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In this article, we consider surfaces that are general with respect to a three-dimensional

toric idealistic cluster. In particular, this means that blowing up a toric constellation

provides an embedded resolution of singularities for these surfaces. First we give a for-

mula for the topological zeta function directly in terms of the cluster. Then we study

the eigenvalues of monodromy. In particular, we derive a useful criterion to be an eigen-

value. In a third part, we prove the monodromy and the holomorphy conjecture for these

surfaces.

1 Introduction

Weil [33] introduced some zeta functions Z(K, f ) that are integrals over a p-adic field K

and that are associated with a polynomial f (x) ∈ K[x]. Using an embedded resolution of

singularities, Igusa showed that these zeta functions are rational and he studied their

poles (see [14] and [15]). One can define the analogous integrals over K = R or C. Also

these zeta functions are rational (see for example [4] and [5]) and it is known that their

poles are contained in the set of roots—and roots shifted by a negative integer—of the

Bernstein polynomial bf . According to Malgrange [24], if α is a root of bf , then e2πiα is

an eigenvalue of the local monodromy of f at some point of f−1(0). So when K = R or
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C, then the poles of the zeta function induce eigenvalues of the local monodromy. This

result was a motivation to study this relation at the p-adic side. The study of concrete

examples made it natural to propose the following conjecture.

1.1 Monodromy conjecture [16]

Let F ⊂ C be a number field and f ∈ F [x]. For almost all p-adic completions K of F , if s0

is a pole of Z(K, f ), then e2πiRe(s0) is an eigenvalue of the local monodromy of f at some

point of the hypersurface f = 0.

Loeser verified this conjecture for plane curves (see [22]). He also gave a proof for

a class of polynomials in higher dimensions; the polynomial should be nondegenerate

with respect to its Newton polyhedron and should satisfy some numerical conditions

([23] and Section 3).

When Denef and Loeser introduced the topological zeta function in 1992 in [11],

an analogous version of the monodromy conjecture arose. This monodromy conjecture

relates the poles of the topological zeta function Ztop, f associated with a polynomial

function or a germ of a holomorphic function f with the eigenvalues of monodromy of

the hypersurface f = 0.

1.2 Monodromy conjecture

If s0 is a pole of Ztop, f , then e2πis0 is an eigenvalue of the local monodromy of f at some

point of the hypersurface f = 0.

By the original definition of the topological zeta function, it follows that the mon-

odromy conjecture for the Igusa zeta function implies the monodromy conjecture for the

topological zeta function. Artal Bartolo, Cassou-Noguès, Luengo, and Melle Hernández

proved the monodromy conjecture for some surface singularities, such as the superiso-

lated ones (see [2]), and for quasiordinary polynomials in [3]. The second author provided

results in [30–32], and together with Rodrigues in [28]. In [18], the authors consider

the same context as in this paper but they had to impose a restricting condition on

the surfaces. Through geometrical arguments, they showed that the monodromy con-

jecture holds for candidate poles of the topological zeta function of order 1 that are

poles.

There are more conjectures relating the poles of the topological zeta func-

tion (Igusa zeta function) and the eigenvalues of monodromy. There exist the rational
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functions Z (r)
top, f (r ∈ Z>0) that are variants of the topological zeta function and that play

a role in the holomorphy conjecture, as stated by Denef.

1.3 Holomorphy conjecture [9]

If r ∈ Z>0 does not divide the order of any eigenvalue of the local monodromy of f at any

point of f−1{0}, then Z (r)
top, f is holomorphic on C.

Originally, the holomorphy conjecture was formulated for the Igusa zeta function.

We refer to [9] for the inspiration. Denef showed that the conjecture is true for the

relative invariants of a few prehomogeneous vector spaces. The second author proved

the conjecture for plane curves (see [29]) and together with Rodrigues for homogeneous

polynomials (see [27]).

Although the monodromy conjecture and/or holomorphy conjecture has been

proven for these kinds of singularities, one did not get a better understanding of the deep

reason why the conjectures hold for them. Until now, the attempts are thus restricted to

prove the conjecture for classes of singularities.

This article deals with the class of surfaces that are general with respect to a

three-dimensional toric idealistic cluster. This implies that we work with surfaces for

which there exists an embedded resolution of singularities by blowing up in points that

are orbits for the action of the torus, i.e., in a toric constellation. We refer to Section 2

for a recap about clusters and in Section 3 we explain the objects that play the main

role in the conjecture. In Section 4, we show how the topological zeta function can be

computed directly in terms of the toric cluster for the surfaces that we consider. We use

the embedded resolution provided by the blowing up of the constellation. Let π : Z → C
3

be that resolution of such a surface f = 0 and let E j, j ∈ S, be the irreducible components

obtained by this resolution of which E1, . . . , Er are the exceptional ones. We will denote

E◦
j := E j \ (∪i∈S\{ j}Ei), for j ∈ S. We write Nj and ν j − 1 for the multiplicities of E j in the

divisor on Z of f ◦ π and π∗(dx ∧ dy ∧ dz), respectively. The numbers −ν j/Nj, j ∈ S, form

a complete list of candidate poles of Ztop, f .

We compute in particular the Euler characteristic of the spaces E◦
j , 1 ≤ j ≤ r,

in terms of the cluster. They show up in A’Campo’s formula for the eigenvalues of mo-

nodromy and they are very relevant for the monodromy conjecture. In Section 5, we

analyse these Euler characteristics. Our goal is to determine when these numbers are

less than or equal to 0. A geometric argument will show that we can reduce this job to the

investigation of a finite number of families of constellations. We complete Section 5 with

combinatorial preparations. These make it possible to determine the sign of the Euler
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characteristics that we are looking for. We carry this out in Section 6. We then prove the

following result.

Theorem. If χ (E◦
j ) > 0, then e

−2πi
ν j
Nj is an eigenvalue of monodromy of f . �

Using this result, we prove in Section 7 the monodromy conjecture for candidate

poles of order 1 that are poles, and in Section 8 the monodromy conjecture for candidate

poles of order 2 or 3 that are poles. Hence, we obtain.

Theorem. Let f be a germ of a polynomial map that is general with respect to a three-

dimensional toric idealistic cluster. If s0 is a pole of Ztop, f , then e2πis0 is an eigenvalue of

monodromy of f at some point of the hypersurface f = 0. �

In Section 9, we prove the holomorphy conjecture for these surfaces.

Theorem. Let f be a germ of a polynomial map that is general with respect to a three-

dimensional toric idealistic cluster. If r ∈ Z>0 does not divide the order of any eigenvalue

of the local monodromy of f at any point of f = 0, then Z (r)
top, f is holomorphic on C. �

2 Toric Clusters

In this section, we introduce the terminology of infinitely near points, (toric) clusters etc.

according to [6]. We would like to refer to [6] for some historical notes on clusters. See

also [7, 8, 13, 19–21], and [34] for more details on the theory of clusters.

2.1 Clusters

Let X be a nonsingular variety of dimension d ≥ 2 and let Z be a variety obtained from X

by a finite succession of point blowing-ups. A point Q ∈ Z is said to be infinitely near to a

point P ∈ X if P is in the image of Q; we write Q ≥ P . A constellation is a finite sequence

C := {Q1, Q2, . . . , Qr} of infinitely near points of X with Q1 ∈ X =: X0 and each Qj+1 is a

point on the variety X j obtained by blowing up Qj in X j−1, j ∈ {1, . . . , r − 1}. The variety

X(C) := Xr obtained by blowing up Qr in Xr−1 is called the sky. The relation ‘≥’ gives rise to

a partial ordering on the points of a constellation. In the case that they are totally ordered,

so Qr ≥ · · · ≥ Q1, the constellation C is called a chain. For every Qj in C, the subsequence

C j := {Qi | Qj ≥ Qi} of C is a chain. The integer l(Qj) := #C j − 1 is called the level of Qj. In

particular Q1 has level 0. If no other point of C has level 0, then Q1 is called the origin of
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C. We will always work with constellations that have an origin and we will also denote

the origin of the constellation by o. If Qj ≥ Qi and l(Qj) = l(Qi) + 1, we will write Qj � Qi

or j � i. For each Qi ∈ C, denote the exceptional divisor of the blowing up in Qi by Ei,

as well as its strict transform at some intermediate stage (including the final stage) X j,

i ≤ j ≤ r. The total transform at some intermediate stage (including the final stage) will

be denoted by E∗
i . If Qj ∈ Ei, then one says that Qj is proximate to Qi. This will be denoted

as Qj → Qi or j → i. As Ei = E∗
i − ∑

j→i E∗
j , it follows that also {E∗

1, . . . , E∗
r } is a basis of

the group of divisors with exceptional support ⊕r
j=1ZE j. A pair A := (C, m) consisting of a

constellation C := {Q1, . . . , Qr} and a sequence m := (m1, . . . , mr) of nonnegative integers

is called a cluster. One calls mj the weight or multiplicity of Qj in the cluster and we write

D(A) := ∑r
j=1 mj E∗

j . Introducing the numbers v j, 1 ≤ j ≤ r, by setting mj := v j − ∑
j→i vi,

allows us to write also D(A) = ∑r
j=1 v j E j.

The idea of clusters is to express that a system of hypersurfaces is passing

through the points of the constellation with (at least) the given multiplicities. Blowing

up a point Qi ∈ C induces a discrete valuation νi on C(X) \ {0}: for g ∈ C(X) \ {0}, the value

νi(g) is the order of the pullback of g (at the stage Xi) along Ei. To a cluster we can then

associate the (complete) ideal

I (v1, . . . , vr) = {g ∈ OX,o | ν j(g) ≥ v j, 1 ≤ j ≤ r} ∪ {0}.

If we want that these ideals principalise by blowing up the points of the constellation,

we require the ideals to be finitely supported. Formally, an ideal I in OX,o is called finitely

supported if I is primary for the maximal ideal m of OX,o —so supported at the closed

point—and if there exists a constellation C of infinitely near points of X such that IOX(C)

is an invertible sheaf.

However, given a finitely supported ideal I , one can associate a cluster to it. Let

CI =: {Q1, . . . , Qr} be the constellation of base points of I , i.e., the minimal constellation

C such that IOX(C) is an invertible sheaf. Let mj be the order of the point Qj, 1 ≤ j ≤ r

in the strict transform of the ideal I in OX j ,Qj . Then the ideal sheaf IOX(CI ) is associated

with −D(AI ) := −∑r
j=1 mj E∗

j .

If C is a constellation with origin at Q1, the cluster A := (C, m) is called idealistic

if there exists a finitely supported ideal I in OX,Q1 such that IOX(C) is the ideal sheaf

associated with −D(A). For an idealistic cluster A, Lipman proved that there exists

a unique finitely supported complete ideal IA such that IAOX(C) = OX(C)(−D(A)), namely

that given by the direct image of OX(C)(−D(A)) in X, see [20].
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In the next subsection we will illustrate these notions in the context of our

results.

2.2 Toric clusters in C
3

From now on suppose that X is the affine toric variety C
3. Let Q1 be the origin of

C
3 = X0. A three-dimensional toric constellation of infinitely near points with origin Q1

is a constellation C := {Q1, Q2, . . . , Qr} such that each Qj+1 is a zero-dimensional orbit in

the toric variety X j obtained by blowing up Qj in X j−1, 1 ≤ j ≤ r − 1. Blowing up in orbits

of smooth varieties corresponds to making star subdivisions of the fan corresponding

to the variety (see for example [26]). In this way each blowing up in a zero-dimensional

orbit induces the creation of three cones of dimension 3 and thus of three new zero-

dimensional orbits. Hence, the choice of a point Qi in a toric chain is equivalent to the

choice of an integer ai ∈ {1, 2, 3}, which determines a three-dimensional cone in the fan.

A tree with a root such that each vertex has at most three following adjacent vertices

is called a 3-nary tree. The above observation shows that there is a natural bijection

between the set of three-dimensional toric constellations with origin and the set of finite

3-nary trees with a root, with the edges labeled with positive integers not greater than

3, such that two edges with the same source have different labels.

A cluster A := (C, m) is called toric if the constellation C is toric. The blowing-

ups now induce monomial valuations (i.e., valuations determined by their values on

monomials) and the ideal I (v1, . . . , vr) associated with a toric cluster is thus monomial.

Example 1.

�

�

�
�

�

Q1

Q2

1

�
�

�
� Q3

2

Suppose d = 3 and C is the constellation pictured at the

left. It represents the following resolution process: by

blowing up in the origin Q1 we get an exceptional variety

E1
∼= P

2. In E1 there is one point in which we blow up,

namely Q2. The labels indicate in which affine chart the

points of the constellation are created. �

We call the affine chart with label 1 that one in which the equation of E1 is

x = 0. In the chart with label 2 one has E1 ↔ y = 0 and in the chart with label 3 one has

E1 ↔ z = 0. The point Q2 is the origin of the affine chart with label 1. After blowing up

in Q2 we get an exceptional variety E2
∼= P

2, where we blow up in the point Q3 that is the

origin of chart 1.2. There one has E2 ↔ y = 0 and (the transform of) E1 ↔ x = 0.

We now point out how the induced valuations ν1, ν2, and ν3 act. For a, b, c ∈ Z≥0,

ν1(xa ybzc) = a + b + c because the pullback of xa ybzc in chart 1 is xa+b+cybzc. The pullback



Zeta Functions and Monodromy for a Toric Idealistic Cluster 17

in chart 1.2 becomes xa+b+cya+2b+2czc and thus ν2(xa ybzc) = a + 2b + 2c. Analogously, we

find ν3(xa ybzc) = 2a + 3b + 4c. We can represent these valuations by the following vectors

in the lattice N
3:

ν1 ↔ (1, 1, 1) ν2 ↔ (1, 2, 2) ν3 ↔ (2, 3, 4).

We have I (v1, v2, v3) = (xa ybzc | a + b + c ≥ v1, a + 2b + 2c ≥ v2, 2a + 3b + 4c ≥ v3). To com-

pute such an ideal, one can picture the hyperplanes induced by the valuations. We com-

pute this ideal for the cluster A := (C, m) with (m1, m2, m3) = (2, 1, 1). Then (v1, v2, v3) =
(2, 3, 6) and one can see from

that I (2, 3, 6) = (x3, y2, z2, xz, x2y, yz). One can verify that this ideal is finitely supported

and that the cluster associated with this ideal is exactly the cluster A. Hence this cluster

is idealistic.

Let us now consider the cluster B consisting of the above constellation and

for which (m1, m2, m3) = (4, 1, 2) or (v1, v2, v3) = (4, 5, 11). Analogously, one finds that I :=
I (4, 5, 11) is equal to

(x6, y4, z4, xy3, x3y2, x4y, x3z2, x4z, xz3, yz3, y2z2, y3z, xyz2, xy2z, x2yz).

One finds that this ideal is finitely supported but the cluster associated to this ideal is

�

�

�
�

�

Q1

4

Q2 2

1

�
�

�

�
�

�
�� Q41Q3 1

32
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From this we can deduce thatB is not an idealistic cluster. Indeed, ifB was idealistic, then

there would exist a finitely supported complete ideal J such that JOX(C) = OX(C)(−D(B))

and we also know that J would be included in I . As I and J are both complete ideals,

they should be equal but we mentioned already that IOX(C) �= OX(C)(−D(B)).

Finally, let us consider the cluster consisting of the constellation C with

(m1, m2, m3) = (2, 2, 2) or (v1, v2, v3) = (2, 4, 8). One can check that

I (2, 4, 8) = (x4, y3, z2, xy2, x3y, x2z, y2z, xyz)

and that this ideal is not even finitely supported. In the same way we can conclude that

this cluster is not idealistic. �

2.3 Properties

In this subsection, we recall some properties of clusters, in particular of toric clusters.

(1) In the case of toric clusters, there exists a combinatorial characterisation for the

idealistic clusters. Fix a point Qi in a toric three-dimensional constellation C and some

integers a, b such that a, b ∈ {1, 2, 3} and a �= b. For s, t ∈ Z≥0, let Qi(as, bt ) be the terminal

point of the chain with origin Qi coded by (a, . . . , a, b, . . . , b) where a appears s times

and b appears t times. If t = 0, it is denoted by Qi(as). The point Qi(as, bt ) may not

belong to C. A point Qj ∈ C that is infinitely near to Qi is said to be linearly proximate

to Qi, if Qj = Qi(a, bt ), with a, b and t as above. We denote this relation by Qj � Qi or

j � i. Then we have that Qj is linearly proximate to Qi if and only if there exists a one-

dimensional orbit l in Bi such that Qj belongs to the strict transform of the closure of l in

Ei. This explains the terminology. Denote MQi (a, b) := ∑
t≥0 mQi (a,bt ). Campillo, Gonzalez-

Sprinberg, and Lejeune-Jalabert show the following:

1. A toric cluster A = (C, m) is idealistic if and only if for each point Qi of the

constellation C and for each pair of integers a and b such that a, b ∈ {1, 2, 3}
and a �= b, the following inequality is satisfied:

MQi (a, b) + MQi (b, a) ≤ mQi .

These inequalities are called the linear proximity inequalities.

2. Let A = (C, m) be a three-dimensional toric idealistic cluster with associ-

ated divisor D(A) = ∑r
j=1 mj E∗

j = ∑r
j=1 v j E j and let ν1, . . . , νr be the induced

discrete valuations. Such a valuation is called Rees for the ideal I (v) :=
I (v1, . . . , vr) if it is a valuation induced by an irreducible component of the
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exceptional divisor of the normalised blowing up BlI (v) X of I (v). Then

∀Qi ∈ C : m2
i ≥

∑
j→i

m2
j (1)

and

νi is Rees for I (v) if and only if m2
i >

∑
j→i

m2
j . (2)

(2) To a monomial ideal I one can associate a Newton polyhedron NI . It is the convex

hull of m + R
3
≥0 as m runs through the set of exponents of monomials in I . We refer to

[17] for the proofs of the following properties:

1. The compact facets of NI correspond with the Rees valuations of I .

2. A monomial ideal is complete if and only if it contains every monomial whose

exponent is a point of NI ∩ Z
3
≥0.

(3) Campillo, Gonzalez-Sprinberg, and Lejeune-Jalabert generate a very interesting set

of ‘general’ hypersurfaces in [6].

Theorem 1. The canonical map from the sky of the constellation of base points of

a finitely supported ideal I to X is an embedded resolution of the subvariety of (X, o)

defined by a general enough element in I . �

We will call these ‘general enough’ elements general for I or general for CI . We

will prove the monodromy and holomorphy conjectures for the class of surfaces that are

general for a finitely supported monomial ideal. In particular, this means that our results

apply to all surfaces for which there exists an embedded resolution consisting of toric

point blowing-ups and for which the corresponding toric cluster is idealistic. According

to Theorem 1, such surfaces in a finitely supported ideal form an open dense set.

Example 2.

�

��

�
�

�

�
�

�

Q1

Q3Q2

31

�
�

�

�
�

�
�� Q5Q4

21

Suppose d = 3 and C is the constellation pictured at the

left. It represents the following resolution process: by

blowing up in the origin Q1 we get an exceptional variety

E1
∼= P

2. In E1 there are two points in which we blow

up, namely Q2 and Q3. After blowing up in Q2 we get an

exceptional variety E2
∼= P

2, where we again blow up in

two points.
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The induced valuations are represented by the following vectors in the lattice N
3:

ν1 ↔ (1, 1, 1) ν2 ↔ (1, 2, 2) ν3 ↔ (2, 2, 1) ν4 ↔ (1, 3, 3) ν5 ↔ (2, 3, 4).

Consider the multiplicities (m1, m2, m3, m4, m5) = (3, 2, 1, 1, 1) for the points of this con-

stellation, equivalently (v1, v2, v3, v4, v5) = (3, 5, 4, 6, 9). By the linear proximity inequalities

it follows that the cluster A := (C, m) is idealistic. Now let IA be the ideal generated by

the monomials whose exponents are in the associated Newton polyhedron. We find

IA = (x6, y3, z4, x3y, x2y2, yz2, y2z, x3z, xz2, xyz).

The blowing up of the constellation gives an embedded resolution for a general element

of IA, such as h(x, y, z) := x6 + y3 + z4 + x3y + x2y2 + yz2 + y2z + x3z + xz2 − xyz. �

Example 3. Let us consider the noncomplete ideal I = (x3, y2, z2, xz, x2y). This ideal is

finitely supported and the associated cluster is the idealistic cluster A from Example 1.

Theorem 1 says then that the blowing up of that constellation gives an embedded reso-

lution for a general element of I , such as x3 + y2 + z2 + xz + x2y. �

(4) We now first recall the notion for a polynomial to be nondegenerate with respect to

its Newton polyhedron. Let f ∈ C[x1, . . . , xd ] be a nonconstant polynomial vanishing in

the origin. Write xk := xk1
1 · · · xkd

d and f := ∑
k∈Nd ckxk. The support of f is supp( f ) := {k ∈

N
d | ck �= 0}. The Newton polyhedron � of f is the convex hull of supp( f ) + R

d
≥0. For a face

τ of � we write fτ := ∑
k∈τ ckxk. A polynomial f is called nondegenerate with respect to

� if for every compact face τ of �, the polynomials fτ and ∂ fτ /∂xi have no common zeroes

in (C∗)d , 1 ≤ i ≤ d.

Proposition 2. Every hypersurface that is general with respect to some three-dimen-

sional toric idealistic cluster is nondegenerate with respect to its Newton polyhedron.

�

Proof. Let A = (C, m) be a toric idealistic cluster such that f is general with respect to

A. Suppose that f is degenerate with respect to N ( f ).

Let τ be a compact face of N ( f ) for which there exists a point p ∈ (C∗)3 such that

fτ (p) = ∂ fτ /∂x(p) = ∂ fτ /∂y(p) = ∂ fτ /∂z(p) = 0.

If τ is a facet, then τ corresponds to some exceptional irreducible component

created by the blowing up of the constellation, say to Ei. More specifically, the strict
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transform of fτ is equal to E0 ∩ Ei. As p is not an orbit, it follows that there exists a

point in which E0 ∩ Ei does not have normal crossings and that is not an orbit. If the

dimension of τ is one and if τ is the intersection of two compact facets, then analogously

we have that there exist two irreducible exceptional components Ei and E j such that

E0 ∩ Ei ∩ E j does not have normal crossings in a point that is not an orbit. Remains the

case that τ is the intersection of a compact facet and a coordinate plane. Suppose that

compact facet corresponds to Ei and that the coordinate plane is given by {x = 0}. Again

we get that then E0 ∩ Ei does not have normal crossings in a point that is not an orbit.

Indeed, if Ei has equation y = 0 in some affine chart, then there is a point (0, 0, pz) with

pz �= 0 in which there are no normal crossings. �

3 Conjectures

Let f be a complex polynomial in d variables and let π : Z → C
d be an embedded res-

olution of singularities of f−1{0}. We write E j, j ∈ S, for the irreducible components of

π−1( f−1{0}) and we denote by Nj and by ν j − 1 the multiplicities of E j in the divisor on

Z of f ◦ π and π∗(dx1 ∧ . . . ∧ dxd ), respectively. The couples (ν j, Nj), j ∈ S, are called the

numerical data of the embedded resolution (Z , π ). We denote also E◦
j := E j \ (∪i∈S\{ j}Ei),

for j ∈ S. Let the E j, j ∈ J := {1, . . . , r} ⊂ S, be the exceptional irreducible components of

π−1({0}).

3.1 Monodromy

We assume that f (b) = 0. Take ε > 0 small enough such that the open ball Bε with radius

ε around b in C
d intersects the fiber f−1(0) transversally. Then choose ε � η > 0 such that

for t in the disc Dη ⊂ C around the origin, the fiber f−1(t ) intersects Bε transversally.

Write X := f−1(Dη) ∩ Bε , Xt := f−1(t ) ∩ Bε for t ∈ Dη and D∗
η := Dη \ {0} for the pointed

disc. Milnor showed that f|X\X0
: X \ X0 → D∗

η is a locally trivial fibration, see [25]. A fiber

Xt of this bundle is called Milnor fiber of f at b. We will denote it by Fb. Consider the loop

γ encircling the origin once counterclockwise. Since f|X\X0
is a locally trivial fibration, the

loop γ lifts to a diffeomorphism h of the Milnor fiber Fb, which is well determined up to

homotopy. In this way γ induces an automorphism h∗ : Hi(Fb, C) → Hi(Fb, C), i ≥ 0, that

is called the monodromy transformation.

The surfaces for which we will prove the monodromy conjecture have exactly one

isolated singularity in the origin. A result of Milnor (see [25]) then says that Hi(F0, C) = 0,

for i �= 0 and i �= d − 1, and H0(F0, C) = C with trivial monodromy action. The formula



22 A. Lemahieu and W. Veys

of A’Campo ([1]) describes the characteristic polynomial of the monodromy action on

Hd−1(F0, C) in terms of an embedded resolution of the hypersurface f−1(0).

We may suppose that π is an isomorphism outside the inverse image of the origin.

Theorem 3 (A’Campo) [1]. The characteristic polynomial of the monodromy action on

Hd−1(F0, C) is equal to

[∏r
j=1(1 − t Nj )χ (E◦

j )

1 − t

](−1)d−1

. �

3.2 Topological zeta function

In 1992, Denef and Loeser created a new zeta function which they called the topological

zeta function because of the topological Euler–Poincaré characteristic χ (·) turning up

in it. It is associated with a complex polynomial f with f (0) = 0. If EI := ∩i∈I Ei and

E◦
I := EI \ (∪ j /∈I E j), then they introduced it in [11] in the following way.

Definition 4. The local topological zeta function associated with f is the rational

function in one complex variable

Ztop, f (s) :=
∑
I⊂S

χ
(
E◦

I ∩ π−1{0})∏
i∈I

1

Nis + νi
. �

Denef and Loeser proved that every embedded resolution gives rise to the same function,

so the topological zeta function is a well-defined singularity invariant (see [11]). Once

the motivic Igusa zeta function was introduced, they proved this result alternatively in

[12] by showing that this more general zeta function specialises to the topological one.

There exists a global version, replacing E◦
I ∩ π−1{0} by E◦

I .

3.3 Monodromy conjecture

One calls α an eigenvalue of monodromy of f at b ∈ f−1{0} if α is an eigenvalue for some

h∗ : Hi(Fb, C) → Hi(Fb, C).

Conjecture 5. (Monodromy conjecture) If s0 is a pole of Ztop, f , then e2πis0 is an eigenvalue

of monodromy of f at some point of the germ at 0 of the hypersurface f = 0. �
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Let f be a polynomial that is general with respect to a three-dimensional toric ide-

alistic cluster. Consider the embedded resolution π : Z → C
3 of f−1{0} that corresponds

to the blowing up of the constellation. We fix a candidate pole s0 = −ν j/Nj of Ztop, f . If E j is

not an exceptional component, then ν1 = 1 and N1 = 1. As 1 is always an eigenvalue of the

local monodromy of f , this candidate pole does not pose any difficulty. If s0 = −ν j/Nj is

a candidate pole of Ztop, f induced by an exceptional component E j, then we write ν j/Nj

as a/b such that a and b are coprime. We define the set Jb := { j ∈ J | b divides Nj}. It

follows from A’Campo’s formula that

e2πis0 is an eigenvalue of monodromy of f at the origin 0

�∑
j∈Jb

χ (E◦
j ) �= 0.

In general, there can be a lot of cancelations which make that
∑

j∈Jb
χ (E◦

j ) = 0. To

control this, we will1 determine when χ (E◦
j ) is positive, negative or zero. We will see that

the cases where χ (E◦
j ) ≤ 0 are very rare in this context.

3.4 Holomorphy conjecture

For every r ∈ Z>0, one can define a variant Z (r)
top, f of the topogical zeta function that is

also a rational function in one complex variable.

Definition 6.

Z (r)
top, f :=

∑
I⊂S∀i∈I :r|Ni

χ
(
E◦

I ∩ π−1{0})∏
i∈I

1

Nis + νi
. �

The functions Z (r)
top, f are limits of more general Igusa zeta function associated

with a polynomial and a character, see [9]. In particular Z (1)
top, f = Ztop, f . Clearly, they are

holomorphic on C if and only if they do not have a pole. The holomorphy conjecture

stated by Denef predicts the following relation.

Conjecture 7. (Holomorphy conjecture) If r ∈ Z>0 does not divide the order of any eigen-

value of monodromy of f , then Z (r)
top, f is holomorphic on C. �
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In Section 9, we provide a proof of the holomorphy conjecture for the surfaces

we are studying. Again, the classification of χ (E◦
j ) according to the sign will be the key

to solve the conjecture.

4 Computation of the Topological Zeta Function

Given a germ of a polynomial function f in d variables over C, its topological zeta func-

tion Ztop, f can be calculated by computing an embedded resolution. If f is nondegenerate

with respect to its Newton polyhedron, then there exists also the formula for Ztop, f in

terms of its Newton polyhedron, see [11]. In our context, we show that, directly from the

tree that represents the toric constellation, one can read all information needed to write

down the topological zeta function.

Concretely, we consider a toric idealistic cluster in C
3 and a complex polynomial

f in three variables in a finitely supported ideal such that the cluster gives an embedded

resolution for the surface S := V ( f ) ⊂ C
3. To determine the topological zeta function of f ,

we determine the numbers χ (E◦
I ). We will denote the strict transform of S by Ŝ, whatever

the stage is, and we will denote the curves Ŝ ∩ Ei by Ci. We will write pa for the geometric

genus.

First of all, notice that when blowing up in a point of multiplicity m on S, and E

being the created exceptional divisor, the curve Ŝ ∩ E has degree m. Another important

observation is that if Q ∈ E , then the multiplicity of Q on Ŝ ∩ E is equal to the multiplicity

of Q on Ŝ.

We give a formula for the topological zeta function but first we illustrate the com-

putation by following the embedded resolution process of the following toric constella-

tion. We think that such concrete pictures are very useful to understand the computation

of the χ (E◦
I ) in general.

Example 4. Consider the toric constellation represented by the following tree:

�

�

� �

�� �

Q1

Q2

Q3

Q4

Q5 Q6 Q7

1

1
2

1 2 3
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Let S be a surface in C
3 that is general for the above toric constellation. We

follow the resolution process and we picture the intersections that are relevant in the

calculation of the numbers χ (E◦
I ). The gray curve (that can be reducible) pictured in the

ambient E j represents the curve C j.
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�

We now proceed to the computation of the χ (E◦
I ). We will write mj for the multi-

plicity of the point Qj on Ŝ and E0 for the strict transform Ŝ.

1. I := {0, i, j} with 0 < i < j and j → i.

From the number of intersection points of C j and Ei in E j
∼= P

2, we

subtract the number of points in which we will blow up. Then we get

χ (E◦
I ) = mj − ∑

k� j
k→i

(C j(Ei ∩ E j))Qk . We can conclude

χ
(
E◦

I

) = mj −
∑
k→i
k� j

mk.

2. I := {i, j, k} with 0 �= i < j < k, k → i and k → j.

The contribution to χ (E◦
I ) comes from the intersection point of Ei ∩ E j ∩ Ek

unless it is a point in which we will blow up. We can express this as follows:

χ
(
E◦

I

) = 1 − #{l | l → i, l → j and l → k}.

3. I := {0, i} with 0 �= i.

We look at Ei in the final stage. There we have to subtract from E0 ∩ Ei the

intersection points with the other exceptional components.

χ
(
E◦

I

) = χ (Ci) −
∑
j→i

χ (
◦

̂E0 ∩ Ei ∩ E j) −
∑
i→ j

χ (
◦

̂E0 ∩ Ei ∩ E j).
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We have χ (Ci) = 2 − 2pa (Ci) for the nonsingular Ci that can be irreducible or

reducible. This leads to the formula

χ
(
E◦

I

) = mi(3 − mi) +
∑
j→i

mj(mj − 1)

−
∑
j→i

⎛
⎜⎝mj −

∑
k→i
k� j

mk

⎞
⎟⎠ −

∑
i→ j

⎛
⎜⎝mi −

∑
k→ j
k�i

mk

⎞
⎟⎠ .

4. I := {i, j} with 0 �= i < j, j → i.

We compute the contribution from the configuration in E j
∼= P

2.

χ
(
E◦

I

) = 2 −
(
χ (

◦
̂E0 ∩ Ei ∩ E j) + #Aij + #Bij − #Cij

)

= 2 −

⎛
⎜⎝mj −

∑
k→i
k� j

mk

⎞
⎟⎠ − #Aij − #Bij + #Cij,

with

Aij := {k | k � j, k → i}
Bij := {k | k �= i, j → k}
Cij := {k | k � j, k → i and ∃l : l �= i, k → l and j → l}.

5. I := {i} with i �= 0.

We look in Ei
∼= P

2 and find

χ
(
E◦

I

) = 3 −
(

χ
( ◦
Ê0 ∩ Ei

) + #Ai + 2#Bi −
(

#Bi

2

))

= 3 + mi(mi − 3) −
∑
j→i

mj(mj − 1)

+
∑
j→i

⎛
⎜⎝mj −

∑
k→i
k� j

mk

⎞
⎟⎠ +

∑
i→ j

⎛
⎜⎝mi −

∑
k→ j
k�i

mk

⎞
⎟⎠ − #Ai − 2#Bi +

(
#Bi

2

)
,

with
Ai := {k | k � i and �l : i → l and k → l}
Bi := {k | i → k}.

6. For I not of the form of one of the sets described above, χ (E◦
I ) = 0.



Zeta Functions and Monodromy for a Toric Idealistic Cluster 29

Also the numerical data are completely determined by the tree. We obtain the numbers

Ni via the recursive formula Ni = mi + ∑
i→ j Nj. For the νi, we find νi = ∑

i→ j(ν j − 1) + 3.

5 Analysis of χ (E◦
i )

In order to investigate the conjectures, we study the expression for χ (E◦
i ) that we obtained

in the previous section:

χ
(
E◦

i

) = mi(mi − 3) −
∑
j→i

mj(mj − 1) +
∑
j→i

⎛
⎜⎝mj −

∑
k→i
k� j

mk

⎞
⎟⎠

+
∑
i→ j

⎛
⎜⎝mi −

∑
k→ j
k�i

mk

⎞
⎟⎠ + 3 − #Ai − 2#Bi +

(
#Bi

2

)
,

with Ai = {k | k � i and �l : i → l and k → l} and Bi = {k | i → k}.
Notice that the linear proximity inequalities imply that mj − ∑

k→i
k� j

mk ≥ 0, for

all j → i and that mi − ∑
k→ j
k�i

mk ≥ 0 for all i → j. Moreover, for a point Qj with maximal

level in the set of the points that are proximate to Qi, we have mj − ∑
k→i
k� j

mk = mj > 0

and so
∑

j→i(mj − ∑
k→i
k� j

mk) > 0.

Let T := 3 − #Ai − 2#Bi + ( #Bi

2 ). Then T takes the following values:

#Bi #Ai T

0 0 3

0 1 2

0 2 1

0 3 0

1 0 1

1 1 0

2 0 0

3 0 0

Table 1
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We want to investigate when χ (E◦
i ) ≤ 0. A priori there are infinitely many constellations

to consider. The first result in this section will permit us to reduce our study to a finite

number of cases. Secondly, we will rewrite χ (E◦
i ) and via combinatorics we will analyse

this new description.

Lemma 8. Let A = (C, m) be a three-dimensional toric idealistic cluster and let Qi be a

point of the constellation C. If #{t ∈ Z≥0 | Qi(a, bt ) ∈ C} + #{t ∈ Z≥0 | Qi(b, at ) ∈ C} ≥ 3 for

all a, b ∈ {1, 2, 3} with a �= b, then χ (E◦
i ) > 0. �

Proof. If #{t ∈ Z≥0 | Qi(a, bt ) ∈ C} + #{t ∈ Z≥0 | Qi(b, at ) ∈ C} ≥ 3 for all a, b ∈ {1, 2, 3} with

a �= b, then it follows that mi > 3 except when there are exactly 6 points—that have

multiplicity 1—that are proximate to Qi and such that #{t ∈ Z≥0 | Qi(1, 3t ) ∈ C} = #{t ∈
Z≥0 | Qi(2, 1t ) ∈ C} = #{t ∈ Z≥0 | Qi(3, 2t ) ∈ C} = 2, up to permutation of the labels. In that

case mi can be equal to 3 and then one finds that χ (E◦
i ) > 0.

When mi > 3 we construct a new cluster. We define m′
i := mi − 3, m′

j := mj − 1

for all j for which j → i and we do not change the weights of the other points in C.

Let C ′ be the subconstellation of C that contains exactly the points Qj of C for which

mj > 1 and let A′ be the cluster (C ′, m′). Then also A′ satisfies the linear proximity

inequalities and thus A′ is a toric idealistic cluster. Let us now consider a surface S
that is general with respect to A and a surface S ′ that is general with respect to A′. Blow-

ing up the point Qi provides two curves Ci = Ei ∩ Ŝ and C ′
i = Ei ∩ Ŝ′ in the exceptional

variety Ei
∼= P

2 of degree mi and m′
i, respectively. From Bezout’s formula, it follows that

mim′
i ≥ ∑

j→i
Qj∈C′

mjm′
j. The latter sum is also equal to

∑
j→i

Qj∈C
mjm′

j. We can conclude that

χ (E◦
i ) > 0. �

This lemma will allow us to work with a finite number of families of constella-

tions. We represent these families in List 1. We first explain some notations.

To save place, from now on we draw the clusters from left to right. So if there

is an edge between Qi and Qj and if Qj is at the right from Qi, then Qj > Qi. If there

exists an edge with label x between points of the chain Ci := {Qj | Qi ≥ Qj}, then we will

simply say that ‘label x appears below Qi’.

The constellations are listed according to the number of points Qj for which

Qj � Qi (indicated by a roman number). We only draw the subconstellation that shows

Qi and the points Qj that are proximate to Qi and for which holds that j � i or for which

there exists a point Qk such that k � i and j � k. By drawing ‘−−’ going out of a point

Qj for which j → i, we mean that there can exist a point Qk for which k > j and k → i.
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We also draw the symbol ‘−−’ arriving in the point Qi when Qi is not necessarily the

origin. When Qj is a point of the constellation, we will denote its multiplicity by mQj or

by mj.

List 1 contains the constellations we should study, according to Lemma 8, up to

permutation of the labels. In constellations II9, II10 and II11, we mean by 3̂ that label 3

should not occur at that place, so #{t ∈ Z≥0 | Qi(2, 3t ) ∈ C} = 2.

01

�

Qi

I1

�

Qi
�

1

I2

�

Qi
� �

1 2

I3

�

Qi
�

�

�

1
2

3

II1

�

Qi

�

�

1

2

II2

�

Qi

�

�

1

2

�
2

II3

�

Qi

�

�

1

2

�
3 II4

�

Qi

�

�

1

2

�

�

2

3

II5

�

Qi

�

�

1

2

�
2

�

1

II6

�

Qi

�

�

1

2

�
2

�

3

II7

�

Qi

�

�

1

2

�
3

�

3

II8

�

Qi

�

�

1

2

�

�

2

3

�

1

II9

�

Qi

�

�

1

2

�

�

2

3̂

3

�

3

II10

�

Qi

�

�

1

2

�

�

1

3

�
3

3̂

II11

�

Qi

�

�

1

2

�

�

2

3

3̂

�

�3

1

III1

�

Qi

�

�

�

1

3

2

III2

�

Qi

�

�

�

1

3

2

�
2 III3

�

Qi

�

�

�

1

3

2

�

�

2

3

III4

�

Qi

�

�

�

1

3

2

�
2

�
1

III5

�

Qi

�

�

�

1

3

2

�
3

�
1

III6

�

Qi

�

�

�

1

3

2

�

1

�
1
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III7

�

Qi

�

�

�

1

3

2 �
1

�

�

2
3 III8

�

Qi

�

�

�

1

3

2

�
3

�
1

�

1

III9

�

Qi

�

�

�

1

3

2 �
1

�

1

�

�

2
3

List 1

In the next step, we give an alternative description for χ (E◦
i ). We first introduce some

new notation.

Notation 1. We write D := m2
i − ∑

j→i m2
j and rab := mi − MQi (a, b) − MQi (b, a) for a, b ∈

{1, 2, 3} = {a, b, c}, a �= b. Let R be equal to ˆr12 + ˆr13 + ˆr23 where ˆrab :=
⎧⎨
⎩rab if label c does not appear under Qi;

0 else.

We refer to the beginning of Section 5 for the definition of T and to Table 1 for the values

that T takes. �

Lemma 9.

χ
(
E◦

i

) = D − R + T. �

Proof. We will prove that

R = 3mi − 2
∑
j→i

mj +
∑
j→i

⎛
⎜⎝∑

k→i
k� j

mk

⎞
⎟⎠ +

∑
i→ j

⎛
⎜⎝∑

k→ j
k�i

mk

⎞
⎟⎠ −

∑
i→ j

mi. (3)

Let X be the right-hand side in (3), let X1 := ∑
j→i(

∑
k→i
k� j

mk) and X2 := ∑
i→ j(

∑
k→ j
k�i

mk).

For k → i, one has one of the following situations:

• There exist exactly two points Qj1 and Qj2 that are proximate to Qi and for

which k � j1 and k � j2. Then mk appears twice as term in X1 and Qk is not

linearly proximate to Qi; hence mk does not appear in X2. This implies that

mk does not show up in X.

• There exists exactly one point Qj that is proximate to Qi and for which k � j.

We are in the following situation:

�

Qi
�

1
� �

QkQ j 22
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Then mk appears once in X1 and k � i. If label 3 appears under Qi, then mk

appears once in X2. Hence, mk does not show up in the expression X. If there is

no label 3 under Qi, then mk does not appear in X2 such that this mk appears

with coefficient −1 in X.

• There exists no point Qj such that j → i and k � j. Then k � i and mk do

not appear in X1. The number of times that mk appears in X2 depends on the

labels below Qi. It can be once, twice or thrice.

Notice that the multiplicities mk of the points Qk with k → i but not k � i do not appear

in X. To analyse further the formula X, we now take the labels into account that appear

below Qi.

If Qi is the origin, then the points Qk for which k � i appear with coefficient −2

in X. The other points Qj for which j � i have coefficient −1. Hence,

X = 3mi −
∑
k�i

mk −
∑
k�i

mk = r12 + r13 + r23 = R.

Also in the other cases, one can check that X = R: when 1 is the only label below Qi,

then X = r12 + r13 = R. If the labels showing up below Qi are 1 and 3, then X = r13 = R.

If three labels show up under Qi, then X = 0 = R. �

Notice that it follows from the linear proximity relations that R ≥ 0. Formula

(1) in Section 2.3 shows that D ≥ 0 and from Table 1 it follows that 0 ≤ T ≤ 3. In order

to find the cases where χ (E◦
i ) ≤ 0, we will investigate when R ≥ D. We want to give an

estimation for D. In particular, we will determine a lower bound L for D and then we

will check when R ≥ L. We introduce some terminology.

Definition 10. Let l ∈ Z>1 and let n1, . . . , nl , h1, . . . , hl−1 ∈ Z>0 such that nj = hjnj+1 +
nj+2 where 0 < nj+2 < nj+1, for 1 ≤ j ≤ l − 2, and such that nl−1 = hl−1nl . If l is even,

then set (a, b) = (3, 2). If l is odd, we set (a, b) = (2, 3). Let A be an idealistic cluster

� � �
1 2 2 3 3 2 2 3 a b b

� � � � � � � � � � � � � �

Qi

n1 n2 n2 n2 n3 n3 n3 n4 n4 n4 n5 n5 nl−1 nl nl nl nl

where nj appears hj−1 consecutive times, 2 ≤ j ≤ l. We callA a Euclidean cluster starting

in Qi. �

Definition 11. Let A be a cluster of the form

� �

�

�

1
2

3

3 3 2

2 2 3

� � �

� � �

m1

Qi

m2

n1 n2 nl−1 nl

n′
1 n′

2 n′
r−1 n′

r
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such that

� � �
1 2 3 3 2

� � �

M1 M2 n1 n2 nl−1 nl

and � � �
1 3 2 2 3

� � �

M′
1 M′

2 n′
1 n′

2 n′
r−1 n′

r

are Euclidean clusters, where M1 := m1 − ∑r
j=1 n′

j, M2 := m2 − ∑r
j=1 n′

j and M′
1 := m1 −∑l

j=1 nj, M′
2 := m2 − ∑l

j=1 nj. We call the cluster A a bi-Euclidean cluster starting

in Qi. �

Example 5. The cluster

� � �
1 2 2 2 3 2 2 2

� � � � � �

Qi

19 5 5 5 4 1 1 1 1

is a Euclidean cluster starting in Qi. The cluster

� � �

�

�

2 1
2

3

3 2 2 3
� � �

88 17

Qi

12

5 2 2 1 1

5

is a bi-Euclidean cluster starting in Qi. �

Definition 12. Suppose that Q is a point different from the origin in a three-dimen-

sional toric constellation C. Let a ∈ {1, 2, 3} such that Q = P (a) for a point P ∈ C and

suppose that there exists b ∈ {1, 2, 3}, a �= b, such that Q(b) ∈ C. Then we call Q a switch

point. �

Proposition 13. Let A = (C, m) be a three-dimensional toric idealistic cluster. Let Qi ∈ C
and suppose that there exists exactly one point Qk ∈ C for which k � i. Then the following

properties hold:

1. mimk ≥ ∑
j→i m2

j ;

2. mimk = ∑
j→i m2

j if and only if A is a Euclidean cluster or A is a bi-Euclidean

cluster starting in Qi. �

Proof. Case 1: There exists at most one point Ql in C that is proximate to Qi and such

that Ql � Qk. Then we can suppose that the cluster is of the form

�

mi

Qi

�

mk

Qk

1 2
�
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We have mi ≥ MQi (1, 2) and thus

mkmi ≥
∑
t≥0

mkmQi (1,2t ). (4)

We give lower bounds for the terms mkmQi (1,2t ) in (4) depending on whether Qi(1, 2t ) is a

switch point or not. If Qi(1, 2t ) = Qk, then mkmQi (1,2t ) = m2
k. If P t := Qi(1, 2t ), t �= 0, is a

switch point, then

mkmP t ≥
(∑

s≥0

mP t−1(2,3s) +
∑
s≥0

mP t−1(3,2s)

)
mP t .

If P t is not a switch point, then we estimate mkmP t ≥ mP t mP t . We fill in these lower

bounds in (4) and we get

mkmi ≥ m2
k +

∑
P t not

switch point

m2
P t +

∑
P t switch
point, t �=0

(∑
s≥0

mP t−1(2,3s) +
∑
s≥0

mP t−1(3,2s)

)
mP t .

We iterate this process: whenever we have a product mQj mQl with j < l, we use the

estimations described above for mQj mQl according to whether Ql is a switch point

or not, i.e., if Ql is a switch point and if P ∈ C is such that Ql � P , then set

mQj mQl ≥ (
∑

t≥0 mP (2,3t ) + ∑
t≥0 mP (3,2t ))mQl . If Ql is not a switch point, then we set

mQj mQl ≥ mQl mQl . This is obviously a finite process and it shows that

mimk ≥
∑
j→i

m2
j .

We now study when
∑

j→i m2
j = mimk.

• If C is a chain, then it is not difficult to see that
∑

j→i m2
j = mimk if and only

if A is a Euclidean cluster.

• If A contains a subcluster of the form

� � � �

1/3 2 2

� �

�

2
2

3

P P (2s)



36 A. Lemahieu and W. Veys

where P (2s+1) is not a switch point, then at some moment in the process we

get

mimk ≥ · · · + mP

(∑
t≥0

mP (2t )

)

> · · · +
s−1∑
t=0

m2
P (2t ) + mP (2s)

(∑
t≥0

mP (2s,3t )

)
+

∑
t=s+1

m2
P (2t ).

Indeed, mP > mP (2s+1).

• If A contains a subcluster of the form

� � � �

1/3 2 2

� �

�

2
3

3

P P (2s)

Q

then at some moment in the process we get

mimk ≥ · · · + mP

(∑
t≥0

mP (2t )

)

≥ · · · +
s−1∑
t=0

m2
P (2t ) + mP (2s)

(∑
t≥0

mP (2s,3t )

)

+ mP (2s+1)

(∑
t≥0

mP (2s+1,3t ) +
∑
t≥0

mQ(2t )

)

≥
∑
j→i

m2
j + mP (2s+1)

∑
t≥0

mQ(2t )

>
∑
j→i

m2
j .

• If A contains a subcluster of the form

� � � �

1/3 2 2

�

�

2

3

P P (2s)

then at some moment in the process we get

mimk ≥ · · · + mP

(∑
t≥0

mP (2t )

)

> · · · +
s−1∑
t=0

m2
P (2t ) + mP (2s)

∑
t≥0

mP (2s,3t ) + m2
P (2s+1).
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Indeed, mP > mP (2s+1).

Case 2: There exist two points Qa and Qb in C that are proximate to Qi and such that

Qa � Qk and Qb � Qk. Then we may suppose that the cluster is of the form

�

mi

Qi Qk

�

�

�

1
2

3

mk

n1

Qa

n′
1

Qb

Define t := mk − MQk (2, 3) − MQk (3, 2). As the cluster is idealistic, t ≥ 0. Then also the

clusters

� � �
1 2M1 M2 n1

and
Qi Qk Qa

� � �
1 3M′

1 M′
2 n′

1

Qi Qk Qb

with M1 := mi − MQk (2, 3) − t and M2 := MQk (2, 3), M′
1 := mi − MQk (3, 2) − t and M′

2 :=
MQk (3, 2) are idealistic. They are clusters of the form as in Case 1, therefore we can

use the bound that we obtained there

∑
j→i

m2
j ≤ M1M2 + M′

1M′
2 − M2

2 − M′
2

2 + m2
k

= (M2 + M′
2)(mi − mk) + m2

k

= mimk − t (mi − mk)

≤ mimk.

From the previous computations, it follows that
∑

j→i m2
j = mimk if and only if the cluster

is a bi-Euclidean cluster starting in Qi. �

This combinatoric result is the key to determine the sign of χ (E◦
i ).

6 Determination of the Sign of χ (E◦
i )

In this section, we classify the irreducible exceptional components Ei, 1 ≤ i ≤ r, that

arise in the blowing up of some three-dimensional toric idealistic cluster according to

the sign of χ (E◦
i ). As in Lemma 9, we write χ (E◦

i ) as D − R + T . For the points Qi in the

clusters of List 1, we give a lower bound L for D. We will use very frequently Proposition

13. As upper bound for R, we use that R ≤ r12 + r13 + r23. We will study for which clusters

in List 1 it holds that r12 + r13 + r23 ≥ L. We mark the name of the constellation by a star
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if there exists a cluster with that underlying constellation that yields χ (E◦
i ) ≤ 0. We refer

to Table 1 for the values of T .

Let us first make the following observation.

Remark 1. Suppose A = (C, m) is a three-dimensional toric idealistic cluster. Let Qi

be a point of the constellation C. We define a subconstellation SiC of C as follows: the

origin of SiC is Qi and Qj ∈ SiC if and only if j → i in C or j = i. Suppose now that

Qk ∈ SiC, Qk �= Qi. We define a cluster Si
kC = (SiC, n) with underlying constellation SiC:

for each point Qj ∈ SiC, j �= k, set its multiplicity nj := mj and set nk := mk + 1. If Si
kC is

idealistic, then there always exists an idealistic cluster Ã = (C, m̃) that contains Si
kC as a

subcluster. Blowing up the constellation C of cluster Ã then yields

χ (Ẽ◦
i ) = D̃ − R̃ + T̃

= D − 2mk − 1 − (R − x) + T

= χ (E◦
i ) − 2mk − 1 + x,

where x is equal to 0, 1 or 2 depending on the constellation C.

It follows that χ (Ẽ◦
i ) < χ (E◦

i ). �

This will make it possible to simplify computations. Indeed, as described above,

when we let increase the values of the multiplicities such that the cluster stays idealistic

and if χ (Ẽ◦
i ) ≥ 0, then χ (E◦

i ) > 0.

We now proceed to the classification. Firstly, we investigate the constellations

of List 1 where at most one edge is going out of Qi. Then we consider the ones where

exactly two edges leave out of Qi. We treat constellation II11 and we draw conclusions

about the subconstellations of II11 if possible. We will have to investigate constellation

II7 separately and then we also get the classification for the constellations II1 and II3.

Studying constellation III9 will be enough to classify the constellations where three

edges are going out of Qi.

01∗

�

Qi

mi

D = m2
i . Does there exist a positive integer mi such that

3mi ≥ m2
i ?

We study the exact value of χ (E◦
i ) if mi ∈ {1, 2, 3}. If Qi is the origin, then T = 3

and χ (E◦
i ) = m2

i − 3mi + 3 > 0. If there exists exactly one point Qj such that i → j, then
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T = 1 and χ (E◦
i ) = m2

i − 2mi + 1. We find that χ (E◦
i ) = 0 if mi = 1. If there exist exactly

two points in the constellation to which Qi is proximate, then T = 0 and χ (E◦
i ) = m2

i − mi.

We again find that χ (E◦
i ) = 0 if mi = 1. If there are three points to which Qi is proximate,

then T = 0 and χ (E◦
i ) = m2

i > 0.

I1∗

�

Qi
�

1

mi m1

D = m2
i − m2

1. Do there exist positive integers mi and m1 such

that (mi − m1) + (mi − m1) + mi ≥ m2
i − m2

1?

If m1 = mi, this inequality holds. Then R = ˆr23 and thus, if there is a label 1

under Qi, one has that R = 0 and χ (E◦
i ) = T = 0. If there is no label 1 under Qi, then

R = r23 = mi, so χ (E◦
i ) = T − mi. If Qi is the origin, then we have χ (E◦

i ) = 2 − mi. If only

label 2 or only label 3 appears under Qi, then χ (E◦
i ) = 1 − mi. If label 2 as well as label 3

are present under Qi, then χ (E◦
i ) = −mi.

Suppose now that m1 < mi and that the inequality holds. This implies that

(mi − 1)(mi − 3) ≥ m1(m1 − 2) ≥ mi(mi − 3).

Then (mi, m1) = (3, 2) or (mi, m1) = (2, 1). If (mi, m1) = (3, 2), then χ (E◦
i ) = 5 − R + T and

R ≤ 5. If R = 5, then Qi is the origin. Then T = 2 and thus χ (E◦
i ) > 0. If (mi, m1) = (2, 1),

then χ (E◦
i ) = 3 − R + T and R ≤ 4. If R ≥ 3, then we should have ˆr23 = r23 and also say

ˆr12 = r12. Thus, label 1 and label 3 do not appear under Qi. Then only label 2 appears

below Qi or Qi is the origin. However, also under these conditions we have χ (E◦
i ) > 0.

I2∗

�

Qi
� �

1 2

mi m1

L = m2
i − mim1. Do there exist multiplicities for

which (mi − ∑
t≥0 mQi (1,2t )) + (mi − m1) + mi ≥ m2

i −
mim1?

We rewrite this inequality as m1(mi − 2) − ∑
t≥1 mQi (1,2t ) ≥ mi(mi − 3).

• If m1 = mi − 1, the cluster becomes

�

Qi
� �

1 2

mi mi − 1 1

3
�

1

where label 3 appears, say k times, with 0 ≤ k ≤ mi − 2. Then χ (E◦
i ) = m2

i −
(mi − 1)2 − (k + 1) − R + T and R ≤ mi + 1, so χ (E◦

i ) ≥ 2mi − 2 − k − mi − 1 +
T = mi − 3 − k + T . If k = mi − 3, then χ (E◦

i ) could only be 0 if R = mi + 1 and
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T = 0 but this is impossible. If k = mi − 2 and χ (E◦
i ) ≤ 0, then R should be mi

or mi + 1. If R = mi, then χ (E◦
i ) = T . We find that χ (E◦

i ) = 0 if labels 2 and 3

appear below Qi. When R = mi + 1, then χ (E◦
i ) = −1 + T . Then χ (E◦

i ) = 0, if we

only have label 3 under Qi.

• If mi ≥ 3 and if the inequality holds, then certainly m1 > mi − 3.

So suppose now that m1 = mi − 2. Then the inequality becomes

(mi − 2)(mi − 2) − ∑
t≥1 mQi (1,2t ) ≥ mi(mi − 3) or 4 − ∑

t≥1 mQi (1,2t ) ≥ mi and

so mi = 3. The cluster is then of the form

�

Qi
� �

1 2

3 1 1
or �

Qi
� �

1 2

3 1 1
�

2

1

In the first picture χ (E◦
i ) = 7 − R + T and R ≤ 6, and thus χ (E◦

i ) > 0. In the

picture at the right, χ (E◦
i ) = 6 − R + T and R ≤ 5, and thus again χ (E◦

i ) > 0.

I3∗

�

Qi
�

�

�

1
2

3
mi m1

L = m2
i − mim1. Do there exist multiplicities such that (mi −∑

t≥0 mQi (1,2t )) + (mi − ∑
t≥0 mQi (1,3t )) + mi ≥ m2

i − mim1?

We rewrite the inequality as follows:

m1(mi − 2) −
∑
t≥1

mQi (1,2t ) −
∑
t≥1

mQi (1,3t ) ≥ mi(mi − 3).

If this inequality holds, then certainly m1 = mi − 1. Let k ∈ {2, . . . , mi − 1} be the number

of points that are proximate to Qi and that are different from Qi(1). Then we find that

χ (E◦
i ) = m2

i − (mi − 1)2 − k − R + T . As R ≤ mi, we have χ (E◦
i ) ≥ mi − 1 − k + T . It follows

that χ (E◦
i ) = 0 if k = mi − 1, R = mi and when labels 2 and 3 appear below Qi.

II7∗

�

Qi

�

�

1

2

�
3

�

3

mi

m1

m2

m3

m4

L = m2
i − m1

∑
t≥0 mQi (1,3t ) − m2

∑
t≥0 mQi (2,3t ). We

allow that m3 and m4 are 0; thus we include the

constellations II1 and II3.
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• Suppose r12 = 0. Can the following inequality hold?

(
mi −

∑
t≥0

mQi (1,3t )

)
+

(
mi −

∑
t≥0

mQi (2,3t )

)
≥ m2

i − m1

∑
t≥0

mQi (1,3t )

−m2

∑
t≥0

mQi (2,3t )

�
(m1 − 1)

∑
t≥0

mQi (1,3t ) + (m2 − 1)
∑
t≥0

mQi (2,3t ) ≥ mi(mi − 2).

On the other hand, we have

mi(mi − 2) = mi(m1 − 1 + m2 − 1)

≥ (m1 − 1)
∑
t≥0

mQi (1,3t ) + (m2 − 1)
∑
t≥0

mQi (2,3t ),

and thus mi(mi − 2) = (m1 − 1)
∑

t≥0 mQi (1,3t ) + (m2 − 1)
∑

t≥0 mQi (2,3t ). The clus-

ter has then one of the following forms:

– m1 = m2 = 1: if the cluster is

�

Qi

�

�

1

2
2

1

1

then χ (E◦
i ) = 2 − R + T with R ≤ 2. However, if R = 2, then T > 0; hence

χ (E◦
i ) > 0.

The other clusters for which m1 = m2 = 1 will be treated in the next cases.

– m1 = 1 and
∑

t≥0 mQi (2,3t ) = mi:

�

Qi

�

�

1

2 �

3

mi

1

mi − 1 1

�

�

1

11

3

Suppose that the multiplicity 1 appears k ∈ {1, . . . , mi} times in the upper

chain and that the label 1 appears l − 1 times in the lower chain, 1 ≤ l ≤
mi − 1. We have χ (E◦

i ) = m2
i − (mi − 1)2 − l − k − R + T = 2mi − 1 − l − k −

R + T . As R ≤ mi − k, we get χ (E◦
i ) ≥ mi − 1 − l + T . If χ (E◦

i ) ≤ 0, then we

must have that R = mi − k, l = mi − 1, and T = 0.
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If k < mi, then label 2 may not appear under Qi (indeed, R = ˇr13) and label 1

should certainly appear under Qi (see Table 1). We then have that χ (E◦
i ) = 0.

If k = mi, then also
∑

t≥0 mQi (1,3t ) = mi. This cluster will be treated later.

– m2 = 1 and
∑

t≥0 mQi (1,3t ) = mi: up to permutation this case is the same as

the previous case.

–
∑

t≥0 mQi (1,3t ) = mi and
∑

t≥0 mQi (2,3t ) = mi: in this case R = 0 and therefore

χ (E◦
i ) = 0 if and only if D = T = 0. From Proposition 13, it follows that both

chains that leave out of Qi should be Euclidean clusters. To have T = 0, one

needs at least two labels under Qi or exactly one label under Qi that then

should be 1 or 2.

• If r12 �= 0, we may suppose that r13 = r23 = 0. We study if the following in-

equality can hold:

mi − m1 − m2 ≥ m2
i − mim1 − mim2.

We rewrite the inequality as (m1 + m2)(mi − 1) ≥ mi(mi − 1). This gives a

contradiction to r12 �= 0.

II11

�

Qi

�

�

1

2

�

�

2

3
�

�3
3̂

1mi

m1

m2 m6

m5

m4

m3 We estimate roughly and get L > m2
i − mim1 − mim2.

As described in Remark 1, let the value of m2 increase as long as the cluster stays

idealistic.

• Suppose that r12 = 0. We study if the following inequality can occur:

(
mi −

∑
t≥0

mQi (1,3t )

)
+ (mi − m2 − m6) > m2

i − mim1 − mim2.

We rewrite it as

−
∑
t≥0

mQi (1,3t ) − m2 − m6 > mi(mi − 2 − m1 − m2). (5)

As 2 + m1 + m2 ≤ mi, this inequality can never hold.
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• Suppose that r12 �= 0 and that r23 = 0.Moreover, we can suppose that r13 = 0

(we let increase the value of m1). We investigate the inequality

(
mi − m1 −

∑
t≥1

mQi (1,2t ) − m2 −
∑
t≥1

mQi (2,1t )

)
> m2

i − mim1 − mim2.

We rewrite the inequality as

−
∑
t≥0

mQi (1,2t ) −
∑
t≥0

mQi (2,1t ) > mi(mi − m1 − m2 − 1) (6)

and we see again that this can never happen.

Remark 2. If we allow the multiplicities for the constellation II11 to be 0, except for

mi, m1, and m2, and if we also suppose that both m3 and m5 are not 0, then we also have

L > m2
i − mim1 − mim2. For the clusters with underlying constellation II2, II4, II5, II6

or II8, we may suppose that r12 = 0. It follows then from the inequality (5) that χ (E◦
i ) > 0

for the clusters with underlying constellations II5 and II8. When r12 �= 0, then it follows

from inequality (6) that χ (E◦
i ) > 0 for the clusters with underlying constellation II9 or

II10. �

From this remark, it follows that we should study the case r12 = 0, mi < m1 + m2 + 2 for

the clusters with underlying constellation II2, II4, II6, II9 or II10. If mi = m1 + m2, then

we have a cluster whose underlying constellation is a subconstellation of II7, and thus

already treated. So suppose that mi = m1 + m2 + 1. Then inequality (5) becomes

1 −
∑
t≥1

mQi (1,3t ) − m6 > 0.

It follows that
∑

t≥1 mQi (1,3t ) = m6 = 0 and that the cluster is like

�

Qi

�

�

1

2

�
2

mi

m1

m2

1 We have L = m2
i − m2

2 − (mi − m2)m1.

Can the following inequality hold:

mi − m1 + mi − m2 ≥ m2
i − m2

2 − (mi − m2)m1?
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Substituting mi by m1 + m2 + 1, we get 1 ≥ 2m1m2 + m2. This contradiction allows us

to conclude that χ (E◦
i ) > 0.

III9

�

Qi

�

�

�

1

3

2 �
1

�

1

�

�

2
3

mi

m1

m2

m3

m4

m5

m7

m6

A rough estimate gives L > m2
i − mim1 − m2(mi −∑

t≥0 mQi (1,2t ) − r12) − m3(mi − ∑
t≥0 mQi (1,3t ) − r13).

• We let increase the value of m1; suppose that we then get r13 = 0. We also let

m2 increase; suppose that r12 becomes 0. Can the following inequality then

hold:

mi − m2 − m3 > m2
i − mim1−m2

(
mi −

∑
t≥0

mQi (1,2t )

)
− m3

(
mi −

∑
t≥0

mQi (1,3t )

)
?

We rewrite the inequality as follows:

0 > (mi − m1 − 1)(mi − m2 − m3) + m2

∑
t≥1

mQi (1,2t ) + m3

∑
t≥1

mQi (1,3t ). (7)

This inequality can never be true.

• We let increase m1; suppose that we get r13 = 0. Then we let increase the value

of m2 and r23 becomes 0: can

r12 > m2
i − mim1 − m2

(
mi −

∑
t≥0

mQi (1,2t ) − r12

)
− m3

(
mi −

∑
t≥0

mQi (1,3t )

)
?

As mi = m2 + m3, we get

r12 > r12m2 + m2

∑
t≥1

mQi (1,2t ) + m3

∑
t≥1

mQi (1,3t ), (8)

which is never satisfied.

• We let increase m1; suppose that r12 becomes 0. Now we let increase m3 and

suppose r23 becomes 0 (we already treated r12 = r13 = 0). Can

r13 > m2
i − mim1 − m2

(
mi −

∑
t≥0

mQi (1,2t )

)
− m3

(
mi −

∑
t≥0

mQi (1,3t ) − r13

)
?
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As mi = m2 + m3, we get

r13 > r13m3 + m2

∑
t≥1

mQi (1,2t ) + m3

∑
t≥1

mQi (1,3t ), (9)

which cannot hold.

Remark 3. Notice that one can use the same lower bound for L for the subconstellations

IIIx with 1 ≤ x ≤ 8 of constellation III9 and that the inequalities (7), (8), and (9) neither

hold for them. �

This closes the computational part that yields the classification of the χ (E◦
i ). In

particular, we get the following results.

Theorem 14. Let f be a polynomial map that is general with respect to a three-

dimensional toric idealistic cluster A = (C, m). If Qi ∈ C, then χ (E◦
i ) < 0 if and only if

the configuration in Ei
∼= P

2 consists of (at least three) lines—possibly exceptional—that

are all going through the same point, i.e., if and only if Qi appears in a subcluster of List

2 in A. �

C1

�

Qi
�

1

mi mi

If Qi is the origin, then χ (E◦
i ) = 2 − mi. Thus, if mi ≥ 3,

then χ (E◦
i ) < 0.

C2

�

Qi
�

1

mi mi

If only label 2 or only label 3 appears under Qi, then

χ (E◦
i ) = 1 − mi. So, if mi ≥ 2, then χ (E◦

i ) < 0.

C3

�

Qi
�

1

mi mi

If only label 2 and label 3 appear under Qi, then

χ (E◦
i ) = −mi and thus χ (E◦

i ) < 0.

List 2

Example 6. The surface with equation x2mi + ymi + zmi = 0 is an example of a surface

that is general with respect to the cluster C1. �

In the general case of surfaces, there exist much more configurations that yield a negative

χ (E◦
i ). Such examples are given in [30].
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Theorem 15. Let f be a polynomial map that is general with respect to a three-

dimensional toric idealistic cluster A = (C, m). If Qi ∈ C, then χ (E◦
i ) = 0 if and only if

Qi appears in a subcluster of List 3 in A. �

C4

�

Qi

mi

If there exists exactly one or exactly two points to which Qi is proximate

and if mi = 1, then χ (E◦
i ) = 0.

C5

�

Qi
�

1

mi mi

If Qi is the origin and if mi = 2, then χ (E◦
i ) = 0.

C6

�

Qi
�

1

mi mi

If only label 2 or only label 3 appears under Qi and if mi = 1, then

χ (E◦
i ) = 0.

C7

�

Qi
�

1

mi mi

If at least label 1 appears under Qi, then χ (E◦
i ) = 0.

C8

�

Qi

�

�

1

2

�
3

�

3

mi

m1

m2

If m1 + m2 = mi, if the upper chain and the lower chain are

Euclidean clusters and

A. if only label 1 or only label 2 appears under Qi, then

χ (E◦
i ) = 0; or

B. if at least two different labels appear under Qi, then

χ (E◦
i ) = 0.

C9

�

Qi
� �

1 2

mi mi − 1 1

3
�

1

If label 3 appears mi − 2 times and

A. if only label 3 appears under Qi, then χ (E◦
i ) =

0; or

B. if only labels 2 and 3 appear under Qi, then

χ (E◦
i ) = 0.

C10

�

Qi P
�

�

�

1
2

3
mi mi − 1

If #{s | s ∈ Z≥0, P (2, 3s) ∈ C} + #{s | s ∈ Z≥0, P (3, 2s) ∈ C} = mi − 1

and if only label 2 and label 3 appear under Qi, then χ (E◦
i ) = 0.
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C11

�

Qi

P

�

�

1

2

�
3

�

3

mi

1

mi − 1

1

1

�

�

1

11

3

�

1 1

If #{s | s ∈ Z≥0, P (3, 1s) ∈ C} = mi − 1, if

#{s | s ∈ Z≥0, Qi(1, 3s) ∈ C} = k for 1 ≤
k ≤ mi and

A. if only label 1 appears under Qi, then χ (E◦
i ) = 0; or

B. if only label 1 and label 3 appear under Qi, then

χ (E◦
i ) = 0.

List 3

Example 7. The ideal

I = (x9, y5, z5, x6y, x5y2, x3y3, x2y4, y4z, y3z2, y2z3, yz4, xz4,

x2z3, x5z2, x7z, xyz3, xy2z2, xy3z, x3yz2, x3y2z, x5yz)

is the complete finitely supported ideal that corresponds to the cluster

� �

�

�

1

2

� �
3 3

� �

3 1

5 3

1 1 1

2 1 1

1

A general element of I illustrates a surface with a singularity as in cluster C8.

Let J be the ideal

(x6, y6, z9, x5y, x4y2, x3y3, x2y4, xy5, y5z, y4z2, y3z3, y2z5, yz7, x5z, x4z3, x3z4,

x2z6, xz7, xyz6, xy2z4, xy3z2, xy4z, x2yz4, x2y2z2, x2y3z, x3yz2, x3y2z, x4yz).

This is the complete finitely supported ideal corresponding with the cluster

� � � �
1 2

6 3 2 1

33
�

1

A general element of J illustrates a surface with a singularity as in cluster C9. �

Remark 4. Let Ql be a point with multiplicity 1 in a three-dimensional toric idealistic

constellation C and let Qk ∈ C be such that Ql � Qk. Suppose that Ql is lying only on the
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irreducible exceptional component Ek
∼= P

2. Then obviously Ck has normal crossings in

Ql . Suppose that Ql is lying on exactly two exceptional components Ek
∼= P

2 and E j. If

Ck does not have normal crossings in Ql then Ek ∩ E j should be the tangent line to Ck in

Ql . After blowing up in the point Ql , one needs at least one more blowing up to obtain

an embedded resolution. By iterating this argument, we can conclude that studying the

cluster C9 is enough to know the poles of the topological zeta function associated with

the blowing up of the clusters C11. Neither we have to consider the cluster C4 and the

cluster C6. �

7 The Monodromy Conjecture for Candidate Poles of Order 1

For the sake of completeness, we recall the short proof of the next lemma (see also [18]).

Recall that, given a candidate pole −ν j/Nj = a/b with a and b coprime, Jb then denotes

the subset of indices {1 ≤ i ≤ r | b divides Ni}.

Lemma 16. Let χ (E◦
t ) < 0 such that we are in the situation

� � � ���

mi mi mi mi mi m’3 3 3 3 3

Qt Qt+1 Qt+2 Q j Ql Ql+1

(11)

where Qt is the point in the chain with the lowest level for which an edge with label 3

is leaving and where Ql is the point in this chain with the highest level for which its

multiplicity is equal to mi.

1. If a set Jb contains the index t , then it also contains the indices in {t + 1, . . . , l}.
2. If νl

Nl
= c

d with c and d coprime, then t /∈ Jd . �

Proof. If we denote the numerical data of Et by (ν, N), then, independent of the number of

points Qs for which t → s, one easily computes that the numerical data for i ∈ {t + 1, . . . , l}
are

Ei((i − t + 1)ν − (i − t ), (i − t + 1)N).

Now the first assertion follows immediately.

To see the second claim, suppose that t ∈ Jd . Then d | N which implies that

l − t + 1|(l − t + 1)ν − (l − t ).

This contradiction closes the proof. �



Zeta Functions and Monodromy for a Toric Idealistic Cluster 49

We can now prove one of the most important properties concerning the surfaces we

study. (We proved this result for a more restricted class of surfaces in [18].)

Theorem 17. If χ (E◦
j ) > 0, then e

−2πi
ν j
Nj is an eigenvalue of monodromy of f . �

Proof. Suppose that E j is an exceptional component for which χ (E◦
j ) > 0. To prove that

e−2πiν j/Nj is an eigenvalue of monodromy of f , we show that e−2πiν j/Nj is a pole of ζ f .

We write ν j/Nj as a/b with a and b coprime. If Jb does not contain an index t for

which χ (E◦
t ) < 0, then there is nothing to verify. So suppose now that χ (E◦

t ) < 0 and

that t ∈ Jb. From Lemma 16 it follows that E j �= El and that l ∈ Jb. We will show that

χ (E◦
t ) + χ (E◦

l ) ≥ 0. The configuration in Et
∼= P

2 is as follows:

1. If Qt is the origin of the constellation, then χ (E◦
t ) = 2 − mi. For χ (El

◦) we find

that χ (E◦
l ) = D − R + T with D ≥ m2

i − mim′ and R ≤ 2mi − 2m′. We get

χ (E◦
t ) + χ (E◦

l ) ≥ 2 − mi + m2
i − mim

′ − 2mi + 2m′

= 2 + 2m′ + mi(mi − m′ − 2).

If mi − m′ ≥ 2, then χ (E◦
t ) + χ (E◦

l ) > 0. If mi − m′ = 1, then χ (E◦
t ) + χ (E◦

l ) ≥
2 + 2(mi − 1) − 2mi = 0. One can even check that also here χ (E◦

t ) + χ (E◦
l ) > 0.

Hence, we always have χ (E◦
t ) + χ (E◦

l ) > 0.

2. If there is exactly one point, say Qα, for which t → α, then χ (E◦
t ) = 1 − mi. For

χ (E◦
l ) we find that χ (E◦

l ) = D − R + T with D ≥ m2
i − mim′ and R ≤ mi − m′

and we obtain

χ (E◦
t ) + χ (E◦

l ) ≥ 1 − mi + m2
i − mim

′ − mi + m′

= 1 + m′ + mi(mi − m′ − 2).

If mi − m′ ≥ 2, then χ (E◦
t ) + χ (E◦

l ) > 0. If mi − m′ = 1, we get χ (E◦
t ) + χ (E◦

l ) ≥ 0.
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3. Finally, if there exist two points, say Qα and Qβ , for which t → α and t → β,

then χ (E◦
t ) = −mi. In this case R = 0 and we get

χ (E◦
t ) + χ (E◦

l ) ≥ −mi + m2
i − mim

′

= mi(mi − m′ − 1)

≥ 0.

This study permits us to conclude that
∑

i∈Jb
χ (E◦

i ) > 0. Hence, e
−2πi

ν j
Nj is an eigenvalue of

monodromy of f . �

In the general case of surfaces, it can happen that positive χ (E◦
j ) does not imply

that e−2πiν j/Nj is an eigenvalue of monodromy of f .

Corollary 18. If −ν j/Nj is a candidate pole of Ztop, f of order 1 that is a pole, then

e−2πiν j/Nj is an eigenvalue of monodromy of f . �

Proof. In [32], it is shown that then there exists an exceptional component Ek for which

νk/Nk = ν j/Nj and χ (E◦
k) > 0. The result follows now from Theorem 17. �

The second author shows in [32] in particular that if E j is created by blowing up

a point and if χ (E◦
j ) < 0, then the contribution of E j to the residue of −ν j/Nj for Ztop, f is

equal to 0. In this particular setting, this is a consequence of Proposition 2.

Corollary 19. If χ (E◦
j ) < 0, then the contribution of E j to the residue of −ν j/Nj for Ztop, f

is equal to 0. �

Proof. Denef and Loeser show in [11] that the poles of Ztop, f are of the form −ν(a)/N(a)

where a is orthogonal to a facet of N ( f ). The compact facets of N ( f ) correspond to the

Rees valuations of the complete ideal of hypersurfaces that pass through the points

of the constellation with at least the given multiplicity. The result now follows from

Proposition 2 and equation (2) in Section 2.3. Indeed, if χ (E◦
i ) < 0, then m2

i = ∑
j→i m2

j .

�

Although the surfaces that we work with are all nondegenerate with respect to

their Newton polyhedron, our proof covers many new cases. We recall the numerical

conditions that the nondegenerate polynomials should satisfy in the proof of the mon-

odromy conjecture that Loeser gave for them. Suppose that the blowing-ups of Qi and

Qj give rise to Rees valuations and thus to facets Fi and F j of the Newton polyhedron.
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Suppose that their equations are

a1(Fi)x1 + a2(Fi)x2 + a3(Fi)x3 = Ni

a1(F j)x1 + a2(F j)x2 + a3(F j)x3 = Nj

and that these faces have a nonempty intersection. Let aij be the greatest common divisor

of the determinants of the 2 × 2-matrices in the matrix

(
a1(Fi) a2(Fi) a3(Fi)

a1(F j) a2(F j) a3(F j)

)
.

Then to be covered by the proof of Loeser, it should hold that

νi − ν j

Nj
Ni

aij
/∈ Z and νi/Ni /∈ Z.

Very simple toric clusters, such as the blowing up of two points Q1 and Q2 with multi-

plicity m1 = 6 and m2 = 2, do not satisfy these conditions. Further, candidate poles of

order at least 2 are not included.

8 The Monodromy Conjecture for Candidate Poles of Order 2 or 3

Let us now study when the topological zeta function can have a candidate pole of order

at least 2. Suppose a three-dimensional toric idealistic cluster is given and suppose that

the blowing up of the cluster provides an embedded resolution for the hypersurface

{ f = 0}. Let s be a candidate pole of order at least 2 of the topological zeta function

associated with f , say s = −νi/Ni = −ν j/Nj, 1 ≤ i, j ≤ r. We write s as a/b such that

a and b are coprime. If Jb is the set { j ∈ {1, . . . , r} | b divides Nj}, then we study when∑
j∈Jb

χ (E◦
j ) = 0. Recall that e2iπs is not an eigenvalue of monodromy if this sum is 0.

As we are looking for candidate poles of order at least 2 that are poles, it follows

that m2
i should be different from

∑
j→i m2

j for one of the exceptional components Ei that

yield that candidate pole. It follows now from Theorem 17 that we should study two

cases. Firstly, there are the clusters with candidate poles of order at least 2 provided

by intersecting exceptional components Ei and E j for which χ (E◦
i ) = χ (E◦

j ) = 0. Secondly,

we study the clusters with candidate poles of order at least 2 provided by intersecting

exceptional components Ei and E j for which χ (E◦
i ) = 0 and χ (E◦

j ) < 0. In the following

subsections we proceed with the study of these cases.
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8.1 χ (E◦
i ) = χ (E◦

j ) = 0

Proposition 20. If s0 = −νi/Ni = −ν j/Nj is a candidate pole of Ztop, f of order at least 2

that is a pole, and if χ (E◦
i ) = χ (E◦

j ) = 0, then e2πis0 is an eigenvalue of monodromy of f .

�

Proof. Suppose that j → i. We study the possible combinations from List 3.

• C8A and C9A:

We can only combine the cluster
� � �

2 1 13 2

of the form C9A with a cluster of the form C8A and then we get

� �

Qi

�

�

1

2

� �
3 2

� �

3 3

3

2 1 1

1 1 1

1 Q j
Suppose only label 1 appears under Qi.

If not, the upper chain in C8A would not be a Euclidean cluster. We can write

that the numerical data of Ei are equal to (2i + 1,
∑i

l=1 ml ) and that the ones

of E j are equal to (2i + 3,
∑i

l=1 ml + 2). Hence, if Ei and E j give rise to the

same candidate pole, we should have

2i + 1∑i
l=1 ml

= 2i + 3∑i
l=1 ml + 2

.

If this equality holds, then 2i + 1 = ∑i
l=1 ml ≥ 4(i − 1) + 3 and then i should

be equal to 1. This is a contradiction because Qi is not the origin.

• C8A and C9B: There are two possibilities.

1. � �

Qi

�

�

1

2

� �
3 3

� �

3 1

3

1 1 1

2 1 1

1
Q j

Suppose only label 1 appears

under Qi.

We can write that the numerical data of Ei are equal to

(2i + 1,
∑i−1

l=1 ml + 3). The numerical data of E j are then equal

to (4i + 1, 2
∑i−1

l=1 ml + 3 + 2). If these exceptional components

give rise to the same candidate pole, then we find that
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2i − 2 = ∑i−1
l=1 ml ≥ 5(i − 1). This can only hold when i = 1 but Qi

is not the origin.

2. � �

Qi

�

�

1

2

� �
3 3

�
2

�
3

�

33n − 1

3 3 2 1 1

1 Q j

3n + 2

Suppose only

label 1 appears

under Qi.

If the numerical data of Ei are (2i + 1,
∑i

l=1 ml ) and if there are n ≥
1 points with multiplicity 3 between Qi and Qj, then the numer-

ical data of E j are (2(n + 1)i + (2n + 3), (n + 1)
∑i

l=1 ml + (3n + 2)).

If Ei and E j give the same candidate pole, then one should

have

6in + 4i + 3n + 2 = (n + 2)
i∑

l=1

ml ≥ (n + 2)((i − 1)(6n + 1) + 3n + 2)

or

8n + 2i + 3n2 ≥ 7in + 6in2.

As i ≥ 2, this inequality can never hold and thus Ei and E j cannot

give rise to the same candidate pole.

• C8B and C9B: Again there are two possibilities.

1. �

Qi

�

�

1

2

� �
3 2

� �

3 3

3

2 1 1

1 1 1

Q j

Suppose exactly label 1 and

label 2 appear under Qi.

In this situation, Ei and E j can give rise to the same candidate
pole, as shown in the following example:

�
214 5

� �

Qi

�

�

1

2

� �
3 2

� �

3 3

3

2 1 1

1 1 1

1 Q j QkQl

We find νi/Ni = ν j/Nj = −1/4 and

Ztop(s) = A(s)

9(14s + 3)(192s + 47)(168s + 43)(19s + 5)(s + 1)(103s + 25)(4s + 1)
,
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with A a polynomial in s. However, we have Nk = 192 and thus

also k ∈ Jb. As χ (E◦
k) = 1 > 0, we can conclude that e−2iπ/4 is an

eigenvalue of monodromy. This phenomenon is true in general as

we will see now.

We call Ql := Qj(3) and Qk := Ql (2). We show that if νi/Ni =
ν j/Nj = a/b with a and b coprime, then b | Nk. Let Q2 be the point

with the highest level under Qi for which Q2(2) is a point of the

constellation. Let (ν2, N2) be the numerical data of the point Q2.

Then we have that

Nk = Ni + Nj + Nl + 1

= Ni + (Ni + N2 + 2) + (Ni + (Ni + N2 + 2) + N2 + 1) + 1

= 4Ni + 3N2 + 6

= Ni + 3Nj.

Since b | Ni and b | Nj, also b | Nk. As χ (E◦
k) = 1 > 0 and Ek does

not play the role of El in cluster (11), it follows by the proof of

Theorem 17 that e2πis0 is always an eigenvalue of monodromy.

2.
�

Qi

�

�

1

2

� � �
3 3 3

�
2

�
3

�

3

3 3 3 2 1 1

Q jQ3 Ql Qk

Suppose exactly

label 1 and la-

bel 3 appear un-

der Qi.

We call Ql := Qj(2) and Qk := Ql (3). Let Q3 be the point such that

Qj = Q3(3) and let its associated numerical data be (ν3, N3). Then

we get

Nk = Ni + Nj + Nl + 1

= Ni + (Ni + N3 + 2) + (Ni + N3 + (Ni + N3 + 2) + 1) + 1

= 4Ni + 3N3 + 6

= Ni + 3Nj.

Again we can conclude that e2πis0 is always an eigenvalue of mon-

odromy.
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• C9A and C7:

� �

Qi P
� �

1 2

mi mi − 1 1
�

3

1
� �

3

1

3
Suppose that only label

3 appears under Qi.

Let P := Qi(1) and Qj be the point P (2, 3l ) with l ∈ {0, 1, . . . , mi − 3}. If the

numerical data of Qi are equal to (2i + 1,
∑i

s=1 ms), then we have the following

numerical data corresponding to the points

P :

(
4i + 1, 2

i−1∑
s=1

ms + 2mi − 1

)
,

P (2) :

(
8i + 1, 4

i−1∑
s=1

ms + 3mi

)
,

P (2, 3l ) :

(
i(8 + 6l) + 2l + 1, (4 + 3l)

i−1∑
s=1

ms + (3 + 3l)mi

)
.

We check if there exists an l ∈ {0, 1, . . . , mi − 2} such that

2i + 1∑i
s=1 ms

= i(8 + 6l) + 2l + 1

(4 + 3l)
∑i−1

s=1 ms + (3 + 3l)mi

.

If this equality holds, then

2imi − lmi − 2mi = (l + 3)
i−1∑
s=1

ms

≥ (l + 3)(i − 1)(2mi − 1)

= 2ilmi + 6imi − 2lmi − 6mi − il − 3i + l + 3.

We rewrite this and obtain

3(i − 1) + il ≥ (mi(2i − 1) + 1)l + 4mi(i − 1).

As 3 < 4mi and i < mi(2i − 1) + 1, we get a contradiction. We conclude that Qi

and Qj cannot give rise to the same candidate pole.
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• C9A and C9B:

� �

Qi
�

Q j
� �

1 2

3 2 1

3 3

1

Suppose that only label 3 appears under Qi.

If Ei has numerical data (2i + 1,
∑i

s=1 ms), then E j has numerical data

(4i + 1, 2
∑i−1

s=1 ms + 5). If they give rise to the same candidate pole, then one

should have

2i − 2 =
i−1∑
s=1

ms ≥ 5(i − 1).

As Qi is not the origin, this inequality can never be fulfilled.

• C9B and C7: There are two possibilities.

1. �

Qi P
� �

1 2

mi mi − 1 1
�

3

1
� �

3

1

Suppose that exactly

label 2 and label 3

appear under Qi.

Let P := Qi(1) with numerical data (ν1, N1) and Qj be the point

P (2, 3l ) with l ∈ {0, 1, . . . , mi − 3}. Let Q3, resp. Q2, be the point

with the highest level such that i > 3, resp. i > 2, and such that

Q3(3), resp. Q2(2), is a point of the constellation. We denote

its numerical data by (ν3, N3), resp. (ν2, N2). Suppose now that

νi/Ni = ν j/Nj = a/b with a and b coprime. Let Qk := Q1(2, 3k−1).

We show that b | Nk when k > j.

We have that

Ni = N3 + N2 + mi and

N1 = 2N2 + 2N3 + 2mi − 1 = 2Ni − 1.

If Qj = Qi(1, 2), then Nj = N3 + Ni + N1 + 1 and so

Nk = (k − 1)Ni + (k − 1)N1 + Nj + (k − 1)

= (k − 1)Ni + (k − 1)(2Ni − 1) + Nj + (k − 1)

= 3(k − 1)Ni + Nj

and we can conclude that b | Nk.
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If Qj = Qi(1, 2, 3l ) for l �= 0, then Nj = lNi + lN1 + l + N3 + Ni +
N1 + 1 = (l + 1)Ni + (l + 1)N1 + N3 + (l + 1) = (l + 1)Ni + (l + 1)(2Ni −
1) + N3 + (l + 1) = 3(l + 1)Ni + N3 and so

Nk = (k − 1)Ni + (k − 1)N1 + (N3 + Ni + N1 + 1) + (k − 1)

= (k − 1)Ni + (k − 1)(2Ni − 1) + (N3 + Ni + 2Ni) + (k − 1)

= 3kNi + N3.

As b | Ni and b | Nj, we have that also b | N3 and so b | Nk. As

χ (E◦
k) = 1 > 0 for k = mi − 1 and Qmi−1 cannot play the role of

Ql in cluster (11), it follows that e2πis0 is an eigenvalue of mon-

odromy.

2. In the previous cluster, Qj can also be Q1, but then mi should be

equal to 2.

�

Qi
� �

1 2

2 1 1

Suppose that exactly label 2 and

label 3 appear under Qi.

We then have that νi/Ni = ν1/N1 = (2νi − 1)/(2Ni − 1) if and only

if νi/Ni = 1. As 1 is always an eigenvalue of monodromy, this

cluster does not pose any problem.

• C10 and C7:

This case is completely analogous to the combination C9B and C7.

• C10 and C8B:

�

Qi P
�

�

�

1
2

3

�

�

1

1

1

1

3 2
1

1
Only label 2 and label 3 appear under Qi.

Let Q3, resp. Q2, be the point with the highest level such that i > 3, resp.

i > 2, and such that Q3(3), resp. Q2(2), is a point of the constellation. We

denote its numerical data by (ν3, N3), resp. (ν2, N2). Then we have that

Ni = N2 + N2 + 3

Nj = Ni + N2 + N3 + 2 = 2Ni − 1

νi = ν2 + ν3 + 1

ν j = νi + ν2 + ν3 = 2νi − 1.
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Hence, if νi/Ni = ν j/Nj, then −νi/Ni = −1 and 1 is always an eigenvalue of

monodromy. �

8.2 χ (E◦
i ) = 0 and χ (E◦

j ) < 0

Proposition 21. If s0 = −νi/Ni = −ν j/Nj is a candidate pole of Ztop, f of order at least 2

that is a pole, and if χ (E◦
i ) = 0 and χ (E◦

j ) < 0, then e2πis0 is an eigenvalue of monodromy

of f . �

Proof. We take List 2 and List 3 and look for the combinations that are possible to obtain∑
k∈Jb

χ (E◦
k) = 0. Recall that we proved in Theorem 17 that

∑
k∈Jb

χ (E◦
k) = 0 implies that

the value of m′ in cluster (11) should be equal to mi − 1. The only possible combination

where at least νi or at least ν j is Rees, is the following one.

• C9A and C3:

� �

Qi
�

Q j
�

1 2

2 1 1

3
Suppose that only label 3 appears under Qi.

If the numerical data of Ei are equal to (2i + 1,
∑i

s=1 ms), then the ones of

Qj are equal to (4i + 1, 2
∑i−1

s=1 ms + 2 + 1). If Ei and E j give rise to the same

candidate pole, then one should have

2i − 1 =
i−1∑
s=1

ms ≥ 3(i − 1)

which can only be true if i = 2, and if the multiplicity of the origin is 3. Then

we have the cluster

� �

Qi
�

Q j
�

1 2

2 1 1

3

3

The candidate pole provided by Ei and E j is then equal to −1. Remember that

1 is an eigenvalue of monodromy. �

Hence, we can conclude with the following result.
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Theorem 22. If s0 is a candidate pole of Ztop, f of order at least 2 that is a pole, then

e2πis0 is an eigenvalue of monodromy of f . �

9 The Holomorphy Conjecture

To prove the holomorphy conjecture, we first prove the following lemma. It gives us a set

of orders of eigenvalues of monodromy.

Lemma 23. If χ (E◦
j ) > 0, then e2πi/Nj is an eigenvalue of monodromy of f at some point

of the hypersurface f = 0. �

Proof. To prove that e2πi/Nj is an eigenvalue of monodromy, we will show that∑
Nj |Ni

χ (E◦
i ) �= 0. So suppose that Nj | Nt and χ (E◦

t ) < 0. Then we are in the situation

� � � ���

mi mi mi mi mi m’3 3 3 3 3

Qt Qt+1 Qt+2 Q j Ql Ql+1

(11)

where Qt is the point in the chain with the lowest level for which an edge with label 3

is leaving and where Ql is the point in this chain with the highest level for which its

multiplicity is equal to mi.

In Lemma 16 we proved that then also Nj | Ni, for i ∈ { j + 1, . . . , l}. As Nl > Nt , it

follows that Nl � Nt , and hence E j �= El . In Theorem 17, we proved that χ (E◦
t ) + χ (E◦

l ) ≥ 0,

and thus we obtain
∑

Nj |Ni
χ (E◦

i ) > 0. �

Theorem 24. If r ∈ Z>0 does not divide the order of any eigenvalue of monodromy of f

at some point of the hypersurface f = 0, then Z (r)
top, f is holomorphic on C. �

Proof. Suppose that Z (r)
top, f is not holomorphic, hence has a pole, say s0. Let Ei be an

exceptional component that gives rise to this pole of Z (r)
top, f and let (νi, Ni) be its numer-

ical data. If χ (E◦
i ) > 0, then it follows from Lemma 23 that there is an eigenvalue of

monodromy of order Ni. This contradicts the given condition on r.

If χ (E◦
i ) < 0, then we can set Ei = Et as in the cluster above. Thus, we also

have r | Nl . However, as χ (E◦
l ) > 0, it follows that Nl is the order of an eigenvalue of

monodromy.

This implies that if r | Ni, then χ (E◦
i ) = 0. If all these components are disjoint,

then we get Z (r)
top, f = 0. We may now suppose that at least two such components intersect

each other, and that at least one of them is Rees (it is shown in [11] that only facets in
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the Newton polyhedron can give rise to poles of Z (r)
top, f ). Then our cluster must contain

one of the following combinations of subclusters (see also Section 8.1.).

• C8A and C9A: We computed Nj = Ni + 2, hence if r | Ni and r | Nj, then r | 2.

Set Qk := Qj(3, 2), then Nk = 4Ni + 6 and χ (E◦
k) > 0. Lemma 23 tells us that Nk

is the order of an eigenvalue of monodromy, which contradicts the choice of r.

• C8A and C9B:

1. We obtained Nj = 2Ni − 1. If r | Ni and r | Nj, then r = 1, which

divides the order of any eigenvalue of monodromy.

2. We had Nj = (n + 1)Ni + (3n + 2). Set Qk := Qj(2, 3), then Nk =
(3n + 4)Ni + 9n + 6. If r divides Ni and Nj, then it follows that

r also divides Nk. As χ (E◦
k) > 0, we can conclude by Lemma 23

that there is an eigenvalue of order Nk. Again we get a contradic-

tion.

• C8B and C9B: Let Qk := Qj(3, 2) as in that cluster in Section 8.1. We found

Nk = Ni + 3Nj. Analogously, we find that Ei and E j do not give rise to poles of

Z (r)
top, f , if r | Ni and r | Nj.

Also the other combination of C8B and C9B in Section 8.1 gives this contra-

diction.

• C9A and C7: For Qj = P (2, 3l ), we computed Nj = (4 + 3l)Ni − mi. So if r | Ni

and r | Nj, then r | mi. Let Qk := P (2, 3mi−2) be the maximal point. Then Nk =
(4 + 3k)Ni − mi, hence r | Nk, but as χ (E◦

k) > 0, we get a contradiction.

• C9A and C9B: In this cluster, we had Nj = 2Ni − 1, but then r should be equal

to 1.

• C9B and C7: Again we can use the maximal point Qk := P (2, 3mi−2). In Section

8.1, we found that χ (E◦
k) > 0 and if r divides Ni and Nj, that r then also divides

Nk.

• C10 and C7: This case is exactly the same as the previous one.

• C10 and C8B: We found that Nj = 2Ni − 1; thus it follows that when r divides

Ni and Nj, then r = 1.

Hence, we find that Z (r)
top, f can neither have a pole coming from an exceptional component

for which χ (E◦
i ) = 0. This ends the proof. �

Notice that if r | Ni and r | Nj with χ (E◦
i ) = χ (E◦

j ) = 0 and Ei ∩ E j �= ∅, then we

found that r = 1 or that there exists another component Ek with r | Nk and χ (E◦
k) > 0. For

general surfaces, such a component Ek does not necessarily exist.
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