(Y − t)Kh(x − X)|3 ≤ chd

and

inf
x∈L(t−)

Vn(x, t) ≥ chd.

The lemma can then be deduced from (6). �

Define nowΘ0 the set of all t inΘ such that

lim
ε↘0

1
ε
λ

r−1

[t − ε, t]


= lim
ε↘0

1
ε
λ

r−1

[t, t + ε]


=


∂L(t)

∥▽r∥−1dH .

The following result is proven in Cadre (2006, Lemma 3.2).

Lemma 4.3. Θ0 = Θ almost everywhere.

Note that under Assumptions A1 and A2, we obtain, thanks to Proposition A.2 in Cadre (2006),

λ

r−1

[t − ε, t + ε]


= λ

r−1(t − ε, t + ε)


,

for all t ∈ Θ and ε > 0 small enough.
Finally, we set

v(x) = Var(Y |X = x)+ r2(x),

and, for t ∈ Θ and x ∈ L(t−),

tn(x) = f (x)


nhdKf (x)(v(x)+ t2)

(t − r(x)).

We are now in a position to prove Lemma 4.4.

Lemma 4.4. If nhd/(log n) → ∞ and nhd+4 log n → 0, then for all t ∈ Θ0,

lim
n→∞

√

nhd


Vt
n

P(rn(x) < t)dx −


Vt
n

Φ(tn(x))dx


= 0,

and

lim
n→∞

√

nhd


V

t
n

P(rn(x) > t)dx −


Vt
n

Φ(tn(x))dx


= 0.
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Proof of Lemma 4.4. We only prove the first equation, the second one can be obtained with similar arguments.
Define En by

En =

√

nhd


Vt
n

|Φ(tn(x))dx − Φ(tn(x))dx|.

AsΦ is Lipschitz we have

En ≤ c
√

nhdλ(V t
n) sup

Vt
n

|tn − tn|. (7)

By definition of tn(x) and tn(x), we have, for all x ∈ V t
n,

1
√
nhd

|tn(x)− tn(x)| ≤ |t − r(x)|

 f (x)Kf (x)(v(x)+ t2)
−

E fn(x)
Vn(x, t)h−d

+


hd

Vn(x, t)
E fn(x)|r(x)−E rn(x)|

≤


log n
nhd




|f (x)Vn(x, t)h−d − (E fn(x))2K(v(x)+ t2)|K(v(x)+ t2)Vn(x, t)h−d


+


hd

Vn(x, t)
E fn(x)|r(x)−E rn(x)|. (8)

Remember that

|E rn(x)− r(x)| ≤
1

fn(x)
|Eφn(x)− φ(x)| + |r(x)|E|fn(x)− f (x)|. (9)

Since V t
n is included in L(t−), we can deduce (Bosq & Lecoutre, 1987) from A1, A3 and (9) that

sup
x∈Vt

n

|E rn(x)− r(x)| ≤ ch2. (10)

Moreover, if we set

V 1
n (x) = Var Kh(x − X), V 2

n = Var Y Kh(x − X),

we can writef (x)Vn(x, t)h−d
− (E fn(x))2K(v(x)+ t2)


≤ |f (x)|

Vn(x, t)h−d
−KE fn(x)(v(x)+ t2)

+ c|f (x)− E fn(x)|

≤ |f (x)|
Vn(x, t)h−d

−Kf (x)(v(x)+ t2)
+ c|f (x)− E fn(x)|

≤ |f (x)|

t2|V 1

n (x)h
−d

−Kf (x)| + |V 2
n (x)h

−d
−Kf (x)v(x)|

+ 2t |Cov (YKh(x − X), Kh(x − X))|)+ c|f (x)− E fn(x)|
≤ c


|V 1

n (x)h
−d

−Kf (x)| + |V 2
n (x)h

−d
−Kf (x)v(x)|

+ |Cov (YKh(x − X), Kh(x − X))| + |f (x)− E fn(x)|) .

Again, since V t
n ⊂ L(t−), we can deduce (Bosq & Lecoutre, 1987) from A1 and A3 that

sup
x∈Vt

n

|f (x)Vn(x, t)h−d
− (E fn(x))2K(v(x)+ t2)| ≤ ch. (11)

We deduce from (8), (10) and (11) that

sup
x∈Vt

n

|tn(x)− tn(x)| ≤ c


h log n +

√

nhk+4

.

Then, thanks to (7) and since t ∈ Θ0, we have for n large enough

En ≤ c

log n


h log n +

√

nhk+4

, (12)

which tends to 0 under the assumptions on h of Theorem 2.1. Finally, Lemma 4.2 leads us to
√

nhd


Vt
n

P(rn(x) < t)dx −


Vt
n

Φ(tn(x))dx


≤ cλ(V t
n)

which tends to 0 since λ(r−1
[t − ε, t + ε]) → 0. This and (12) ends the proof. �
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4.1.2. Proof of Theorem 2.1
We first note that

E λ (Ln(t)∆L(t)) =


L(t−)∩{r≥t}

P(rn(x) < t)dx +


L(t−)∩{r<t}

P(rn(x) ≥ t)dx.

Set

Pn,t(x) = P(rn(x) < t), Pn,t(x) = P(rn(x) ≥ t)

and remember that

V t
n = r−1

[t, t + Γ

log n/nhd] ∩ L(t−) and V̄ t

n = r−1
[t − Γ


log n/nhd, t] ∩ L(t−).

Consider t ∈ Θ0 and define

In =


Vt
n

Φ(tn(x))dx, In =


V

t
n

Φ(tn(x))dx.

We have

In =
1
2πK


Vt
n

 bn(x)

−∞

exp


−u2

2K

du dx

where bn(x) =

f (x)nhd(t − r(x))/


v(x)+ t2.

Besides,

bn(x) =


|ϕ(x)|
v(x)+ t2

b′

n(x),

with b′
n(x) =

√
nhd(t − r(x))/

√
|r(x)|. Then we can find two positive constants C1 and C2 (whose values will then change

from line to line) such that

C1b′

n(x) ≤ bn(x) ≤ C2b′

n(x),

which leads us to

In ≥
C1
2πK


Vt
n

 b′
n(x)

−∞

exp


−C2
1u

2

2K

du dx,

and

In ≤
C2
2πK


Vt
n

 b′
n(x)

−∞

exp


−C2
2u

2

2K

du dx.

Using the arguments of the proof of Proposition 3.1 in Cadre (2006), we obtain

C1

√

tK
√
2π


∂L(t)

1
∥▽r∥

∂H ≤ lim
n→∞

√

nhdIn ≤ lim
n→∞

√

nhdIn ≤ C2

√

tK
√
2π


∂L(t)

1
∥▽r∥

∂H .

With similar arguments, we have

C1


t
2π
K 

∂L(t)

dH
∥▽r∥

≤ lim
n→∞

√

nhdIn ≤ lim
n→∞

√

nhdIn ≤ C2


t
2π
K 

∂L(t)

dH
∥▽r∥

.

These inequalities, Lemmas 4.4 and 4.3 concludes the proof. �
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