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Why just DNA ? RNA etc ...
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A simplified/informal vision

How can we explain the positions of the occurrences of one event
(motifs, TRE, etc) wrt the others and itself ?

Spontaneous apparition

Self-interaction

Interaction with another event

Maximal sensible interaction distance: 5 000 - 10 000 bases
because of the 3d DNA structure
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NA number of points of N in A, Nt = N[0,t],
dNt =

∑

T point de N
δT . Usually R is thought as time

Intensity

t → λ(t) represents the probability to have a point at time t

conditionnally to the past before t (s < t)

”Past” contains in particular the previous occurrences of points.
NB : here R is the DNA strand. The ”past” may be interpreted as
what has already been read in a prescribed direction (e.g. 5’-3’ or
3’-5’).
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The simple Hawkes process

The intensity λ(t) is given by

(

ν +
∑

T∈N h(t − T )

)

+

Spontaneous Self-exciting

The most classical case corresponds to h > 0 (see Hawkes (1971))
and a stationary version exists if

∫

h < 1. There is also in this
specific case a branching / cluster process representation (see
Hawkes and Oakes (1974)).

One can actually consider any 1-Lipschitz modification, there is
still a stationary version of it if

∫

|h| < 1 (Brémaud and Massoulié
(1996)).
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The Hawkes process interaction with itself + an additional
interaction

λ(t) =

(

ν +
∑

T∈N h(t − T ) +
∑

X∈N2
h2(t − X )

)

+

Spontaneous Self-interaction Interaction with other type
If h is null and if N2 is fixed (no reciprocal interaction), then N is a
Poisson process given N2.
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spectral radius of
(

∫

h
(r)
ℓ

(t)dt
)

is < 1.

11/32



Biological motivation The probabilistic model(s) Parametric estimation Adaptive estimation

The multivariate Hawkes process(3)

Only excitation (all the h
(r)
ℓ

are positive): for all r ,

λ(r)(t) = νr +
M
∑

ℓ=1

∫ t−

−∞

h
(r)
ℓ

(t − u)dN
(ℓ)
u .

Branching / Cluster representation, stationary process if the

spectral radius of
(

∫

h
(r)
ℓ

(t)dt
)

is < 1.

Interaction, for instance

λ(r)(t) =

(

νr +

M
∑

ℓ=1

∫ t−

−∞

h
(r)
ℓ (t − u)dN

(ℓ)
u

)

+

.

11/32



Biological motivation The probabilistic model(s) Parametric estimation Adaptive estimation

The multivariate Hawkes process(3)

Only excitation (all the h
(r)
ℓ

are positive): for all r ,

λ(r)(t) = νr +
M
∑

ℓ=1

∫ t−

−∞

h
(r)
ℓ

(t − u)dN
(ℓ)
u .

Branching / Cluster representation, stationary process if the

spectral radius of
(

∫

h
(r)
ℓ

(t)dt
)

is < 1.

Interaction, for instance

λ(r)(t) =

(

νr +

M
∑

ℓ=1

∫ t−

−∞

h
(r)
ℓ (t − u)dN

(ℓ)
u

)

+

.

Exponential

λ(r)(t) = exp
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Multiplicative shape but no guarantee of a stationary version
...
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0
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0
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maximizing gives θ̂.

If several processes or n sample → sum

not necessary to have a stationary version, it depends on the
considered asymptotics.

Consistence, asymptotic normality under smooth conditions,
see Ogata and Akaike (1982), Ozaki (1979) or Andersen et al
(1993).

Even tests of the nullity of h
(r)
ℓ and access to a graphical

model (see Carstensen et al (2010)) .
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should select the correct one asymptotically (see for instance
Vere-Jones and Ozaki (1982), Gusto and Schbath (2005)).

What if no true model ? What if family too big with respect
to T ?

Gusto PhD thesis numerical study shows that AIC does not
select a sparse model if spline with not equally spaced knots.

Gusto and Schbath program, FADO, only works for equally
spaced knots.

Hence no clear access to favoured or avoided distance
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ie select a model m → ĥ sparse and picky : one can read on
the selected estimate favored or avoided distances if any.

More likely that no true model and that the family of models
grows with T .

→ penalized model selection (Birgé and Massart, see Massart
course in St Flour (2007))

but also, thresholding or Lasso methods.
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We will minimize γT for precise shape of intensity candidates.
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One can show, under technical assumptions,

E(||ŝm − s||2) ≤ �

[

d(s,Sm)2 + Dm

log T

T

]

The bigger is Sm the smaller is the bias, d(s,Sm)2 but Dm is
big.

→ compromise: the best (or oracle) in a family is the one that
minimizes the sum.
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Sm =
{

f = (µ, g), g piecewise constant on m
}

where m set of
disjoint intervals in [0,A] =model

NESTED Regular dyadic partitions constructed on Γ.
REGULAR Regular partitions until a certain prescribed
bandwidth
IRREGULAR All irregular partitions contructed on Γ.

20/32



Biological motivation The probabilistic model(s) Parametric estimation Adaptive estimation

Model selection with dimension-based penalty

Joint work with S. Schbath (2010). Only for simple Hawkes process

Models

Sm =
{

f = (µ, g), g piecewise constant on m
}

where m set of
disjoint intervals in [0,A] =model

ISLANDS ]

] ] ] ] ] ] ][

]

[ ]
]

]

Gamma

]

[

]

] ] [ ]
[
[

[

[

20/32



Biological motivation The probabilistic model(s) Parametric estimation Adaptive estimation

Model selection with dimension-based penalty

Joint work with S. Schbath (2010). Only for simple Hawkes process

Models

Sm =
{

f = (µ, g), g piecewise constant on m
}

where m set of
disjoint intervals in [0,A] =model

ISLANDS ]

] ] ] ] ] ] ][

]

[ ]
]

]

Gamma

]

[

]

] ] [ ]
[
[

[

[

All models included in Γ. The most adapted to the biological
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s̃ = (ν̃, h̃) = ŝm̂.
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It is an oracle inequality!

family grows with T at a moderate rate, especially for Islands

also adaptive minimax results for Hölder functions.
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Model selection with dimension-based penality(4)

Only for simple Hawkes process

In practice, one can use least-square estimators even for
possibly negative h.

Theoretical penalty not observed, Slope heuristics does not
work especially for Islands

An angle is perfectly clear on the simulations at the correct
dimension:

−k̄ =
γT (ŝΓ) − γT (ŝ1)

|Γ| − 1

and
m̂ = argminm∈MT

γT (ŝm) + k̄(|m| + 1).
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Illustration
Only for simple Hawkes process

Contrast Penalized contrast
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On real data
Only for simple Hawkes process
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Only for simple Hawkes process
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Disadvantages of the dimension-based penalty method

only for simple Hawkes process! (not more than grid with 15 -
26 bins)

We miss part of the understanding because we do not take
external information into account (here interaction tataat -
genes).
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unbiased estimator of
∫

h(t)ϕ(t)dt.

Thresholding estimator of h exists. Threshold data-driven !

Computation quite fast. Precision >> Islands
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1 Parents : U1, ...,Un, n iid uniform random variables on [0.T ].

2 Children : Poisson process with intensity
∑n

i=1 h(t − Ui).
(eventually, in practice (

∑n
i=1 h(t − Ui))+)

Cons:

The presence of Parents will not be explained and is not
linked to Children.

Crucial to say who are the parents/ the children (it is not
symetric!).

For the moment, one cannot explain the Children position,
even with an extra spontaneous apparition.
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Poissonian Interaction (2)

Interaction tataat - genes.
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Intensity candidate per mark
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(r)
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(t) = µr +
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∫ t

−∞
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(t − u)dN
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u .

30/32



Biological motivation The probabilistic model(s) Parametric estimation Adaptive estimation

Full Multivariate Hawkes processes and lasso procedure(2)

Least-square contrast (full form)

γT (f ) =
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r γ
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∫ T
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0
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(r)
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(t)
2
dt.
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If each g
(r)
ℓ

’s in f are decomposed on a finite orthonormal family
of functions with cardinal K , then

f → (ar )r≤M Each ar of size MK + 1.

γ
(r)
T

(f ) = −2a∗r br + a
∗
r Gar ,

where

G is a random observable matrix, independent of the mark r

br is also a random observable vector.
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Full Multivariate Hawkes processes and lasso procedure(3)

The Lasso criterion can be expressed independently for each mark.

Lasso criterion

âr = argminar∈RMK+1{−2a∗r br + a
∗
r Gar + 2d∗

r |ar |}

The vector dr is not constant: it is random and depends on
the index

32/32



Biological motivation The probabilistic model(s) Parametric estimation Adaptive estimation

Full Multivariate Hawkes processes and lasso procedure(3)

The Lasso criterion can be expressed independently for each mark.

Lasso criterion
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The Lasso criterion can be expressed independently for each mark.

Lasso criterion

âr = argminar∈RMK+1{−2a∗r br + a
∗
r Gar + 2d∗

r |ar |}

The vector dr is not constant: it is random and depends on
the index

→ data-driven penalty (see also Bertin, Le Pennec, Rivoirard
(2011) in the density setting)

Oracle inequality with ”high” probability possible....
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