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4 Poincaré series of a toric variety 33

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 33
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Introduction

Poincaré series and zeta functions appear in many fields in mathemat-

ics. Poincaré series are typically series for which the coefficients represent

discrete information about the class of the objects one is studying. An-

other kind of functions in which one puts relevant information are zeta

functions. The goal is then to deduce new properties of the object out of

these functions.

In this thesis we study a specific Poincaré series and some zeta func-

tions that are classical in the domain of singularity theory. The Poincaré

series that we investigate is defined for an algebraic variety with respect

to a set of discrete valuations. This Poincaré series became of high inter-

est when Campillo, Delgado and Gusein-Zade proved that for irreducible

plane curve singularities this series coincides with the zeta function of

monodromy. Since then, the Poincaré series has been studied e.g. for

reducible plane curve singularities, for rational surface singularities and

for quasi-homogenous singularities. A lot of interesting facts were dis-

covered. It has been shown that the Poincaré series can be written as

an integral with respect to the topological Euler-Poincaré characteristic;

also for quasi-homogeneous singularities a relation was found between the

Poincaré series and the zeta function of monodromy; for reducible plane

curve singularities, the Poincaré series equals the Alexander polynomial

of the link of the singularity; for a curve in a surface with a rational sin-

gularity, the Poincaré series of both varieties were shown to be related

when using a resolution for the surface that gives an embedded resolution

for the curve, etc.

A second object of study in this thesis is about the topological zeta func-

tion and about the zeta function of monodromy. These are functions that

1
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are associated to a function and they are rational. It is striking that for a

fixed function, the possible poles of its topological zeta function are often

not really poles. Segers and Veys determined the complete set of numbers

that occur as a pole of some topological zeta function in dimension 2 and

3. Veys also showed that it can be seen on the dual resolution graph of a

plane curve what the poles are.

A second reason why these poles are very interesting is because they

are one of the protagonists in the intriguing monodromy conjecture. This

conjecture states that the poles of the topological zeta function associated

to a germ of a function f induce eigenvalues of the local monodromy of f .

This makes it very interesting to do research on the topological zeta func-

tion. In dimension 2, the conjecture was completely proven by Loeser. In

higher dimensions Loeser proved the statement for particular cases. One

of the conditions is that the polynomial should be nondegenerate with

respect to its Newton polyhedron. Other contributions were made by

Artal-Bartolo, Cassou-Noguès, Luengo and Melle-Hernández, Rodrigues

and Veys.

By means of the first three chapters, we want the reader to feel com-

fortable while going through this thesis. We introduce toric varieties,

clusters and the Poincaré series that we investigate. We provide exam-

ples, sometimes complemented with some observations or questions.

In Chapter 4 the Poincaré series for an affine toric variety is studied.

Where for curves and rational surface singularities it is obvious which

valuations to take to obtain a possible interesting series (namely the ones

of the minimal resolution), for toric varieties this is a priori not clear.

That is why we study the Poincaré series of a toric variety with respect

to an arbitrary set of valuations. Chapter 4 is an extension of the results

in [Le].

First we compute the series. Since the coordinate ring for a toric vari-

ety is graded and since the ideals involved in the Poincaré series are then

monomial, we can obtain a formula for the Poincaré series in an easy way.

In Chapter 1 it is shown that the Poincaré series can always be written as

the generating function of the topological Euler-Poincaré characteristics

of the projectivisations of the fibres of the extended semigroup and as an

integral with respect to the topological Euler-Poincaré characteristic. For

curves and rational surface singularities, Campillo, Delgado and Gusein-
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Zade also obtained a description for the Poincaré series at the level of

the modification space. It was a nice challenge to try to understand this

in higher dimensions. I thank professor Gusein-Zade for the stimulating

conversation about this. I generalised the description and proved it for

affine toric varieties. As a consequence we get a formula for the Poincaré

series when the variety is Cd and when the valuations are induced by a

toric constellation. This means that we blow up in 0-dimensional orbits

of a smooth variety. The formula that we obtain is similar to the one

for curves. Finally we show that the Poincaré series for a toric complete

intersection is cyclotomic.

In Chapter 5 we introduce the zeta functions that we study in this the-

sis. These are the zeta function of monodromy and the topological zeta

function. We end this chapter by stating the monodromy conjecture for

the topological zeta function.

Chapter 6 and 7 contain our investigation about the topological zeta

function. The inspiration of Chapter 6 comes from a result of Segers and

Veys. Let us consider the set

Pd := {s0 | ∃f ∈ C[x1, . . . , xd] : Ztop,f (s) has a pole in s0}.

Segers and Veys showed that P2 ∩ (−∞,−1
2) = {−1

2 − 1
i | i ∈ Z>1} and

that P3 ∩ (−∞,−1) = {−1− 1
i | i ∈ Z>1}. They expected that this could

be generalised to

Pd ∩ (−∞,−
d− 1

2
) = {−

d− 1

2
−

1

i
| i ∈ Z>1}, for all d ∈ Z>1.

We will show for all d ≥ 4 that {−(d− 1)/2− 1/i | i ∈ Z>1} ⊂ Pd and we

prove that any rational number in the remaining interval [−(d− 1)/2, 0)

is a pole of some topological zeta function. We will obtain these results

by picking out functions for which their topological zeta functions gives

this list of poles. This chapter corresponds to [Le,Se,Ve].

An interesting remark is that the hypersurfaces determined by these

functions have an embedded resolution given by a sequence of blowing-

ups at centres which are concrete orbits for the toric action.

Chapter 7 is taking place in the setting of toric idealistic clusters in

dimension 3. This means that one blows up in the 0-dimensional or-
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bits of the constellation to which some weights are assigned. The clus-

ter is called idealistic if these weights satisfy the proximity inequalities.

They guarantee that there exist hypersurfaces which pass through the

infinitely near points of the constellation exactly with the multiplicity

given by the weight. Campillo, Gonzalez-Sprinberg and Lejeune-Jalabert

provided whole sets of hypersurfaces for which the blowing-up of a cluster

gives an embedded resolution for them.

In concrete, we take a finitely supported ideal in C[x, y, z] and we

consider the constellation of base points associated to the ideal. Our ob-

jective is to write down the topological zeta function for general surfaces

in this ideal. We show that the topological zeta function can explicitly

be written down by using the data in the cluster. This formula can be

implemented and so provides a quick way to compute the topological zeta

function. Moreover, it offers maybe a good way to handle the monodromy

conjecture in this specific context.

In Chapter 8 we continue working in the same context as in Chapter

7. For these surfaces, satisfying also a generic condition, we study a

phenomenon related to the monodromy conjecture. In particular, for an

irreducible exceptional component Ej created by blowing up the constel-

lation, we study when χ(
◦
Ej) < 0. We then show that, if χ(

◦
Ej) > 0, then

e
−2πi

νj
Nj is an eigenvalue of monodromy of such a generic surface for the

cluster.

In the appendix we consider some ways to define Poincaré series for hy-

persurfaces and we formulate questions about them. We situate some

known results in this outline and we provide a new result for toric hyper-

surfaces. In particular, we compute a Poincaré series for them in terms

of the Newton polyhedron.



Chapter 1

Poincaré series

1.1 Introduction

As two series can only be equal if all their coefficients coincide, a series

is a good tool to encode discrete information. For example if f(x) is a

polynomial in Z[x1 · · · , xd], a classical series associated to f is

P (t) :=

∞
∑

i=0

Ni(p
−dt)i.

In this formula p is a prime number and Ni denotes the number of solu-

tions in Z/piZ of f(x) ≡ 0 mod pi. Another example concerns semigroups

S ⊂ Nd. Algebraists study the series

Q(u1, · · · , ud) :=
∑

s∈S

us1
1 · · · usd

d .

Such series are called Poincaré series.

A typical kind of Poincaré series are those that are induced by a fil-

tration. For an algebraic variety X, a one-index filtration on the ring of

germs of functions OX,o on (X, o) is a function that associates to each

nonnegative integer n ∈ Z≥o an ideal In in OX,o such that

OX,o =: I0 ⊇ I1 ⊇ · · · In ⊇ · · ·

If the dimensions dim I(n)
I(n+1) are finite for all n ∈ Z≥0, then the Poincaré

series of this filtration is

P (t) :=
∞
∑

n=0

dim
I(n)

I(n+ 1)
tn.

5



6 Chapter 1. Poincaré series

1.2 Complete ideals and valuations

The Poincaré series that we study is induced by a filtration coming from

valuations. The ideals that are then appearing in the Poincaré series are

exactly the complete ideals. In this section we recall some basic and inter-

esting properties about valuations and complete ideals. For more details,

we refer to [Ha] and [Z,Sa].

Let K be a field and let G be a totally ordered Abelian group. A valuation

ν on K is a map ν : K∗ → G such that for all x, y ∈ K:

1. ν(xy) = ν(x) + ν(y);

2. ν(x+ y) ≥ min{ν(x), ν(y)}.

The ring Rν := {x ∈ K∗ | ν(x) ≥ 0} ∪ {0} is called the valuation ring of

ν. Often one also writes ‘ν : Rν → G’. If for all x in a subfield F of K,

x 6= 0, holds that ν(x) = 0, then one calls ν a valuation of K/F . If A and

B are local rings contained in a field K with maximal ideal respectively

mA,mB , then we say that B dominates A if A ⊂ B and mB ∩A = mA.

Let (X,OX ) be an integral quasi-projective scheme over a field k. We

denote its function field by k(X). A valuation ν of k(X)/k is said to have

centre ξ in X if its valuation ring dominates the local ring OX,ξ.

Observe that centres for valuations do not always exist. Let us con-

sider the example where X = C and ν : C(x) → Z : f/g 7→ deg(g) −
deg(f), deg(·) denoting the degree of a polynomial. Then ν does not

have a centre in X. However, if X is proper over k, then every valuation

has a unique non-empty centre in X. For an affine scheme X := Spec R

and a valuation ν : R → G with centre in R, the centre of ν is the irre-

ducible variety corresponding to the prime ideal {x ∈ R | ν(x) > 0}∪{0}.
Often this ideal is also called the centre of the valuation ν.

In singularity theory one is often using valuations that are induced by

divisors that are created during a resolution process of singularities. If

π : X ′ → X is a resolution of singularities and if E is an irreducible excep-

tional divisor on X ′ with generic point ξE , then OX′,ξE
is a 1-dimensional

Noetherian local domain. Since X ′ is smooth, the Weil divisor E is also

Cartier and the maximal ideal of OX′,ξE
is principal. This means that

OX′,ξE
is a discrete valuation ring. If ν is the induced valuation on k(X),
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then ν(f) is the order of f ◦ π along E.

The above situation not only holds for resolutions of singularities. It

is also true for proper birational morphisms where X ′ is normal. Note

that the projective birational morphisms correspond to the blowing-ups

in coherent sheaves of ideals. For a proper birational map X ′ → X and

a valuation ν with centre in X, holds that ν has also a centre in X ′.

Fix an integral quasi-projective scheme (X,OX ) over a field k. We look

at all projective, birational morphisms (X ′,OX′) → (X,OX).

For two schemes (X ′,O′X) and (X ′′,O′′X), we write X ′′ � X ′ if there

exists a projective birational map X ′′ → X ′ such that the diagram

X

X ′′

X ′

is commutative. The order ‘�’ determines a projective system. In gen-

eral its projective limit lim
←

X′→X

X ′ is not a scheme. Only when X is a curve

it is; it is then equal to the normalisation of the curve. This projective

limit is a locally ringed space and we will denote by (Z,OZ). It is called

the Zariski-Riemann space. Zariski showed that the points of Z are in

one-to-one correspondence with the valuations on k(X) with centre at X.

For a point P ∈ Z and its corresponding valuation ν on k(X), it holds

that OZ,P = Rν .

Let I ⊂ OX,o be an ideal and let Z be the Zariski-Riemann space as-

sociated to X. The completion I of I is the biggest ideal in OX,o such

that IOZ = IOZ . The ideal I is called complete if I = I.

Let I be an ideal in a integral domain R. Denote the quotient field

of R by K. An element x of K is called integral over I if there exists an

integer n ∈ Z>0 and elements ai ∈ Ii, 1 ≤ i ≤ n, such that

xn + a1x
n−1 + · · · + an = 0.

The set of elements in K that are integral over I is called the integral

closure of I. The integral dependence criterium says that the completion
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of an ideal is equal to the integral closure of the ideal.

Let V(R) be the set of valuations ν on K such that Rν ⊇ R. An ideal

I in R is called a valuation ideal if there exists a valuation ν ∈ V(R) and

an ideal Iν of Rν such that Iν ∩ R = I. There is a very nice result that

states that an ideal of an integral domain R is complete if and only if it

is the intersection of valuation ideals of R ([Ki,V, p. 440]). In particular,

one has

I =
⋂

ν∈V(R)

IRν =
⋂

ν∈V(R)

(IRν ∩R).

Denote the blowing-up of the ideal I by BlIR and its normalisation

by BlIR. Then I is also the biggest ideal such that IOBlI R = IOBlIR.

For j ∈ J := {1, · · · , r}, let Ej be an irreducible component of the excep-

tional divisor on BlIR and let ζEj
be its generic element. The valuations

ν1, · · · , νr induced by the discrete valuation rings OBlIR,ζEj
are the so

called Rees valuations of I. One has

I =

r
⋂

j=1

IRνj

and if we denote νj(I) := min{νj(x) | x ∈ I}, j ∈ J , then it follows that

x ∈ I ⇔ ∀j ∈ J : νj(x) ≥ νj(I).

1.3 Poincaré series

The Poincaré series that we investigate appeared for the first time in

[C,D,K] for studying plane curve singularities over arbitrary fields. In

this section we introduce this Poincaré series and we show when it is well

defined.

Let X be an algebraic variety over a field k. Consider the ideals

In := {g ∈ OX,o | ν(g) ≥ n}

with ν : OX,o → Z∪ {∞} a discrete valuation. These ideals give rise to a

filtration on OX,o. One can also consider several valuations and one then

gets a multi-index filtration: for discrete valuations ν1, · · · , νr : OX,o →
Z ∪ {∞} and for v ∈ Zr, consider the ideals

I(v) := {g ∈ OX,o | νj(g) ≥ vj , 1 ≤ j ≤ r}.
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If the centre of each valuation νj (j ∈ J) is the maximal ideal m of OX,o,

then mI(v) ⊂ I(v + 1). As I(v)/mI(v) is a finite dimensional k-vector

space, it follows that also the k-vector spaces I(v)/I(v + 1) have finite

dimension.

In 1994 Campillo, Delgado and Kiyek put the dimensions dim I(v)
I(v+1) in

a Poincaré series. In fact, setting d(v) := dim(I(v)/I(v + 1)) and writ-

ing t := (t1, · · · , tr) and v := (v1, · · · , vr), they define the Laurent series

L(t) :=
∑

v∈Zr d(v)tv.

Let i ∈ J . Note that for v and v′ vectors in Zr such that vj = v′j for

all j ∈ J \ i and such that vi ≤ 0 and v′i ≤ 0, one has that I(v) = I(v′)

and hence
∏r

j=1(tj − 1)L(t1, · · · , tr) ∈ Z[[t1, · · · , tr]]. They define the

Poincaré series of X with respect to the valuations {ν1, · · · , νr} as

P (t1, · · · , tr) :=

∏r
j=1(tj − 1)L(t1, · · · , tr)

(t1 · · · tr − 1)
.

Note that Z[[t1, · · · , tr, t
−1
1 , · · · , t−1

r ]] is a Z[t1, · · · , tr, t
−1
1 , · · · , t−1

r ]-module

but not a ring. As the element
∏r

j=1(tj − 1) is not invertible in the ring

Z[t1, · · · , tr, t
−1
1 , · · · , t−1

r ], it follows that in general P contains less infor-

mation than L.

In Section 1.4, we will see that involving all v ∈ Zr makes that the

Poincaré series can be described in a nice geometrical way.

1.1 Remark If one of the valuations ν1, · · · , νr does not have its centre

at m, then one can not define the series L. Indeed, suppose νj (j ∈ J)

is a valuation with centre at the prime ideal pj which is different from

m. If g ∈ OX,o and ν(g) = v, then choose a function h ∈ m \ pj. Now

for each n ∈ Z≥0 one has that ghn ∈ I(v) and ghn /∈ I(v + 1). As all

the ghn(n ∈ Z≥0) are linearly independent over k, it follows that d(v) is

infinite. �

In Section 1.6 we will have a closer look at the Poincaré series for curves

and rational surface singularities. In particular, we will comment which

valuations Campillo, Delgado and Gusein-Zade use to define the Poincaré

series for these varieties.

The Poincaré series for curves has a very deep meaning. For example

for irreducible plane curve singularities, the Poincaré series is equal to the

monodromy zeta function ([C,D,G-Z2]). It is a highly interesting question
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what kind of valuations one can incorporate in general in the Poincaré

series such that the series would contain a lot of information. Good

candidates could maybe be essential valuations and arc space valuations.

Some pioneering work in this direction is done by Ebeling and Gusein-

Zade in [Eb,G-Z3] and in [Eb,G-Z4].

Whatever the valuations used to define the Poincaré series are, the

Poincaré series can always be written as the generating function of the

topological Euler-Poincaré characteristics of the projectivisations of the

fibres of the extended semigroup and even as an integral with respect

to the topological Euler-Poincaré characteristic. Campillo, Delgado and

Gusein-Zade introduced these equivalent descriptions for the Poincaré

series in [C,D,G-Z3], [C,D,G-Z7] and in [C,D,G-Z5]. We discuss them in

Section 1.4 and in Section 1.5.

1.4 Geometric view on Poincaré series

We will study the Poincaré series for algebraic varieties over C. Let

V := {ν1, · · · , νr} be a set of discrete valuations on C(X). We denote the

vector (ν1, · · · , νr) by ν. The semigroup of values of X with respect to

the set of valuations V is SV := {v ∈ Zr
≥0 | v = ν(g) for some g ∈ OX,o}.

For j ∈ J , denote by Dj(v) the complex vector space I(v)/I(v + ej)

where ej is the r-tuple with j -th component equal to 1 and the other

components equal to 0. Let us consider the map

jv : I(v) −→ D1(v) × · · · ×Dr(v)

g 7−→ (a1(g), · · · , ar(g)) =: a(g),

where aj(g) is the projection of g on Dj(v). The set ŜV := {(ν(g), a(g)) |
g ∈ OX,o} is a semigroup with respect to the summation of the com-

ponents ν and multiplication of the parts a and is called the extended

semigroup. This notion showed up for the first time in [C,D,G-Z1] where

it was introduced for plane curves. Let D(v) be the image of the map jv,

then D(v) ≃ I(v)/I(v+1). We define Fv as D(v)∩ (D∗1(v)×· · ·×D∗r(v))
where D∗j (v) denotes Dj(v) \ {0}, j ∈ J . Having the map

ρ : ŜV −→ SV

(ν(g), a(g)) 7−→ ν(g),

Fv can also be expressed as ρ−1(v) and therefore one also calls the spaces

Fv the fibres of the extended semigroup ŜV . From its definition it follows
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that, for v ∈ S, the space Fv is the complement to an arrangement of

vector subspaces in the vector space D(v). Moreover, Fv is invariant with

respect to multiplication by nonzero constants. Let PFv := Fv/C∗ be the

projectivisation of Fv. Then PFv is the complement to an arrangement

of projective subspaces in the projective space PD(v).

1.2 Theorem Let X be an algebraic variety and let V := {ν1, · · · , νr}
be a set of discrete valuations on C(X) with centre in the maximal ideal

of OX,o. The Poincaré series with respect to X and V is then

P (t) =
∑

v∈Zr

χ(PFv)t
v.

Proof. Choose an element w ≥ v+1 in Zr
≥0, let b(v) :=dim(I(v)/I(w)).

For A ⊂ J , let 1A be the element of Zr
≥0 for which the j -th component

is equal to 1, respectively 0 if j ∈ A, respectively j /∈ A. Let LA be the

subspace {(a1, · · · , ar) ∈ D1(v) × · · · × Dr(v) | aj = 0 for j ∈ A}. One

has

χ(PFv) = χ(PD(v)) − χ(

r
⋃

j=1

P(D(v) ∩ Lj))

= χ(PD(v)) −
∑

A⊂J,A 6=∅

(−1)#A−1χ(P(D(v) ∩ LA))

=
∑

A⊂J

(−1)#Aχ(P(D(v) ∩ LA))

=
∑

A⊂J

(−1)#Adim(D(v) ∩ LA).

Since v ≤ w−1, one has dim(D(v)∩LA) = b(v+1A)−b(v+1). This implies

that the coefficient at tv in the series (
∑

v∈Zr χ(PFv)t
v)(t1 · · · tr − 1) is

equal to
∑

A⊂J

(−1)#A(b(v + 1A − 1) − b(v)) −
∑

A⊂J

(−1)#A(b(v + 1A) − b(v + 1)).

Since
∑

A⊂J(−1)#A = 0, this coefficient is also equal to
∑

A⊂J

(−1)#A(b(v + 1A − 1) − b(v + 1A)) =
∑

A⊂J

(−1)#A(d(v + 1A − 1).

The coefficient at tv in L(t)
∏r

j=1(tj−1) is also equal to
∑

A⊂J(−1)#A(d(v+

1A − 1). �
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1.5 Poincaré series as an integral

The Poincaré series has also the shape of an integral with respect to the

topological Euler-Poincaré characteristic over the projectivisation POX,o.

This notion has been introduced in [C,D,G-Z5] and is inspired by the no-

tion of motivic integration (see for example [De,L4]). It was developed to

integrate over POCd,o, what is not allowed by the usual Viro construction

where one integrates with respect to the topological Euler-Poincaré char-

acteristic over finite dimensional spaces (see [Vi]). It can be extended to

integrals over POX,o for an arbitrary variety X.

Let m be the maximal ideal in the ring OX,o and for k ∈ Z≥0, let

J k
X,o := OX,o/m

k+1 be the space of k-jets of functions on the variety

X. For a complex vector space L (finite of infinite dimensional) let

PL := (L \ {0})/C∗ be its projectivisation and let P∗L be the disjoint

union of PL with a point. One has a natural map πk : POX,o 7→ P∗J k
X,o.

A subset A ⊂ POX,o is said to be a cylindrical subset if A = π−1
k (B)

for a constructible subset (i.e. a finite union of locally closed subsets)

B ⊂ PJ k
X,o ⊂ P∗J k

X,o. For a cylindrical subset A ⊂ POX,o (A = π−1
k (B),

B ⊂ PJ k
X,o), its Euler characteristic χ(A) is defined as the Euler charac-

teristic χ(B) of the set B.

Let ψ : POX,o → G be a function which takes values in an Abelian

group G. We say that the function ψ is cylindrical if, for each g ∈ G, g 6=
0, the set ψ−1(g) ⊂ POX,o is cylindrical. The integral of a cylindrical

function ψ over the space POX,o with respect to the Euler characteristic

is
∫

POX,o

ψdχ :=
∑

g∈G,g 6=0

χ(ψ−1(g)) · g

if this sum makes sense in G. If the integral exists, the function ψ is said

to be integrable.

We have the map ν := (ν1, · · · , νr) : POX,o −→ Zr. Let tν be the corre-

sponding function with values in Z[[t]] := Z[[t1, · · · , tr]].

1.3 Proposition

P (t) =

∫

POX,o

tνdχ.
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Proof. For v ∈ Zr
≥0, let N := 1+ max{vj | 1 ≤ j ≤ r} and let

Yv := {jN g ∈ PJN
X,o | g ∈ PFv} ⊂ PJN

X,o. Then {g ∈ POX,o | ν(g) = v} =

π−1
N (Yv). Consider the map

α : Yv −→ PFv

jNg 7−→ a(g).

As α is a locally trivial fibration whose fibre is a complex affine space, we

obtain
∫

POX,o

tνdχ =
∑

v∈Zr

χ(Yv)t
v =

∑

v∈Zr

χ(PFv)t
v = P (t).

�

1.6 Examples of computed Poincaré series

The Poincaré series has been studied for several varieties. Campillo, Del-

gado and Gusein-Zade treated e.g. curves, rational surfaces and plane

divisorial valuations, see for example [C,D,G-Z4], [C,D,G-Z8], [D,G-Z].

Ebeling and Gusein-Zade investigated the Poincaré series for quasi-homo-

geneous singularities, see [Eb], [Eb,G-Z1], [Eb,G-Z2]. Cutkosky showed

that for normal surface singularities, from the Poincaré series it is possi-

ble to compute the intersection matrix and the arithmetic genera of the

exceptional components ([Cu]).

We recall the ideas of the definition of the Poincaré series for curves

and rational surfaces as these are the first ones that have been analysed.

Let (C, o) be a germ of a curve and let C =: ∪r
j=1Cj be its decomposition

into irreducible components. Consider a uniformisation φj : (C, o) →
(C, o) of the branch Cj, j ∈ J := {1, · · · , r}, and define a valuation νj for

each branch as follows: for a germ g ∈ OC,o, set νj(g) equal to the power

of the leading term in the power series decomposition of the germ g ◦ φj .

If g ◦ φj ≡ 0, we assume νj(g) to be equal to ∞.

For irreducible plane curves, Campillo, Delgado and Gusein-Zade dis-

covered that the Poincaré series coincides with the monodromy zeta func-

tion ([C,D,G-Z2]. They used the formula of A’Campo which provides an

equivalent description for the monodromy zeta function in terms of an

embedded resolution of the curve (see [A’C]). For reducible plane curves,
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they showed that the Poincaré series coincides with the Alexander poly-

nomial ([C,D,G-Z4]). They related both via the formula of Eisenbud and

Neumann which describes the Alexander polynomial of a curve in terms

of en embedded resolution for the curve ([E,N]).

In higher dimensions one can not just parametrise the variety X. For

curves however, note that the order of t in g ◦ φj(t) is the intersection

multiplicity of {g = 0} with the branch Cj . A natural generalisation con-

sists then in considering a resolution π : (X ,D) → (X, o) of the variety X.

We denote the irreducible components of D by Ej, j ∈ J . For a function

g ∈ OX ,o, g 6= 0, let νj(g) be the multiplicity of g ◦ π along Ej , j ∈ J .

The map νj : OX ,o → Z≥0 defines a valuation on the field of quotients

of the ring OX ,o. These valuations define a multi-index filtration on the

ring OX ,o. Hence, they induce a Poincaré series.

Let (S, o) be a germ of an isolated rational surface singularity and let

π : (X ,D) → (S, o) be its minimal resolution. As the singularity is ra-

tional, the irreducible components Ej , j ∈ J , of the exceptional divisor

D are isomorphic to the projective line P1
C

(see for example [Li1]). Write

V for the set {ν1, · · · , νr} of valuations on OS,o that are induced by the

irreducible components Ej, j ∈ J .

Campillo, Delgado and Gusein-Zade computed the Poincaré series in-

duced by the multi-index filtration defined by these valuations. Before

giving the formula we introduce some notation. Let SV be the semigroup

of values of S with respect to V. If −kj is the self-intersection number

Ej ·Ej , j ∈ J , then Artin showed - see [Ar] - that SV is the set of integer

points v := (v1, · · · , vr) ∈ Zr
≥0 belonging to the cone that is defined by

the inequalities

kjvj −
∑

i:Ei∩Ej=pt

vi ≥ 0, 1 ≤ j ≤ r.

In [P] it is shown that this cone is contained in the positive quadrant.

Put nj the left hand side of the inequality and sj the number of indices i

for which Ei and Ej intersect. Let χs,n be the Euler characteristic of the

n-th symmetric power of (P1
C

without s points). Then

P (t) =
∑

v∈S





r
∏

j=1

χsj ,nj



 tv.



Chapter 2

Toric geometry

2.1 Toric varieties

Toric varieties appear for the first time in the early seventies. In these

days they were called torus embeddings. At first stage they were stud-

ied as compactifications of tori, what explains the terminology of torus

embeddings. However, toric varieties are of very broad interest and

that could maybe be neglected when using the older terminology. Ash,

Mumford, Rapoport, Tai [A,M,R,T], Brylinski [Br], Danilov [Da], De-

mazure [Dem], Jurkiewitz [J], Kempf, Knudsen, Mumford, Saint-Donat

[Ke,Kn,M,S], Miyake, Oda [Mi,O], Sturmfels [St], [Mill,St], Teissier [Te]

and others made great contributions to the theory of toric varieties.

Toric varieties are relatively concrete algebraic varieties. The normal

toric varieties are all Cohen-Macaulay, their singularities are rational,

the Nash conjecture is true for them, etc. Their combinatorial character

makes them very nice objects to work with. This explains why they are

often used to provide examples to discover phenomena. Lots of tools in

algebraic geometry can be translated to a combinatorial world from which

one can pass again to the algebraic geometric side. It will mostly be in

this way that we will use the bridge between both mathematical fields.

On the other hand, for example for counting lattice points in polyhedra

one walks in the other direction. Examples of the comfort that toric vari-

eties offer can be found in cohomology and in resolution of singularities.

Further on we will see the last one illustrated.

We refer to [O1] for more details and proofs.

15
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There are different ways to define toric varieties. Classically they are

introduced as follows.

2.1 Definition A toric variety of dimension d is an irreducible variety

X which contains T := (C∗)d as a Zariski open subset and such that the

action of (C∗)d on itself extends to an action on X.

2.2 Example (C∗)d and Cd are clearly toric varieties. �

2.3 Example Let x0, x1, · · · , xd be homogeneous coordinates on Pd. Via

the map

(C∗)d −→ Pd

(t1, · · · , td) 7−→ (1 : t1 : · · · : td)

we identify (C∗)d with the Zariski open subset Pd \ V (x0x1 · · · xd) of Pd.

Considering the action (t1, · · · , td) · (x0 : x1 : · · · : xd) := (x0 : t1x1 : · · · :

tdxd), it follows that Pd is a toric variety. �

Another way of looking at normal toric varieties is via fans. This combi-

natorial structure is extremely useful.

Let M be a lattice and let N be the dual space to M , say N ∼= Zd.

Then there is a natural bilinear map M × N → Z : (m,n) 7→ 〈m,n〉.
Denote NR := N ⊗Z R and MR := M ⊗Z R. A rational finite polyhedral

cone σ ⊂ NR is a cone generated by finitely many elements of N , so there

exist n1, · · · , nr in N such that

σ = {λ1n1 + · · · + λrnr | λ1, · · · , λr ∈ R≥0}.

A rational finite polyhedral cone σ is said to be strongly convex if σ ∩
(−σ) = {0}. We will just say cone to refer to a rational strongly convex

finite polyhedral cone. The dual cone σ̌ ⊂MR to σ is defined as the set

{m ∈M | 〈m,x〉 ≥ 0,∀x ∈ σ}.

A face τ of σ is an intersection {l = 0}∩σ, where l is a linear form which

is nonnegative on σ. The dimension of σ is the dimension of the smallest

subspace of NR containing σ.

Gordan’s Lemma states that the semigroup S := σ̌ ∩ M is finitely

generated. We then consider C[S] as the S-graded algebra ⊕s∈SCχs and

we denote the corresponding normal variety Spec C[S] by Xσ .



2.1 Toric varieties 17

A fan Σ is a set of cones in NR such that each face of a cone in Σ is

also a cone in Σ and such that the intersection of two cones in Σ is a face

of each. From a fan Σ the variety XΣ is obtained from the affine varieties

Xσ, σ in Σ, by gluing Xσ and Xτ along the common open subvariety

Xσ∩τ for all σ and τ in Σ.

If the torus T = (C∗)d is mapped into the d-dimensional toric variety

XΣ via the map φ, then define for b := (b1, · · · , bd) ∈ Zd the 1-parameter

subgroup ub as

ub : C∗ −→ XΣ

t 7−→ φ(tb1 , · · · , tbd).

There is a one-to-one correspondence between the cones σ of Σ and the

orbits of the torus action on XΣ: an orbit O corresponds to a cone

σ if and only if limt→0ub(t) exists and lies in O for all b in the inte-

rior of σ. For a cone σ and its corresponding orbit orb(σ) holds that

dim(σ)+dim(orb(σ)) = d.

The connection between fans and normal toric varieties is stated in the

following result.

2.4 Theorem Let TN be the torus given by the lattice N . There exists

a bijection between the fans in NR and the normal toric varieties that

contain the torus TN as an open dense set.

This correspondence can be extended to non-normal affine toric varieties.

These are namely exactly the varieties of the form Spec C[S] with S a

strict semigroup in σ̌ ∩M that generates σ̌ as cone (see [O1]). Also in

this case S is finitely generated ([Sta]).

2.5 Example The cuspidal cubic C := V (x3 − y2) ⊂ C2 contains C∗ via

the map t 7→ (t2, t3) and C∗ acts on C via t ·(x, y) := (t2x, t3y). Thus C is

an affine toric variety. The curve C can also be written as Spec C[t2, t3].

Hence the semigroup S := 〈2, 3〉 ⊂ Z is not saturated (a semigroup S is

saturated if one has for all s ∈ S and for all n ∈ Z>0 that if ns ∈ S, then

also s ∈ S) and the curve C is not normal. �

2.6 Example (Matsumura) The above correspondence is not true for

non-normal toric varieties in general. The rational curve with a node ob-

tained by identifying the origin and the point at infinity of the projective
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line P1 is a counterexample. Indeed, if the node would lie in an open affine

toric variety, then this open set would meet both orbits of the rational

curve. This means that the open set would be the whole rational curve

which is not affine. �

2.2 Toric resolution of singularities

In 1964 Hironaka published the first proof that shows the existence of

resolution of singularities in characteristic 0. He even shows that a res-

olution is possible allowing only centra of blowing-ups that are smooth

and reduced. For toric varieties, when admitting centra of blowing-ups

that are not necessarily smooth, reduced or orbits, one can visualise the

resolution by means of the fan that describes the toric variety.

A cone is said to be smooth - also called regular or simple -, respectively

simplicial if it is generated by a subset of a basis of Zd, respectively of

Rd. For a fan Σ it holds that XΣ is smooth if and only if every σ in

Σ is smooth. Let Σ, respectively Σ′, be a fan in N , respectively N ′.

Let φ : N ′
R
→ NR be the map induced by the homomorphism of lattices

N ′ → N . If for every cone σ′ in Σ′ there exists a cone σ in Σ for which

φ(σ′) ⊂ σ, then φ induces a morphism Φ : XΣ′ → XΣ. Denote |Σ| for

the support of the toric variety XΣ. The map Φ is proper if and only if

φ−1(|Σ|) = |Σ′|. Suppose that Σ′ is a refinement or subdivision of Σ, i.e.

each cone of Σ is a union of cones in Σ′, then the morphism XΣ′ → XΣ

induced by the identity map on N is birational (it is an isomorphism

on the open torus TN contained in each) and proper. Remember that a

projective birational morphism corresponds to the blowing-up in an ideal

and vice versa. Thanks to the following theorem we can use the technique

of subdividing fans to resolve singularities of toric varieties.

2.7 Theorem For any toric variety XΣ there exists a refinement Σ′ of

Σ such that XΣ′ → XΣ is a resolution of singularities.

In particular, the resulting resolution is equivariant, i.e. π(t·x) = π(t)π(x),

for all t in the embedded torus T in XΣ′ and for all x ∈ XΣ′ .

Given a fan Σ with associated normal toric variety XΣ. For σ ∈ Σ,

the primitive elements n1, · · · , ns of N which lie on the rays of σ, are

called the fundamental generators of σ. For τ ∈ Σ containing σ as a face
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- denoted τ > σ - and for 1 ≤ i ≤ s, set τi the cone obtained from τ by

replacing one of the fundamental generators ni of σ by n0 := n1 + · · ·+ns

and without changing the other fundamental generators. For successive

cones σ, one can iterate this procedure. The minimal regular subdivi-

sion (i.e. all the cones in the fan are regular) obtained by proceeding

in this way is called the star subdivison and thus gives a resolution of

singularities. If XΣ is smooth, then the subdivision

Σ∗ := (Σ\{τ |τ ∈ Σ, τ > σ})∪(
⋃

τ∈Σ,τ>σ

{ς|ς face of τi for some 1 ≤ i ≤ s})

gives rise to the blowing-up of XΣ along the closed subvariety orb(σ).

2.8 Example Consider the cone

σ := 〈(0, 0, 1), (1, 0,−3), (0, 1,−3), (1, 1,−8)〉 ⊂ R3.

This cone corresponds to the toric affine variety X := V (xy2 − zw2) ⊂
C4. Let Σσ be the fan that contains exactly the faces of σ. A regular

subdivision Σ′ of Σσ is induced by adding the cones

〈(0, 0, 1), (1, 0,−3), (1, 1,−7)〉, 〈(0, 0, 1), (0, 1,−3), (1, 1,−7)〉,

〈(1, 1,−8), (0, 1,−3), (1, 1,−7)〉, 〈(1, 1,−8), (1, 0,−3), (1, 1,−7)〉

to the fan Σσ. Let XΣ′ be the associated toric variety. As for a cone and

its corresponding orbit holds that the sum of their dimensions equals d, it

follows that the edge (1, 1,−7) corresponds to a divisor on XΣ′ . As this

divisor is collapsed onto X, this resolution of singularities yields exactly

one exceptional divisor. The newly introduced 2-dimensional cones in

the fan XΣ′ correspond to exceptional curves that are contained in the

exceptional divisor.

Another resolution of singularities of X is induced by adding the cones

〈(0, 0, 1), (1, 1,−8), (0, 1,−3)〉 and 〈(0, 0, 1), (1, 1,−8), (1, 0,−3)〉.

This time there is no exceptional divisor created.
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Note also that the star subdivision does not give the shortest way to

obtain a resolution of singularities of X in this example. �

2.3 Valuations

Let X := Spec C[S] be a toric variety and let σ ⊂ NR be such that S

generates σ̌ as cone. Without loss of generality, we assume that M is also

the group generated by the semigroup S. Let π : X ′ → X be an equivari-

ant proper birational morphism. Let D be an irreducible codimension 1

subvariety of the normal variety X ′ and let νD be the induced valuation

on C(X). The divisor D defines the element nD of N for which:

〈m,nD〉 = νD(χm), for all m ∈M.

As D is irreducible, nD is a primitive element in σ ∩ N . Vice versa a

primitive element n in σ ∩ N defines a discrete valuation ν on C(X) by

setting

ν(
∑

m∈F

amχ
m) := min{〈m,n〉 | m ∈ F, am 6= 0},

where F is a finite subset of S. In fact, one has ν = νD for some D

in X ′ for an appropriated π : X ′ → X. Such valuations are usually

called monomial valuations. For given monomial valuations ν1, · · · , νr

corresponding to primitive elements in σ and for v = (v1, · · · , vr) ∈ Zr,

the ideals

I(v) = {g ∈ C[S] | νi(g) ≥ vi, 1 ≤ i ≤ r}

are monomial ideals, i.e. generated by elements of type χm for elements

m in S.
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For an irreducible divisor D on X ′, the centre of the valuation νD in

X is the closure of the orbit that is associated to the unique face τ of σ

such that
◦
τ contains nD.

2.9 Example Let S := Z3
≥0, so X = C3. We choose primitive elements

n1 := (1, 5, 6) and n2 := (2, 4, 3) in σ∩N = Z3
≥0. We denote the valuations

corresponding to n1 and n2 by ν1 and ν2. It is clear that the ideals

I((v1, v2)) with respect to ν1 and ν2 are monomial ideals, i.e. generated

by monomials. One has

I((v1, v2)) = (xaybzc | a, b, c ∈ Z≥0, a+5b+6c ≥ v1 and 2a+4b+3c ≥ v2).

For example (see also Example 3.3 and following lines)

I((6, 6)) = (x6, y2, z2, yz, xy, x2z) and

I((−2, 12)) =

(x6, y3, z4, x4y, x2y2, x5z, x3z2, x2z3, yz3, y2z2, xyz2, xy2z, x3yz).

�
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Chapter 3

Clusters of infinitely near

points

3.1 Introduction

In the beginning of the twentieth century, Enriques developed a theory

of infinitely near points to describe the geometry of plane curve singular-

ities. A point Q is said to be infinitely near to a point P if it is contained

in the preimage of the blowing-up in P . Together with Chisini he studied

systems of plane curves which pass with assigned multiplicities through a

fixed set of infinitely near points of a point of the plane ([En,Ch]). They

proved that there exist such curves if and only if some inequalities (the

so called ‘proximity inequalities’) are satisfied.

In the thirties Zariski formulated this theory in terms of local rings,

valuation rings, valuation ideals and complete ideals, see [Z]. One of

the main results in Zariski’s theory is that any complete ideal in a two-

dimensional regular local ring has a unique factorisation into simple (i.e.

not the completion of the product of two proper ideals) complete ide-

als. The set of exponents which appear in the factorisation can be seen

from the proximity inequalities for the linear system corresponding to the

complete ideal. They are equal to the differences of both sides in these

inequalities.

Later on, in the sixties, Lipman studied divisors with exceptional sup-

port. He extended the results of Enriques and Chisini and the theory by

Zariski for rational surface singularities ([Li1]). The exponents in the

unique factorisation were now rational numbers. In the eighties, he was

23
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able to recover a unique factorisation theorem in higher dimensions, see

[Li2] and [Li3]. The exponents could now be negative. The result holds

for finitely supported complete ideals in a regular local ring of any di-

mension. These ideals are supported at the closed point and there exists

a finite sequence of blowing-ups in points that makes the ideal invertible.

In the eighties Casas described the singularities of the polar curve of a

plane curve by studying the infinitely near points in which the irreducible

components of the polar curve pass. The problem became equivalent to

the decomposition of the completion of the Jacobian ideal in a product

of powers of simple ideals, see [Ca1].

In the nineties Campillo, Gonzalez-Sprinberg and Lejeune-Jalabert

came up with some new nice results ([C,G-S,L-J]). Of highest interest

for us is their fully combinatorial characterisation of these systems in the

case that the infinitely near points are 0-dimensional orbits in smooth

toric varieties. Secondly, they provide a natural embedded resolution for

whole sets of hypersurfaces, namely for those that are general in a finitely

supported complete ideal.

In this chapter we introduce the terminology of infinitely near points,

clusters etc. according to [C,G-S,L-J] and we comment the results that

are of main interest for us.

3.2 Clusters and finitely supported complete ide-

als

Let X be a nonsingular variety of dimension d ≥ 2 and let Z be a va-

riety obtained from X by a finite succession of point blowing-ups. A

point Q ∈ Z is said to be infinitely near to a point P ∈ X if P is

in the image of Q; we write Q ≥ P . A constellation is a finite se-

quence C := {Q0, Q1, · · · , Qr−1} of infinitely near points of X such that

Q0 ∈ X =: X0 and each Qj is a point on the variety Xj obtained by

blowing up Qj−1 in Xj−1, j ∈ J := {1, · · · , r}.
The relation ‘≥’ gives rise to a partial ordering on the points of a con-

stellation. In the case that they are totally ordered, so Qr−1 ≥ · · · ≥ Q0,

the constellation C is called a chain. For every Qj in C, the subsequence

Cj := {Qi | Qj ≥ Qi} of C is a chain. The integer l(Qj) := #Cj − 1 is

called the level of Qj. In particular Q0 has level 0. If no other point of
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C has level 0 then Q0 is called the origin of C. We will always work with

constellations that have an origin and we often will denote the origin of

the constellation by o. If Qj ≥ Qi and l(Qj) = l(Qi) + 1, we will write

Qj ≻ Qi or j ≻ i.

For each Qi ∈ C, denote the exceptional divisor of the blowing-up in

Qi by Bi and its strict transform, respectively total transform at some

intermediate stage (including the final stage) Xj , i + 1 ≤ j ≤ r − 1, by

Ei, respectively E∗i . If Qj ∈ Ei, then one says that Qj is proximate to

Qi. This will be denoted as Qj → Qi or j → i. As

Ei = E∗i −
∑

j→i

E∗j ,

it follows that also {E∗0 , · · · , E
∗
r−1} is a basis of the group of divisors with

exceptional support ⊕r−1
j=0ZEj.

A pair A := (C,m) consisting of a constellation C := {Q0, · · · , Qr−1}
and a sequence m := (m0, · · · ,mr−1) of nonnegative integers is called

a cluster. One calls mj the weight of Qj in the cluster and we write

D(A) :=
∑r−1

j=0 mjE
∗
j . Introducing the numbers vj , 0 ≤ j ≤ r − 1, by

setting

mj := vj −
∑

j→i

vi,

allows us to write also D(A) =
∑r−1

j=0 vjEj.

The idea of clusters is to express that a system of hypersurfaces is passing

through the points of the constellation with (at least) the given multi-

plicities. Let o be a point of X. Remember that the ideals of the form

I(v) = {g ∈ OX,o | ν(g) ≥ v} are exactly the complete ideals (see Section

1.2). If we want that these ideals principalise by blowing up the points

of the constellation, we require the ideals to be finitely supported. For-

mally, an ideal I in OX,o is called finitely supported if I is primary for the

maximal ideal m of OX,o - so supported at the closed point - and if there

exists a constellation C of infinitely near points of X such that IOX(C) is

an invertible sheaf where X(C) is the modification space, also called the

sky. Remember that the invertible sheaves correspond bijectively to the

Cartier divisors on X(C). An infinitely near point Q of o is a base point

of I if Q belongs to the constellation with the minimal number of points

with the above property. We denote the constellation of base points of

the finitely supported ideal I by CI .
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Let I be an ideal in a local ring (OX,Q,m), then the order ordQI of Q

at I is defined as max{n | I ⊂ mn}. One associates a cluster AI := (CI ,m)

to I as follows: for j ∈ {0, · · · , r− 1}, let Q−j be the point in the constel-

lation such that Qj ≻ Q−j and denote its weight by m−j . The weight mj

of Qj is defined by induction by setting:

1. m0 := ordQ0IQ0 with IQ0 := I;

2. mj := ordQj
IQj

with IQj
:= (x)−m−

j IQ−
j
OX,Qj

,

where x is a generator of the principal ideal mQ−
j
OX,Qj

. Then the ideal

sheaf IOX(CI ) is associated to −D(AI).

3.1 Example Let us consider the ideal I := (x2y, x2 − y2) ⊂ C[x, y].

This ideal will turn out to be finitely supported. Via a principalisation

we will find the cluster AI associated to I.

We blow up in the origin Q0 of C2 and we look in two affine charts to see

the whole picture, we simply call them chart 1 and chart 2. The order of

Q0 in I is m0 = 2. We have IQ1 = (xy, 1 − y2) in chart 1 where Q1 has

coordinates (0, 1) in that affine chart. Note that the origin in chart 2 has

not to be blown up so we can restrict ourselves to chart 1 to complete the

principalisation. Doing the translation y′ := 1 − y, makes Q1 to be the

origin of chart 1. Then IQ1 = (x−xy′, 2y′−y′2) and m1 = 1. Blowing up

in Q1 gives rise to the ideal (1− xy′, 2y′ − xy′2) = (1) in chart 1.1 and to

IQ2 = (x−xy′, 2−y′) = (x, 2−y′) in chart 1.2. Setting y′′ := 2−y′, we see

that m2 = 1. We blow up in Q2 and we obtain a principal transform of I

in each affine chart, so I is a finitely supported ideal and its constellation

of base points consists of {Q0, Q1, Q2}. The level of Q0 is 0 and of the

other two base points it is 1. We have (m0,m1,m2) = (2, 1, 1).

In chart 1.1 the equation of the corresponding Cartier divisor is x3, in

chart 1.2.1 it is x3 and in chart 1.2.2 it is x2y3.

�

If C is a constellation with origin at o, the cluster A := (C,m) is called

idealistic if there exists a finitely supported ideal I in OX,o such that

IOX(C) is the ideal sheaf associated to −D(A). We call galaxy of C the

set of idealistic clusters on C. For an idealistic cluster A, Lipman proved
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that there exists a unique finitely supported complete ideal IA such that

IAOX(C) = OX(C)(−D(A)), namely that given by the direct image of

OX(C)(−D(A)) at X, see [Li2]. Note that the galaxy of a constellation

is a semigroup. Indeed, if A1 := (C,m1) and A2 := (C,m2) are idealistic

clusters, then also A := (C,m1 +m2) is idealistic. One has IA = IA1 ∗IA2 ,

where ∗ denotes the completion of the product of ideals.

Zariski formulated the questions whether this semigroup generates a

regular cone and how to characterise this semigroup. In dimension 2 these

questions were totally answered by Chisini and Enriques. They showed

that the semigroup was regular and they gave a combinatorial determina-

tion of the semigroup. In the following section, we introduce toric clusters

and comment the answers to these questions of Zariski.

3.3 Toric clusters

Let M be a d-dimensional lattice (d ≥ 2), N its dual lattice and σ a

regular cone in NR. Consider the smooth affine toric variety X := Spec

C[σ̌ ∩M ].

A d-dimensional toric constellation of infinitely near points with origin

Q0 is a constellation C := {Q0, Q1, · · · , Qr−1} such that each Qj is a 0-

dimensional orbit in the toric variety Xj obtained by blowing up Qj−1

in Xj−1, 1 ≤ j ≤ r − 1. In Section 2.2 we saw that blowing up in

orbits of smooth varieties corresponds to making star subdivisions of the

fan corresponding to the variety. In this way each blowing-up in a 0-

dimensional orbit induces the creation of d cones of dimension d and thus

of d new 0-dimensional orbits. Hence, the choice of a point Qi in a toric

chain is equivalent to the choice of an integer ai ∈ {1, · · · , d}, which

determines a d-dimensional cone in the fan.

A tree with a root such that each vertex has at most d following

adjacent vertices is called a d-ary tree. The above observation makes

that toric constellations can be represented in a nice way. It shows namely

that there is a natural bijection between the set of d-dimensional toric

constellations with origin and the set of finite d-ary trees with a root, with

the edges labeled with positive integers not greater than d, such that two

edges with the same source have different labels.
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3.2 Example
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Suppose d = 3 and C is the constellation

pictured at the left. It represents the fol-

lowing resolution process: by blowing up

in the origin Q0 we get an exceptional va-

riety B0
∼= P2. In B0 there are two points

in which we blow up, namely Q1 and Q2.

The labels indicate in which affine chart

the points of the constellation are created.
For example the point Q1 is the origin of the affine chart induced by the

edge going out of Q0 with label 1, we shortly denote this affine chart by

1. After blowing up in Q1 we get an exceptional variety B1
∼= P2, where

again we blow up in two points. The point Q3 is the origin of the affine

chart denoted by 1.1 and Q4 is the origin of the affine chart 1.2.

�

A cluster A := (C,m) is called toric if the constellation C is toric. Let us

have a look at the finitely supported ideals in the case of toric clusters.

We refer to [Ke,Kn,M,S] for the proofs.

As we want the ideals to be supported in the 0-dimensional orbit, they

should be invariant under the action of the torus and thus be monomial.

To a monomial ideal I one can associate a Newton polytope N . It is

the union of the compact faces of the convex hull of m + σ̌ as m runs

through the set of exponents of monomials in I. The facets of the New-

ton polytope correspond with the Rees valuations of I, i.e. the valuations

induced by the irreducible components of the exceptional divisor of the

normalised blowing-up BlIX of I (see also Section 1.2). Furthermore,

a monomial ideal is complete if and only if it contains every monomial

whose exponent is a point of (N + σ̌) ∩M .

Given a toric idealistic cluster A, we can now find the unique finitely

supported complete monomial ideal IA associated to it. We show by the

following example how one can do that.
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3.3 Example

Consider the following toric cluster A in C3

b

b b

bb

Q0

1

Q2

Q3 Q4

Q1

1 3

2

with

(m0,m1,m2,m3,m4) = (3, 2, 1, 1, 1) or (v0, v1, v2, v3, v4) = (3, 5, 4, 6, 9).

We first determine the Rees valuations νj, 0 ≤ j ≤ 4, associated to the

points Qj of the constellation. The order of a monomial xaybzc along the

first exceptional component E0 is a+ b+ c. When blowing up in Q0, we

get a new point in chart 1 in which we blow up, namely Q1. The total

transform of xaybzc in chart 1 is xa+b+cybzc. The order of xaybzc along

the second exceptional component E1 is a+2b+2c. In this way we obtain

that the Rees valuations are represented by the following vectors in the

lattice N3 = σ:

ν0 ↔ (1, 1, 1) ν1 ↔ (1, 2, 2) ν2 ↔ (2, 2, 1) ν3 ↔ (1, 3, 3) ν4 ↔ (2, 3, 4).

Saying that a monomial xaybzc passes throughQj is saying that νj(x
aybzc) ≥

vj , for 0 ≤ j ≤ 4. The induced hyperplanes define a Newton polytope.

We picture the Newton polyhedron N + σ̌.

Now let IA be the ideal generated by the monomials whose exponents are

in this Newton polyhedron. �
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In the case of toric clusters, the galaxy can be completely combinatori-

ally characterised. We first introduce the notion of ‘linearly proximate’

to formulate the characterisation.

Fix a point Q in a toric constellation C of dimension d and some non-

negative integers a, b and t such that 1 ≤ a, b ≤ d, a 6= b. Let Q(a, bt) be

the terminal point of the chain with origin Q coded by (a, b, · · · , b) where

b appears t times. If t = 0, it is denoted by Q(a). The point Q(a, bt)

may not belong to C. A point P that is infinitely near to Q is said to be

linearly proximate to Q, if P = Q(a, bt), with a, b and t as above. We de-

note this relation by P ։ Q. Then we have that P is linearly proximate

to Q if and only if there exists a 1-dimensional orbit l in BQ such that

P belongs to the strict transform of the closure of l in EQ. This explains

the terminology.

Denote MQ(a, b) :=
∑

t≥0mQ(a,bt). Campillo, Gonzalez-Sprinberg

and Lejeune-Jalabert show in [C,G-S,L-J] that a toric cluster A is idealis-

tic if and only if for each point Q of the constellation C and for each pair

of integers a and b such that a, b ∈ {1, · · · , d}, the following inequality is

satisfied:

MQ(a, b) +MQ(b, a) ≤ mQ.

These inequalities are called the linear proximity inequalities. They gen-

eralise in dimension greater than 2 for toric clusters the inequalities that

Enriques and Chisini obtained in dimension 2.

3.4 Example

Consider the cluster A1

b

b

b

b

8

4

1

2

2

1

2

Q0

Q1

Q2

Q3

For example, the points with weights Q1, Q2 and Q3 are all linearly prox-

imate to the origin. This cluster does not satisfy the linear proximity

inequalities (for example MQ2(2, 1) +MQ2(1, 2) ≤ mQ2 is not satisfied).
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However, there exists another cluster A2, namely the one with weights

(8, 4, 2, 1) such that IA1 = IA2 . This can be seen by drawing the Newton

polytope associated to the cluster. This new cluster is idealistic, hence

IA1 is finitely supported . �

Given v ∈ Zr, the previous example shows that I(v) being finitely sup-

ported does not imply that v determines an idealistic cluster. It is an

interesting question whether I(v) is finitely supported for a given v in

Zr
≥0. In dimension 2, for each v ∈ Zr one can find a vector v′ ∈ Zr such

that I(v) = I(v′) and such that the cluster determined by the divisor
∑r−1

j=0 v
′
jEj is idealistic. The algorithm of Laufer gives a method to find

this v′, see [La]. In higher dimensions there exist examples of clusters for

which there does not exist an idealistic cluster that determines the same

ideal. The cluster

b

b b

4

2 3

1 3

in dimension 3 is such an example. By drawing the Newton polytope we

find the ideal that is associated to the cluster; it is not finitely supported.

In [C,G-S,L-J] Campillo, Gonzalez-Sprinberg and Lejeune-Jalabert also

answer the question of Zariski whether the cone defined by the galaxy is

regular in the toric case. They show that the cone is regular if and only

if:

1. the tree is binary and

2. if there exist Q ∈ C and labels a, b, c such that a 6= b and

{Q(a), Q(b), Q(a, c)} ⊂ C, then b = c.

3.4 Idealistic clusters and embedded resolutions

In [C,G-S,L-J] it is shown that the canonical map from the sky of the

constellation of base points of a finitely supported ideal I to X is an em-

bedded resolution of the subvariety of (X, o) defined by i general enough

elements in I, 1 ≤ i ≤ d. Moreover, it gives the minimal desingularisation

for a complete intersection surface S defined by a general (d−2)-uple with

respect to a cluster of dimension d. It is a composition of point blowing-

ups, namely of those Q ∈ C with mQ 6= 1.
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3.5 Example Let us have a look at the cluster in Example 3.3. This

cluster is idealistic and from the Newton polyhedron we can write down

the corresponding finitely supported complete ideal I(A).

I(A) = (x6, y3, z4, x3y, x2y2, yz2, y2z, x3z, xz2, xyz).

The blowing-up of the constellation gives an embedded resolution for

h(x, y, z) := x6 + y3 + z4 + x3y + x2y2 + yz2 + y2z + x3z + xz2 − xyz .�

3.5 Idealistic clusters - intersection theoretical

aspects

In this section we mention some facts about idealistic clusters, expressed

in intersection theory, that will be useful for us. For more information,

see for example [C,G-S,L-J].

If A = (C,m) is an idealistic cluster of Spec R, then its associated

divisor −D(A) is numerically effective, i.e. −D(A) · C ≥ 0 for all excep-

tional curves C on X(C). Let d be the dimension of Spec R. Kleiman

showed that it then also holds, for 1 ≤ k ≤ d− 1, that

(−D(A))k · V ≥ 0

for every k-dimensional exceptional subvariety V of X(C) (see [Kl]).

Let us now fix a point Q of a toric constellation C and let a, b ∈
{1, · · · , d}, a 6= b. When taking for V the strict transform of the 1-

dimensional orbit through Q(a) and Q(b) in BQ, the above inequalities

imply the linear proximity inequalities. If V = EQ, we get md−1
Q ≥

∑

P→Qm
d−1
P and (−D(A))d−1 ·V = 0 if and only if md−1

Q =
∑

P→Qm
d−1
P .

Let BlIAR be the normalised blow-up of the ideal IA, then the map

from the sky X(C) to Spec R factorises by BlIAR. Let σ be the morphism

X(C) → BlIAR in this factorisation. Then (−D(A))k · V = 0 if and only

if V contracts, i.e. dim σ(V ) < dim V . Now let us consider the case when

V = Ej for some index j of a point Qj of the constellation, 1 ≤ j ≤ r.

Then the induced valuation νj is Rees for IA if and only if its centre in

BlIAR is a divisor. As the centre of νj in BlIR is σ(Ej), we now have

Ej contracts under σ

m
νj is not a Rees valuation for IA.
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Poincaré series of a toric

variety

4.1 Introduction

In Chapter 1 we introduced the Poincaré series that we study in this

thesis. We investigate this Poincaré series for affine toric varieties. The

method that we use for its computation is based on the fact that their

coordinate ring is a graduated ring.

In [C,D,G-Z2], Campillo, Delgado and Gusein-Zade showed that the

Poincaré series of a plane curve equals the zeta function of monodromy.

For the proof they use the formula of A’Campo which expresses the zeta

function of monodromy of a curve in terms of data of an embedded reso-

lution for the curve, see [A’C]. Also for rational surface singularities they

obtained an analogous formula for the Poincaré series ([C,D,G-Z8]). In

Section 4.3, we generalise this formula and proof that it is equal to the

Poincaré series of an affine toric variety.

As an interesting example, in Section 4.4 we study the case of di-

visorial valuations on the ring OCd,o(d ≥ 2) that are created by toric

constellations.

4.2 Computation of the Poincaré series

Let M be a lattice with dual space N := Zd and let σ ⊂ N ⊗Z R be a

rational finite polyhedral strongly convex d-dimensional cone. Write σ̌ for

the dual cone to σ. We consider a semigroup S in σ̌ ∩M that generates

33
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σ̌ as cone and we denote the induced toric variety Spec (C[S]) by X.

Let π : X ′ → X be an equivariant proper birational morphism, X ′

being another toric variety and let V := {ν1, · · · , νr} be an arbitrary set

of divisorial monomial valuations such that V ⊂
◦
σ. We compute the

Poincaré series

P (t1, · · · , tr) :=

∏r
j=1(tj − 1)

∑

v∈Zr dim(I(v)/I(v + 1))tv

(t1 · · · tr − 1)

of the affine toric variety X with respect to V.

In what follows ν stands for the vector (ν1, · · · , νr) and by 〈s, ν〉 we mean

the vector (〈s, ν1〉, 〈s, ν2〉, · · · , 〈s, νr〉). We define the monomial cone C

as the set of values that can be obtained by valuating monomials, i.e.

C := {ν(m) | m monomial in C[S]}.
One has a Z-linear map φ : M −→ Zr given by φ(m) := 〈m, ν〉. This

map induces the following map among Laurent series groups

Φ : Z[[M ]] = Z[[u1, · · · , ud, u
−1
1 , · · · , u

−1
d ]] −→ Z[[Zr]] = Z[[t1, · · · , tr, t

−1
1 , · · · , t

−1
r ]]

X

i

λiu
m 7−→

X

i

λit
〈m,ν〉

.

Notice that for each commutative group Γ the Laurent series Z[[Γ]] is

in fact a Z[Γ]-module, and that the assignment of this module to Γ is

functorial.

In particular, for our given semigroup S, one has the multi-graded

Poincaré series of commutative algebra Q(u) :=
∑

s∈S u
s which is an el-

ement of Z[[S]] and so can be interpreted as an element in Z[[M ]]. In

fact, this multi-graded Poincaré series is usually expressed as a rational

function having Q(u) as power series expansion.

The Poincaré series in geometry P (t) is an element in Z[[Nr]] and so

also an element of Z[[Zr]].

We now compute the Poincaré series P and we obtain a relation between

the Poincaré series P and Q.
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4.1 Theorem The Poincaré series P defined by the multi-index filtration

induced by V and associated to the multi-graduation of S, is the image

under Φ of the Poincaré series of commutative algebra of the semigroup

S, i.e.

P (t) = Φ(Q(u)).

Proof. For a set A ⊂ {i1, · · · , is}, let αA be the function

αA : Zs −→ Zs

v 7−→ v′

where v′i := vi − 1 if i ∈ A and v′i := vi if i /∈ A.

Then, for v ∈ Zr, the coefficient of tv in
∏r

j=1(tj − 1)L(t1, · · · , tr) is

(−1)r
∑

A⊂{1,··· ,r}

(−1)#Adim
I(αA(v))

I(αA(v) + 1)

and the coefficient of tv in P (t) is

(−1)r+1
∑

A⊂{1,··· ,r}

(−1)#Adim
I(αA(v))

I(αA(v) + 1)
+

(−1)r+1
∑

A⊂{1,··· ,r}

(−1)#Adim
I(αA(v) − 1)

I(αA(v))
+

(−1)r+1
∑

A⊂{1,··· ,r}

(−1)#Adim
I(αA(v) − 2)

I(αA(v) − 1)
+ · · ·

This finite sum can be rewritten as

(−1)r+1
∑

A⊂{1,··· ,r}

(−1)#Adim
C[S]

I(αA(v) + 1)
.

Every subset A ⊂ {1, · · · , r} can be written in a unique way as A1 ×A2,
with A1 ⊂ {2, · · · , r} and A2 ⊂ {1}. We group the terms having the
same component A1 and we get

∑

A⊂{1,··· ,r}

(−1)#Adim
C[S]

I(αA(v) + 1)
=

∑

A⊂{2,··· ,r}

(−1)#A#{χs | 〈s, ν1〉 = v1, 〈s, (ν2, · · · , νr)〉 ≥ αA(v2, · · · , vr) + 1}.
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We go on simplifying in the same way, so now we write every subset
A ⊂ {2, · · · , r} as A1 × A2, with A1 ⊂ {3, · · · , r} and A2 ⊂ {2} and so
on. At each step we group the terms having the same component A1 and
we obtain

∑

A⊂{3,··· ,r}

(−1)#A+1#{χs | 〈s, ν1〉 = v1, 〈s, ν2〉 = v2,

〈s, (ν3, · · · , νr)〉 ≥ αA(v3, · · · , vr) + 1}

=
∑

A⊂{4,··· ,r}

(−1)#A+2#{χs | 〈s, ν1〉 = v1, 〈s, ν2〉 = v2, 〈s, ν3〉 = v3,

〈s, (ν4, · · · , νr)〉 ≥ αA(v4, · · · , vr) + 1}

...

= (−1)r−1#{χs | 〈s, ν〉 = v}.

Hence the Poincaré series P (t) is

∑

v∈Zr

#{χs | 〈s, ν〉 = v}tv

=
∑

s∈S

t〈s,ν〉

= Φ(Q(u)).

�

In what follows we will write N(v) when we want to refer to the number

#{s ∈ S | 〈s, ν〉 = v}. Since σ is d-dimensional and strongly convex, one

has that N(v) is finite for every v.

4.3 The Poincaré series à la A’Campo

For curves, rational surface singularities and plane divisorial valuations,

there exists a description of the Poincaré series at the level of the modifica-

tion space. Let D :=
⋃r

j=1Ej be the exceptional variety with irreducible

components Ej , j ∈ J := {1, · · · , r}. We denote by
◦
Ej the smooth part

of the irreducible component Ej , i.e. without intersection points with all

other components of the exceptional divisor. Let M := −(Ei ◦Ej) be mi-

nus the intersection matrix of the components of the exceptional variety

D. Let νj be the discrete valuation on the local ring OX,o induced by Ej .
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The semigroup of values S := {ν(g) | g ∈ OX,o} is exactly the set of vec-

tors {v ∈ Zr
≥0 | vM ≥ 0}. For a topological space E, let SnE := En/Sn

(n ≥ 0) be the n-th symmetric power of the space E, i.e. the space of

n-tuples of points of the space E (S0E is a point).

Campillo, Delgado and Gusein-Zade construct the space

Y :=
⋃

{v∈S}





r
∏

j=1

Snj(v)
◦
Ej



 ,

where vM =: n(v). For g ∈ OX,o, g 6= 0 and v := ν(g), the number nj(v)

is equal to the intersection number of the strict transform of g with Ej .

Let Yv be the connected component
∏r

j=1 S
nj(v)

◦
Ej of Y . They show that

P (t) =
∑

v∈Zr

χ(Yv)t
v. (4.1)

In the case of curves and plane divisorial valuations, this description in-

duces the elegant formula of the Poincaré series where the exponents can

be written as the Euler characteristics of the smooth parts
◦
Ej .

In what follows we prove a generalised form of (4.1) for affine toric vari-

eties. Let M,N, σ and S be as in Section 4.2. We consider the affine toric

variety X := Spec C[S] and we take a regular subdivision of the cone σ.

Let Σ be the fan induced by this regular subdivision and call XΣ the toric

variety associated to Σ. Let π : XΣ → X be the proper birational map

induced by the refinement.

Let τ be a regular d-dimensional cone in the refinement of σ. The

primitive vectors {n1, · · · , nd} on the rays of τ form a basis for τ . Let

{r1, · · · , rd} be its dual basis, so 〈ri, nj〉 = δi,j , 1 ≤ i, j ≤ d. We have

that C[S] is a subring of the regular ring C[τ̌ ∩ M ] := ⊕t∈τ̌∩MCxt ∼=:

C[y1, · · · , yd]. Under this isomorphism xri is mapped to yi. Hence, τ is

giving rise to an affine chart Xτ := Spec C[τ̌ ∩M ] for XΣ. In this way

XΣ is being covered by affine charts that are induced by the regular d-

dimensional cones in the subdivision of σ. For 1 ≤ i ≤ d, let Di be the

divisor on XΣ such that the vector in N corresponding to the valuation

νDi
, is ni. Then Di has equation yi in the chart Xτ .

As the Poincaré series only permits valuations with centre in the 0-

dimensional orbit, these valuations have to correspond to vectors in the
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interior of σ. As these rays not are rays of σ, they correspond to the ex-

ceptional divisors created by π. Let ρ1, · · · , ρs be vectors in
◦
σ such that

the minimal subdivision of σ that contains the rays through ρ1, · · · , ρs

is regular. Let V be a subset of the valuations that correspond to the

primitive vectors on these rays, say V := {ν1, · · · , νr}. Denote the corre-

sponding exceptional varieties by E1, · · · , Er.

If g ∈ OX,o, then we write ĝ for the strict transform. For v ∈ Zr, we

define the set

•
Dv : = {{ĝ = 0} ∩ D | g ∈ OX,o, ν(g) = v and {ĝ = 0} does not

contain any non-empty intersection Ea ∩ Eb, a, b ∈ J, a 6= b}.

Obviously to know
•
Dv it is sufficient to consider the elements g in PFv.

We make a topological space of it as follows. We write Ev for the sum
∑r

j=1 vjEj and B for the line bundle associated to Ev. The restriction R

of OZ(−Ev) ⊗ B−1 to D is a line bundle and as D is a projective vari-

ety, the global sections of R form a finite dimensional vector space. For

g ∈ Fv, the divisor ĝ ∩ D is the divisor of zeroes of a global section of

R. Then
•
Dv can be seen as a subset of the projectivisation of this vector

space.

For toric varieties, we can give a more explicit description of the space

Fv . As the ideal I(v) is a monomial ideal, one can see the space Fv as the

set of functions g =
∑s

i=1 λimi in OX,o (the mi are monomials and the

λi, 1 ≤ i ≤ s, are complex numbers different from 0) for which ν(g) = v

and for which for all i ∈ {1, · · · , s} holds that mi ∈ I(v) and that there

exists a j ∈ J such that νj(mi) = νj(g). If a function g with ν(g) = v

has this form, we say that g is in reduced form. We write supp(g) for the

support of g, which is the set {mi | 1 ≤ i ≤ s}.

Now let us fix v ∈ Zr. Let M be the set of all monomials that can

appear in the support of some g in PFv, so M := {m monomial | m ∈
I(v) and ∃j ∈ J : νj(m) = vj}. Note that M is a finite set. For a subset

L of M, let ν(L) be the vector w ∈ Zr with wj := min{νj(m) | m ∈ L},
j ∈ J .

Now we can give a shorter proof of Theorem 1.2, obtained by exploit-

ing the fact that the varieties that we consider are toric.
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4.2 Proposition

P (t) =
∑

v∈Zr

χ(PFv)t
v.

Proof. We write PFv as a disjoint union:

PFv =
⋃

L⊂M,ν(L)=v

{g ∈ PFv | supp(g) = L}.

For ΛL := {g ∈ PFv | supp(g) = L}, one has that χ(ΛL) = χ((C∗)k) = 0

for some k ∈ Z>0 if L is not a singleton, and χ(ΛL) = 1 if L is a singleton.

This gives us

χ(PFv) = N(v).

�

We will construct a subspace Zv of PFv that has the same Euler charac-

teristic as PFv and such that there exists a homeomorphism of Zv with
•
Dv. Then from Proposition 4.2 it will follow:

4.3 Theorem The Poincaré series P(t) is equal to

∑

v∈Zr

χ(
•
Dv)t

v.

We now start with the proof of Theorem 4.3. The obvious candidate for

the space Zv is the set

Zv := {g ∈ PFv | {ĝ = 0} does not contain any non-empty

intersection Ea ∩ Eb, a, b ∈ J, a 6= b}.

4.4 Lemma

χ(Zv) = χ(PFv).

Proof. Let g :=
∑s

i=1 λimi be a function in reduced form and suppose

that Ea∩Eb 6= ∅ for some a and b in J , a 6= b. If {ĝ = 0} contains Ea∩Eb

then for all µ := (µ1, · · · , µs) ∈ (C∗)s, also {ĝµ = 0} contains Ea ∩ Eb



40 Chapter 4. Poincaré series of a toric variety

where gµ :=
∑s

i=1 µimi. This yields that

χ(Zv) = χ({g ∈ PFv | g a monomial and {ĝ = 0} does not contain any

non-empty intersection Ea ∩ Eb, a, b ∈ J, a 6= b})

= χ({g ∈ PFv | g a monomial})

= N(v)

= χ(PFv).

�

Now we investigate the map

φ : Zv −→
•
Dv

g 7−→ {ĝ = 0} ∩ D.

The following lemma tells us how {ĝ = 0} ∩ D looks like.

4.5 Lemma We consider g :=
∑s

i=1 λimi ∈ PFv, a function in reduced

form. For j ∈ J , let Λg,j be the set {m ∈ supp(g) | νj(m) = vj}. Then

the equation of {ĝ = 0} ∩ Ej is
∑

mi∈Λg,j
λim̂i = 0 in every affine chart

Xτ where the intersection {ĝ = 0} ∩ Ej is visible.

Proof. If {ĝ = 0} ∩ Bj 6= ∅, then in an affine chart Xτ covering Bj
∼=

Pd−1 it can be described by the equation
∑

i∈Kj
λim̂i = 0 where

Kj := {i | νj(mi) = min{νj(m) | m ∈ supp(g)}}

= {i | νj(mi) = vj}

= Λg,j.

Now Lemma 4.5 follows directly. �

Note that m̂ can be equal to 1 in some affine chart covering Ej (j ∈ J).

However, there exists always a j ∈ J such that {m̂ = 0} ∩ Ej 6= ∅.

Let us have a look at the following example. Lemma 4.5 allows us to

deduce quickly a necessary condition on a subset S of PFv for the sets

{g ∈ S} and {{ĝ = 0} ∩ D | g ∈ S} to be in one-to-one correspondence.
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4.6 Example Let M = N := Z4 and S = σ̌ ∩M := N4. We choose the

valuations represented by the following vectors in
◦
σ:

ν0 ↔ (1, 1, 1, 1) ν1 ↔ (1, 2, 2, 2) ν2 ↔ (2, 1, 2, 2)

ν3 ↔ (1, 3, 3, 3) ν4 ↔ (2, 3, 4, 4)

Note that these valuations are induced by a toric constellation in C4. Let

v be (6, 11, 10, 14, 18) and take g(x, y, z, u) := y2z4 + x3y4 + x14. The

values of the monomials in the support of g are:

ν(y2z4) = (6, 12, 10, 18, 22), ν(x3y4) = (7, 11, 10, 15, 18) and

ν(x14) = (14, 14, 28, 14, 28).

Lemma 4.5 tells us that the equation of ĝ ∩ E1 in an affine chart where

the intersection is visible, is ˆy2z4. For ĝ ∩ E2 it is ˆx3y4, for ĝ ∩ E3 it is
ˆy2z4 + ˆx3y4, for ĝ ∩ E4 it is x̂14 and for ĝ ∩ E5 it is ˆx3y4. It follows that

the strict transform of h(x, y, z, u) := y2z4 +x3y4 +µx14, with µ 6= 0, has

the same intersection with D as ĝ.

�

We formalise what Example 4.6 shows. As in Proposition 4.2, write PFv

as the disjoint union
⋃

L⊂M,ν(L)=v ΛL. Let L be a support appearing in

this disjoint union. For j ∈ J , we define ΛL,j as the set of monomials m

in L such that νj(m) = vj. The observation made in Example 4.6 shows

that the map

φL : {g ∈ PFv | supp(g) = L} −→ {{ĝ = 0} ∩ D | g ∈ PFv and supp(g) = L}

g 7−→ {ĝ = 0} ∩ D

certainly can not be a bijection if there exists a subset D of J , with the

following properties:

∃a, b ∈ J : a ∈ D, b /∈ D, (∪d∈DΛL,d) ∩ (∪d/∈DΛL,d) = ∅. (4.2)

Indeed, if such a subsetD exists, then write g := ga+gb where supp(ga) =

∪d∈DΛL,d and supp(gb) = ∪d/∈DΛL,d. Then by Lemma 4.5 it follows that

for gλ := λaga +λbgb, the transforms {ĝλ = 0} and {ĝ = 0} have the same

intersection with D for all λ := (λa, λb) ∈ (C∗)2. We claim that also the

converse is true.
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4.7 Proposition Let L ⊂ M be as above. If for all a, b ∈ J , a 6= b,

holds that there exists no subset D with a ∈ D, b /∈ D and (∪d∈DΛL,d) ∩
(∪d/∈DΛL,d) = ∅, then the map φL is a bijection.

Proof.

1. First we show that for a monomial m in L, if given {m̂ = 0} ∩ D,

one can find m again. So suppose m in L. Take a j ∈ J such that

νj(m) = vj and such that {m̂ = 0} ∩Ej is visible in an affine chart

in the final stadium, say in the chart Xτ . The monomial m can be

written in a unique way as x
P

ciri , for some nonnegative integers

c1, · · · , cd. Then the equation of the total transform of m in the

chart Xτ is y
〈n1,c1r1〉
1 · · · y

〈nd,cdrd〉
d = yc. For 1 ≤ i ≤ d, if ni defines

a valuation of V, say νki
, set then hi := vki

. Otherwise let hi be 0.

The strict transform of m is then

y
〈n1,c1r1〉−h1

1 · · · y
〈nd,cdrd〉−hd

d .

Now suppose that m̂ ∩ Ej = y
c′1
1 · · · y

c′
d

d is given. As c = c′ + h, we

know the monomial m.

2. Let g and h be two functions in PFv with the same support L. Write

g :=
∑s

i=1 λimi and h :=
∑s

i=1 µimi, with λi and µi different from

0 (1 ≤ i ≤ s). Suppose that {ĝ = 0} ∩ D = {ĥ = 0} ∩ D and that

λj 6= µj . For lack of a subset D of J with property (1) and because

of part 1 of the proof, it follows that λi/µi = λj/µj , for all i ∈ J

and so g = h.

�

The functions in which we are interested are the functions g such that

{ĝ = 0} does not contain any non-empty intersection Ea ∩Eb. They can

be characterised as follows:

4.8 Lemma Let a and b be different elements of J such that Ea∩Eb 6= ∅.
Then

{ĝ = 0} contains Ea ∩ Eb

m
there is no m in supp(g) for which νa(m) = va and νb(m) = vb.
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Proof. Suppose that there is no m in supp(g) for which νa(m) = va

and νb(m) = vb. In an affine chart where one sees Ea ∩ Eb, one has

ĝ := ĝa + ĝb + r̂, Ea ↔ xa = 0, Eb ↔ xb = 0

where ga is the part of g with supp(ga) = {m ∈ supp(g) | νa(m) = νa(g)},
gb is the part of g with supp(gb) = {m ∈ supp(g) | νb(m) = νb(g)} and r is

g−ga−gb. From Lemma 4.5 it follows that ĝb+ r̂ ∈ (xa) and ĝa+ r̂ ∈ (xb).

Then also ĝ ∈ (xa, xb) and hence {ĝ = 0} contains Ea ∩ Eb.

If {ĝ = 0} contains Ea ∩ Eb, there exists an affine chart in which

one has

ĝ = xaga + xbgb + xaxbgr, Ea ↔ xa = 0, Eb ↔ xb = 0,

with ga /∈ (xb) and gb /∈ (xa). If m ∈ supp(g) such that νa(m) = va and

νb(m) = vb, Lemma 4.5 implies that m̂ ∈ supp(xaga)∩ supp(xbgb) what

is impossible. �

Now let g ∈ PFv and let L be the support of g. Taking the above char-

acterisation into account, we see that if ĝ does not contain Ea ∩ Eb,

then there exists no D ⊂ J for which a ∈ D, b /∈ D and (∪d∈DΛL,d) ∩
(∪d/∈DΛL,d) = ∅. Note that the other implication is false in general (see

for example the constellation given above with a = 1 and b = 2).

We denote

Zv,L := {g ∈ Zv | supp(g) = L} and
•

Dv,L := {{ĝ = 0} ∩ D ∈
•

Dv | supp(g) = L}.

Then we can write Zv as a disjoint union ∪LZv,L where for each L holds

that there is no subset D of J satisfying condition (4.2). Proposition 4.7

tells us that the map

ψL : Zv,L −→
•

Dv,L

g 7−→ {ĝ = 0} ∩ D

is a bijection and then Part 1 of the proof of Proposition 4.7 allows us to

conclude that the map

φ : Zv −→
•
Dv

g 7−→ {ĝ = 0} ∩ D
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is bijective.

Now by Lemma 4.5 one can see that φ is a homeomorphism. Then we

have that χ(Zv) = χ(
•
Dv) which completes the proof of Theorem 4.3. �

4.4 The Poincaré series of Cd induced by a toric

constellation

In this section we look at the particular case where X is Cd endowed with

the action of the torus T ∼= (C∗)d (d ≥ 2). We study the Poincaré series of

Cd where the modification π is given by a toric constellation C with origin.

Let Ej (j ∈ J) be the irreducible components of the exceptional divi-

sor D created by blowing up the constellation C := {Q0, Q1, · · · , Qr−1}
and let ξj be the generic point of Ej (j ∈ J). Then OX,ξj

is a discrete

valuation ring. We write νj for the induced valuation.

We denote the matrix of the linear system of equations 〈s, ν〉 = v by

L(C) and we denote the column vectors of L(C) by v1, · · · , vd. Let C be

the cone in Rr
≥0 generated by v1, · · · , vd. Note that C is the monomial

cone associated to the constellation C. Recall that the cone is regular if

it can be generated by a part of a basis of Zr. If L(C) has rank s and if

s < d, then the cone is said to be degenerate.

4.9 Example

Consider the following toric constellation in C4.

r

rr

�
�

�

@
@

@

Q0

Q2Q1

21

�
�

�

@
@

@
rr Q4Q3

21

The associated matrix L(C) is
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a + b + c + d = v1
a + 2b + 2c + 2d = v2
2a + b + 2c + 2d = v3
a + 3b + 3c + 3d = v4
2a + 3b + 4c + 4d = v5

and C is the cone 〈(1, 1, 2, 1, 2), (1, 2, 1, 3, 3), (1, 2, 2, 3, 4)〉 ⊂ Z5
≥0 which

is obviously degenerate.

�

To know the Poincaré series one can use Theorem 4.1. Let v1, · · · , vd

be the column vectors of L(C). Then it follows by Theorem 4.1 that

P (t) =
1

(1 − tv1) · · · (1 − tvd)
.

One can also obtain P (t) by computing the numbers N(v) = #{s ∈ Nd |
〈s, ν〉 = v} for each v ∈ Zr. We determine them as later these values will

be useful for us. The following proposition gives some properties of the

cone C which will allow us to compute the numbers N(v).

4.10 Proposition

1. C is a regular cone;

2. C is degenerate if and only if the number of different labels along

the edges appearing in the constellation is less than or equal to d−2.

Proof. If the number of different labels appearing in the constellation C
is less than or equal to d− 2, then at least two columns in L(C) are equal

and C is degenerate. Suppose that the number of different labels along

the edges is bigger than d−2, say that 1, · · · , d−1 are labels appearing in

the constellation and let Q1, · · · , Qd−1 be points in the constellation such

that Qi is a point with minimal level arising in an affine chart induced

by the label i and such that whenever Qi ≥ Qj and Qi 6= Qj, then i > j

(i, j ∈ {1, · · · , d− 1}).
The linear equations induced by the origin Q0 and by Q1, · · · , Qd−1 give

rise to a linear system whose determinant can be supposed to be of the
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form

1 1 1 · · · · · · 1

1 2 2 · · · · · · 2

∗ a2 − 1 a2 · · · · · · a2

∗ ∗ a3 − 1 a3 · · · a3

...
...

...
...

...
...

∗ · · · · · · ∗ ad−1 − 1 ad−1

=

1 1 1 · · · · · · 1

−1 0 0 · · · · · · 0

∗ −1 0 · · · · · · 0

∗ ∗ −1 0 · · · 0
...

...
...

...
...

...

∗ · · · · · · ∗ −1 0

,

where a2, · · · , ad−1 are integer numbers. As this determinant is equal to

1, the cone C is regular and nondegenerate.

Now if C is degenerate, and generated by s := rank(L(C)) vectors then

there are s−1 different labels appearing in the constellation. In the same

way as above we obtain a (s × s)-determinant which is equal to 1 such

that also in this case C is regular. �

Observe that it follows from the proof that saying that the cone C is

degenerate, is the same as saying that there is one column that appears

at least twice in L(C) and that there are no other linear dependencies

between the columns of L(C).

Notice also that it follows from the fact that a toric constellation is repre-

sented by a regular subdivision of the cone Rd
≥0, that the monomial cone

C is regular.

• If C is nondegenerate then N(v) = 1 if v ∈ C, else N(v) = 0.

Suppose that v1, · · · , vd are the column vectors of the linear system

L(C). As C is regular, we obtain again

P (t) =
1

(1 − tv1) · · · (1 − tvd)
.

• If C is degenerate, let then v1, · · · , vs be the s different vectors that

generate C and let vs be the vector that appears at least twice as

column vector in L(C). As C is regular, one can write each v ∈ C in

a unique way as v = λ1v1+· · ·+λs−1vs−1+λvs, for some λi, λ ∈ Z≥0

(1 ≤ i ≤ s− 1).

Setting k := d− s+ 1, a simple calculation shows that

N(v) =

(

k + λ− 1

λ

)
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if v ∈ C, else N(v) = 0. Using that
∑

λ∈Z≥0

(

k + λ− 1

λ

)

xλ =

1
(1−x)k , one sees again that

P (t) =
1

(1 − tv1) · · · (1 − tvs−1)(1 − tvs)k
.

For Example 4.9, the Poincaré series is then

1

(1 − t1t2t
2
3t4t

2
5)(1 − t1t

2
2t3t

3
4t

3
5)(1 − t1t

2
2t

2
3t

3
4t

4
5)

2
.

�

Also Theorem 4.3 can be written in a more explicit way in the case of

toric constellations in Cd.

4.11 Proposition Let v1, v2, · · · , vs be the different columns of the ma-

trix L(C) determined by the constellation. Then

P (t) =
1

(1 − tv1)χ(
•

Dv1
) · · · (1 − tvs)χ(

•
Dvs

)
.

Proof. If the cone C associated to L(C) is nondegenerate, then one has

for each vi (1 ≤ i ≤ s) that χ(
•
Dvi

) = N(vi) = 1. If C is degenerate then

we have for all but one vi (1 ≤ i ≤ s) that χ(
•
Dvi

) = N(vi) = 1. For the

column v that appears more than once, one gets χ(
•
Dv) = N(v) = k, with

k := d− s+ 1. �

As a consequence of Theorem 4.3 and Proposition 4.11, we obtain that

the value χ(
•
Dv) can be calculated from the values χ(

•
Dv1

), · · · , χ(
•
Dvs

)

and k.

4.5 Poincaré series for a toric complete intersec-

tion

In the previous section we saw that the Poincaré series of Cd with respect

to a set of valuations that is induced by a toric constellation has a cy-

clotomic form. Obviously we can replace Cd by any regular toric affine
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variety.

In this section we give an application of Theorem 4.1. By a result in

algebra it will follow that for a complete toric intersection, its Poincaré

series is cyclotomic.

The setting is the following. Let M be a lattice with dual space

N := Zd and let σ ⊂ N ⊗Z R be a rational finite polyhedral strongly

convex d-dimensional cone. Write σ̌ for the dual cone to σ. We consider

a semigroup S in σ̌∩M that generates σ̌ as cone and for which the group

generated by S is M . We denote the induced toric variety Spec C[S]

by X. Let {s1, · · · , sl} be a system of generators for S. Consider the

embedding of X in the affine space Cl induced by:

ε : C[x1, · · · , xl] → C[S]

xi 7→ χsi .

We define the degree deg(xi) := si. Then the kernel I(X) :=ker(ε) of the

C-algebra morphism ε is S-graded. Sturmfels explains that I(X) is then

generated by binomials of the form xαj −xβj , with deg(xαj ) =deg(xβj) =

qj and supp(xαj )∩supp(xβj) = ∅, where 1 ≤ j ≤ g, g ∈ Z≥0 and the

qj ∈ S are unique (see [St]).

Obviously g ≥ l − d. When g = l − d, then X is said to be a toric

complete intersection. This property is independent of the chosen system

of generators for S. In [Mill,St] one can find a proof of the following

theorem.

4.12 Theorem If the semigroup S defines an affine toric complete in-

tersection, then its Poincaré series Q(u) =
∑

s∈S u
s is equal to

∏g
j=1(1 − uqj)

∏l
i=1(1 − usi)

.

Applying Theorem 4.1, we now get the following result (we use the same

notation as before).

4.13 Corollary Let n1, · · · , nr be elements in
◦
σ, then

P (t1, · · · , tr) =

∏g
j=1(1 − t

〈qj ,n1〉
1 · · · t

〈qj ,nr〉
r )

∏l
i=1(1 − t

〈si,n1〉
1 · · · t

〈si,nr〉
r )

.



Chapter 5

The zeta function of

monodromy and the

topological zeta function

Since the 19th century many zeta functions have been defined and inves-

tigated. Some examples are the Riemann zeta function, the Weil zeta

functions and the Igusa zeta function. Many other zeta functions are

mentioned on [Wa].

In this thesis we investigate some aspects of the zeta function of mon-

odromy and of the topological zeta function. We first give a short intro-

duction to these zeta functions, according to the aim of this thesis. In

the first two sections of this chapter, we introduce these zeta functions.

A very mysterious thing is going on here; these zeta functions seem to

be related. The monodromy conjecture states this prediction, see Section

5.3.

5.1 The zeta function of monodromy

Let f be a complex polynomial in d variables.We assume that f(0) = 0.

Take ǫ > 0 small enough such that the open ball Bǫ with radius ǫ around

the origin intersects the fibre f−1(0) transversally. Then choose ǫ≫ η > 0

such that for t in the disc Dη ⊂ C around the origin, the fibre f−1(t)

intersects Bǫ transversally. Write X := f−1(Dη) ∩Bǫ, Xt := f−1(t) ∩Bǫ

for t ∈ Dη and D∗η := Dη \ {0} for the pointed disc.
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Milnor showed that f|X\X0
: X \X0 → D∗η is a locally trivial fibration, see

[Mil]. A fibre Xt of this bundle is called Milnor fibre.

Let t be a point inD∗η and consider the loop γ : [0, 1] → Dη : t 7→ ηe2πit

in D∗η encircling the origin once counterclockwise. Since f|X\X0
is a locally

trivial fibration, the loop γ lifts to a diffeomorphism h of the Milnor fibre

Xδ, which is well determined up to homotopy. In this way γ induces an

automorphism h∗ : Hn(Xδ,C) → Hn(Xδ,C), n ≥ 0, that is called the

monodromy transformation.

5.1 Definition The zeta function of monodromy at the origin ζf associ-

ated to the polynomial f is

ζf (t) :=
∏

n≥0

(det(id∗ − th∗;Hn(Xδ,C)))(−1)(n+1)

.

If f determines an isolated singularity, the cohomology groups Hn(Xδ ,C)

are all {0} except for n = 0 and n = d − 1. For an isolated singularity,

the zeta function then becomes

ζf (t) =
det(id∗ − th∗;Hd−1(Xδ,C))(−1)d

1 − t
. (5.1)

Very often one uses the alternative formula for the zeta function of mon-

odromy provided by A’Campo ([A’C]). It describes the zeta function

of monodromy in terms of an embedded resolution of the hypersurface

f−1(0).

Let π : Y → Cd be an embedded resolution of singularities of f−1{0}.
We write Ej, j ∈ S, for the irreducible components of π−1(f−1{0}) and

we denote by Nj and by νj −1 the multiplicities of Ej in the divisor on X

of f ◦π and π∗(dx1 ∧ . . .∧dxd) respectively. In Chapter 3 we met already

the notion of Nj and used there the notation vj for it. These notations

are very standard in their own domain, so here we also use the notation

according to the topic.

The couples (Nj , νj), j ∈ S, are called the numerical data of the em-

bedded resolution (X,π). We denote also
◦
Ej := Ej \ (∪i∈S\{j}Ei), for

j ∈ S. Further we write χ(·) for the topological Euler–Poincaré charac-

teristic.

Suppose that f = 0 has only one isolated singularity. Then we may

suppose that π is an isomorphism outside the inverse image of the origin.

Say that the Ej, j ∈ {1, · · · , r}, are the irreducible exceptional compo-

nents of π−1({0}).
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5.2 Theorem (A’Campo)

ζf (t) =
r
∏

j=1

(1 − tNj )−χ(
◦

Ej).

5.2 The topological zeta function

In 1992 Denef and Loeser created a new zeta function which they called

the topological zeta function because of the topological Euler–Poincaré

characteristic turning up in it. Roughly said, the topological zeta function

Ztop,f associated to a polynomial function f : Cd → C (or to the germ

f : (Cd, 0) → (C, 0) of a holomorphic function) is a function containing

information that we can pick out of every chosen embedded resolution of

f−1{0} ⊂ Cd. They introduced it in [De,L1] in the following way.

Let f : (Cd, 0) → (C, 0) be the germ of a holomorphic function and

let π : X → Cd be an embedded resolution of singularities of f−1{0}.
We write Ej , j ∈ S, for the irreducible components of π−1(f−1{0}). Let

(Nj , νj), j ∈ J , be the numerical data of the embedded resolution (X,π).

For I ⊂ S we denote also EI := ∩i∈IEi and
◦
EI := EI \ (∪j /∈IEj).

5.3 Definition The local topological zeta function associated to f is the

rational function in one complex variable

Ztop,f (s) :=
∑

I⊂S

χ(
◦
EI ∩ π

−1{0})
∏

i∈I

1

Nis+ νi
.

For a polynomial function f there is a global version replacing
◦
EI∩π−1{0}

by
◦
EI . When we do not specify, we mean the local one.

Denef and Loeser proved that every embedded resolution gives rise to

the same function, so the topological zeta function is a well-defined sin-

gularity invariant (see [De,L1]). Once the motivic Igusa zeta function

was introduced, they proved this result alternatively in [De,L2] by show-

ing that this more general zeta function specialises to the topological one.

In [De,L1] Denef and Loeser also give a formula for the topological zeta

function in terms of Newton polyhedra.

Let f ∈ C[x1, · · · , xd] be a non-constant polynomial vanishing in the
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origin. Write xk := xk1
1 · · · xkd

d and f :=
∑

k∈Nd ckx
k. The support of f is

supp(f) := {k ∈ Nd | ck 6= 0}. The global Newton polyhedron Γgl of f is

the convex hull of supp(f) and the Newton polyhedron Γ of f is the convex

hull of Γgl + Rd
≥0. A face of Γ is defined as the intersection {l = 0} ∩ Γ

for a linear form l which is nonnegative on Γ. The dimension of a face

τ is the dimension of the smallest subspace containing τ . For a face τ

of Γ we write fτ :=
∑

k∈τ ckx
k. A polynomial f is called nondegenerate

with respect to Γ if for every compact face τ of Γ, the polynomials fτ and

∂fτ/∂xi have no common zeroes in (C∗)d, 1 ≤ i ≤ d.

For a ∈ Rd
+, set N(a) :=minx∈Γa · x and ν(a) :=

∑d
i=1 ai. The sets

F (a) := {x ∈ Γ | a · x = N(a)} are faces of Γ. To a face τ of Γ one

associates a cone τ ′ that is the closure of the set {a ∈ Rd
+ | F (a) = τ}.

It has dimension d−dim(τ). In particular, if dim(τ) = d− 1 then τ ′ is a

ray, say τ ′ := rR≥0 for some r ∈ Nd, and the equation of the hyperplane

through τ is then r · x = N(r).

Let γ be the convex hull in Rd of a subset of Zd. Denote Aff(γ) for

the affine space spanned by γ. Let ωγ be the volume form on Aff(γ)

such that a parallelepiped spanned by a lattice basis of Zd∩ Aff(γ) has

volume 1. For a face τ of Γ we set Vol(τ) = 1 if dim(τ) = 0. Otherwise

we define Vol(τ) as the volume of τ ∩ Γgl for the volume form ωτ . For

an l-dimensional simplicial cone C := r1R≥0 + · · · + rlR≥0 ⊂ Rd
≥0, with

r1, · · · , rl primitive vectors in Nd, the multiplicity mult(C) of C is the

volume of the parallelepiped spanned by r1, · · · , rl for the volume form

ωC . The multiplicity mult(C) also equals the greatest common divisor of

the determinants of all l× l matrices obtained by omitting columns from

the matrix with rows r1, · · · , rl.
Let now C be a simplicial cone in Rd

≥0 with primitive linearly in-

dependent generators r1, · · · , rl ∈ Nd. To C we associate the rational

function

JC(s) :=
mult(C)

∏l
i=1(N(ri)s+ ν(ri))

.

Now for an arbitrary face τ of Γ, a rational function denoted Jτ (s) is

defined as follows:

1. If τ = Γ, then put Jτ (s) := 1;

2. else choose a decomposition of τ ′ in simplicial cones Ci, 1 ≤ i ≤ n,

of dimension l :=dim(τ ′) such that dim(Ci ∩Cj) < l if i 6= j. Then

set Jτ (s) :=
∑n

i=1 JCi
(s).



5.3 The monodromy conjecture 53

Denef and Loeser show that the function Jτ does not depend on the

chosen decomposition of τ ′ and they prove the following description for

the topological zeta function.

5.4 Theorem If f is nondegenerate with respect to Γ, then

Ztop,f (s) =
∑

τ vertex of Γ

Jτ (s)+
s

s+ 1

∑

τcompact
face of Γ,
dim(τ)≥1

(−1)dim(τ)(dimτ)!Vol(τ)Jτ (s).

A very remarkable fact about the topological zeta function Ztop,f of a

polynomial f , is that a lot of the numbers −νj/Nj , called the candidate

poles, are not poles of Ztop,f . We will say more about that in Chapter 6.

5.3 The monodromy conjecture

The monodromy conjecture was first stated for the Igusa zeta function.

When Denef and Loeser introduced the topological zeta function, an anal-

ogous version of the monodromy conjecture arose.

One calls α an eigenvalue of monodromy of f if α is an eigenvalue for

some t · id∗−h∗ : Hn(Xδ,C) → Hn(Xδ ,C) at some b ∈ f−1{0}. The zeta

functions ζf determine all the eigenvalues of the monodromy transfor-

mations. For isolated singularities this follows from Formula 5.1. Denef

showed that this is also true for non-isolated singularities, see [De2]. In

other words, the zeroes and poles of ζf are the eigenvalues of monodromy

of f .

The monodromy conjecture relates the poles of the topological zeta

function Ztop,f with the eigenvalues of monodromy of f .

5.5 Conjecture (Monodromy conjecture) If s is a pole of Ztop,f , then

e2πis is an eigenvalue of monodromy of f for some point of the hypersur-

face f = 0.

Loeser proved the conjecture for plane curves. He gave also a proof for a

particular class of functions in higher dimensions, one of the conditions is

that the polynomial should be nondegenerate with respect to its Newton

polyhedron ([L1, L2]). Also Artal-Bartolo, Cassou-Noguès, Luengo and

Melle-Hernández, Rodrigues and Veys provided results about the conjec-

ture.
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Chapter 6

On the poles of the

topological zeta function

6.1 Introduction

Let f : (Cd, 0) → (C, 0) be the germ of a holomorphic function and

consider an embedded resolution of singularities π : X → Cd of f−1{0}.
We write Ej, j ∈ S, for the irreducible components of π−1(f−1{0}) and

(Nj , νj), j ∈ S, for the numerical data of the embedded resolution (X,π).

From the definition of the topological zeta function associated to f

Ztop,f (s) :=
∑

I⊂S

χ(
◦
EI ∩ π

−1{0})
∏

i∈I

1

Nis+ νi
,

it follows that the poles are part of the set {−νj/Nj | j ∈ S}; therefore

the −νj/Nj are called the candidate poles. Notice that the poles are neg-

ative rational numbers.

The poles of the topological zeta function of f are interesting numer-

ical invariants. Various conjectures relate them to the eigenvalues of the

local monodromy of f , see for example [De,L1].

A related numerical invariant of f at 0 ∈ Cd is its log canonical thresh-

old c0(f) which is by definition the supremum of the set

{c ∈ Q | the pair (Cd, c div f) is log canonical in a neighbourhood of 0}.

It is described in terms of the embedded resolution as c0(f) = min{νj/Nj |
0 ∈ h(Ej), j ∈ S} (see [Ko2, Proposition 8.5]). It was studied in various

55
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papers of Alexeev, Cheltsov, Ein, de Fernex, Kollár, Kuwata, McKernan,

Mustaţă, Park, Prokhorov, Reid, Shokurov and others. Especially the

sets Td := {c0(f) | f ∈ C[x1, . . . , xd]}, with d ∈ Z>0, show up in interest-

ing conjectures, see [Al], [Ko], [Ku], [McK,Pr], [Pr] and [Sh].

In the context of the topological zeta function, one similarly studies the

set

Pd := {s0 | ∃f ∈ C[x1, . . . , xd] : Ztop,f (s) has a pole in s0}.

The case d = 1 is trivial: P1 = {−1/i | i ∈ Z>0}.
From now on we assume that d ≥ 2. A more or less obvious lower

bound for Pd is −(d − 1), see [Se1, Section 2.4]. In [Se,Ve], Segers and

Veys studied the ‘smallest poles’ for d = 2 and d = 3. They showed that

P2∩(−∞,−1
2) = {−1

2 −
1
i | i ∈ Z>1} and that P3∩(−∞,−1) = {−1− 1

i |
i ∈ Z>1}. They expected that this could be generalised to

Pd ∩ (−∞,−
d− 1

2
) = {−

d− 1

2
−

1

i
| i ∈ Z>1}, for all d ∈ Z>1.

In particular, they predicted that the lower bound −(d − 1) could be

sharpened to −d/2. This better bound was proven by Segers in [Se2].

We show for all d ≥ 4 that {−(d− 1)/2 − 1/i | i ∈ Z>1} ⊂ Pd, and as

main result we prove that any rational number in the remaining interval

[−(d− 1)/2, 0) is a pole of some topological zeta function.

6.1 Theorem For d ≥ 2 we have [−(d− 1)/2, 0) ∩ Q ⊂ Pd.

With the Thom-Sebastiani principle [De,L3], xi
1 + x2

2 + · · · + x2
d is the

obvious candidate to have −(d − 1)/2 − 1/i as a pole of its associated

topological zeta function. For the theorem, the key is to find a suitable

family of polynomials.

We will put the useful information of the resolution into a diagram, which

is called the dual intersection graph. It is obtained as follows. One asso-

ciates a vertex to each exceptional component in the embedded resolution

(represented by a dot) and to each component of the strict transform of

f−1{0} (represented by a circle). One also associates to each intersection

an edge, connecting the corresponding vertices. The fact that Ej has

numerical data (Nj , νj) is denoted by Ej(Nj , νj).
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If the strict transform of f−1{0} is irreducible, we will denote it by E0.

Let Ej be an exceptional variety and let Ei, i ∈ S, be the components

that intersect Ej in X. We set αi := νi − (νj/Nj)Ni for i ∈ S; these

numbers appear in the calculation of the residue of Ztop,f in −νj/Nj .

6.2 The set {−(d− 1)/2− 1/i | i ∈ Z>1} is a subset

of Pd

Embedded resolution for xi
1+x2

2+· · ·+x2
d = 0, d ≥ 4, with i even

After blowing up i/2 times in the origin, we get an embedded resolu-

tion for f . We present the dual intersection graph for i 6= 2.

s s

c

E1 E2
. . .HHHHHH

@
@
@ �
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�

������s s

E i
2
−1 E i

2 E1(2, n)

E2(4, 2d − 1)

Ei/2−1(i− 2, (d− 1)(i/2 − 2) + d)

Ei/2(i, (d − 1)(i/2 − 1) + d)

The exceptional variety Ei/2 gives the candidate pole −(d− 1)/2− 1/i in

which we are interested. If i 6= 2, its residue is

1
N i

2

(

χ(E◦I1) + χ(E◦I2)
1

α i
2
−1

+ χ(E◦I3)
1

α0
+ χ(E◦I4)

1

α0α i
2
−1

)

,

where

I1 := {
i

2
}, I2 := {

i

2
,
i

2
− 1}, I3 := {

i

2
, 0}, I4 := {

i

2
,
i

2
− 1, 0}.

The Euler–Poincaré characteristics χ(E◦Ik
), 1 ≤ k ≤ 4, are put in Table 1.

These are easily computed since Ei/2
∼= Pd−1, and Ei/2−1 and E0 intersect

Ei/2 in a hyperplane and a smooth quadric, respectively.
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χ(E◦Ik
) d odd d even

k = 1 1 −1

k = 2 0 1

k = 3 0 2

k = 4 d− 1 d− 2

Table 1

Using that α0 = (3− d)/2− 1/i and αi/2−1 = 2/i, some easy calculations

yield that the residue is nonzero, for all d ∈ N, d ≥ 4.

If i = 2, we blow up just once in the origin to get an embedded res-

olution. By using α0 = 2−d
2 , χ(E◦I1) = 0(d even), χ(E◦I1) = 1(d odd), we

conclude that also here the residue is nonzero.

Embedded resolution for xi
1 + x2

2 + · · · + x2
d = 0, d ≥ 4, with

i odd

After blowing up (i+1)/2 times in the origin, followed by blowing up once

more in D := E(i+1)/2 ∩ E(i−1)/2
∼= Pd−2, we get an embedded resolution

with the following dual intersection graph.

s s

E1 E2 . . . s s

E i−1
2

E i+3
2

E i+1
2sHHHHHH

@
@
@ �
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c

E1(2, n)

E2(4, 2d − 1)

E(i−1)/2(i− 1, (d − 1)(i− 3)/2 + d)

E(i+1)/2(i, (d − 1)(i − 1)/2 + d)

E(i+3)/2(2i, (d − 1)i+ 2)

The last exceptional variety has −(d− 1)/2− 1/i as candidate pole. The

relevant subsets in the computation of the residue are

I1 := {
i+ 3

2
}, I2 := {

i+ 3

2
, 0}, I3 := {

i+ 3

2
,
i+ 1

2
}

I4 := {
i+ 3

2
,
i− 1

2
}, I5 := {

i+ 3

2
,
i− 1

2
, 0}.

Here E(i+3)/2 is a P1-bundle over D. For k = 2, 3, 4 we have that EIk
∼= D

and EI5 is a smooth quadric. With the Euler–Poincaré characteristics of

Table 2 and α0 = (3−d)/2−1/i, α(i−1)/2 = 1/i and α(i+1)/2 = (d−1)/2,

we find that the residue is nonzero, for all d ≥ 4.
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χ(E◦Ik
) d odd d even

k = 1 0 −1

k = 2 0 1

k = 3 d− 1 d− 1

k = 4 0 1

k = 5 d− 1 d− 2

Table 2

Throwing together these results we obtain

{−
d− 1

2
−

1

i
| i ∈ Z>1} ⊂ Pd.

Now that we checked this expectation, we proceed proving the theorem.

Remark.— Notice that m ∈ Pd−1 implies that m ∈ Pd. Indeed, any

polynomial f in d − 1 variables can be considered as a polynomial in d

variables. An embedded resolution for f−1{0} ⊂ Cd−1 induces the obvi-

ous analogous one for f−1{0} ⊂ Cd = Cd−1 × C and, since χ(C) = 1, the

two associated topological zeta functions are equal. From this observation

it follows that it is sufficient to prove that [−(d− 1)/2,−(d− 2)/2)∩Q ⊂
Pd. As we showed in this section that −(d − 1)/2 is contained in Pd−1

and thus in Pd, we restrict ourselves in the next sections to the subset

(−(d− 1)/2,−(d − 2)/2) ∩ Q.

6.3 The set (−1/2, 0)∩ Q is a subset of P2

Considering how candidate poles look like in the formula of the topological

zeta function written in terms of newton polyhedra, the number −(b +

2)/(2a + 2b) seems to appear as a candidate pole of the topological zeta

function associated to the nondegenerate polynomial f(x, y) := xa(xb +

y2), where a and b are positive integers.
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b

b

a+ ba

2

Figure 1: Γ of f(x, y) := xa(xb + y2)

An easy computation yields:

6.2 Lemma When a and b run through 2Z>0, a 6= 2, the quotient −(b+

2)/(2a + 2b) takes all rational values in (−1/2, 0).

Taking the lemma into account, the functions f(x, y) := xa(xb + y2),

where a, b ∈ 2Z>0 and a 6= 2, could be a pretty nice choice to obtain all

desired poles. Easy calculations give the following dual resolution graph

for f .

c . . .s s s s s���

HHH

c

c

E1 E2 E3
E b

2
−1 E b

2

E1(a+ 2, 2)

E2(a+ 4, 3)

E3(a+ 6, 4)

Eb/2−1(a+ b− 2, b/2)

Eb/2(a+ b, b/2 + 1)

Because Eb/2 is intersected three times by other components, Theorem

4.3 in [Ve2] allows us to conclude that −(b + 2)/(2a + 2b) is a pole of

Ztop,f .

6.4 The set (−(d− 1)/2,−(d− 2)/2)∩Q is a subset

of Pd, d ≥ 3

As this set is a translation by −1/2 of expected poles in dimension d− 1,

the Thom-Sebastiani principle in [De,L3] is again the motivation why we

consider

f(x1, . . . , xd) := x2
d + · · · + x2

3 + xa
1(x

b
1 + x2

2),

where a ∈ 2Z>0 and a 6= 2, to reach the set (−(d− 1)/2,−(d− 2)/2)∩Q.
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Embedded resolution for z2 + xa(xb + y2)

Let us first explain in dimension 3 which embedded resolution we choose

for z2 +xa(xb + y2) (a, b ∈ 2Z>0, a 6= 2). We first blow up in the singular

locus {x = z = 0} of f and further always in the singular locus of the

strict transform; the first a/2 times this is an affine line and the last b/2

times it is a point. This is the special case for d = 3 in Table 3.

The dual intersection graph looks as follows.
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2
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2
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. . .
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Ea+b

2
−1 Ea+b

2

E1(2, 2)

E2(4, 3)

Ea/2(a, a/2 + 1)

Ea/2+1(a+ 2, a/2 + 3)

Ea/2+2(a+ 4, a/2 + 5)

E(a+b)/2(a+ b, a/2 + b+ 1)

The candidate pole given by the last exceptional surface, E(a+b)/2, is equal

to

−
a/2 + b+ 1

a+ b
= −

b+ 2

2a+ 2b
−

1

2
,

and thus covers all rational numbers in (−1,−1/2) if a and b run over

2Z>0 and a 6= 2.

Embedded resolution for x2
d + · · · + x2

3 + xa
1(x

b
1 + x2

2), d > 3

The sequence of blowing-ups in Table 3 yields an embedded resolution

for

f(x1, . . . , xd) := x2
d + · · · + x2

3 + xa
1(x

b
1 + x2

2),

based on the previous one for d = 3.
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number j of centre blowing-up equation strict transform

blowing-up in relevant chart

1 x1 = x3 = x4 = · · · = xd = 0 x2
d + · · · + x2

3 + xa−2
1 (xb

1 + x2
2)

2 x1 = x3 = x4 = · · · = xd = 0 x2
d + · · · + x2

3 + xa−4
1 (xb

1 + x2
2)

...
...

...

a/2 x1 = x3 = x4 = · · · = xd = 0 x2
d + · · · + x2

3 + xb
1 + x2

2

a/2 + 1 (0, 0, . . . , 0) x2
d + · · · + x2

3 + xb−2
1 + x2

2

a/2 + 2 (0, 0, . . . , 0) x2
d + · · · + x2

3 + xb−4
1 + x2

2
...

...
...

(a+ b)/2 (0, 0, . . . , 0) x2
d + · · · + x2

3 + 1 + x2
2

Table 3

The dual intersection graph here looks as follows.
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E1 Ea
2
−1 Ea

2
Ea

2
+1

. . .
Ea+b

2

E1(2, d− 1)

E2(4, 2d− 3)

Ea/2(a, (d− 2)a/2 + 1)

Ea/2+1(a+ 2, (d− 2)a/2 + d)

E(a+b)/2(a+ b, (d− 2)(a+ b)/2 + b/2 + 1)

Now −ν(a+b)/2/N(a+b)/2 is equal to

−
a/2 + b+ 1 + ((a+ b)/2)(d − 3)

a+ b
= −

b+ 2

2a+ 2b
−
d− 2

2
,

which covers the interval (−(d− 1)/2,−(d− 2)/2)∩Q when a and b vary

in 2Z>0 with a 6= 2.

The rational number −ν(a+b)/2/N(a+b)/2 is a pole of Ztop,f

For all d ≥ 3 and f(x1, . . . , xd) := x2
d + · · · + x2

3 + xa
1(x

b
1 + x2

2), we

calculate the residue of Ztop,f in −ν(a+b)/2/N(a+b)/2. Observe that if

(a+ b)/(2 + b) ∈ Z, the exceptional variety E(a+b)/(2+b) induces the same

candidate pole as E(a+b)/2. The other exceptional varieties always give
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rise to other candidate poles.

The subsets playing a role in the contribution of E(a+b)/(2+b) to the residue

are

I1 := {
a+ b

2 + b
}, I2 := {

a+ b

2 + b
,
a+ b

2 + b
− 1}, I3 := {

a+ b

2 + b
,
a+ b

2 + b
+ 1},

I4 := {
a+ b

2 + b
, 0}, I5 := {

a+ b

2 + b
,
a+ b

2 + b
− 1, 0}, I6 := {

a+ b

2 + b
,
a+ b

2 + b
+ 1, 0}.

Notice that if d = 3, E(a+b)/(2+b) does not intersect E0.

We have that E(a+b)/(2+b) is isomorphic to the cartesian product of

A1 and the blowing-up of Pd−2 in a point. It is also easy to describe the

whole intersection configuration on E(a+b)/(2+b).

χ(E◦Ik
) d odd d even

k = 1 0 0

k = 2 1 0

k = 3 1 0

k = 4 0 0

k = 5 d− 3 d− 2

k = 6 d− 3 d− 2

Table 4

Using the relevant Euler–Poincaré characteristics of Table 4 and that

α(a+b)/(2+b)−1 = 1/i, α(a+b)/(2+b)+1 = −1/i, we see that E(a+b)/(2+b) does

not give any contribution to the residue in −ν(a+b)/2/N(a+b)/2. Alterna-

tively, this is implied by [Ve1, Proposition 6.5]. This means we only have

to take the contribution of E(a+b)/2 into account.

To compute this contribution the relevant subsets for the summation

in the formula of the topological zeta function are

I1 := {
a+ b

2
}, I2 := {

a+ b

2
,
a+ b

2
− 1},

I3 := {
a+ b

2
, 0}, I4 := {

a+ b

2
,
a+ b

2
− 1, 0}.

The Euler–Poincaré characteristics χ(E◦Ik
), 1 ≤ k ≤ 4, are the same as

those given in Table 1 and we have α0 = −((d−4)a+(d−3)b+2)/(2(a+b))
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and α(a+b)/2−1 = (2 − a)/(a+ b).

As the residue then is equal to

(−2 + 3a+ 2b)(da− 2a− b+ db+ 2)

(−2 + a)(a+ b)(da − 4a+ 2 + db− 3b)
for d odd and

(2 + b)(da− 2a− b+ db+ 2)

(−2 + a)(a+ b)(da− 4a+ 2 + db− 3b)
for d even,

we find that −(ν(a+b)/2)/(N(a+b)/2) = −(b+ 2)/(2a+ 2b)− (d− 2)/2 is a

pole of Ztop,f .

We conclude that (−(d− 1)/2,−(d − 2)/2) ∩ Q ⊂ Pd, for all d ≥ 3.

6.5 Some remarks

(1) Instead of achieving this result with the method of resolution of sin-

gularities one can find the poles of the topological zeta function of the

polynomials

x2
d + · · · + x2

3 + xa
1(x

b
1 + x2

2) and x2
d + · · · + x2

2 + xi
1

with the help of Newton polyhedra. Indeed, we can write down the topolo-

gical zeta function for these polynomials using the formula of Denef and

Loeser, see Theorem 5.4. For example if f(x1, . . . , xd) := x2
d + · · · + x2

3 +

xa
1(x

b
1 + x2

2), where a and b are positive even integers and a 6= 2, put

A := (a+ b)s+ 1 + b/2 + (d− 2)(a+ b)/2 and B := as+ 1 + (d− 2)a/2.

We get

Ztop,f (s) = (d− 1)
b

2AB
+

1

A
+ (d− 2)

a

2B

+
s

s+ 1

(

d−1
∑

d=1

(

d− 2

d+ 1

)(

a

2B
+

b

2AB

)

(−2)d

+

d−1
∑

d=1

(

d− 1

d

)

1

A
(−2)d +

d−2
∑

d=1

(

d− 2

d

)

b

2AB
(−2)d

)

.

Handling the problem in this way leads to the same results. One just has

to be careful with the dual cones of some faces, namely those that are

not a rational simplicial cone.
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(2) With a similar definition of Pd in each case, the same results hold

for local and global versions of the motivic zeta function, the Hodge zeta

function and Igusa’s zeta function. Indeed, the results for the topological

zeta function imply the results for those ‘finer’ zeta functions.
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Chapter 7

The topological zeta

function for surfaces

resolved by a toric

constellation

7.1 Introduction

Given a polynomial f in d variables over C, its topological zeta function

Ztop,f can be calculated by computing an embedded resolution. If f is

nondegenerate with respect to its Newton polyhedron, then there exists

also the formula for Ztop,f in terms of its Newton polyhedron, see Theo-

rem 5.4. We now restrict to surfaces for which there exists an embedded

resolution of singularities realised by the blowing-up of a toric constella-

tion that is the constellation of base points of a finitely supported ideal

(see Section 3.4). We show that, directly from the tree that represents

the toric constellation, one can read all information needed to write down

the topological zeta function. To obtain this formula, we use some basic

theory of geometry of curves on surfaces. The well-developed formulas for

genera and for the topological Euler-Poincaré characteristic for curves on

surfaces make that surfaces are very nice varieties to develop a formula

for. This formula offers the advantage that it can be written down imme-

diately from the tree and that it could be a tool to prove (or to unmask)

the monodromy conjecture for this specific case.
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by a toric constellation

7.2 Curves on surfaces and blowing-ups

First we recall some principles of intersection theory for curves on surfaces

and some formulas for the Euler-Poincaré characteristic that we will use

to calculate the topological zeta function. We refer to [Ha] and [Sha] for

the proofs.

Let X be a complex nonsingular projective surface. Denote by Div(X)

the group of divisors on X (note that Weil and Cartier divisors then co-

incide) and by Pic(X) the group of invertible sheaves up to isomorphism.

In this context Pic(X) is isomorphic to the group of divisors modulo lin-

ear equivalence.

There is a unique pairing Div(X) × Div(X) → Z, denoted by C ·D
for any two divisors C,D such that

1. if C and D are nonsingular curves meeting transversally, then C ·D
is the number of points on C ∩D;

2. it is symmetric, i.e. C ·D = D · C;

3. it is additive, i.e. (C1 + C2) ·D = C1 ·D +C1 ·D;

4. it depends only on the linear equivalence classes, i.e. if C1 is linear

equivalent with C2, then C1 ·D = C2 ·D.

If C and D are curves on X having no common irreducible component

and if P ∈ C∩D, then the intersection multiplicity (C ·D)P of C and D at

P is defined as the length of the module OP,X/(f, g) where f and g are lo-

cal equations of C and D at the point P . Then C ·D =
∑

P∈C∩D(C ·D)P .

Let P be a point of X and let π : X̃ → X be the blowing-up in P .

Denote by E the exceptional curve on X̃ created by this blowing-up. The

natural maps π∗: Pic(X)→ Pic(X̃) and Z → Pic(X̃) defined by 1 7→ 1 ·E
give rise to an isomorphism Pic(X̃) ∼= Pic(X)⊕Z. The intersection theory

on Pic(X̃) is determined by the rules:

1. If C,D ∈Pic(X), then (π∗C) · (π∗D) = C ·D;

2. if C ∈Pic(X), then (π∗C) · E = 0;

3. E2 = −1;
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4. if π∗: Pic(X̃)→Pic(X) denotes the projection on the first factor and

if C ∈Pic(X) and D ∈ Pic(X̃), then (π∗C) ·D = C · π∗(D).

Let C be a curve onX and let P be a point of multiplicity multP (C) =:

r on C. If π : X̃ → X is the blowing-up with centre P , then π∗C = Ĉ+rE,

with Ĉ the strict transform of C. If Π : Z → X is a composition of

blowing-ups then we also denote Ĉ for the strict transform of C at some

intermediate stage.

Direct consequences of the above properties are:

1. r = Ĉ ·E;

2. if Π : Z → X is a composition of blowing-ups such that Ĉ and D̂

are nonsingular, then

(C ·D)P = multP (Ĉ)multP (D̂) +
∑

Q→P

multQ(Ĉ)multQ(D̂).

Let C be a projective curve and let PC be the Hilbert polynomial of C.

The arithmetic genus pa(C) of C is defined as 1− PC(0). The geometric

genus g(C) of C is defined as dimCΓ(C,ωC), where ωC is the canonical

sheaf of the curve C. For a projective nonsingular curve these notions

coincide.

If C is a curve of degree d in P2, then

pa(C) = (d− 1)(d− 2)/2.

If P is a point of multiplicity r on C ⊂ X and if π : X̃ → X is the

blowing-up with centre P , then

pa(Ĉ) = pa(C) −
r(r − 1)

2
.

For a nonsingular projective curve C it holds that

χ(C) = 2 − 2pa(C).
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7.3 Computation of the numbers χ(E◦
I )

We consider an idealistic toric cluster in C3 and a complex polynomial f

in three variables in a finitely supported ideal such that the cluster gives

an embedded resolution for the surface S := V (f) ⊂ C3. To determine

the topological zeta function of f , we determine the numbers χ(
◦
EI). We

will denote the curves Ŝ ∩ Ei by Ci, whatever the stage is in which we

look at Ŝ.

First of all, notice that when blowing up in a point of multiplicity m

on S and E being the created exceptional divisor, the curve Ŝ ∩ E has

degree m. Another important observation is that if Q ∈ E, then the mul-

tiplicity of Q on Ŝ∩E is equal to the multiplicity of Q on Ŝ. This follows

from the fact that E is transversal to Ŝ in Q. If not, the singularities

could never be resolved by blowing up in points.

7.1 Example Consider the toric constellation represented by the follow-

ing tree.

b

b

b b

bb b

Q1

Q2

Q3

Q4

Q5 Q6 Q7

1

1
2

1 2 3

Let S be a surface in C3 for which the above toric constellation gives an

embedded resolution. We follow the resolution process and we picture the

intersections that are relevant in the calculation of the numbers χ(
◦
EI).

These pictures are not meant to represent a realistic constellation, re-

member that the multiplicities of the points in the constellation should

satisfy the proximity equalities. The gray curve pictured in the ambient

Ej represents the curve Cj.
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b Q1

S ⊂ C3

blowing-up in Q1

E1
∼= P2

b Q2

blowing-up in Q2

b

b

Q4

Q3

E2
∼= P2

E2 ∩ E1 b

Q4

E1

E1 ∩ E2

blowing-up in Q3

E3
∼= P2

E3 ∩ E2
b

Q4

E2

E2 ∩ E1E2 ∩ E3

blowing-up in Q4



72
Chapter 7. The topological zeta function for surfaces resolved

by a toric constellation

bb

b

Q5
Q7

Q6 E4
∼= P2

E4 ∩ E2

E4 ∩ E1

b

Q5

E2

E2 ∩ E4

Q7

E2 ∩ E1

E2 ∩ E3

b

b

Q7

Q6
E1

E1 ∩ E2

E4 ∩ E1

blowing-up in Q5

E5
∼= P2

E5 ∩ E2

E5 ∩ E4

E2

E2 ∩ E1

Q7

E2 ∩ E4

E2 ∩ E3

E2 ∩ E5

b

b

b

Q7

Q6
E4

E4 ∩ E2

E4 ∩ E5

E4 ∩ E1

blowing-up in Q6
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E6
∼= P2

E6 ∩ E1

E6 ∩ E4

b

Q7

E4

E4 ∩ E2

E4 ∩ E5

E4 ∩ E1

E4 ∩ E6

b

Q7

E1

E1 ∩ E2

E1 ∩ E4

E1 ∩ E6

blowing-up in Q7

E7
∼= P2

E7 ∩ E1

E7 ∩ E2

E7 ∩ E4

E4

E4 ∩ E2

E4 ∩ E5

E4 ∩ E1

E4 ∩ E6

E4 ∩ E7

E2 ∩ E7

E2 ∩ E1

E2 ∩ E5

E2 ∩ E4

E2

E2 ∩ E3 E1 ∩ E4

E1 ∩ E6

E1 ∩ E2

E1 ∩ E7

E1

�
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We now proceed to the computation of the χ(
◦
EI). We will write mj

for the multiplicity of the point Qj on Ŝ and E0 for the strict transform

Ŝ. We will also use some notations that are typical in the context of

clusters, we refer to Section 3.2 for them.

1. I := {0, i, j} with 0 < i < j and j → i.

From the number of intersection points of Cj and Ei in Ej
∼= P2,

we subtract the number of points in which we will blow up. Then

we get χ(
◦
EI) = mj −

∑

k≻j
k→i

(Cj · (Ei ∩ Ej))Qk
. We can conclude

χ(
◦
EI) = mj −

∑

k→i
k։j

mk.

Note that this number is positive because the cluster is satisfying

the proximity inequalities as it is idealistic.

2. I := {i, j, k} with 0 6= i < j < k, k → i and k → j.

The contribution to χ(
◦
EI) comes from the intersection point of

Ei ∩ Ej ∩ Ek unless it is a point in which we will blow up. We can

express this as follows:

χ(
◦
EI) = 1 − #{l | l → i, l → j and l → k}.

3. I := {0, i} with 0 6= i.

We look at Ei in the final stage. There we have to subtract from

E0 ∩ Ei the intersection points with the other exceptional compo-

nents.

χ(
◦
EI) = χ(Ci) −

∑

j→i

χ(
◦

̂E0 ∩ Ei ∩ Ej) −
∑

i→j

χ(
◦

̂E0 ∩ Ei ∩ Ej).

We have χ(Ci) = 2 − 2pa(Ci) for the nonsingular Ci that can be

irreducible or reducible. This leads to the formula

χ(
◦
EI) = mi(3 −mi) +

∑

j→i

mj(mj − 1)

−
∑

j→i

(mj −
∑

k→i
k։j

mk) −
∑

i→j

(mi −
∑

k→j
k։i

mk).
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4. I := {i, j} with 0 6= i < j, j → i.

We compute the contribution from the configuration in Ej
∼= P2.

χ(
◦
EI) = 2 −

(

χ(

◦

̂E0 ∩ Ei ∩Ej) + #Pij + #Qij − #Mij

)

= 2 − (mj −
∑

k→i
k։j

mk) − #Pij − #Qij + #Mij,

with

Pij := {k | k ≻ j, k → i}

Qij := {k | k 6= i, j → k}

Mij := {k | k ≻ j, k → i and ∃l : l 6= i, k → l and j → l}.

5. I := {i} with i 6= 0.

We look in Ei
∼= P2 and find

χ(
◦
EI) = 3 −

(

χ(
◦

E0 ∩ Ei) + #Pi + 2#Qi −

(

#Qi

2

))

= 3 +mi(mi − 3) −
∑

j→i

mj(mj − 1)

+
∑

j→i

(mj −
∑

k→i
k։j

mk) +
∑

i→j

(mi −
∑

k→j
k։i

mk) −

#Pi − 2#Qi +

(

#Qi

2

)

,

with

Qi := {k | i→ k}

Pi := {k | k ≻ i and ∄l : i→ l and k → l}.

6. For I not of the form of one of the sets described above, χ(
◦
EI) = 0.



76
Chapter 7. The topological zeta function for surfaces resolved

by a toric constellation

7.4 The numerical data

Also the numerical data are completely determined by the tree.

We get the numbers Ni via the recursive formula

Ni = mi +
∑

i→j

Nj.

For the νi, we find

νi =
∑

i→j

(νj − 1) + 3.

7.5 Example

We take the constellation of Example 7.1 with the following multiplicities:

b

b

b b

bb b

7

4

1

2

1 1 1

1

1 2

1 2 3

The above constellation gives an embedded resolution for the function

h(x, y, z) := x12 + y7 + z7 + x9y + x9z + x4y4 + x3z4 + xyz5 + xy5z + x2yz4

+x2y4z + x3yz3 + x4y2z2 + x4y3z + x5yz2 + x5y2z + x7yz.

Some of the Euler-Poincaré characteristics needed to write down the

topological zeta function are

χ(
◦

̂E0 ∩ E1 ∩E4) = 0, χ(
◦

̂E1 ∩ E2 ∩E4) = 0,

χ(

◦

Ê0 ∩E1) = −17, χ(

◦

Ê1 ∩ E7) = −1

and so we get its topological zeta function:

200323s4 + 289778s3 + 150448s2 + 32376s + 2295

(39s + 17)(20s + 9)(s + 1)(7s + 3)(11s + 5)
.

�
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On monodromy for surfaces

resolved by a toric

constellation

8.1 Introduction

Let f : (Cd, 0) → (C, 0) be the germ of a holomorphic function and con-

sider an embedded resolution of singularities π : X → Cd of f−1{0} that is

an isomorphism outside the inverse image of 0. We write Ej, j ∈ S, for the

irreducible components of π−1(f−1{0}) and (Nj , νj), j ∈ S, for the numer-

ical data of the embedded resolution (X,π). Suppose that f = 0 has only

one isolated singularity and say that the Ej , j ∈ J := {1, · · · , r}, are the

exceptional irreducible components of π−1({0}). Recall that A’Campo

showed that the zeta function of monodromy ζf (t) of f is equal to

ζf (t) =

r
∏

j=1

(1 − tNj )−χ(
◦

Ej).

The monodromy conjecture states that a pole s of the topological zeta

function Ztop,f associated to f induces an eigenvalue e2πis of monodromy

of f .

Now fix a candidate pole s := −νj/Nj , j ∈ J , of Ztop,f . We write

νj/Nj as a/b such that a and b are coprime and we define the set Jb :=

{j ∈ J | b | Nj}.
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constellation

It follows from A’Campo’s formula that

e2πis is a zero or pole of ζf
m

∑

j∈Jb
χ(
◦
Ej) 6= 0.

In this chapter we consider generic surfaces for which there exists an

embedded resolution of singularities realised by the blowing-up of a toric

constellation that is the constellation of base points of a finitely supported

ideal (see Section 3.4). In general there can be a lot of cancelations which

make that
∑

j∈Jb
χ(
◦
Ej) = 0. We investigate this phenomenon partially

in this specific context, in particular we study when χ(
◦
Ej) < 0 for some

j ∈ J . We do that in a geometrical way.

Let I ⊂ C[x, y, z] be a finitely supported monomial ideal and let S be

a surface given by a general element in I such that we are in the context

of Section 3.4. We will write Ŝ for its strict transform, whatever the stage

is. We will denote the curves Ej ∩ Ŝ ⊂ Ej
∼= P2 by Cj , j ∈ J , and their

strict transforms by Ĉj .

In Section 8.2 we provide some results that we will often apply in the

search for situations where χ(
◦
Ej) < 0. In Section 8.3 we pass to the

computation of the numbers χ(
◦
Ej). Sometimes an example illustrates

the configuration. The curve Cj is then represented by the gray curve.

An application is given in Section 8.4. We show that for an exceptional

component Ej with χ(
◦
Ej) > 0 it holds that e−2πiνj/Nj is an eigenvalue of

monodromy of f . As a corollary we obtain that a candidate pole −νj/Nj

of Ztop,f of order 1 that is a pole of order 1 induces an eigenvalue of

monodromy of f .

8.2 Preliminary results

8.1 Lemma x, y or z can not be a common factor in the equation of Cj .

Proof. Suppose that x is a factor in the equation of Cj . Then the

monomial ideal I would not be finitely supported. Indeed, at the moment

that, say x appears as common factor in the equation of Cj, the strict
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transform of Cj in some affine chart takes the form xgx + zgz, for some

polynomials gx, gz in C[x, y, z]. It is now obvious that the ideal can not

be principalised by blowing up a toric constellation. �

8.2 Lemma The curve Cj ⊂ P2 is generically reducible if and only if its

equation is of the form h(m,n) = 0 with h a homogeneous polynomial in

two variables of degree at least 2, and m and n two monomials.

Proof. The claim follows from [Bo,Deb,Na, Thm. 1.2]. �

Notice also that the setting of toric constellations in dimension 3 implies

that the configuration in Ej
∼= P2 is as in the picture below.

Ej
∼= P2

Eα ∩ Ej

Eβ ∩ Ej

Eγ ∩ Ej

b
P

b
Q

b

R

Eα∩Ej, Eβ∩Ej and Eγ∩Ej are the exceptional lines - they are coordinate

lines - that can appear and the points P , Q and R are the only points in

which it is allowed to blow up.

8.3 Determination of the cases in which appears

a negative χ(E◦
j )

8.3 Lemma If the equation of Cj contains three variables, then χ(E◦j ) ≥
0.

Proof. Suppose that χ(E◦j ) < 0. We split cases according to whether

Cj is irreducible or not.

1. If the curve Cj is irreducible, then χ(Cj) ≤ 2 and if χ(E◦j ) < 0,

the configuration in Ej should consist of Cj and two lines such that

these three curves intersect in exactly one point, say P . Moreover

χ(Cj) should then be equal to 2.

When the degree d of Cj is at least 2 and if one of the lines would
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not be a principal tangent line to Cj in P , then this line would

intersect Cj in another point. This is a contradiction.

Ej
∼= P2

Eα ∩ Ej

Eβ ∩ Ej

b

P

If follows that both lines should be principal tangent lines. Hence,

Cj should be analytically reducible in P , and consequently χ(Cj) <

2.

So suppose now that deg(Cj) = 1 as in the figure below.

Ej
∼= P2

Eα ∩ Ej

Eβ ∩ Ej

b

P

In an affine chart where one can see P , one can write Eα ↔ x = 0,

Eβ ↔ y = 0 and then Cj should have an equation of the form

cxx + cyy = 0 with cx and cy complex numbers. This contradicts

the fact that the equation of Cj contains the three variables. Hence,

χ(
◦
Ej) ≥ 0.

2. Suppose now that the curve Cj is reducible. Lemma 8.2 implies that

the equation of Cj is of the form h(m,n) = 0 with h a homogeneous

polynomial in two variables of degree at least 2, and m and n two

monomials. Then by Lemma 8.1 one easily verifies that the pair

of monomials (m,n) must be of the form (xayb, za+b). We may

suppose moreover that a and b are coprime (otherwise we change

h). The decomposition in irreducible components of Cj is then

k
∏

i=1

(xayb − ciz
a+b) with the ci ∈ C∗.
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Ej
∼= P2

Eα ∩ Ej

Eβ ∩ Ej

Eγ ∩ Ej

As the curves xayb−ciza+b = 0 are rational with Euler characteristic

2, we get χ(
◦
Ej) = 0 or χ(

◦
Ej) = 1, depending on the position and

the number of exceptional components that are present. �

We continue to search for cases in which appears an exceptional compo-

nent Ej for which χ(
◦
Ej) < 0. It follows by Lemma 8.1 that the equation

of Cj can not contain just one variable. The remaining case to investigate

is when the equation of Cj contains exactly two variables, say x and y.

As Cj then has a homogeneous equation in two variables, say of degree

m, it follows that the curve Cj consists of m lines having exactly one

point in common. From Lemma 8.1 it follows that xm and ym certainly

appear in the equation of Cj . The subchain in which Qj is contained is

then of the form

b b b bbb

m m m m m m’3 3 3 3 3

Qt Qt+1 Qt+2 Qj Ql Ql+1

In this chain Qt is the point with the lowest level for which an edge with

label 3 is leaving and that also has multiplicity m. We suppose that Ql

is the point in the chain with the highest level for which its multiplicity

is equal to m. The point Qj can be equal to Qt and Ql+1 can be absent.

As Cj is of degree m, the point Qj has multiplicity m on the surface.

Obviously the multiplicity of Qj+1 is also m.

We will now study χ(
◦
Ej).

• If Qj = Qt, then the configuration in Ej
∼= P2 is as in the picture
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Eα ∩ Ej

Eβ ∩ Ej

Ej
∼= P2Eγ ∩ Ej

If the exceptional line Eγ ∩Ej is present, then χ(
◦
Ej) is always equal

to 0. Suppose now that Eγ ∩Ej does not appear. This means that

Qt is moreover the point with the lowest level in the chain from

which an edge with label 3 is leaving.

1. If Qj is the origin of the constellation, then χ(
◦
Ej) = 2 −m.

2. If there is exactly one point, say Qα, for which j → α, then

χ(
◦
Ej) = 1 −m.

3. Finally, if there exist two points, say Qα and Qβ, for which

j → α and j → β, then χ(
◦
Ej) = −m.

• If j ∈ {t + 1, · · · , l − 1}, then the configuration in Ej is as in the

following picture

Eα ∩ Ej

Eβ ∩ Ej

Ej
∼= P2Ej ∩ Ej−1

and then χ(
◦
Ej) = 0.

Conclusion:

χ(
◦
Ej) < 0 if and only if the configuration in Ej

∼= P2 consists at least

of three lines - possibly exceptional - that are all going through the same

point.
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8.4 Application

We can use the result obtained in the previous section to confirm a part

of the monodromy conjecture in this particular setting.

Let f be a complex polynomial in three variables representing a sur-

face that suits in the context of the previous sections. Fix a candidate

pole s := −νj/Nj of Ztop,f . We write νj/Nj as a/b such that a and b are

coprime. Remember that

e2πis is a zero or pole of ζf
m

∑

i∈Jb
χ(
◦
Ei) 6= 0.

We observe the following.

8.4 Lemma Let χ(
◦
Et) < 0 such that we are in the situation

b b b bbb

m m m m m m’3 3 3 3 3

Qt Qt+1 Qt+2 Qj Ql Ql+1

where Qt is the point in the chain with the lowest level for which an edge

with label 3 is leaving and where Ql is the point in this chain with the

highest level for which its multiplicity is equal to m.

1. If a set Jb contains the index t, then it also contains the indices in

{t+ 1, · · · , l}.

2. If νl

Nl
= c

d with c and d coprime, then t /∈ Jd.

Proof. If we denote the numerical data of Et by (N, ν), then, indepen-

dently of the number of points Qs for which t → s, one easily computes

that the numerical data for i ∈ {t+ 1, · · · , l} are

Ei((i − t+ 1)N, (i − t+ 1)ν − (i− t)).

Now the first assertion follows immediately.

To see the second claim, suppose that t ∈ Jd. Then d | N which implies

that

l − t+ 1|(l − t+ 1)ν − (l − t).

This contradiction closes the proof. �

We can now give an application of the characterisation of the negative

χ(
◦
Ej).
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8.5 Theorem If χ(
◦
Ej) > 0, then e

−2πi
νj
Nj is an eigenvalue of monodromy

of f .

Proof. Suppose that Ej is an exceptional component such that χ(
◦
Ej) >

0. To prove that e−2πiνj/Nj is an eigenvalue of monodromy of f , we show

that e−2πiνj/Nj is a pole of ζf . We write νj/Nj as a/b with a and b

coprime. If Jb does not contain an index t for which χ(
◦
Et) < 0, then

there is nothing to verify. So suppose now that χ(
◦
Et) < 0 and that

t ∈ Jb. From Lemma 8.4 it follows that Ej 6= El and that l ∈ Jb. We will

show that χ(
◦
Et) +χ(

◦
El) ≥ 0. Let us therefore study the configuration in

El
∼= P2.

The equation of Cl−1 is of the form c0x
m + c1x

m−1y + · · · + cmy
m, with

ck a complex number (0 ≤ k ≤ m) and c0 and cm different from 0. It

follows from Lemma 8.1 that the equation of Cl is then equal to

c0x
m + c1x

m−1y + · · · + cmy
m + zg(x, y, z)

for some polynomial g ∈ C[x, y, z]. In particular we have that Cl cannot

be of the form as in Lemma 8.2 and thus that it is irreducible. Hence

χ(Cl) ≤ 2.

1. If Qt is the origin of the constellation, then the configuration in

El
∼= P2 is like in the figure

El
∼= P2

El ∩ El−1

The curve Cl can be singular. We get

χ(
◦
El) = χ(El) − (χ(Cl) + (χ(El−1) −m))

≥ 3 − (2 + (2 −m))

= m− 1

and

χ(
◦
Et) + χ(

◦
El) ≥ (2 −m) + (m− 1) = 1.
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2. Suppose that there exists exactly one point, say Qα, for which t→ α.

Then χ(
◦
El) is minimal if Cl and El ∩Eα intersect only in one point.

El
∼= P2

El ∩ Eα

El ∩ El−1

Again we find χ(
◦
El) ≥ m− 1. Then

χ(
◦
Et) + χ(

◦
El) ≥ (1 −m) + (m− 1) = 0.

3. When there exist two points, say Qα and Qβ, to which Qt is proxi-

mate, then χ(
◦
El) is minimal when Eα, Eβ and Cl intersect in exactly

one point, say in P .

El
∼= P2

Eα ∩ El

El−1 ∩ El

Eβ ∩ El

b

P

Moreover, to have χ(
◦
El) = m − 1, one should also require that

χ(Cl) = 2. If m ≥ 2, then Eα ∩El and Eβ ∩El are principal tangent

lines to Cl in P but then χ(Cl) ≤ 1. If m = 1, then the equation

of Cl must be x + cyy + czz = 0 for some cy, cz ∈ C∗. But then

Cl intersects the three coordinate lines in three different points and

χ(
◦
El) = 1. It follows that we always have that χ(

◦
El) ≥ m and thus

χ(
◦
Et) + χ(

◦
El) ≥ −m+m = 0.

This study permits us to conclude that
∑

i∈Jb
χ(
◦
Ei) > 0. Hence, e

−2πi
νj
Nj

is an eigenvalue of monodromy of f .

�
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8.6 Corollary If −νj/Nj is a candidate pole of Ztop,f of order 1 that is

a pole, then e−2πiνj/Nj is an eigenvalue of monodromy of f .

Proof. In [Ve3] it is shown that then there exists an exceptional com-

ponent Ek such that νk/Nk = νj/Nj and such that χ(
◦
Ek) > 0. The result

follows now immediately from Theorem 8.5. �

Actually Veys shows in [Ve3] that if Ej is created by blowing up a point

and if χ(
◦
Ej) < 0, that then the contribution of Ej to the residue of

−νj/Nj for Ztop,f is equal to 0. In the following corollary we give an

elementary proof of this result in this very particular setting.

8.7 Corollary If f is nondegenerate with respect to its Newton polyhe-

dron and if χ(
◦
Ej) < 0, then Ej does not give rise to a pole of Ztop,f .

Proof. Indeed, if χ(
◦
Ej) < 0, then we find that

m2
j =

∑

i→j

m2
i .

This means that the valuation induced by Ej is not Rees (see Section 3.5)

and hence does not give rise to a facet in the Newton polyhedron of the

polynomial f (see Section 3.3). If f is nondegenerate with respect to its

Newton polyhedron, then it is shown in [De,L1] that the poles of Ztop,f

are induced by the facets of its Newton polyhedron. Hence, if χ(
◦
Ej) < 0,

then Ej does not give rise to a pole. �

8.8 Example The surface with equation f := x7+y5+z5+x3y2+x4z2 =

0 has an embedded resolution given by the constellation

b b b b b

5 2 2 1 11 3 3 2

Q1 Q2 Q3 Q4 Q5

For the χ(
◦
Ej) we find

χ(
◦
E1) = 9, χ(

◦
E2) = −1, χ(

◦
E3) = 1, χ(

◦
E4) = −1, χ(

◦
E5) = 1.

The numerical data are

E1(5, 3), E2(7, 5), E3(14, 9), E4(20, 13), E5(40, 25).
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Our results show that E1, E3 and E5 give rise to an eigenvalue of mon-

odromy of f .

For the topological and the monodromy zeta function we get

Ztop,f (s) =
9(106s2 + 107s + 25)

5(s+ 1)(14s + 9)(8s + 5)

and

ζf (t) =
(1 − t7)(1 − t20)

(1 − t5)9(1 − t14)(1 − t40)
.

�
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Appendix A

On Poincaré series for

hypersurfaces

A.1 Introduction

There exist many Poincaré series for a hypersurface H in an ambient va-

riety X. One tries to find valuations such that the associated Poincaré

series is an interesting object. Very nice results in this direction were

obtained e.g. for plane curves, for quasi-homogeneous polynomials and

for normal surface singularities.

In this chapter we consider some ways to define Poincaré series for hy-

persurfaces; we situate the existing examples in this outline. In Section

A.3 we mention some interesting relations to investigate; we recall known

results and we give a new result for toric hypersurfaces.

A.2 Poincaré series for hypersurfaces

Curves have exactly one resolution and normal surface singularities have

a minimal resolution. In this sense curves and normal surface singular-

ities are special. In general, one can consider an arbitrary resolution or

just a proper birational morphism and one uses the induced valuations

to define a Poincaré series.

In concrete, to obtain a Poincaré series for a hypersurface, one can pro-

ceed in one of the following two ways.

89
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• Let H be a hypersurface embedded in an ambient variety X by the

map ǫ : OX → OH and let h = 0 be the equation of H. We first

make the following observation. There is a one-to-one correspon-

dence between the ideals of OH and the ideals of OX containing h;

hence a Poincaré series on X induces a Poincaré series on H and vice

versa. Notice that under this correspondence, an ideal defined by

valuations as in Section 1.3 does not have to induce an ideal defined

by valuations. Still the ideals define a multi-indexfiltration and in

general, one calls the series induced in this way Poincaré series.

In particular, let {ν1, · · · , νr} be a set of discrete valuations on OX,o

defining the ideals

M(v) := {g ∈ OX,o | νj(g) ≥ vj, 1 ≤ j ≤ r}, v ∈ Zr.

Let J(v) := M(v) + (h) and let I(v) := ǫ(J(v)). Then the Poincaré

series determined by the ideals J(v) and the one determined by the

ideals I(v) coincide. We will denote the Poincaré series induced by

the ideals M(v) by PX and the ‘embedded’ Poincaré series induced

by the ideals I(v) by P i
H .

• Secondly, valuations on OH,o induce a Poincaré series for H. This

series is mostly used when one considers a resolution for H. Some-

times a resolution is immediately given, for example for curves, nor-

mal surfaces and for toric varieties. If not, one can consider an

embedded resolution π : Z → X for the hypersurface H in the am-

bient variety X. Let D be the exceptional variety with irreducible

components Ej, j ∈ {1, · · · , r}, created by π. Let Ĥ be the strict

transform of the hypersurface H and let ĥ = 0 be its equation. If

Fj,1, · · · , Fj,kj
are the irreducible components of Ej ∩ {ĥ = 0} and

if ξFj,i
denotes the generic element of Fj,i (1 ≤ j ≤ r, 1 ≤ i ≤ kj),

then one takes the valuations induced by the discrete valuation rings

OĤ,ξFj,i

(1 ≤ j ≤ r, 1 ≤ i ≤ kj). These valuations define ideals I(v)

in OH,o; we write PH for the induced Poincaré series on H. The

discrete valuations induced by the rings OZ,ξEj
, 1 ≤ j ≤ r, define

ideals J (v) ⊂ OX,o and hence a Poincaré series PX on the ambient

variety X.
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A.1 Examples

1. For curves and rational surface singularities, the Poincaré series is

introduced by using the valuations of the minimal resolution (see

Section 1.6 for their definition). They coincide with the essential

valuations, i.e. the valuations that appear in each resolution. They

define ideals I(v). In this way we get the Poincaré series PC for the

curve C and PS for the rational surface singularity S.

2. In Chapter 4 we studied the Poincaré series for an affine toric variety.

A regular subdivision determines a resolution for the toric variety.

We can use the corresponding valuations to define ideals I(v) and

we obtain a Poincaré series for the affine toric variety.

3. In [C,G-S,L-J] it is shown that the canonical map from the sky of

the constellation of base points of a finitely supported ideal I to X

is an embedded resolution of the subvariety of (X, o) defined by i

general enough elements in I, 1 ≤ i ≤ d. This particular resolution

gives us valuations that define ideals I(v) that we can use to define a

Poincaré series for the hypersurface. At the same time we get ideals

J (v) which permit us to define an ambient Poincaré series PX .

4. In 1976 Varchenko showed how one can compute the zeta function

of monodromy via the Newton polyhedron (see [Va]). In particular

he has proven that the toric morphism corresponding to a regular

subdivision of the normal fan (see Section 5.2 for the construction

of the normal fan to the Newton polygon) gives an embedded res-

olution for the polynomials that are nondegenerate with this New-

ton polyhedron. Taking valuations in the normal fan gives ideals

M(v) ⊂ OX and a Poincaré series PX of the ambient variety X.

As explained above, the ideals M(v) induce ideals I(v) ⊂ OH and

hence a Poincaré series PH for the hypersurface H.

Ebeling uses this fact when he constructs his Poincaré series for

quasi-homogeneous singularities. The Newton polygon of a quasi-

homogeneous polynomial is obviously contained in a hyperplane,

maybe in infinitely many hyperplanes. The normal vectors to these

hyperplanes form the normal cone. Ebeling picks out one valuation

in this normal cone and studies the induced Poincaré series.

5. As the normal fan can always be constructed, one can use this con-

struction for an arbitrary hypersurface. Consider now a hypersur-

face resolved by blowing up a toric constellation, as in Example 3.
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Remember that the facets of the Newton polyhedron correspond to

the Rees valuations of the corresponding finitely supported complete

ideal. Hence, the rays of the normal fan are given by the Rees val-

uations. The monomial valuations of the toric constellation provide

a regular subdivision of the normal fan. �

A.3 Relations between these Poincaré series and

relations with other functions

In this section we ask some interesting questions about these Poincaré

series. In the formulation of these questions, we suppose that it is about

a case where the question is relevant (where the mentioned Poincaré series

exist).

1. How is PX or PX related with PH or with PH?

2. Are PH and PH essentially the same? Notice that PH can be a

function in more variables than PH . One could repeat valuations in

PH to compare.

3. What does PH or PH tell about the singularity?

We recall some known results about curves, normal surface singularities,

in particular rational surface singularities, for quasi-homogeneous singu-

larities and we finish with a new result about toric hypersurfaces and

general hypersurfaces with respect to a toric constallation.

As mentioned before, the Poincaré series for a curve C is the Poincaré

series induced by the valuations appearing in its minimal resolution. We

could wonder what the Poincaré series PC is when it is induced by an

arbitrary embedded resolution for the curve. In [C,D,G-Z4] it is shown

that PC coincides with the ‘standard’ Poincaré series for the curve C when

considering an embedded resolution of the plane curve C ⊂ C2. Via the

introduced integral with respect to the Euler characteristic Campillo, Del-

gado and Gusein-Zade also show that the Poincaré series PC , with respect

to an embedded resolution of the curve in a rational surface singularity,

equals the ‘standard’ Poincaré series for the curve.

They investigate the relation between PC and PS for an embedded

resolution of a curve C in a rational surface singularity S. We use the
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other functions 93

notation of Section 4.3. For v ∈ Zr, let
•
Dv be the set

{{ĝ = 0} ∩ D | g ∈ OS,o, ν(g) = v and {ĝ = 0} does not

contain any non-empty intersection Ea ∩ Eb, a, b ∈ J, a 6= b}.

It was shown that the Poincaré series PS is equal to

∑

v∈Zr

χ(
•
Dv)t

v.

Equivalently, for v ∈ Zr, let
◦
Dv be the set

{{ĝ = 0} ∩ D | g ∈ OS,o, ν(g) = v and {ĝ = 0} does not

contain any non-empty intersection Ea ∩ Eb, a, b ∈ J, a 6= b

and no Fj,jk
}.

Campillo, Delgado and Gusein-Zade proved that then PC is equal to

∑

v∈Zr

χ(
◦
Dv)t

v.

It has been shown that for irreducible plane curves the Poincaré se-

ries coincides with the zeta function of monodromy, for reducible plane

curve singularities the Poincaré series is the same as the Alexander poly-

nomial. This result is extremely interesting because this illustrates how

the Poincaré series determines the germ (C, o) ⊂ (C2, o) up to topological

equivalence ([Wal],[Y]).

We remark that Campillo, Delgado and Gusein-Zade studied the relation

between both series when given an embedded resolution for the curve C
in a rational surface singularity S because they can use then the Artin

criterion which in the context of rational singularities ensures that there

is one-to-one correspondence between divisors on D - being points - and

functions g ∈ OS,o.

Recall that the Poincaré series for irreducible plane curves - in that case

there is one valuation involved - coincides with the zeta function of mon-

odromy. Ebeling and Gusein-Zade studied the Poincaré series for quasi-

homogeneous singularities with respect to one valuation. When one wants

to search for relations with for example the zeta function of monodromy,
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one should ask the polynomials to be nondegenerate with respect to their

Newton polyhedron. Then, for quasi-homogeneous nondegenerate singu-

larities, Ebeling and Gusein-Zade showed that this Poincaré series is the

same as the Saito dual of the zeta function of monodromy (see [Eb,G-Z1]).

For normal surface singularities Cutkosky proved that the Poincaré se-

ries determines the intersection matrix and the arithmetic genera of the

exceptional components ([Cu]).

In Section 4.3 of this thesis, we considered the Poincaré series for affine

toric varieties. We showed that PX , X being an affine toric variety, is

equal to
∑

v∈Zr

χ(
•
Dv)t

v.

Let us now have a look at toric affine hypersurfaces. We consider H =

Spec C[σ̌ ∩M ] ⊂ Cd+1 a toric affine hypersurface, M being a lattice of

rank d. Let {s1, · · · , sd+1} be a system of generators of S = σ̌ ∩M and

let

ε : C[x1, · · · , xd+1] → C[S]

xi 7→ χsi .

induce the embedding of H in Cd+1. We set deg (xi) = si, 1 ≤ i ≤ d+ 1.

The hypersurface H is given by a binomial of the form h = xα −xβ, with

deg(xα) =deg(xβ) and supp(xα)∩supp(xβ) = ∅. Toric hypersurfaces are

a particular example of quasi-homogeneous polynomials. The compact

Newton polygon is given by a segment τ , connecting α and β. We de-

note the normal cone to this segment by τ ′ and the hypersurface passing

through τ ′ by N ′. The equation of the hyperplane passing through the

normal cone is
∑d+1

i=1 (αi − βi)xi = 0.

A finite set of valuations in σ gives a Poincaré series PH for H. On

the other hand valuations in τ ′ give rise to ambient ideals M(v) ⊂ Cd+1

and hence to a Poincaré series PH .
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A.2 Theorem

1. The cones σ and τ ′ are isomorphic.

2. PH = PH .

Proof.

1. We show that there is an isomorphism θ : NR → N ′ that maps σ to

τ ′. Let n ∈ NR, and let a = (a1, · · · , ad+1) be the vector such that

ai = 〈si, n〉, 1 ≤ i ≤ d + 1. Then obviously
∑d+1

i=1 (pi − qi)ai = 0

such that a ∈ N ′. For the opposite way, take a ∈ N ′. The equality
∑d+1

i=1 (pi − qi)ai = 0 implies that there exists a n ∈ NR such that

ai = 〈si, n〉, 1 ≤ i ≤ d+ 1. This n is then unique. As σ is the dual

cone to σ̌, it follows that σ maps to τ ′.

2. The Poincaré series PH with respect to valuations a1, · · · , ar ∈
◦

τ ′ is

induced by the ideals

J(v) = (xλ | 〈λ, aj〉 ≥ vj, 1 ≤ j ≤ r) + (h).

As 〈λ, aj〉 = 〈s, nj〉, where s =
∑d+1

i=1 λisi, it follows that xλ ∈ J(v)

if and only if ε(xλ) = χs, with 〈s, nj〉 ≥ vj , 1 ≤ j ≤ r.

The Poincaré series PH with respect to the corresponding valuations

nj is induced by the ideals

I(v) = (χs | 〈s, nj〉 ≥ vj, 1 ≤ j ≤ r).

It now follows that both Poincaré series coincide. �

A.3 Corollary The Poincaré series PH = PH can be computed via the

Newton polyhedron.

Proof. This is an immediate consequence of Theorem A.2 and Corol-

lary 4.13. �

Some other interesting questions: Which information is contained in

χ(
◦
Dv)? Does it contain topological properties about the singularity?

Does there exist a choice of valuations adapted to the variety, such that

its Poincaré series is a very interesting tool in singularity theory? Are

essential valuations or arc space valuations good candidates? The Saito

dual is defined for one valuation, can one define a Saito dual for more

valuations? Is the Poincaré series a candidate?



96 Chapter A. On Poincaré series for hypersurfaces



Appendix B

Nederlandse samenvatting

In dit proefschrift bestuderen we enkele klassieke functies in de singula-

riteitentheorie, met name de Poincaréreeks, de topologische zetafunctie

en de zetafunctie van monodromie.

Campillo, Delgado en Gusein-Zade voerden deze Poincaréreeks in voor

een algebräısche variëteit X met betrekking tot een eindige verzameling

van discrete valuaties ν1, · · · , νr : OX,o → Z∪{∞}. Voor v ∈ Zr definiëren

ze de idealen

I(v) := {g ∈ OX,o | νj(g) ≥ vj , 1 ≤ j ≤ r}

en verkrijgen zo een multi-indexfiltratie op de ring OX,o. De dimensies

d(v) := dim(I(v)/I(v+1)) worden in een Poincaréreeks P samengebracht.

P (t1, · · · , tr) :=

∏r
j=1(tj − 1)

∑

v∈Zr d(v)tv

(t1 · · · tr − 1)
.

Hierbij is t := (t1, · · · , tr) en v := (v1, · · · , vr). Deze Poincaréreeks werd

onder andere reeds bestudeerd voor krommen, rationale oppervlaktesin-

gulariteiten en voor quasi-homogene polynomen.

We observeren dat deze Poincaréreeks slechts goed gedefinieerd is wan-

neer het centrum van de valuaties het maximaal ideaal is van de lokale

ring OX,o en we bestuderen deze Poincaréreeks dan in het bijzonder voor

affiene torische variëteiten.

97
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Stelling 1 Als X = Spec (C[S]), dan is de Poincaréreeks van X met

betrekking tot de valuaties {ν1, · · · , νr}

P (t) =
∑

v∈Zr

#{χs | 〈s, ν〉 = v}tv.

Definiëren we nu

Φ : Z[[u1, · · · , ud, u
−1
1 , · · · , u

−1
d ]] −→ Z[[t1, · · · , tr, t

−1
1 , · · · , t

−1
r ]]

X

i

λiu
m 7−→

X

i

λit
〈m,ν〉

,

dan kunnen we ook schrijven

P (t) = Φ(Q(u))

waarbij Q(u) :=
∑

s∈S u
s de Poincaréreeks is van X in commutatieve al-

gebra.

Campillo, Delgado en Gusein-Zade hebben voor krommen, rationale op-

pervlaktesingulariteiten en vlakke divisoriële valuaties een beschrijving

gegeven voor de Poincaréreeks op het niveau van de modificatieruimte.

Noteer D :=
⋃r

j=1Ej voor de exceptionele variëteit met irreducibele

componenten Ej, j ∈ J := {1, · · · , r}, en
◦
Ej voor het glad deel van de

irreducibele component Ej, i.e. zonder intersectiepunten met alle an-

dere componenten van de exceptionele divisor. Zij M := −(Ei ◦ Ej)

min the intersectiematrix van de componenten van D. Zij νj de discrete

valuatie op de lokale ring OX,o gëınduceerd door Ej. De waardensemi-

groep S := {ν(g) | g ∈ OX,o} is precies de verzameling van vectoren

{v ∈ Zr
≥0 | vM ≥ 0}. Voor een topologische ruimte E, zij SnE := En/Sn

(n ≥ 0) de n-de symmetrische macht van de ruimte E, i.e. de ruimte van

de n-tallen van punten van de ruimte E (S0E is een punt). Campillo,

Delgado en Gusein-Zade construeren de ruimte

Y :=
⋃

{v∈S}





r
∏

j=1

Snj(v)
◦
Ej



 ,

waarbij vM =: n(v). Voor g ∈ OX,o, g 6= 0 en v := ν(g) is nj(v) gelijk

aan het intersectiegetal van de strikt getransformeerde van g met Ej . Zij

Yv de samenhangingscomponent
∏r

j=1 S
nj(v)

◦
Ej van Y . Ze tonen aan dat

P (t) =
∑

v∈Zr

χ(Yv)t
v.
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We veralgemenen dit door punten op de kromme te interpreteren als

divisoren en we tonen de uitspraak aan voor affiene torische variëteiten.

Voor v ∈ Zr definiëren we de verzameling

•
Dv : = {{ĝ = 0} ∩ D | g ∈ OX,o, ν(g) = v en {ĝ = 0} bevat

geen niet-ledige doorsnede Ea ∩ Eb, a, b ∈ J, a 6= b}.

Stelling 2 De Poincaréreeks P(t) is gelijk aan

∑

v∈Zr

χ(
•
Dv)t

v.

We bepalen een expliciete formule voor de Poincaréreeks P wanneer

X = Cd en de betrokken valuaties gëınduceerd zijn door een torische

constellatie. Deze heeft een cyclotomische vorm. Inderdaad, indien X

een complete intersectie is, dan is de Poincaréreeks Q in commutatieve

algebra cyclotomisch. Zo kunnen we via Stelling 1 onmiddellijk besluiten

dat de Poincaréreeks P voor complete intersecties cyclotomisch is. Een

dergelijke vorm van de Poincaréreeks voor hyperoppervlakken sluit een re-

latie met de zetafunctie van monodromie alvast niet uit. Voor vlakke irre-

ducibele krommesingulariteiten is de Poincaréreeks gelijk aan de zetafunc-

tie van monodromie en voor quasi-homogene polynomen valt de Poincaré-

reeks met betrekking tot één valuatie samen met het Saito-duaal van de

zetafunctie van monodromie.

We bespreken een aantal mogelijkheden om Poincaréreeksen voor hy-

peroppervlakken te definiëren en we hebben hierbij speciaal aandacht

voor de Poincaréreeks gedefinieerd via de Newtonpolyheder. We tonen

aan dat deze Poincaréreeks voor torische hyperoppervlakken gelijk is aan

de Poincaréreeks die we berekend hebben in Hoofdstuk 4. Het zou inter-

essant zijn de Poincaréreeks voor een willekeurig hyperoppervlak expliciet

uit te drukken met behulp van de Newtonpolyheder en op zoek te gaan

naar een multivariate versie van het Saito-duaal. Zo kan er misschien

een verband ontdekt worden tussen de Poincaréreeks en de zetafunctie

van monodromie, als de Poincaréreeks al niet zou samenvallen met het

multivariate Saito-duaal... Aangezien de schrijfwijze
∑

v∈Zr χ(
•
Dv)t

v spe-

cialiseert tot de reeds bekende gevallen, is het misschien ook interessant te

onderzoeken wat voor informatie bevat is in χ(
•
Dv). Wordt de topologie

van de singulariteit hierdoor bepaald?
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Ten tweede bestuderen we enkele aspecten rond de topologische zeta-

functie en de zetafunctie van monodromie. De topologische zetafunctie

werd ingevoerd door Denef en Loeser en is geassocieerd aan de kiem

f : (Cd, 0) → (C, 0) van een holomorfe functie f waarvoor f(0) = 0.

Zij π : X → Cd een ingebedde resolutie van singulariteiten van

f−1{0}. We schrijven Ej, j ∈ S, voor de irreducibele componenten van

π−1(f−1{0}) en Nj en νj − 1 voor de respectievelijke multipliciteiten van

f ◦ g en g∗(dx1 ∧ · · · ∧ dxd) langs Ej. De (Nj , νj), j ∈ J , worden de

numerische data van de ingebedde resolutie (X,π) genoemd. Voor een

deelverzameling I ⊂ S noteren we EI := ∩i∈IEi en
◦
EI := EI \ (∪j /∈IEj).

Verder schrijven we χ(·) voor de topologische Euler–Poincaré karakter-

istiek.

Definitie De lokale topologische zetafunctie geassocieerd aan f is de ra-

tionale functie in één complexe variabele

Ztop,f (s) :=
∑

I⊂S

χ(
◦
EI ∩ π

−1{0})
∏

i∈I

1

Nis+ νi
.

Denef en Loeser toonden aan dat elke ingebedde resolutie aanleiding geeft

tot dezelfde functie.

De kandidaatpolen van de topologische zetafunctie zijn de rationale getallen

−νj/Nj . Het is opvallend dat de meeste kandidaatpolen geen pool zijn.

Zij

Pd := {s0 | ∃f ∈ C[x1, . . . , xd] : Ztop,f (s) heeft een pool in s0}.

Segers en Veys toonden aan dat P2 ∩ (−∞,−1
2) = {−1

2 − 1
i | i ∈ Z>1} en

dat P3 ∩ (−∞,−1) = {−1 − 1
i | i ∈ Z>1}. We tonen nu het het volgende

resultaat aan.

Stelling 3 Voor elke d ≥ 4 is {−(d − 1)/2 − 1/i | i ∈ Z>1} ⊂ Pd en

is elk rationaal getal in het interval [−(d − 1)/2, 0) een pool voor een

topologische zetafunctie.

Om dit aan te tonen pikken we polynomen uit waarvoor hun topolo-

gische zetafuncties precies deze lijst van polen geven.
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De polen van de topologische zetafunctie spelen ook een hoofdrol in de

monodromieconjectuur. Deze voorspelt een verband tussen de polen van

de topologische zetafunctie en de eigenwaarden van monodromie. Wan-

neer f = 0 een gëısoleerde singulariteit heeft, dan kunnen we veron-

derstellen dat de bovenstaande ingebedde resolutie π een isomorfisme is

buiten het inverse beeld van de oorsprong. Als de Ej , j ∈ {1, · · · , r}, de

irreducibele componenten zijn van π−1({0}), dan toonde A’Campo aan

dat de zetafunctie van monodromie ζf te schrijven is als

ζf (t) =
r
∏

j=1

(1 − tNj )−χ(
◦

Ej).

De eigenwaarden van monodromie zijn de nulpunten en polen van de

zetafunctie van monodromie. De monodromieconjectuur beweert het vol-

gende:

Als s een pool is van Ztop,f , dan is e2πis een eigenwaarde van

monodromie van f voor een punt op het hyperoppervlak f = 0.

De monodromieconjectuur is in dimensie 2 volledig bewezen door Loeser.

We bestuderen de conjectuur in een specifieke context in dimensie 3.

We beschouwen er een monomiaal ideaal met eindige drager. Campillo,

Gonzalez-Sprinberg en Lejeune-Jalabert toonden aan de de opblazing van

de geassocieerde torische constellatie van basispunten een ingebedde re-

solutie geeft voor een generiek element uit dat ideaal. We bepalen de

topologische zetafunctie onmiddellijk uit de gegeven cluster. We berekenen

hiervoor de Eulerkarakteristieken χ(
◦
EI) voor I ⊂ S. In het bijzonder

verkrijgen we een explitiete formule voor χ(
◦
Ei).

We fixeren nu een kandidaatpool s := −νj/Nj , j ∈ J , van Ztop,f . We

schrijven νj/Nj als a/b zodat a en b copriem zijn en we definiëren de

verzameling Jb := {j ∈ J | b | Nj}. Uit A’Campo’s formule volgt:

e2πis is een nulpunt of pool van ζf
m

∑

j∈Jb
χ(
◦
Ej) 6= 0.

Daarom zijn we bijzonder gëınteresseerd in χ(
◦
Ei). De combinatorische

formule die we verkrijgen wordt nog niet uitgebuit in deze thesis. Via
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een meetkundige manier verklaren we een gedeeltelijk fenomeen achter

de monodromieconjectuur, steeds in deze specifieke context. Concreet,

we onderzoeken wanneer χ(
◦
Ei) < 0. We bewijzen:

χ(
◦
Ej) < 0 als en slechts als de configuratie in Ej

∼= P2 bestaat uit tenmin-

ste drie rechten - eventueel exceptioneel - die allen door een zelfde punt

gaan.

Als toepassing kunnen we dan het volgende resultaat aantonen.

Stelling 4 Als χ(
◦
Ej) > 0, dan is e

−2πi
νj
Nj een eigenwaarde van mo-

nodromie van f .
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[Dem] M. Demazure, Sous-groupes algébriques de rang maxiumum du groupe de Cre-

mona, Ann. Sci. Ecole Norm. Sup. (4) 3 (1970), 507-588.

[De1] J. Denef, Report on Igusa’s local zeta function, Sém. Bourbaki 741, Astérisque
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