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The informal problem and the PDE translation

A cell grows.

Depending on its size x , the cell has a certain chance to divide
itself in 2 offsprings, ie 2 cells of size x/2.

We are interesting by the evolution of the whole population of
cells, each of them having this behavior.



The problem Goldenshluger and Lepski’s method Other steps Main results

The informal problem and the PDE translation

A cell grows.

Depending on its size x , the cell has a certain chance to divide
itself in 2 offsprings, ie 2 cells of size x/2.

We are interesting by the evolution of the whole population of
cells, each of them having this behavior.

Size-Structured Population Equation (finite time)











∂

∂t

(

n(t, x)
)

+ κ
∂

∂x

(

g(x)n(t, x)
)

+ B(x)n(t, x) = 4B(2x)n(t, 2x),

n(t, x = 0) = 0, t > 0
n(0, x) = n0(x), x ≥ 0.

n(t, x) the ”amount” of cells with size x (6= density),

g the ”qualitative” growth rate of one cell: linear is g = 1 ...

B is the division rate, which depends on the size
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Asymptotics of the PDE

It can be shown (Perthame Ryzhik 2005 for instance) that

n(t, .) grows exponentially fast ie It =
∫

n(t, x)dx
asymptotically proportional to eλt ,

the renormalized n(t, x)/It tends to a density N, which
satisfies

Size-Structured Population Equation (asymptotics)
{

κ
∂

∂x

(

g(x)N(x)
)

+ λN(x) = L
(

BN
)

(x),

B(0)N(0) = 0,
∫

N(x)dx = 1,

where

for any real-valued function x  ϕ(x),
L

(

ϕ
)

(x) := 4ϕ(2x) − ϕ(x).

κ = λ

R

R+
xN(x)dx

R

R+
g(x)N(x)dx

.
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The inverse problem

Under the previous differential equation, we consider the inverse
problem of finding B given a ”noisy” version of N.

Practical: biologists take a sample of, say, plankton in a lake,
and they look at the respective size of the cells. Then they
perform a preprocessing, by, say a kernel estimator. This is
Nǫ. (probably more approximation than that).

Analytical point of view: Nǫ is a noisy version of N, less
regular than N (it is likely that no derivative exists) and
||N − Nǫ||2 ≤ ǫ. (see Perthame, Zubelli, etc)

Statistical point of view: we observe a n-sample X1, ...,Xn of
iid variables with density N.
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Pro: taking into account maybe more approximations (but not all),
results true for any Nǫ.
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Estimation of N

Let K : R → R+ continuous function /
∫

K = 1 and
∫

K 2 < ∞.

N̂h(x) :=
1

n

n
∑

i=1

Kh(x − Xi),

Kh = 1
h
K (./h).

Bias-Variance decomposition

E

(∥

∥

∥
N − N̂h

∥

∥

∥

2

)

≤ ‖N − Kh ⋆ N‖2 +
1√
nh

‖K‖2,

where Kh ⋆ N = E(N̂h)

How to adaptively select h ?
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Estimation of N

Let K : R → R+ continuous function /
∫

K = 1 and
∫

K 2 < ∞.

N̂h(x) :=
1

n

n
∑

i=1

Kh(x − Xi),

Kh = 1
h
K (./h).

Bias-Variance decomposition

E

(∥

∥

∥
N − N̂h

∥

∥

∥

2

)

≤ ‖N − Kh ⋆ N‖2 +
1√
nh

‖K‖2,

where Kh ⋆ N = E(N̂h)

How to adaptively select h ? Recent work of Goldenshluger and
Lepski (2009, 2010) Here just a ”toy” version, but that’s exactly
what we needed.
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Selection of bandwidth

Set for any x and any h, h′ > 0,
N̂h,h′(x) := 1

n

∑n
i=1(Kh ⋆ Kh′)(x − Xi) = (Kh ⋆ N̂h′)(x),
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Set for any x and any h, h′ > 0,
N̂h,h′(x) := 1

n

∑n
i=1(Kh ⋆ Kh′)(x − Xi) = (Kh ⋆ N̂h′)(x),

”estimator” of the bias term

A(h) := sup
h′∈H

{

‖N̂h,h′ − N̂h′‖2 −
χ√
nh′

‖K‖2

}

+

where, given ε > 0, χ := (1 + ε)(1 + ‖K‖1).
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Selection of bandwidth

Set for any x and any h, h′ > 0,
N̂h,h′(x) := 1

n

∑n
i=1(Kh ⋆ Kh′)(x − Xi) = (Kh ⋆ N̂h′)(x),

”estimator” of the bias term

A(h) := sup
h′∈H

{

‖N̂h,h′ − N̂h′‖2 −
χ√
nh′

‖K‖2

}

+

where, given ε > 0, χ := (1 + ε)(1 + ‖K‖1).

ĥ := arg min
h∈H

{

A(h) +
χ√
nh

‖K‖2

}

and N̂ := N̂
ĥ
.
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First result

Oracle inequality

If H = {1/ℓ / ℓ = 1, ..., ℓmax} and if ℓmax = δn, if moreover
‖N‖∞ < ∞,
then for any q ≥ 1,

E

(

‖N̂ − N‖2q
2

)

≤ �qχ
2q inf

h∈H

{

‖Kh ⋆ N − N‖2q
2 +

‖K‖2q
2

(hn)q

}

+

�q,ε,δ,‖K‖2,‖K‖1,‖N‖
∞

1

nq
.
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(

g(x)N(x)
)

If K is differentiable,
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n

n
∑

i=1

g(Xi)K
′
h(x − Xi )
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Estimation of D = ∂
∂x

(

g(x)N(x)
)

If K is differentiable,
∫

K = 1 and
∫

|K ′|2 < ∞.

D̂h(x) :=
1

n

n
∑

i=1

g(Xi)K
′
h(x − Xi )

Bias-Variance de composition:

E(
∥

∥

∥
D − D̂h

∥

∥

∥

2
) ≤ ‖D − Kh ⋆ D‖2 + 1√

nh3
‖g‖∞‖K ′‖2.

GL’s trick

D̂h,h′(x) := 1
n

∑n
i=1 g(Xi )(Kh ⋆ Kh′)

′(x − Xi),

Ã(h) := sup
h′∈H̃

{

‖D̂h,h′ − D̂h′‖2 −
χ̃√
nh′3

‖g‖∞‖K ′‖2

}

+

,

where, given ε̃ > 0, χ̃ := (1 + ε̃)(1 + ‖K‖1).
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Estimation of D = ∂
∂x

(

g(x)N(x)
)

If K is differentiable,
∫

K = 1 and
∫

|K ′|2 < ∞.

D̂h(x) :=
1

n

n
∑

i=1

g(Xi)K
′
h(x − Xi )

GL’s trick

D̂h,h′(x) := 1
n

∑n
i=1 g(Xi )(Kh ⋆ Kh′)

′(x − Xi),

Ã(h) := sup
h′∈H̃

{

‖D̂h,h′ − D̂h′‖2 −
χ̃√
nh′3

‖g‖∞‖K ′‖2

}

+

,

where, given ε̃ > 0, χ̃ := (1 + ε̃)(1 + ‖K‖1).

Finally, we estimate D by using D̂ := D̂
h̃

with

h̃ := argmin
h∈H̃

{

Ã(h) +
χ̃√
nh3

‖g‖∞‖K ′‖2

}

.
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Result for the derivative D

Oracle inequality for D

If H̃ = {1/ℓ / ℓ = 1, ..., ℓmax} and if ℓmax =
√

δ′n, if moreover
‖N‖∞ and ‖g‖∞ < ∞, then for any q ≥ 1,

E

(

‖D̂ − D‖2q
2

)

≤ �qχ̃
2q inf

h∈H̃

{

‖Kh ⋆ D − D‖2q
2 +

[‖g‖∞‖K ′‖2√
nh3

]2q
}

+�q,ε̃,δ′,‖K ′‖2,‖K‖1,‖K ′‖1,‖N‖
∞

,‖g‖
∞

1

nq
.
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Estimation of λ and κ

λ is estimated via another (or simultaneous experiment).

Assumption on λ̂

There exist some q > 1 such that

ελ = E(|λ̂ − λ|q) < ∞,

Rλ = E(λ̂2q) < ∞.
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Estimation of λ and κ

λ is estimated via another (or simultaneous experiment).

Assumption on λ̂

There exist some q > 1 such that

ελ = E(|λ̂ − λ|q) < ∞,

Rλ = E(λ̂2q) < ∞.

Let c > 0,

κ̂ = λ̂

∑n
i=1 Xi

∑n
i=1 g(Xi ) + c

.
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The inversion of L
It remains to (approximately) invert L. (see Perthame, Zubelli,
Doumic (2009))
Define T > 0, an integer k ≥ 1 and the regular grid on [0,T ] with
mesh k−1T defined by
0 = x0,k < x1,k < · · · < xi ,k := i

k
T < . . . < xk,k = T .

Set ϕi ,k =: k
T

∫ xi+1,k

xi ,k
ϕ(x)dx for i = 0, . . . , k − 1, and define by

induction the sequence

Hi ,k(ϕ) :=
1

4
(Hi/2,k(ϕ)+ϕi/2,k) with

{

H0(ϕ) := 1
3ϕ1,k ,

H1(ϕ) := 4
21ϕ0,k + 1

7ϕ1,k
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The inversion of L
It remains to (approximately) invert L. (see Perthame, Zubelli,
Doumic (2009))
Define T > 0, an integer k ≥ 1 and the regular grid on [0,T ] with
mesh k−1T defined by
0 = x0,k < x1,k < · · · < xi ,k := i

k
T < . . . < xk,k = T .

Set ϕi ,k =: k
T

∫ xi+1,k

xi ,k
ϕ(x)dx for i = 0, . . . , k − 1, and define by

induction the sequence

Hi ,k(ϕ) :=
1

4
(Hi/2,k(ϕ)+ϕi/2,k) with

{

H0(ϕ) := 1
3ϕ1,k ,

H1(ϕ) := 4
21ϕ0,k + 1

7ϕ1,k

for any sequence ui , i = 1, 2, . . .,

ui/2 :=

{

ui/2 if i is even
1
2(u(i−1)/2 + u(i+1)/2) otherwise.
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mesh k−1T defined by
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Set ϕi ,k =: k
T

∫ xi+1,k

xi ,k
ϕ(x)dx for i = 0, . . . , k − 1, and define by

induction the sequence

Hi ,k(ϕ) :=
1

4
(Hi/2,k(ϕ)+ϕi/2,k) with

{

H0(ϕ) := 1
3ϕ1,k ,

H1(ϕ) := 4
21ϕ0,k + 1

7ϕ1,k

Finally, we define

L−1
k (ϕ)(x) :=

k−1
∑

i=0

Hi ,k(ϕ)1[xi,k ,xi+1,k)(x).
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The inversion of L
It remains to (approximately) invert L. (see Perthame, Zubelli,
Doumic (2009))
Define T > 0, an integer k ≥ 1 and the regular grid on [0,T ] with
mesh k−1T defined by
0 = x0,k < x1,k < · · · < xi ,k := i

k
T < . . . < xk,k = T .

Set ϕi ,k =: k
T

∫ xi+1,k

xi ,k
ϕ(x)dx for i = 0, . . . , k − 1, and define by

induction the sequence

Hi ,k(ϕ) :=
1

4
(Hi/2,k(ϕ)+ϕi/2,k) with

{

H0(ϕ) := 1
3ϕ1,k ,

H1(ϕ) := 4
21ϕ0,k + 1

7ϕ1,k

Finally, we define

L−1
k (ϕ)(x) :=

k−1
∑

i=0

Hi ,k(ϕ)1[xi,k ,xi+1,k)(x).

Hence we are able to estimate H = BN by

Ĥ = L−1
k (κ̂D̂ + λ̂N̂).
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Oracle inequality for the estimation of H = BN

here

Theorem

Under suitable assumptions, E(
∥

∥

∥
Ĥ − H

∥

∥

∥

q

2,T
) ≤
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Oracle inequality for the estimation of H = BN

here

Theorem

Under suitable assumptions, E(
∥

∥

∥
Ĥ − H

∥

∥

∥

q

2,T
) ≤

�...

{√
Rλ inf

h∈H̃

[

‖Kh ⋆ D − D‖q
2 +

(

‖g‖
∞
‖K ′‖2√
nh3

)q]
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Oracle inequality for the estimation of H = BN

here

Theorem

Under suitable assumptions, E(
∥

∥

∥
Ĥ − H

∥

∥

∥

q

2,T
) ≤

�...

{√
Rλ inf

h∈H̃

[

‖Kh ⋆ D − D‖q
2 +

(

‖g‖
∞
‖K ′‖2√
nh3

)q]

+ inf
h∈H

[

‖Kh ⋆ N − N‖q
2 +

(‖K‖2√
nh

)q]

+
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∥

∥

∥
Ĥ − H

∥

∥

∥

q

2,T
) ≤

�...

{√
Rλ inf

h∈H̃

[

‖Kh ⋆ D − D‖q
2 +

(

‖g‖
∞
‖K ′‖2√
nh3

)q]

+ inf
h∈H

[

‖Kh ⋆ N − N‖q
2 +

(‖K‖2√
nh

)q]

+

+ελ+
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Oracle inequality for the estimation of H = BN

here

Theorem

Under suitable assumptions, E(
∥

∥

∥
Ĥ − H

∥

∥

∥

q

2,T
) ≤

�...

{√
Rλ inf

h∈H̃

[

‖Kh ⋆ D − D‖q
2 +

(

‖g‖
∞
‖K ′‖2√
nh3

)q]

+ inf
h∈H

[

‖Kh ⋆ N − N‖q
2 +

(‖K‖2√
nh

)q]

+

+ελ+

+
(

�α|L(BN)|Cα(T )T
α+1/2k−α

)q}

+



The problem Goldenshluger and Lepski’s method Other steps Main results

Oracle inequality for the estimation of H = BN

here

Theorem

Under suitable assumptions, E(
∥

∥

∥
Ĥ − H

∥

∥

∥

q

2,T
) ≤

�...

{√
Rλ inf

h∈H̃

[

‖Kh ⋆ D − D‖q
2 +

(

‖g‖
∞
‖K ′‖2√
nh3

)q]

+ inf
h∈H

[

‖Kh ⋆ N − N‖q
2 +

(‖K‖2√
nh

)q]

+

+ελ+

+
(

�α|L(BN)|Cα(T )T
α+1/2k−α

)q}

+

�...
1

nq/2 .
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Rate of convergence for the estimation of B

We finally set B̂ = Ĥ/N̂ and B̃ = max(min(B̂,
√

n),−√
n).

If B ∈ Ws (s > 1/2) and g ∈ Ws+1, then (under suitable
assumptions) N ∈ Ws+1.

Theorem

If one knows a bound α ≥ s, one can choose a kernel K and a
family of H and H′ independent of s such that for any compact
[a, b] of [0,T ] (under technical assumptions),

E

[
∥

∥

∥
(B̃ − B)1[a,b]

∥

∥

∥

q

2

]

= O
(

n−
qs

2s+3

)

.
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Simulations

n=5000, Gaussian kernel, B = 3
√

x , g = 1.
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Concluding remarks

work still in progress: simulations and comparison to
analytical methods

Probabilistic interpretation not used: evolution of one cell
look like TCP window size, but the whole population (?)  
chaos and not necessarily independence (work in progress of
Hoffmann, Krell, Lepoutre ...)

Calibration of GL’s method not done, comparison with the
L-curve method in analysis (χ N step ?)
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