Statistical estimation of the division rate of a size-structured population

M. Doumic, M. Hoffmann, P. Reynaud-Bouret, V. Rivoirard

INRIA Rocquencourt, ENSAE-CREST, Nice, Dauphine

(1) The problem

(1) The problem

(2) Goldenshluger and Lepski's method

(1) The problem

(2) Goldenshluger and Lepski's method
(3) Other steps

(1) The problem

(2) Goldenshluger and Lepski's method
(3) Other steps
(4) Main results

The informal problem and the PDE translation

- A cell grows.
- Depending on its size x, the cell has a certain chance to divide itself in 2 offsprings, ie 2 cells of size $x / 2$.
- We are interesting by the evolution of the whole population of cells, each of them having this behavior.

The informal problem and the PDE translation

- A cell grows.
- Depending on its size x, the cell has a certain chance to divide itself in 2 offsprings, ie 2 cells of size $x / 2$.
- We are interesting by the evolution of the whole population of cells, each of them having this behavior.

Size-Structured Population Equation (finite time)

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}(n(t, x))+\kappa \frac{\partial}{\partial x}(g(x) n(t, x))+B(x) n(t, x)=4 B(2 x) n(t, 2 x) \\
n(t, x=0)=0, \quad t>0 \\
n(0, x)=n_{0}(x), \quad x \geq 0
\end{array}\right.
$$

- $n(t, x)$ the "amount" of cells with size x (\neq density),
- g the "qualitative" growth rate of one cell: linear is $g=1 \ldots$
- B is the division rate, which depends on the size

Asymptotics of the PDE

It can be shown (Perthame Ryzhik 2005 for instance) that

- $n(t,$.$) grows exponentially fast ie I_{t}=\int n(t, x) d x$ asymptotically proportional to $e^{\lambda t}$,
- the renormalized $n(t, x) / I_{t}$ tends to a density N, which satisfies

Size-Structured Population Equation (asymptotics)

$$
\left\{\begin{array}{l}
\kappa \frac{\partial}{\partial x}(g(x) N(x))+\lambda N(x)=\mathcal{L}(B N)(x), \\
B(0) N(0)=0, \quad \int N(x) d x=1,
\end{array}\right.
$$

where

- for any real-valued function $x \rightsquigarrow \varphi(x)$,

$$
\mathcal{L}(\varphi)(x):=4 \varphi(2 x)-\varphi(x)
$$

- $\kappa=\lambda \frac{\int_{\mathbb{R}_{+}} x N(x) d x}{\int_{\mathbb{R}_{+}} g(x) N(x) d x}$.

The inverse problem

Under the previous differential equation, we consider the inverse problem of finding B given a "noisy" version of N.

The inverse problem

Under the previous differential equation, we consider the inverse problem of finding B given a "noisy" version of N.

- Practical: biologists take a sample of, say, plankton in a lake, and they look at the respective size of the cells.

The inverse problem

Under the previous differential equation, we consider the inverse problem of finding B given a "noisy" version of N.

- Practical: biologists take a sample of, say, plankton in a lake, and they look at the respective size of the cells. Then they perform a preprocessing, by, say a kernel estimator. This is N_{ϵ}.

The inverse problem

Under the previous differential equation, we consider the inverse problem of finding B given a "noisy" version of N.

- Practical: biologists take a sample of, say, plankton in a lake, and they look at the respective size of the cells. Then they perform a preprocessing, by, say a kernel estimator. This is N_{ϵ}. (probably more approximation than that).

The inverse problem

Under the previous differential equation, we consider the inverse problem of finding B given a "noisy" version of N.

- Practical: biologists take a sample of, say, plankton in a lake, and they look at the respective size of the cells. Then they perform a preprocessing, by, say a kernel estimator. This is N_{ϵ}. (probably more approximation than that).
- Analytical point of view: N_{ϵ} is a noisy version of N, less regular than N (it is likely that no derivative exists) and $\left\|N-N_{\epsilon}\right\|_{2} \leq \epsilon$. (see Perthame, Zubelli, etc)

The inverse problem

Under the previous differential equation, we consider the inverse problem of finding B given a "noisy" version of N.

- Practical: biologists take a sample of, say, plankton in a lake, and they look at the respective size of the cells. Then they perform a preprocessing, by, say a kernel estimator. This is N_{ϵ}. (probably more approximation than that).
- Analytical point of view: N_{ϵ} is a noisy version of N, less regular than N (it is likely that no derivative exists) and $\left\|N-N_{\epsilon}\right\|_{2} \leq \epsilon$. (see Perthame, Zubelli, etc)
- Statistical point of view: we observe a n-sample X_{1}, \ldots, X_{n} of iid variables with density N.

Pro and Con

Analytical point of view

Pro: taking into account maybe more approximations (but not all), results true for any N_{ϵ}.

Pro and Con

Analytical point of view

Pro: taking into account maybe more approximations (but not all), results true for any N_{ϵ}.
Con: N_{ϵ} is probably differentiable. If there are numerical methods which adapt to the regularity of N (discrepancy principle), they need to know ϵ.

Pro and Con

Analytical point of view

Pro: taking into account maybe more approximations (but not all), results true for any N_{ϵ}.
Con: N_{ϵ} is probably differentiable. If there are numerical methods which adapt to the regularity of N (discrepancy principle), they need to know ϵ.

Statistical point of view

Pro: Framework close to what biologists do, true inverse problem.
We can adapt to the regularity, noise is given by the sample size.

Pro and Con

Analytical point of view

Pro: taking into account maybe more approximations (but not all), results true for any N_{ϵ}.
Con: N_{ϵ} is probably differentiable. If there are numerical methods which adapt to the regularity of N (discrepancy principle), they need to know ϵ.

Statistical point of view

Pro: Framework close to what biologists do, true inverse problem. We can adapt to the regularity, noise is given by the sample size. Con: We only take one approximation into account and assume that we have access to the sample. Results true in expectation.

Pro and Con

Analytical point of view

Pro: taking into account maybe more approximations (but not all), results true for any N_{ϵ}.
Con: N_{ϵ} is probably differentiable. If there are numerical methods which adapt to the regularity of N (discrepancy principle), they need to know ϵ.

Statistical point of view

Pro: Framework close to what biologists do, true inverse problem. We can adapt to the regularity, noise is given by the sample size. Con: We only take one approximation into account and assume that we have access to the sample. Results true in expectation.

Estimation of N

Let $K: \mathbb{R} \rightarrow \mathbb{R}_{+}$continuous function / $\int K=1$ and $\int K^{2}<\infty$.

Estimation of N

Let $K: \mathbb{R} \rightarrow \mathbb{R}_{+}$continuous function $/ \int K=1$ and $\int K^{2}<\infty$.

$$
\hat{N}_{h}(x):=\frac{1}{n} \sum_{i=1}^{n} K_{h}\left(x-X_{i}\right),
$$

$K_{h}=\frac{1}{h} K(. / h)$.
Bias-Variance decomposition

$$
\mathbb{E}\left(\left\|N-\hat{N}_{h}\right\|_{2}\right) \leq\left\|N-K_{h} \star N\right\|_{2}+\frac{1}{\sqrt{n h}}\|K\|_{2}
$$

where $K_{h} \star N=\mathbb{E}\left(\hat{N}_{h}\right)$
How to adaptively select h ?

Estimation of N

Let $K: \mathbb{R} \rightarrow \mathbb{R}_{+}$continuous function $/ \int K=1$ and $\int K^{2}<\infty$.

$$
\hat{N}_{h}(x):=\frac{1}{n} \sum_{i=1}^{n} K_{h}\left(x-X_{i}\right)
$$

$K_{h}=\frac{1}{h} K(. / h)$.

Bias-Variance decomposition

$$
\mathbb{E}\left(\left\|N-\hat{N}_{h}\right\|_{2}\right) \leq\left\|N-K_{h} \star N\right\|_{2}+\frac{1}{\sqrt{n h}}\|K\|_{2},
$$

where $K_{h} \star N=\mathbb{E}\left(\hat{N}_{h}\right)$
How to adaptively select h ? Recent work of Goldenshluger and Lepski $(2009,2010)$

Estimation of N

Let $K: \mathbb{R} \rightarrow \mathbb{R}_{+}$continuous function $/ \int K=1$ and $\int K^{2}<\infty$.

$$
\hat{N}_{h}(x):=\frac{1}{n} \sum_{i=1}^{n} K_{h}\left(x-X_{i}\right)
$$

$K_{h}=\frac{1}{h} K(. / h)$.

Bias-Variance decomposition

$$
\mathbb{E}\left(\left\|N-\hat{N}_{h}\right\|_{2}\right) \leq\left\|N-K_{h} \star N\right\|_{2}+\frac{1}{\sqrt{n h}}\|K\|_{2}
$$

where $K_{h} \star N=\mathbb{E}\left(\hat{N}_{h}\right)$
How to adaptively select h ? Recent work of Goldenshluger and Lepski $(2009,2010)$ Here just a "toy" version, but that's exactly what we needed.

Selection of bandwidth

Set for any x and any $h, h^{\prime}>0$, $\hat{N}_{h, h^{\prime}}(x):=\frac{1}{n} \sum_{i=1}^{n}\left(K_{h} \star K_{h^{\prime}}\right)\left(x-X_{i}\right)=\left(K_{h} \star \hat{N}_{h^{\prime}}\right)(x)$,

Selection of bandwidth

Set for any x and any $h, h^{\prime}>0$, $\hat{N}_{h, h^{\prime}}(x):=\frac{1}{n} \sum_{i=1}^{n}\left(K_{h} \star K_{h^{\prime}}\right)\left(x-X_{i}\right)=\left(K_{h} \star \hat{N}_{h^{\prime}}\right)(x)$,
"estimator" of the bias term

$$
A(h):=\sup _{h^{\prime} \in \mathcal{H}}\left\{\left\|\hat{N}_{h, h^{\prime}}-\hat{N}_{h^{\prime}}\right\|_{2}-\frac{\chi}{\sqrt{n h^{\prime}}}\|K\|_{2}\right\}_{+}
$$

where, given $\varepsilon>0, \chi:=(1+\varepsilon)\left(1+\|K\|_{1}\right)$.

Selection of bandwidth

Set for any x and any $h, h^{\prime}>0$, $\hat{N}_{h, h^{\prime}}(x):=\frac{1}{n} \sum_{i=1}^{n}\left(K_{h} \star K_{h^{\prime}}\right)\left(x-X_{i}\right)=\left(K_{h} \star \hat{N}_{h^{\prime}}\right)(x)$,
"estimator" of the bias term

$$
A(h):=\sup _{h^{\prime} \in \mathcal{H}}\left\{\left\|\hat{N}_{h, h^{\prime}}-\hat{N}_{h^{\prime}}\right\|_{2}-\frac{\chi}{\sqrt{n h^{\prime}}}\|K\|_{2}\right\}_{+}
$$

where, given $\varepsilon>0, \chi:=(1+\varepsilon)\left(1+\|K\|_{1}\right)$.

$$
\hat{h}:=\arg \min _{h \in \mathcal{H}}\left\{A(h)+\frac{\chi}{\sqrt{n h}}\|K\|_{2}\right\} \quad \text { and } \quad \hat{N}:=\hat{N}_{\hat{h}} .
$$

First result

Oracle inequality

If $\mathcal{H}=\left\{1 / \ell / \ell=1, \ldots, \ell_{\max }\right\}$ and if $\ell_{\text {max }}=\delta n$, if moreover $\|N\|_{\infty}<\infty$,
then for any $q \geq 1$,

$$
\begin{gathered}
\mathbb{E}\left(\|\hat{N}-N\|_{2}^{2 q}\right) \leq \\
\square_{q} \chi^{2 q} \inf _{h \in \mathcal{H}}\left\{\left\|K_{h} \star N-N\right\|_{2}^{2 q}+\frac{\|K\|_{2}^{2 q}}{(h n)^{q}}\right\}+ \\
\square_{q, \varepsilon, \delta,\|K\|_{2},\|K\|_{1},\|N\|_{\infty} \frac{1}{n^{q}}} .
\end{gathered}
$$

Estimation of $D=\frac{\partial}{\partial x}(g(x) N(x))$

If K is differentiable, $\int K=1$ and $\int\left|K^{\prime}\right|^{2}<\infty$.

$$
\hat{D}_{h}(x):=\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) K_{h}^{\prime}\left(x-X_{i}\right)
$$

Estimation of $D=\frac{\partial}{\partial x}(g(x) N(x))$

If K is differentiable, $\int K=1$ and $\int\left|K^{\prime}\right|^{2}<\infty$.

$$
\hat{D}_{h}(x):=\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) K_{h}^{\prime}\left(x-X_{i}\right)
$$

Estimation of $D=\frac{\partial}{\partial x}(g(x) N(x))$

If K is differentiable, $\int K=1$ and $\int\left|K^{\prime}\right|^{2}<\infty$.

$$
\hat{D}_{h}(x):=\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) K_{h}^{\prime}\left(x-X_{i}\right)
$$

Bias-Variance de composition:
$\mathbb{E}\left(\left\|D-\hat{D}_{h}\right\|_{2}\right) \leq\left\|D-K_{h} \star D\right\|_{2}+\frac{1}{\sqrt{n h^{3}}}\|g\|_{\infty}\left\|K^{\prime}\right\|_{2}$.
GL's trick

$$
\hat{D}_{h, h^{\prime}}(x):=\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right)\left(K_{h} \star K_{h^{\prime}}\right)^{\prime}\left(x-X_{i}\right),
$$

$$
\tilde{A}(h):=\sup _{h^{\prime} \in \tilde{\mathcal{H}}}\left\{\left\|\hat{D}_{h, h^{\prime}}-\hat{D}_{h^{\prime}}\right\|_{2}-\frac{\tilde{\chi}}{\sqrt{n h^{\prime 3}}}\|g\|_{\infty}\left\|K^{\prime}\right\|_{2}\right\}_{+},
$$

where, given $\tilde{\varepsilon}>0, \tilde{\chi}:=(1+\tilde{\varepsilon})\left(1+\|K\|_{1}\right)$.

Estimation of $D=\frac{\partial}{\partial x}(g(x) N(x))$

If K is differentiable, $\int K=1$ and $\int\left|K^{\prime}\right|^{2}<\infty$.

$$
\hat{D}_{h}(x):=\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) K_{h}^{\prime}\left(x-X_{i}\right)
$$

GL's trick

$\hat{D}_{h, h^{\prime}}(x):=\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right)\left(K_{h} \star K_{h^{\prime}}\right)^{\prime}\left(x-X_{i}\right)$,

$$
\tilde{A}(h):=\sup _{h^{\prime} \in \tilde{\mathcal{H}}}\left\{\left\|\hat{D}_{h, h^{\prime}}-\hat{D}_{h^{\prime}}\right\|_{2}-\frac{\tilde{\chi}}{\sqrt{n h^{\prime 3}}}\|g\|_{\infty}\left\|K^{\prime}\right\|_{2}\right\}_{+}
$$

where, given $\tilde{\varepsilon}>0, \tilde{\chi}:=(1+\tilde{\varepsilon})\left(1+\|K\|_{1}\right)$.
Finally, we estimate D by using $\hat{D}:=\hat{D}_{\tilde{h}}$ with

$$
\tilde{h}:=\operatorname{argmin}_{h \in \tilde{\mathcal{H}}}\left\{\tilde{A}(h)+\frac{\tilde{\chi}}{\sqrt{n h^{3}}}\|g\|_{\infty}\left\|K^{\prime}\right\|_{2}\right\} .
$$

Result for the derivative D

Oracle inequality for D

If $\tilde{\mathcal{H}}=\left\{1 / \ell / \ell=1, \ldots, \ell_{\max }\right\}$ and if $\ell_{\text {max }}=\sqrt{\delta^{\prime} n}$, if moreover $\|N\|_{\infty}$ and $\|g\|_{\infty}<\infty$, then for any $q \geq 1$,

$$
\begin{gathered}
\mathbb{E}\left(\|\hat{D}-D\|_{2}^{2 q}\right) \leq \square_{q} \tilde{\chi}^{2 q} \inf _{h \in \tilde{\mathcal{H}}}\left\{\left\|K_{h} \star D-D\right\|_{2}^{2 q}+\left[\frac{\|g\|_{\infty}\left\|K^{\prime}\right\|_{2}}{\sqrt{n h^{3}}}\right]^{2 q}\right\} \\
+\square_{q, \tilde{\varepsilon}, \delta^{\prime},\left\|K^{\prime}\right\|_{2},\|K\|_{1},\left\|K^{\prime}\right\|_{1},\|N\|_{\infty},\|g\|_{\infty} \frac{1}{n^{q}} .}
\end{gathered}
$$

Estimation of λ and κ

λ is estimated via another (or simultaneous experiment).

Estimation of λ and κ

λ is estimated via another (or simultaneous experiment).
Assumption on $\hat{\lambda}$
There exist some $q>1$ such that

- $\varepsilon_{\lambda}=\mathbb{E}\left(|\hat{\lambda}-\lambda|^{q}\right)<\infty$,
- $R_{\lambda}=\mathbb{E}\left(\hat{\lambda}^{2 q}\right)<\infty$.

Estimation of λ and κ

λ is estimated via another (or simultaneous experiment).
Assumption on $\hat{\lambda}$
There exist some $q>1$ such that

- $\varepsilon_{\lambda}=\mathbb{E}\left(|\hat{\lambda}-\lambda|^{q}\right)<\infty$,
- $R_{\lambda}=\mathbb{E}\left(\hat{\lambda}^{2 q}\right)<\infty$.

Let $c>0$,

$$
\hat{\kappa}=\hat{\lambda} \frac{\sum_{i=1}^{n} X_{i}}{\sum_{i=1}^{n} g\left(X_{i}\right)+c} .
$$

The inversion of \mathcal{L}

It remains to (approximately) invert \mathcal{L}. (see Perthame, Zubelli, Doumic (2009))

The inversion of \mathcal{L}

It remains to (approximately) invert \mathcal{L}. (see Perthame, Zubelli, Doumic (2009))
Define $T>0$, an integer $k \geq 1$ and the regular grid on $[0, T]$ with mesh $k^{-1} T$ defined by
$0=x_{0, k}<x_{1, k}<\cdots<x_{i, k}:=\frac{i}{k} T<\ldots<x_{k, k}=T$.
Set $\varphi_{i, k}=: \frac{k}{T} \int_{x_{i}, k}^{x_{i+1, k}} \varphi(x) d x$ for $i=0, \ldots, k-1$, and define by induction the sequence
$H_{i, k}(\varphi):=\frac{1}{4}\left(H_{i / 2, k}(\varphi)+\varphi_{i / 2, k}\right)$ with $\left\{\begin{array}{l}H_{0}(\varphi):=\frac{1}{3} \varphi_{1, k}, \\ H_{1}(\varphi):=\frac{4}{21} \varphi_{0, k}+\frac{1}{7} \varphi_{1, k}\end{array}\right.$

The inversion of \mathcal{L}

It remains to (approximately) invert \mathcal{L}. (see Perthame, Zubelli, Doumic (2009))
Define $T>0$, an integer $k \geq 1$ and the regular grid on $[0, T]$ with mesh $k^{-1} T$ defined by
$0=x_{0, k}<x_{1, k}<\cdots<x_{i, k}:=\frac{i}{k} T<\ldots<x_{k, k}=T$.
Set $\varphi_{i, k}=: \frac{k}{T} \int_{x_{i}, k}^{x_{i+1, k}} \varphi(x) d x$ for $i=0, \ldots, k-1$, and define by induction the sequence
$H_{i, k}(\varphi):=\frac{1}{4}\left(H_{i / 2, k}(\varphi)+\varphi_{i / 2, k}\right)$ with $\left\{\begin{array}{l}H_{0}(\varphi):=\frac{1}{3} \varphi_{1, k}, \\ H_{1}(\varphi):=\frac{4}{21} \varphi_{0, k}+\frac{1}{7} \varphi_{1, k}\end{array}\right.$ for any sequence $u_{i}, i=1,2, \ldots$,

$$
u_{i / 2}:= \begin{cases}u_{i / 2} & \text { if } i \text { is even } \\ \frac{1}{2}\left(u_{(i-1) / 2}+u_{(i+1) / 2}\right) & \text { otherwise. }\end{cases}
$$

The inversion of \mathcal{L}

It remains to (approximately) invert \mathcal{L}. (see Perthame, Zubelli, Doumic (2009))
Define $T>0$, an integer $k \geq 1$ and the regular grid on $[0, T]$ with mesh $k^{-1} T$ defined by
$0=x_{0, k}<x_{1, k}<\cdots<x_{i, k}:=\frac{i}{k} T<\ldots<x_{k, k}=T$.
Set $\varphi_{i, k}=: \frac{k}{T} \int_{x_{i}, k}^{x_{i+1, k}} \varphi(x) d x$ for $i=0, \ldots, k-1$, and define by induction the sequence

$$
H_{i, k}(\varphi):=\frac{1}{4}\left(H_{i / 2, k}(\varphi)+\varphi_{i / 2, k}\right) \text { with }\left\{\begin{array}{l}
H_{0}(\varphi):=\frac{1}{3} \varphi_{1, k}, \\
H_{1}(\varphi):=\frac{4}{21} \varphi_{0, k}+\frac{1}{7} \varphi_{1, k}
\end{array}\right.
$$

Finally, we define

$$
\mathcal{L}_{k}^{-1}(\varphi)(x):=\sum_{i=0}^{k-1} H_{i, k}(\varphi) 1_{\left[x_{i, k}, x_{i+1, k}\right)}(x)
$$

The inversion of \mathcal{L}

It remains to (approximately) invert \mathcal{L}. (see Perthame, Zubelli, Doumic (2009))
Define $T>0$, an integer $k \geq 1$ and the regular grid on $[0, T]$ with mesh $k^{-1} T$ defined by
$0=x_{0, k}<x_{1, k}<\cdots<x_{i, k}:=\frac{i}{k} T<\ldots<x_{k, k}=T$.
Set $\varphi_{i, k}=: \frac{k}{T} \int_{x_{i}, k}^{x_{i+1, k}} \varphi(x) d x$ for $i=0, \ldots, k-1$, and define by induction the sequence
$H_{i, k}(\varphi):=\frac{1}{4}\left(H_{i / 2, k}(\varphi)+\varphi_{i / 2, k}\right)$ with $\left\{\begin{array}{l}H_{0}(\varphi):=\frac{1}{3} \varphi_{1, k}, \\ H_{1}(\varphi):=\frac{4}{21} \varphi_{0, k}+\frac{1}{7} \varphi_{1, k}\end{array}\right.$
Finally, we define

$$
\mathcal{L}_{k}^{-1}(\varphi)(x):=\sum_{i=0}^{k-1} H_{i, k}(\varphi) 1_{\left[x_{i, k}, x_{i+1, k}\right)}(x)
$$

Hence we are able to estimate $H=B N$ by

$$
\hat{H}=\mathcal{L}_{k}^{-1}(\hat{\kappa} \hat{D}+\hat{\lambda} \hat{N}) .
$$

Oracle inequality for the estimation of $H=B N$

Theorem

Under suitable assumptions, $\mathbb{E}\left(\|\hat{H}-H\|_{2, T}^{q}\right) \leq$

Oracle inequality for the estimation of $H=B N$

Theorem

Under suitable assumptions, $\mathbb{E}\left(\|\hat{H}-H\|_{2, T}^{q}\right) \leq$

Oracle inequality for the estimation of $H=B N$

Theorem

Under suitable assumptions, $\mathbb{E}\left(\|\hat{H}-H\|_{2, T}^{q}\right) \leq$

- $\square \ldots\left\{\sqrt{R_{\lambda}} \inf _{h \in \tilde{\mathcal{H}}}\left[\left\|K_{h} \star D-D\right\|_{2}^{q}+\left(\frac{\|g\|_{\infty}\left\|K^{\prime}\right\|_{2}}{\sqrt{n h^{3}}}\right)^{q}\right]\right.$
$-+\inf _{h \in \mathcal{H}}\left[\left\|K_{h} \star N-N\right\|_{2}^{q}+\left(\frac{\|K\|_{2}}{\sqrt{n h}}\right)^{q}\right]+$

Oracle inequality for the estimation of $H=B N$

Theorem

Under suitable assumptions, $\mathbb{E}\left(\|\hat{H}-H\|_{2, T}^{q}\right) \leq$

- $\square \ldots\left\{\sqrt{R_{\lambda}} \inf _{h \in \tilde{\mathcal{H}}}\left[\left\|K_{h} \star D-D\right\|_{2}^{q}+\left(\frac{\|g\|_{\infty}\left\|K^{\prime}\right\|_{2}}{\sqrt{n h^{3}}}\right)^{q}\right]\right.$
$-+\inf _{h \in \mathcal{H}}\left[\left\|K_{h} \star N-N\right\|_{2}^{q}+\left(\frac{\|K\|_{2}}{\sqrt{n h}}\right)^{q}\right]+$
- $+\varepsilon_{\lambda}+$

Oracle inequality for the estimation of $H=B N$

Theorem

Under suitable assumptions, $\mathbb{E}\left(\|\hat{H}-H\|_{2, T}^{q}\right) \leq$

- $\square \ldots\left\{\sqrt{R_{\lambda}} \inf _{h \in \tilde{\mathcal{H}}}\left[\left\|K_{h} \star D-D\right\|_{2}^{q}+\left(\frac{\|g\|_{\infty}\left\|K^{\prime}\right\|_{2}}{\sqrt{n h^{3}}}\right)^{q}\right]\right.$
$\bullet+\inf _{h \in \mathcal{H}}\left[\left\|K_{h} \star N-N\right\|_{2}^{q}+\left(\frac{\|K\|_{2}}{\sqrt{n h}}\right)^{q}\right]+$
- $+\varepsilon_{\lambda}+$
- $\left.+\left(\square_{\alpha}|\mathcal{L}(B N)|_{\mathcal{C}^{\alpha}(T)} T^{\alpha+1 / 2} k^{-\alpha}\right)^{q}\right\}+$

Oracle inequality for the estimation of $H=B N$

Theorem

Under suitable assumptions, $\mathbb{E}\left(\|\hat{H}-H\|_{2, T}^{q}\right) \leq$

- $\square \ldots\left\{\sqrt{R_{\lambda}} \inf _{h \in \tilde{\mathcal{H}}}\left[\left\|K_{h} \star D-D\right\|_{2}^{q}+\left(\frac{\|g\|_{\infty}\left\|K^{\prime}\right\|_{2}}{\sqrt{n h^{3}}}\right)^{q}\right]\right.$
$0+\inf _{h \in \mathcal{H}}\left[\left\|K_{h} \star N-N\right\|_{2}^{q}+\left(\frac{\|K\|_{2}}{\sqrt{n h}}\right)^{q}\right]+$
- $+\varepsilon_{\lambda}+$
- $\left.+\left(\square_{\alpha}|\mathcal{L}(B N)|_{\mathcal{C}^{\alpha}(T)} T^{\alpha+1 / 2} k^{-\alpha}\right)^{q}\right\}+$
- $\square_{\ldots} \frac{1}{n^{q / 2}}$.

Rate of convergence for the estimation of B

We finally set $\hat{B}=\hat{H} / \hat{N}$ and $\tilde{B}=\max (\min (\hat{B}, \sqrt{n}),-\sqrt{n})$.

Rate of convergence for the estimation of B

We finally set $\hat{B}=\hat{H} / \hat{N}$ and $\tilde{B}=\max (\min (\hat{B}, \sqrt{n}),-\sqrt{n})$. If $B \in \mathcal{W}_{s}(s>1 / 2)$ and $g \in \mathcal{W}_{s+1}$, then (under suitable assumptions) $N \in \mathcal{W}_{s+1}$.

Rate of convergence for the estimation of B

We finally set $\hat{B}=\hat{H} / \hat{N}$ and $\tilde{B}=\max (\min (\hat{B}, \sqrt{n}),-\sqrt{n})$. If $B \in \mathcal{W}_{s}(s>1 / 2)$ and $g \in \mathcal{W}_{s+1}$, then (under suitable assumptions) $N \in \mathcal{W}_{s+1}$.

Theorem

If one knows a bound $\alpha \geq s$, one can choose a kernel K and a family of \mathcal{H} and \mathcal{H}^{\prime} independent of s such that for any compact $[a, b]$ of $[0, T]$ (under technical assumptions),

$$
\mathbb{E}\left[\left\|(\tilde{B}-B) 1_{[a, b]}\right\|_{2}^{q}\right]=O\left(n^{-\frac{q s}{2 s+3}}\right) .
$$

Simulations

$\mathrm{n}=5000$, Gaussian kernel, $B=3 \sqrt{x}, g=1$.

Simulations

Concluding remarks

- work still in progress: simulations and comparison to analytical methods

Concluding remarks

- work still in progress: simulations and comparison to analytical methods
- Probabilistic interpretation not used: evolution of one cell look like TCP window size, but the whole population (?) \rightsquigarrow chaos and not necessarily independence (work in progress of Hoffmann, Krell, Lepoutre ...)

Concluding remarks

- work still in progress: simulations and comparison to analytical methods
- Probabilistic interpretation not used: evolution of one cell look like TCP window size, but the whole population (?) \rightsquigarrow chaos and not necessarily independence (work in progress of Hoffmann, Krell, Lepoutre ...)
- Calibration of GL's method not done, comparison with the L-curve method in analysis (χ Nstep ?)

