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Abstract

We use the Poisson cluster process structure of a Hawkes process to derive
non asymptotic estimates of the tail of the extinction time, of the coupling
time or of the number of points per interval. This allows us to define a
family of independent Hawkes processes ; each of them approximating the
initial process on a particular interval. Then we can easily derive exponential
inequalities for Hawkes processes which can precise the ergodic theorem.
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Introduction

The Hawkes processes have been introduced by Hawkes (1971). Since then they are
especially applied to earthquake occurrences (Vere-Jones 1970), but have recently
found applications to DNA modeling (Gusto & Schbath 2005). In particular, an
assumption which was not very realistic for earthquakes is very reasonable in this
framework: the support of the reproduction measure is known and bounded. The
primary work is motivated by getting non asymptotic concentration inequalities for
the Hawkes process, using intensively the bounded support assumption. Those con-
centration inequalities are fundamental to construct adaptive estimation procedure
as the penalized model selection (Massart 2000, Reynaud-Bouret 2003). To do so,
we study intensively in this paper the link between cluster length, extinction time
and construction of an approximating family of independent processes. Doing the
necessary computations, we find out that other possible assumptions are also giv-
ing nice estimates of those quantities. Those estimates allow us to give some non
asymptotic answers to some problems studied by Brémaud, Nappo & Torrisi (2002)
on approximate simulation. But first, let us start by presenting the model and giving
the main notations.

∗DMA - ENS (Equipe Probabilités et Statistiques) Paris, 45 rue d’Ulm, 75230 Paris Cedex 05,
Patricia.Reynaud@ens.fr

†DI - ENS (Equipe TREC) Paris 45 rue d’Ulm, 75230 Paris Cedex 05, Emmanuel.Roy@ens.fr

1



A point process N is a countable random set of points on R without accumula-
tion. In an equivalent way, N denotes the point measure, i.e. the sum of the Dirac
measures in each point of N . Consequently, N(A) is the number of points of N in
A, N|A represents the points of N in A; if N ′ is another point process, N + N ′ is
the set of points that are both in N and N ′. The Hawkes process (Hawkes 1971)
Nh is a point process whose intrinsic stochastic intensity is defined by:

Λ(t) = λ +

∫ t−

−∞

h(t − u)N(du) (0.1)

where λ is a positive constant and h is a positive function with support in R+ such
that

∫ +∞

0
h < 1. We refer to Daley & Vere-Jones (1988) for the basic definitions of

intensity and point process. We call h the reproduction function. The reproduction
measure is µ(dt) = h(t)dt, where dt represents the Lebesgue measure on the real
line.

Hawkes & Oakes (1974) prove that Nh can be seen as a generalized branching
process and admits a cluster structure. The structure is based on inductive construc-
tions of the points of Nh on the real line, which can be interpreted, for a more visual
approach, as births in different families. In this setup, the reproduction measure µ
(with support in R+) is not necessarily absolutely continuous with respect to the
Lebesgue measure. However, to avoid multiplicities on points (which would mean
simultaneous births at the same date), we make the additional assumption that the
measure is continuous.

The basic cluster process

Shortly speaking, considering the birth of an ancestor at time 0, the cluster associ-
ated to this ancestor is the set of births of all descendants of all generations of this
ancestor, where the ancestor is included.

To fix the notations, let us consider an i.i.d. sequence {Pi,j}(i,j)∈N×N
of Poisson

variables with parameter p = µ([0,∞)). Let us consider independently an i.i.d.
sequence {Xi,j,k}(i,j,k)∈N×N×N

of positive variables with law given by µ/p. Let m =

E(Xi,j,k), v = Var(Xi,j,k) and ℓ(t) = log
[

E(etXi,j,k)
]

if they exist.
We construct now the successive generations which constitute the Hawkes pro-

cess. The 0th generation is given by the ancestor {0}. The number of births in this
generation is K0 = 1, the total number of births in the family until the 0th generation
is W0 = 1. The successive births in this generation are given by {X0

1 = 0}.
By induction, let us assume that we have already constructed the (n − 1)th

generation, i.e. we know the following quantities: Kn−1, the number of births in
the (n − 1)th generation, Wn−1, the total number of births in the family until the
(n − 1)th generation with the addition of the successive births in the (n − 1)th
generation {Xn−1

1 , . . . , Xn−1
Kn−1

}.
Then the nth generation is constructed as follows:

• if Kn−1 = 0 then the (n − 1)th generation is empty and the nth generation
does not exist. We set Kn = 0 and Wn = Wn−1.

• if Kn−1 > 0 then
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– Kn = Pn,1 + · · · + Pn,Kn−1
is the number of births in the nth generation,

– Wn = Wn−1 + Kn is the total number of births until the nth generation,

– the births of the nth generations are given by

{Xn−1
1 + Xn,1,1 , · · · , Xn−1

1 + Xn,1,Pn,1
} which are the births of the children of the parent born at Xn−1

1 ,

{Xn−1
2 + Xn,2,1 , · · · , Xn−1

2 + Xn,2,Pn,2
} which are the births of the children of the parent born at Xn−1

2 ,

...
...

...

{Xn−1
Kn−1

+ Xn,Kn−1,1 , · · · , Xn−1
Kn−1

+ Xn,Kn−1,Pn,Kn−1
} which are the births of the children of the parent born at Xn−1

Kn−1
.

All these points are the births in the nth generation. We arrange them
by increasing order to obtain {Xn

1 , . . . , Xn
Kn

}, the successive births in the
nth generation.

To make the notations clearer, Xi,j,k is the time that the jth parent in the
(i− 1)th generation has waited before giving birth to his kth child (the children are
not ordered by age).

The sequence (Kn)n∈N is a Galton-Watson process (Athreya & Ney 2004) from
an initial population of one individual and with a Poisson distribution of parameter
p as reproduction law. Since p < 1, the Galton-Watson process is sub-critical and
the construction reaches an end almost surely, i.e. almost surely, there exists N
such that KN = 0. The cluster is then given by ∪N

n=0{Xn
1 , . . . , Xn

Kn
}. We denote

this point process by N c.

Hawkes process as Poisson cluster process

We are now considering the general case where numerous ancestors coexist and pro-
duce, independently of each others their own family. Let Na be a Poisson process on
R of intensity measure ν, which corresponds to the births of the different ancestors.
Let us call the successive births of the ancestors −∞ ≤ · · · < T−1 < T0 ≤ 0 <
T1 < · · · ≤ +∞ where the eventual unnecessary points are rejected at infinity (this
happens if there is a finite number of points).

Let us consider now independently an i.i.d. collection {N c
n}n∈Z

of cluster pro-
cesses constructed as previously according to the reproduction measure µ. Let us
denote by {T n

j , j ∈ N} the successive births in the cluster process N c
n.

The Hawkes process Nh with ancestor measure ν and reproduction measure µ is
given by ∪n∈Z ∪j∈N {Tn + T n

j }, Tn ∈ R. Heuristically, the points of Nh can be seen
as the births in the different families: a family corresponding to one ancestor and
all his progeny.

The case ν(dt) = λdt corresponds to the stationary version of the Hawkes process.
The intensity of Nh is given by (0.1) when ν(dt) = λdt and µ(dt) = h(t)dt where dt
is the Lebesgue measure on the real line.

When there is no possible confusion, Nh will always denote the Hawkes process
with ancestor measure ν and reproduction measure µ. When several measures may
coexist, we will denote the law of Nh, seen as a random variable on the point
measures, by H(ν, µ).

A most important consequence of the Poisson cluster process structure of the
Hawkes process is the superposition property (a straightforward consequence of (2.1)).
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Proposition 0.1 (Superposition property). Let Nh
1 and Nh

2 be two independent
Hawkes processes, respectively with distributions H(ν1, µ) and H(ν2, µ). Then Nh =
Nh

1 + Nh
2 is a Hawkes process with distribution H(ν1 + ν2, µ).

In the first section, we intensively study the cluster process and we obtain some
tail estimates for various quantities. In the second section, we apply these results to
the Hawkes process. In the third section, we use the previous results to get a time
cutting of the Hawkes process in approximating independent pieces and we apply
this to get some non asymptotic estimates of the speed in the ergodic theorem.

1 Study of one cluster

1.1 Length of a cluster

Let N c be a cluster process constructed as before. Let us denote by H the length
of a cluster (i.e. the latest birth in the family), then H is given by

H = sup
j≤Kn,n∈N

Xn
j .

If H is quite naturally a.s. finite by construction, the question of integrability is not
that clear. First of all, let us remark that if the Xi,j,k’s are not integrable, then of
course H is not integrable, as soon as p > 0. Now let us assume that the Xi,j,k’s are
integrable. Let us define

Un =

Kn−1
∑

k=1

Pn,k
∑

j=1

Xn,k,j.

Clearly, U1 is an upper bound of the latest birth in the first generation; U1 + U2 is
an upper bound of the latest birth until the second generation and by induction,
U =

∑∞
n=1 Un is clearly an upper bound for H . By independence between the

Xi,j,k and the Pi,j, one has that E(Un) = mE(Kn). But, by induction (Athreya &
Ney 2004), E(Kn) = pE(Kn−1) = pn. Thus, E (U) ≤ m/(1 − p) < ∞, as soon as
p < 1. We can then easily get the following proposition.

Proposition 1.1. Assume that 0 < p < 1. The length of the cluster, H, is integrable
if and only if m is finite.

But if we need a good estimate for the tail of H , we have to look closer. We
already remarked that the sequence (Kn)n∈N is a sub-critical Galton-Watson process.
Consequently the Laplace transform of W∞ exists and satisfies this well known
equation (Istas 2000, Athreya & Ney 2004)

LW (t) = t + p
(

eLW (t) − 1
)

(1.1)

for all t such that LW (t) = log[E(etW∞)] is finite. Let us denote gp(u) = u−p(eu−1)
for all u > 0. Then it is easy to see that for all 0 ≤ t ≤ (p − log p − 1),

LW (t) = g−1
p (t), (1.2)

where g−1
p is the reciprocal function of gp and that if t > (p − log p − 1), LW (t) is

infinite. We can now apply this to derive tail estimates for H .
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Proposition 1.2.

• If v < +∞ then for all positive x,

P (H > x) ≤ 1

x2

(

p

1 − p
v +

(

p

(1 − p)3
+

p2

1 − p

)

m2

)

.

• If there exists an interval I such that for all t ∈ I, l(t) ≤ p − log p − 1, then
for all positive x,

P(H > x) ≤ exp

(

− sup
t∈I

[

xt + l(t) − g−1
p (l(t))

]

)

.

In particular if there exists t > 0 such that l (t) ≤ p − log p − 1 then

P (H > x) ≤ exp [−xt + 1 − p] .

• If Supp(µ) ⊂ [0, A], then

∀x ≥ 0, P (H > x) ≤ exp
[

− x

A
(p − log p − 1) + 1 − p

]

Proof. Let (Yn)n∈N be a sequence of i.i.d. variables with law µ/p, independent of
the Hawkes process. Then

∑W∞−1
n=1 Yn, with the Yn’s independent of W∞, has the

same law as U which is an upper bound for H . But for all t ∈ I, conditioning in
W∞:

E

[

exp

(

t

W∞−1
∑

n=1

Yn

)]

= E [exp(l(t)(W∞ − 1))] = exp(−l(t)) exp[g−1
p (l(t))],

and differentiating LW to get the moment of W∞, one gets also that

E





(

W∞−1
∑

n=1

Yn

)2


 =
p

1 − p
v +

(

p

(1 − p)3
+

p2

1 − p

)

m2.

It is now sufficient to use Chebyshev’s inequality to conclude the proof for the first
two results. For the last result it is sufficient to note that ℓ(t) ≤ tA. �

1.2 Exponential decreasing of the number of points in the

cluster

Now we would like to understand more precisely the distribution of the points of N c.
More precisely we would like to prove that N c([a; +∞)) is exponentially decreasing
in a in some sense. The probability generating functional of a point process is a
well known tool which is equivalent to the log-Laplace transform and which helps
us here. For any bounded function f , let us define

L(f) = log

[

E

(

exp

[
∫

f(u)N c(du)

])]

.
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Then Daley & Vere-Jones (1988) gives for the Hawkes process that:

L(f) = f(0) +

∫ ∞

0

[

eL(f(t+.)) − 1
]

µ(dt),

where

L(f(t + .)) = log

[

E

(

exp

[
∫

f(t + u)N c(du)

])]

.

Let z > 0 and a ≥ 0 and let us apply this formula to f = z1[a;+∞). Then

U(a, z) = L(f) = log
[

E
(

ezNc([a;+∞))
)]

is the log-Laplace transform of the number of births after a. We are assuming in
this section that Supp(µ) ⊂ [0, A], then for all a > 0

U(a, z) =

∫ A

0

(eU(a−t,z) − 1)µ(dt). (1.3)

Let us remark that the function U(a, z) is decreasing in a, since the number of
remaining births is decreasing. Moreover, U(0, z) is the log-Laplace transform of
W∞. The previous computations give that for all 0 ≤ z ≤ (p − log p− 1), U(0, z) =
g−1

p (z). Moreover if we define U(+, z) = log
[

E
(

ezNc((0;+∞))
)]

, since the ancestor is
always in 0, this quantity satisfies for all 0 ≤ z ≤ (p − log p − 1),

U(+, z) = g−1
p (z) − z.

Hence, for all 0 < a < A and for all 0 ≤ z ≤ (p − log p − 1),

U(a, z) ≤ U(+, z) = g−1
p (z) − z. (1.4)

Let us prove by induction the following result which gives a sense to “the number of
births after a is exponentially decreasing in a”.

Proposition 1.3. Assume that Supp(µ) ⊂ [0, A]. For all a > 0, let k = ⌊a/A⌋.
Then for all 0 ≤ z ≤ (p − log p − 1),

U(a, z) ≤
(

g−1
p (z) − z

)

e−kz. (1.5)

Proof. We already checked this fact for k = 0. Let us assume that the second
inequality holds for k and let us prove it for k +1. As U(a, z) is decreasing in a, one
has that U(a, z) ≤ U((k + 1)A, z). Applying (1.3) and (1.5), since µ is continuous,
one has for all 0 ≤ z ≤ (p − log p − 1),

U((k + 1)A, z) ≤ p
(

exp
[

(g−1
p (z) − z)e−kz

]

− 1
)

.

But for all a ≤ 1 and x ≥ 0,

eax − 1 ≤ a(ex − 1). (1.6)

Moreover one has g−1
p (z) ≥ z, since their inverses are in the inverse order. Conse-

quently for all 0 ≤ z ≤ (p − log p − 1),

U((k + 1)A, z) ≤ pe−kz
(

exp
[

g−1
p (z) − z

]

− 1
)

.
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But

eg−1
p (z) = 1 +

g−1
p (z) − z

p
.

Hence for all 0 ≤ z ≤ (p − log p − 1),

U((k + 1)A, z) ≤ pe−kz

([

1 +
g−1

p (z) − z

p

]

e−z − 1

)

≤ (g−1
p (z) − z)e−(k+1)z + pe−kz(e−z − 1).

Since the last term is negative, this completes the proof. �

2 Consequences for the Hawkes process

Let us now look at the consequences for the Hawkes process of these results.

2.1 Application to the number of points per interval

One of the first applications is really straightforward. It is based on the link be-
tween the different probability generating functionals. Let us define for all bounded
functions f ,

L(f) = log

[

E

(

exp

[
∫

f(u)Nh(du)

])]

.

Then Vere-Jones (1970) proves that

L(f) =

∫ +∞

−∞

(

eL(f(t+.)) − 1
)

ν(dt). (2.1)

Let z > 0 and T > 0. Let us apply this formula to f = z1[0,T ]. Then L(f) is the
log-Laplace transform of the number of points of the Hawkes process between 0 and
T . But L(f(t+ .)) is the log-Laplace transform of the number of births of the cluster
N c between −t and T − t. Consequently

• if t > T , L(f(t + .)) = 0,

• if T ≥ t ≥ 0, L(f(t + .)) can be upper bounded by the log-Laplace transform
of W∞, i.e. U(0, z).

• if 0 > t, L(f(t+ .)) can be upper bounded by the log-Laplace transform of the
number of births of the cluster N c after −t, i.e. U(−t, z).

This leads to

L(f) ≤
∫ 0

−∞

(

eU(−t,z) − 1
)

dνt +

(
∫ T

0

dνt

)

(

eU(0,z) − 1
)

.

If we assume that the ancestors are “uniformly” distributed, one can prove the fol-
lowing fact.

7



Proposition 2.1. Let us assume that ν(dt) = λdt and Supp(µ) ⊂ [0, A]. Let
0 ≤ z ≤ (p − log p − 1) and T > 0. Then

log
[

E

(

ezNh([0,T ])
)]

≤ λTℓ0(z) + λAℓ1(z)

where ℓ0(z) = eg−1
p (z) − 1 and ℓ1(z) =

eg−1
p (z)−z

1 − e−z
− 1. Moreover for all integer n

P(Nh([0, T ]) ≥ n) ≤ exp [−nz + λTℓ0(z) + λAℓ1(z)] . (2.2)

Proof. We know that U(0, z) = g−1
p (z). Now let us split the integral into pieces of

length A and use the fact that U(a, z) is decreasing in a. This gives

log
[

E

(

ezNh([0,T ])
)]

≤ λT
[

eg−1
p (z) − 1

]

+

∞
∑

k=0

∫ (k+1)A

kA

λ(eU(t,z) − 1)dt.

Let us apply Proposition 1.3. This gives, using (1.6),

log
[

E

(

ezNh([0,T ])
)]

≤ λT
[

eg−1
p (z) − 1

]

+

∞
∑

k=0

λA
(

exp
[

(g−1
p (z) − z)e−kz

]

− 1
)

≤ λT
[

eg−1
p (z) − 1

]

+
∞
∑

k=0

λAe−kz
(

exp[g−1
p (z) − z] − 1

)

.

This easily concludes the proof. �

2.2 Application to the extinction time

Another important quantity on the Hawkes process is the extinction time Te. Let
us define a Hawkes process Nh with reproduction measure µ and ancestor measure
ν = λ1R−

dt. i.e. the ancestors appear homogeneously before 0 but not after. The
latest birth in this process is the extinction time Te. How fast does P(Te > a)
decrease in a ?

We keep the notations given in the introduction and we define Hn the length of
the cluster N c

n. Then Te = supn∈Z−
{Tn + Hn}. So one can easily compute P(Te ≤

a) for any positive a. By conditioning with respect to the ancestors and using
Proposition 1.1, one gets the following result, which seems to be known for a while
(see for instance Møller & Rasmussen 2004a).

Proposition 2.2. Let 0 < p < 1. For all a ≥ 0, one has

P(Te ≤ a) = exp

(

−λ

∫ +∞

a

P(H > x)dx

)

.

Moreover, the extinction time, Te, is finite if and only if the reproduction measure,
µ, satisfies

∫ +∞

0
tµ(dt) < ∞.

Since we have now good estimates for the cluster length, we get the following
bounds under various assumptions, simply using Chebyshev’s inequality.
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Proposition 2.3.

• Assume that

(

p

1 − p
v +

(

p

(1 − p)3
+

p2

1 − p

)

m2

)

= c is finite, then

P (Te > a) ≤ 1 − exp
[

−λ min
(

2
√

c − a,
c

a

)]

≤ λ min
(

2
√

c − a,
c

a

)

• Assume that there exists t > 0 such that l (t) ≤ p − log p − 1, then

P (Te > a) ≤ 1 − exp

[

−λ

t
e−at+1−p

]

≤ λ

t
e−at+1−p

• Assume that Supp(µ) ⊂ [0, A], then

P (Te > a) ≤ 1 − exp

[

−λAe−
a
A

(p−log p−1)+1−p

p − log p − 1

]

≤ λAe

p − log p − 1
e−

a
A

(p−log p−1).

(2.3)

2.3 Superposition property and approximate simulation

As it has been said in the introduction, Hawkes processes model a lot of different
problems. It is so natural to search for theoretical validation of simulation proce-
dures. To simulate a stationary Hawkes process on R+ (that is, the restriction of
H(λdt, µ) to R+), it is classical to use the superposition property (Proposition 0.1):
a stationary Hawkes process is the independent superposition of H(λ1R−

dt, µ) and
H(λ1R+

dt, µ). This means that we have to simulate first a Hawkes process with
ancestors after time 0, which is easy, and then make the correct adjustment by ar-
tificially adding, independently, the points coming from ancestors born before time
0, that is, points coming from the the restriction of H(λ1R−

dt, µ) to R+. But to
create these points, one needs, a priori, the knowledge of the whole past. However,
we know they are a.s. in finite number if and only if

∫∞

0
tµ (dt) < +∞ by Proposi-

tion 2.2 (this result can also be found in (Møller & Rasmussen 2004b)). Under this
assumption, it is not surprising we will get a good approximation of the restriction
of H(λ1R−

dt, µ) to R+ by using the restriction of H(λ1[−a,0)dt, µ) to R+ for a large a.
Finally, putting things together, we can approximate a stationary Hawkes process on
R+ by looking at the restriction of H(λ1[−a,+∞)dt, µ) to R+. We can see that doing
this, the error is easy to evaluate non asymptotically by means of the variation dis-
tance which, here, is less than P (Te > a) where Te still denotes the extinction time
of the previous section. Proposition 2.3 then gives some explicit and non asymptotic
values in various useful cases. This answers a question asked to the second author by
Brémaud who previously, together with Nappo and Torrisi in (Brémaud et al. 2002)
gave some asymptotic results for this error. In particular, they give in the exponen-
tial unmarked case, an asymptotic exponential rate of decreasing for the exinction
time (see Proposition 2.3, result 2) which is larger than ours. It seems to us that the
results of Proposition 2.3 are probably non sharp, but are giving answers in a non
asymptotic way, that can be really useful in practice. The question of approximate
and perfect simulation has also been considered by Møller & Rasmussen (2004a)(see
also Møller & Rasmussen 2004b), however their setup is quite different and makes
the comparison with our results very difficult.
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3 Applications of the superposition property

3.1 Construction of approximating i.i.d. sequences

A Poisson process Np is said to be completely independent, that is for instance,
Np

|A, the set of points of Np in A, is independent of Np
|B, the set of points of Np

in B as soon as A and B are disjoint. For Nh, a Hawkes process with distribution
H(λdt, µ), despite of a hidden independent structure explained earlier, the clusters
overlap each others and such independence cannot happen. Nevertheless by looking
at distant intervals we are very close to independence.

Let us assume that the reproduction measure (Proposition 2.2) is such that
the extinction time is almost surely finite. Our aim is to build an independent
sequence

{

Mx
q

}

q∈N
such that Mx

q has the distribution of H(λdt, µ) restricted to

[2qx − a, 2qx + x), for 0 < a < x and the variation distance between the distri-
bution of Mx

q and N|[2qx−a,2qx+x) is controlled. The form of the interval (( ] or [
], etc...) has no impact since there is a.s. no point of the process at a given site
(this is a consequence of stationarity which implies that the measure that counts
the mean number of points on Borel sets is indeed a multiple of Lebesgue mea-
sure and thus, non atomic). Let

{

Nh
q,n

}

(q,n)∈N×Z
be independent Hawkes processes

H(λ1[−x+2nx,x+2nx)dt, µ) which means that the ancestors appears homogeneously
only on the interval [−x + 2nx, x + 2nx). We now form the following point pro-
cesses:

Nh :=

n=+∞
∑

n=−∞

Nh
0,n, and for all q ≥ 1, Nh

q :=

n=q−1
∑

n=−∞

Nh
q,n + Nh

0,q.

It is clear, from the superposition property (Proposition 0.1) that, for each q ≥
1, Nh

q is a Hawkes process with distribution H(λ1(−∞,2qx+x)dt, µ) and that Nh a
Hawkes process with distribution H(λdt, µ). It is also clear that all the Nh

q ’s are
independent, for q ≥ 1. We now take Mx

q to be Nh
q |[2qx−a,2qx+x), the points of Nh

q in
[2qx − a, 2qx + x). It is clear from the construction that the Mx

q ’s are independent
and that they all have the stationary distribution H(λdt, µ) restricted to an interval
of length x + a.

Let q ≥ 1. Let S = Nh
0,q |[2qx−a,2qx+x),

S1 =

n=q−1
∑

n=−∞

Nh
q,n |[2qx−a,2qx+x) and S ′

1 =

n=q−1
∑

n=−∞

Nh
0,n |[2qx−a,2qx+x).

To evaluate the variation distance between Mx
q and Nh

|(2qx−a,2qx+x], we can write

Mx
q = S + S1 and Nh

|(2qx−a,2qx+x] = S + S ′
1. We have for all measurable subset A of

the set of point measures:

∣

∣

∣
P
(

Mx
q ∈ A

)

− P
(

Nh
|[2qx−a,2qx+x) ∈ A

)

∣

∣

∣
=
∣

∣

∣
E

[

1{S+S1∈A} − 1{S+S′

1
∈A}
]
∣

∣

∣

=
∣

∣

∣
E

[(

1{S+S1∈A} − 1{S+S′

1
∈A}
)

(

1 −
(

1S1=∅1S′

1
=∅

))

]
∣

∣

∣

≤ E
[(

1 −
(

1S1=∅1S′

1
=∅

))]

=
(

1 − P [S1 = ∅]2
)

.
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Now we can remark that S1 = ∅ if
∑q−1

n=−∞ Nh
q,n is extinct before 2qx − a. By sta-

tionarity, this probability is larger than P (Te ≤ x − a). Consequently the variation
distance is less than

[

1 − P (Te ≤ x − a)2]. It is then very easy to prove the following
result.

Proposition 3.1. Let 0 < a < x. Let Nh be a Hawkes process with distribution
H(λdt, ν). There exists an i.i.d. sequence Mx

q of Hawkes processes with distribution
H(λdt, ν) restricted to [2qx − a, 2qx + x) such that for all q, the variation distance
between Mx

q and Nh
|[2qx−a,2qx+x) is less than 2P(Te > x− a) as soon as the extinction

time Te of Nh is an almost surely finite random variable.

3.2 Example of application

Let f be a measurable function of Nh
|[−a,0). For instance, the intensity Λ of the

process in 0 is a possible f with a = A, if Supp(µ) = Supp(hdt) ⊂ [0, A] (see
(0.1)). Let {θs}s∈R

be the flow induced by the stationarity of the Hawkes process.
This implies that for instance if f = Λ(0), f ◦ θs = Λ(s) is the intensity in s. The
Hawkes process is ergodic since it is a Poisson cluster process (p. 347 of Daley &
Vere-Jones 1988), this means that for f ∈ L1

1

T

∫ T

0

f ◦ θsds →T→∞ E(f) a.s.

We are interested in this subsection in majorizing quantities such as:

P

(

1

T

∫ T

0

f ◦ θsds ≥ E(f) + u

)

, (3.1)

for any positive u, in order to get a “non asymptotic ergodic theorem”.
Let T > 0, k ∈ N and x > 0 such that T = 2kx. Let us assume now that f has

zero mean for care of simplicity. First let us remark by stationarity that:

P

(

1

T

∫ T

0

f ◦ θsds ≥ u

)

≤ 2P

(

k−1
∑

q=0

∫ 2qx+x

2qx

f ◦ θsds ≥ uT

2

)

But Gq =
∫ 2qx+x

2qx
f ◦ θsds is a measurable function of the points of Nh appearing

in [2qx − a, 2qx + x), denoted by F(N|[2qx−a,2qx+x)). Let us now pick a sequence
{

Mx
q

}

0,...,(k−1)
of i.i.d. stationary Hawkes processes restricted to an interval of length

a + x and let Fq = F(Mx
q ). We have consequently constructed an i.i.d sequence

{Fq}0,...,(k−1) with the same law as the Gq’s. Moreover, by Proposition 3.1, the
sequence

{

Mx
q

}

0,...,(k−1)
can be chosen such that P(Fq 6= Gq) is less 2P(Te > x − a).

By using Proposition 3.1, one gets

P

(

1

T

∫ T

0

f ◦ θsds ≥ u

)

≤ 2

[

P

(

1

k

k−1
∑

q=0

Fq ≥ ux

)

+ P(∃q, Fq 6= Gq)

]

.

This leads to the following result.
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Theorem 3.2. Let Nh be a stationary Hawkes process with distribution H(λdt, µ).
Let T, a > 0 and k a positive integer such that 0 < a < T/2k. Let f be a measurable
function of Nh

|[−a,0) with zero mean and θs be the flow induced by Nh.

Then there exists an i.i.d. sequence Fk with distribution
∫ T/2k

0
f ◦ θsds such that

P

(

1

T

∫ T

0

f ◦ θsds ≥ u

)

≤ 2P

(

1

k

k−1
∑

q=0

Fq ≥
uT

2k

)

+ 4kP

(

Te >
T

2k
− a

)

,

where Te is the extinction time of a Hawkes process with law H(λ1R−
dt, µ).

Now to get precise estimates, we need extra assumptions. Here are just a few
examples of the possible applications of our construction.

Proposition 3.3. Let Nh be a stationary Hawkes process with distribution H(λdt, µ)
such that Supp(µ) ⊂ [0, A]. Let θs be the flow induced by Nh.
Let a > 0 and f be a measurable function of Nh

|[−a,0) with zero mean. Let u, T > 0
such that

a ≤ A(u + log T )/(p − log p − 1) and 4A(u + log T ) ≤ T (p − log p − 1).

Then with probability larger than 1 −
(

2 + λe
u+log T

)

e−u,

1. (Hoeffding) if there exist B, b > 0 such that B ≥ f ≥ b,

1

T

∫ T

0

f ◦ θsds ≤ (B − b)

√

4A(u + log T )u

T (p − log p − 1)

2. (Bernstein) if there exist V, C > 0 such that ∀n ≥ 2, E(fn) ≤ n!
2
V Cn−2,

1

T

∫ T

0

f ◦ θsds ≤
√

16V A(u + log T )u

T (p − log p − 1)
+

8CAu(u + log T )

T (p − log p − 1)

3. (Weak Bernstein) if there exists V, B > 0 such that V ≥ E(f 2) and −B ≤ f ≤
B,

1

T

∫ T

0

f ◦ θsds ≤
√

16V A(u + log T )u

T (p − log p − 1)
+

8BAu(u + log T )

3T (p − log p − 1)
.

Proof. First we need to apply Hoeffding or Bernstein inequalities (Massart 2005)
to the first term in Proposition 3.1. It remains then to bound the extinction time
using Equation (2.3). The only remaining problem is then to choose k. With the
assumption on T and u there exists always an integer k such that a ≤ T/4k and

T (p − log p − 1)

8A(u + log T )
≤ k ≤ T (p − log p − 1)

4A(u + log T )
,

which concludes the proof. �
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First let us remark that the conditions on T are fulfilled as soon as T is large
enough. One can also see that, as usual, under the same assumptions the“weak Bern-
stein” inequality is sharper than the “Hoeffding inequality”. The construction and
proof of these time cutting and application to concentration inequalities is mainly in-
spired by the work of Baraud, Comte & Viennet (2001) on autoregressive sequences.
In particular the log T factor seems to be, by analogy, a weak loss with respect to
the independent case.

Finally, we would like to give a nice estimate for an unbounded function f , which
naturally appears: the intensity. First let us suppose that the reproduction measure
µ(du) is given by h(u)du. Then the intensity of Nh with distribution H(λdt, µ) is
given by (0.1). Let us assume that h has support in [0, A] and that h is bounded by
a positive constant H . Let us first remark that f = Λ(0) ≤ λ + HNh((−A, 0]). So
bounding the intensity Λ(s) = f ◦ θs can be done if we bound the number of points
per interval of length A.

Let K = ⌈(T + A)/A⌉. Let N be a positive number and

Ω =
{

∀k ∈ {0, . . . , K − 1}, Nh((−A + kA, kA]) ≤ N
}

.

Then by Proposition 2.2, P(Ωc) ≤ KeλA[ℓ0(p−log p−1)+ℓ1(p−log p−1)]e−N (p−log p−1).
Now let us apply Proposition 3.3 (Weak Bernstein) to f = Λ(0)∧M −E(Λ(0)∧

M), where M = λ + 2HN . As on Ω, f = Λ(0), we get the following result.

Proposition 3.4.
Let Nh be a Hawkes process with distribution H(λdt, h(t)dt) where h the reproduction
function is bounded by H and has a support included in [0, A]. Let Λ be its intensity
given by (0.1). Let u > 0. There exists a T0 > 0 depending on A, u and p such that

for all T ≥ T0, with probability larger than 1 −
(

3 + λe
u+log T

)

e−u,

1

T

∫ T

0

Λ(s)ds ≤ E(Λ(0)) +

√

16E(Λ(0)2)A(u + log T )u

T (p − log p − 1)
+

8u(λ + 2HN )(u + log T )

3T (p − log p − 1)

where

N =
λA[ℓ0(p − log p − 1) + ℓ1(p − log p − 1)] + log T + u

p − log p − 1
.

In view of the ergodic theorem, this result explains very precisely and non asymp-
totically, how far 1

T

∫ T

0
Λ(s)ds is from its expectation. This result gives a non asymp-

totic answer to a question asked to us by P. Brémaud on the existence of a C.L.T.
for those quantities.
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