Hawkes processes and application in neuroscience and genomic

Patricia Reynaud-Bouret

CNRS, Université de Nice Sophia Antipolis

Journées Aussois 2015, Modélisation Mathématique et Biodiversité

Hawkes processes and application in neuroscience and genomic

Patricia Reynaud-Bouret

CNRS, Université de Nice Sophia Antipolis

Journées Aussois 2015, Modélisation Mathématique et Biodiversité

Table of Contents

- 2 Multivariate Hawkes processes and Lasso
- Probabilistic ingredients
- 4 Back to Lasso
- 5 PDE and point processes

→ □ → → □ → → □

Table of Contents

Point process and Counting process

- Introduction
- Poisson process
- More general counting process and conditional intensity
- Classical statistics for counting processes

Multivariate Hawkes processes and Lasso

- 3 Probabilistic ingredients
- 4) Back to Lasso
- 5 PDE and point processes

★ ∃ ►

Point process

N= random countable set of points of X (usually \mathbb{R}).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Point process

N= random countable set of points of X (usually \mathbb{R}).

 N_A number of points of N in A, $dN_t = \sum_T$ point de N^{δ_T} . $\int f(t)dN_t = \sum_{T \in N} f(T)$

If $\mathbb{X} = \mathbb{R}^+$ and no accumulation, the counting process is $N_t = N_{[0,t]}$.

- disintegration of radioactive atoms
- date / duration / position of phone calls
- date / position/ magnitude of earthquakes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- disintegration of radioactive atoms
- date / duration / position of phone calls
- date / position/ magnitude of earthquakes
- position / size / age of trees in a forest
- discovery time / position/ size of petroleum fields
- breakdowns

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- disintegration of radioactive atoms
- date / duration / position of phone calls
- date / position/ magnitude of earthquakes
- position / size / age of trees in a forest
- discovery time / position/ size of petroleum fields
- breakdowns
- time of the event "a bee came out of its hive", "a monkey climbed in the tree", "an agent buys a financial asset", "someone clicks on the website"

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- disintegration of radioactive atoms
- date / duration / position of phone calls
- date / position/ magnitude of earthquakes
- position / size / age of trees in a forest
- discovery time / position/ size of petroleum fields
- breakdowns
- time of the event "a bee came out of its hive", "a monkey climbed in the tree", "an agent buys a financial asset", "someone clicks on the website"

Everything has been noted, probably link via a model between those quantities. No reason at all that they may be identically distributed and/or independent (not i.i.d.).

Historically, first evident records of statistics start with Graunt in 1662 and its life table.

 NB : at the same time, Pascal and Euler started Probability \dots Halley, Huyghens and many others also recorded life tables

"Why are people dying ?" \rightarrow record of the time of deaths in London at that time.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Historically, first evident records of statistics start with Graunt in 1662 and its life table.

"Why are people dying ?" \rightarrow record of the time of deaths in London at that time.

• Even if considered i.i.d., the interesting quantity is the hazard rate q(t), with

 $q(t)dt \simeq \mathbb{P}($ die just after t given that alive in t)

If f density, q(t) = f(t)/S(t), with

$$S(t) = \int_t^{+\infty} f(s) ds.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Historically, first evident records of statistics start with Graunt in 1662 and its life table.

"Why are people dying ?" \rightarrow record of the time of deaths in London at that time.

- Even if considered i.i.d., the interesting quantity is the hazard rate q(t),
- q = cte : do not "age", no memory ightarrow exponential variable

• q decreases : better old than young.

dassical shape for human

Historically, first evident records of statistics start with Graunt in 1662 and its life table.

"Why are people dying ?" \rightarrow record of the time of deaths in London at that time.

- Even if considered i.i.d., the interesting quantity is the hazard rate q(t),
- not even clearly i.i.d. : people may move out before disease, may contaminate each other etc... → what is the interesting quantity?

イロト イポト イヨト イヨト

Introduction

Neuroscience and neuronal unitary activity

P.Reyr	aud-Boure
--------	-----------

3

・ロト ・聞ト ・ヨト ・ヨト

Point process and Counting process Introd

Neuronal data and Unitary Events

Unitary (Coincident) Events

-1250

–1000 –

-750

-500 -250

0

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Genomics and Transcription Regulatory Elements

P.Reynaud	 Bouret
-----------	----------------------------

Image: A match a ma

Poisson processes

• for all integer *n*, for all A_1, \ldots, A_n disjoint measurable subsets of \mathbb{X} , N_{A_1}, \ldots, N_{A_n} are independent random variables.

< ロ > < 国 > < 国 > < 国 > < 国

Poisson processes

- for all integer *n*, for all A_1, \ldots, A_n disjoint measurable subsets of \mathbb{X} , N_{A_1}, \ldots, N_{A_n} are independent random variables.
- for all measurable subset A of X, N_A obeys a Poisson law with parameter depending on A and denoted $\ell(A)$.

Poisson processes

- for all integer *n*, for all A_1, \ldots, A_n disjoint measurable subsets of \mathbb{X} , N_{A_1}, \ldots, N_{A_n} are independent random variables.
- for all measurable subset A of X, N_A obeys a Poisson law with parameter depending on A and denoted $\ell(A)$.

If $\mathbb{X} = \mathbb{R}$ and $\ell([0, t]) = \lambda t$, then

$$\mathbb{P}(N_t=0)=\mathbb{P}(T_1>t)$$

Poisson processes

- for all integer n, for all A₁,..., A_n disjoint measurable subsets of X, N_{A1},..., N_{An} are independent random variables.
- for all measurable subset A of X, N_A obeys a Poisson law with parameter depending on A and denoted $\ell(A)$.

If $\mathbb{X} = \mathbb{R}$ and $\ell([0, t]) = \lambda t$, then

$$\mathbb{P}(N_t = 0) = \mathbb{P}(T_1 > t) = e^{-\lambda t}$$

$$\mathbb{P}(N_{k} = k) = \frac{\Phi^{k}}{k!} e^{-\theta}.$$

< ロ > < 国 > < 国 > < 国 > < 国

Poisson processes

- for all integer *n*, for all A_1, \ldots, A_n disjoint measurable subsets of \mathbb{X} , N_{A_1}, \ldots, N_{A_n} are independent random variables.
- for all measurable subset A of X, N_A obeys a Poisson law with parameter depending on A and denoted $\ell(A)$.

If $\mathbb{X} = \mathbb{R}$ and $\ell([0, t]) = \lambda t$, then

$$\mathbb{P}(N_t=0)=\mathbb{P}(T_1>t)=e^{-\lambda t}$$

 \rightarrow first time is an exponential variable

< ロ > < 同 > < 回 > < 回 > < 回

Poisson processes

- for all integer *n*, for all A_1, \ldots, A_n disjoint measurable subsets of \mathbb{X} , N_{A_1}, \ldots, N_{A_n} are independent random variables.
- for all measurable subset A of X, N_A obeys a Poisson law with parameter depending on A and denoted $\ell(A)$.

If $\mathbb{X} = \mathbb{R}$ and $\ell([0, t]) = \lambda t$, then

$$\mathbb{P}(N_t=0)=\mathbb{P}(T_1>t)=e^{-\lambda t}$$

 \rightarrow first time is an exponential variable All "intervals" are i.i.d and exponentially distributed.

イロト イヨト イヨト

Poisson processes

- for all integer *n*, for all A_1, \ldots, A_n disjoint measurable subsets of \mathbb{X} , N_{A_1}, \ldots, N_{A_n} are independent random variables.
- for all measurable subset A of X, N_A obeys a Poisson law with parameter depending on A and denoted $\ell(A)$.

If $\mathbb{X} = \mathbb{R}$ and $\ell([0, t]) = \lambda t$, then

$$\mathbb{P}(N_t=0)=\mathbb{P}(T_1>t)=e^{-\lambda t}$$

 \rightarrow first time is an exponential variable All "intervals" are i.i.d and exponentially distributed. No memory \iff independence to the past

・ロン ・四 ・ ・ ヨン

If $\ell([0,t]) = \int_0^t \lambda(s) ds$, let $\mathcal N$ be a Poisson process in $\mathbb R^2_+$ and

→ □ → → □ → → □

If $\ell([0,t]) = \int_0^t \lambda(s) ds$, let \mathcal{N} be a Poisson process in \mathbb{R}^2_+ and

If $\lambda(.)$ bounded by M

If $\ell([0,t]) = \int_0^t \lambda(s) ds$, let \mathcal{N} be a Poisson process in \mathbb{R}^2_+ and

Need of the same sort of interpretation as hazard rate but given "the Past" !

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Need of the same sort of interpretation as hazard rate but given "the Past" !

Image: A math the second se

Need of the same sort of interpretation as hazard rate but given "the Past" !

 $\lambda(t) =$ instantaneous frequency

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Need of the same sort of interpretation as hazard rate but given "the Past" !

- $\lambda(t) =$ instantaneous frequency
 - = random, depends on the Past (previous points ...)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Need of the same sort of interpretation as hazard rate but given "the Past" !

- $\lambda(t) =$ instantaneous frequency
 - = random, depends on the Past (previous points ...)
 - = characterizes the distribution when exists
- NB : if $\lambda(t)$ deterministic \rightarrow Poisson process

イロト 人間ト イヨト イヨト

Thinning

 $\lambda(t)$ is predictable, i.e. depends on the past only, can be drawn from left to right if one discovers one point at a time. Usually "c-à-g" for "continu à gauche" (left continuous)

Thinning

Let \mathcal{N} be a Poisson process in \mathbb{R}^2_+ .

Thinning

For simulation (Ogata's thinning), $\lambda(t)$ bounded if no points appear

→ Ξ →
One life time

 $N = \{T\}, T$ of hazard rate q.

	4 L		1 = 1	1 = 1	-	*) 4 (*
P.Reynaud-Bouret	Hawkes		Auss	iois 2015		14 / 129

One life time

Parents : U_i either (uniform) i.i.d. or (homogeneous) Poisson process Each parent gives birth according to a Poisson process of intensity horiginated in U_i .

Process of the children?

Parents : U_i either (uniform) i.i.d. or (homogeneous) Poisson process Each parent gives birth according to a Poisson process of intensity horiginated in U_i .

Parents : U_i either (uniform) i.i.d. or (homogeneous) Poisson process Each parent gives birth according to a Poisson process of intensity horiginated in U_i .

With some orphans of rate ν ?

P.Reynaud-Bouret

Parents : U_i either (uniform) i.i.d. or (homogeneous) Poisson process Each parent gives birth according to a Poisson process of intensity horiginated in U_i .

Hawkes process : linear case

A self-exciting process introduced by Hawkes in the 70's to model earthquakes.

Ancestors appear at rate ν .

Each point gives birth according to h etc etc (aftershocks)

Hawkes process : linear case

A self-exciting process introduced by Hawkes in the 70's to model earthquakes.

P.Reynaud-Bouret

• models any sort of self contamination (earthquakes, clicks, etc)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- models any sort of self contamination (earthquakes, clicks, etc)
- can be marked : position or magnitude of earthquakes, neuron on which the spike happens (see later)

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1

- models any sort of self contamination (earthquakes, clicks, etc)
- can be marked : position or magnitude of earthquakes, neuron on which the spike happens (see later)
- can therefore model interaction also (see later)

< □ > < 同 > < 回 > < 回 > < 回

- models any sort of self contamination (earthquakes, clicks, etc)
- can be marked : position or magnitude of earthquakes, neuron on which the spike happens (see later)
- can therefore model interaction also (see later)
- generally, modelling people "want" stationnarity : if ∫ h < 1, the branching procedure ends ⇔ existence of stationnary version.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- models any sort of self contamination (earthquakes, clicks, etc)
- can be marked : position or magnitude of earthquakes, neuron on which the spike happens (see later)
- can therefore model interaction also (see later)
- generally, modelling people "want" stationnarity : if ∫ h < 1, the branching procedure ends ⇔ existence of stationnary version.
- for genomics and neuroscience, need of inhibition : possible to use

$$\lambda(t) = \Phi(\int_{-\infty}^t h(t-u)dN_u),$$

with Φ 1-Lipschitz positive and *h* of any sign. Stationnarity condition $\int |h| < 1$.

• In particular, $\Phi = (.)_+$ but loss of the branching structure (?)

• Informally the likelihood of the observation N should give the probability to see (something near) N.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Informally the likelihood of the observation *N* should give the probability to see (something near) *N*. Formally, it is somehow the density wrt (here) Poisson, but without depending on the intensity of the reference Poisson.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Informally the likelihood of the observation N should give the probability to see (something near) N.
- If $N = \{t_1, ..., t_n\}$, we want for N' of intensity $\lambda(.)$ observed on [0, T], $\mathbb{P}(N' \text{ has } n \text{ points, each } T_i \text{ in } [t_i - dt_i, t_i])$

- Informally the likelihood of the observation N should give the probability to see (something near) N.
- If $N = \{t_1, ..., t_n\}$, we want for N' of intensity $\lambda(.)$ observed on [0, T], $\mathbb{P}(N' \text{ has } n \text{ points, each } T_i \text{ in } [t_i - dt_i, t_i])$

 $\mathbb{P}(\text{no point in } [0, t_1 - dt_1], 1 \text{ point in } [t_1 - dt_1, t_1], ..., \text{no point in}[t_n, T])$

< ロ > < 同 > < 回 > < 回 > < 回

Likelihood(2)

$$\mathbb{P}(\mathsf{no point in}[t_n, T] \Big| \mathsf{past at } t_n) = e^{-\int_{t_n}^T \lambda(s) ds}$$

P.F	leyr	nau	d-E	Bou	ret
-----	------	-----	-----	-----	-----

Aussois 2015 19 / 129

크

<ロト < 団ト < 団ト < 団ト

Likelihood(3)

 $\mathbb{P}(1 \text{ point in}[t_n - dt_n, t_n] \Big| \text{past at } t_n - dt_n) \simeq \lambda(t_n) dt_n e^{-\int_{t_n}^{t_n + dt_n} \lambda(s) ds}$

Likelihood(4)

$$\mathbb{P}(\text{no point in } [0, t_1 - dt_1], 1 \text{ point in } [t_1 - dt_1, t_1], ..., \text{no point in} [t_n, T]) = \mathbb{E}\left(\mathbf{1}_{\text{no point in } [0, t_1 - dt_1]} \cdots \mathbf{1}_1 \text{ point in } [t_n - dt_n, t_n] \times \\\mathbb{P}(\text{no point in} [t_n, T] \middle| \text{past at } t_n)\right) = \mathbb{E}\left(\mathbf{1}_{\text{no point in } [0, t_1 - dt_1]} \cdots \mathbf{1}_1 \text{ point in } [t_n - dt_n, t_n]\right) e^{-\int_{t_n}^T \lambda(s) ds}$$

Likelihood(4)

$$\mathbb{P}(\text{no point in } [0, t_1 - dt_1], 1 \text{ point in } [t_1 - dt_1, t_1], ..., \text{no point in} [t_n, T]) = \mathbb{E}\left(\mathbf{1}_{\text{no point in } [0, t_1 - dt_1]} \cdots \mathbf{1}_1 \text{ point in } [t_n - dt_n, t_n] \times \\\mathbb{P}(\text{no point in} [t_n, T] \middle| \text{past at } t_n)\right) = \mathbb{E}\left(\mathbf{1}_{\text{no point in } [0, t_1 - dt_1]} \cdots \mathbf{1}_1 \text{ point in } [t_n - dt_n, t_n]\right) e^{-\int_{t_n}^T \lambda(s) ds}$$

Likelihood(4)

$$\mathbb{P}(\text{no point in } [0, t_1 - dt_1], 1 \text{ point in } [t_1 - dt_1, t_1], \dots, \text{no point in}[t_n, T]) = \mathbb{E}\left(\mathbf{1}_{\text{no point in } [0, t_1 - dt_1]} \cdots \mathbf{1}_1 \text{ point in } [t_n - dt_n, t_n] \times \mathbb{P}(\text{no point in}[t_n, T] | \text{past at } t_n)\right) = \mathbb{E}\left(\mathbf{1}_{\text{no point in } [0, t_1 - dt_1]} \cdots \mathbf{1}_1 \text{ point in } [t_n - dt_n, t_n]\right) e^{-\int_{t_n}^T \lambda(s) ds} = \mathbb{E}\left(\mathbf{1}_{\text{no point in } [0, t_1 - dt_1]} \cdots \mathbb{P}(1 \text{ point in}[t_n - dt_n, t_n] | \text{past at } t_n - dt_n)\right) \times e^{-\int_{t_n}^T \lambda(s) ds} = \mathbb{E}\left(\mathbf{1}_{\text{no point in } [0, t_1 - dt_1]} \cdots \mathbb{P}(1 \text{ point in } [t_n - dt_n, t_n] | \text{past at } t_n - dt_n)\right) \times e^{-\int_{t_n}^T \lambda(s) ds} \cong \mathbb{E}\left(\mathbf{1}_{\text{no point in } [0, t_1 - dt_1]} \cdots \mathbf{1}_{\text{no point in } [t_{n-1}, t_n - dt_n]}\right) \times \lambda(t_n) dt_n e^{-\int_{t_n}^T \lambda(s) ds}$$

Likelihood and log-likelihood

(Pseudo)Likelihood

$$\prod_{i} \lambda(t_i) e^{-\int_0^T \lambda(s) ds}$$

dependance on the past not explicit (ex Past before 0 for Hawkes)

Likelihood and log-likelihood

(Pseudo)Likelihood

$$\prod_{i} \lambda(t_i) e^{-\int_0^T \lambda(s) ds}$$

dependance on the past not explicit (ex Past before 0 for Hawkes)

LogLikelihood

$$\ell_{\lambda}(N) = \int_{0}^{T} \left[\lambda(s) \right] dN_{s} - \int_{0}^{T} \lambda(s) ds$$

P.R	eyna	ud-	Boi	uret
-----	------	-----	-----	------

Maximum likelihood estimator

If model for $\lambda \to \lambda_{\theta}$, $\theta \in \mathbb{R}^d$, how to choose the best θ according to the observed data N on [0, T]?

P.Rey	naud-	Bouret
-------	-------	--------

Maximum likelihood estimator

If model for $\lambda \to \lambda_{\theta}$, $\theta \in \mathbb{R}^d$, how to choose the best θ according to the observed data N on [0, T]?

$$\mathcal{L}_{\lambda} = \frac{\sum \log \left(\lambda[T_i]\right) - \int_{0}^{T} \lambda(0) \, ds}{\tau_{i} \epsilon(o_{i}T_{i})} + \int_{0}^{T} \lambda(0) \, ds}$$

then
$$MLE = \hat{\theta} = \arg \max_{\theta} \ell_{\lambda_{\theta}}(N).$$

Maximum likelihood estimator(2)

If *d*, number of unknown parameter, fixed one can show usually nice asymptotic properties (in $T \dots$) :

- consistency $(\hat{\theta} \rightarrow \theta)$
- asymptotic normality
- efficiency (smallest asymptotic variance)

(cf. Andersen, Borgan, Gill and Keiding)

イロト 不得下 イヨト イヨト 二日

Maximum likelihood estimator(2)

If *d*, number of unknown parameter, fixed one can show usually nice asymptotic properties (in $T \dots$) :

- consistency $(\hat{\theta} \rightarrow \theta)$
- asymptotic normality
- efficiency (smallest asymptotic variance)

(cf. Andersen, Borgan, Gill and Keiding)

In practice, T and d are fixed \rightarrow if d large wrt T, i.e. in the non asymptotic regime, over fitting.

pren better

Goodness-of-fit test

- If $\Lambda_t = \int_0^t \lambda(s) ds$, then
 - Λ_t is a nondecreasing process, predictable and its (pseudo)inverse exists.
 - It is the compensator of the counting process N_t , i.e. $(N_t \Lambda_t)_t$ martingale.

Goodness-of-fit test

- If $\Lambda_t = \int_0^t \lambda(s) ds$, then
 - Λ_t is a nondecreasing process, predictable and its (pseudo)inverse exists.
 - It is the compensator of the counting process N_t , i.e. $(N_t \Lambda_t)_t$ martingale.

•
$$N_{\Lambda_t^{-1}}$$
 is a Poisson process of intensity 1.

Goodness-of-fit test

- If $\Lambda_t = \int_0^t \lambda(s) ds$, then
 - Λ_t is a nondecreasing process, predictable and its (pseudo)inverse exists.
 - It is the compensator of the counting process N_t , i.e. $(N_t \Lambda_t)_t$ martingale.
 - $N_{\Lambda_r^{-1}}$ is a Poisson process of intensity 1.
 - \rightarrow test that *N* (observed) has the desired intensity λ .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Table of Contents

Point process and Counting process

- Multivariate Hawkes processes and Lasso
 - A model for neuroscience and genomics
 - Parametric estimation
 - What can we do against over fitting? (Adaptation)
 - Lasso criterion
 - Simulations
 - Real data analysis

Probabilistic ingredients

4) Back to Lasso

Biological framework

크

(ロ) (部) (目) (日) (日)

Synaptic integration

without synchronization

Synaptic integration

without synchronization

Synaptic integration

without synchronization

without synchronization

without synchronization

P.Rey	/naud-	Boure
-------	--------	-------

without synchronization

3

イロト イポト イヨト イヨ

without synchronization

P.Reynaud-Bour	et
----------------	----

3

イロト イポト イヨト イヨ

without synchronization

3

< ロ > < 同 > < 回 > < 回 > < 回

without synchronization

3

(日)

without synchronization

3

(日)

without synchronization

3

(ロ) (部) (目) (日) (日)

with synchronization

with synchronization

P.Re	ynaud	I-Bo	oure
------	-------	------	------

with synchronization

with synchronization

3

A model for neuroscience and genomics

Synaptic integration

with synchronization

3

A model for neuroscience and genomics

Synaptic integration

with synchronization

3

A model for neuroscience and genomics

Synaptic integration

with synchronization

3

with synchronization

3

with synchronization

크

(ロ) (部) (目) (日) (日)

There are several "events" of different types on the DNA that may "work" together in synergy.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There are several "events" of different types on the DNA that may "work" together in synergy.

Motifs

= words in the DNA-alphabet $\{actg\}$.

P.Re	ynau	d-B	ouret
------	------	-----	-------

There are several "events" of different types on the DNA that may "work" together in synergy.

Motifs

= words in the DNA-alphabet $\{actg\}$.

How can statistician suggest functional motifs based on the statistical properties of their occurrences ?

• Unexpected frequency \rightarrow Markov models (see for a review Reinert, Schbath, Waterman (2000))

There are several "events" of different types on the DNA that may "work" together in synergy.

Motifs

= words in the DNA-alphabet $\{actg\}$.

How can statistician suggest functional motifs based on the statistical properties of their occurrences ?

- Unexpected frequency \rightarrow Markov models (see for a review Reinert, Schbath, Waterman (2000))
- Poor or rich regions \rightarrow scan statistics (see, for instance, Robin Daudin (1999) or Stefanov (2003))

There are several "events" of different types on the DNA that may "work" together in synergy.

Motifs

= words in the DNA-alphabet $\{actg\}$.

How can statistician suggest functional motifs based on the statistical properties of their occurrences ?

- Unexpected frequency \rightarrow Markov models (see for a review Reinert, Schbath, Waterman (2000))
- Poor or rich regions \rightarrow scan statistics (see, for instance, Robin Daudin (1999) or Stefanov (2003))
- If two motifs are part of a common biological process, the space between their occurrences (not necessarily consecutive) should be somehow fixed → favored or avoided distances (Gusto, Schbath (2005))

There are several "events" of different types on the DNA that may "work" together in synergy.

Motifs

= words in the DNA-alphabet $\{actg\}$.

How can statistician suggest functional motifs based on the statistical properties of their occurrences ?

- Unexpected frequency \rightarrow Markov models (see for a review Reinert, Schbath, Waterman (2000))
- Poor or rich regions \rightarrow scan statistics (see, for instance, Robin Daudin (1999) or Stefanov (2003))
- If two motifs are part of a common biological process, the space between their occurrences (not necessarily consecutive) should be somehow fixed → favored or avoided distances (Gusto, Schbath (2005)) pairwise study.

TRE

Transcription Regulatory Elements = "everything" that may enhance or repress gene expression

TRE

Transcription Regulatory Elements = "everything" that may enhance or repress gene expression

 promoter, enhancer, silencer, histone modifications, replication origin on the DNA.... They should interact but how? Can we have a statistical guess?

TRE

 $\label{eq:constraint} \mbox{Transcription Regulatory Elements} = "everything" \mbox{ that may enhance or repress gene expression}$

- promoter, enhancer, silencer, histone modifications, replication origin on the DNA.... They should interact but how? Can we have a statistical guess?
- There are methods (ChIP-chip experiments, ChIP-seq experiments) where after preprocessing the data one has access to the (almost exact) positions of several type of TREs at one time, and this under different experimental conditions. (ENCODE)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TRE

Transcription Regulatory Elements = "everything" that may enhance or repress gene expression

- promoter, enhancer, silencer, histone modifications, replication origin on the DNA.... They should interact but how? Can we have a statistical guess?
- There are methods (ChIP-chip experiments, ChIP-seq experiments) where after preprocessing the data one has access to the (almost exact) positions of several type of TREs at one time, and this under different experimental conditions. (ENCODE)
- On the real line = DNA if the 3D structure of the DNA is negligible (typically interaction range between points \leq 10 kB)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TRE

 $\label{eq:constraint} \ensuremath{\mathsf{Transcription}}\xspace \ensuremath{\mathsf{Regulatory}}\xspace \ensuremath{\mathsf{Elements}}\xspace = "everything" that may enhance or repress gene expression$

- promoter, enhancer, silencer, histone modifications, replication origin on the DNA.... They should interact but how? Can we have a statistical guess?
- There are methods (ChIP-chip experiments, ChIP-seq experiments) where after preprocessing the data one has access to the (almost exact) positions of several type of TREs at one time, and this under different experimental conditions. (ENCODE)
- On the real line = DNA if the 3D structure of the DNA is negligible (typically interaction range between points \leq 10 kB)
- If the real structure \rightarrow 3D point processes on graphs... (??)

Why just DNA? RNA etc ...

3

イロト イポト イヨト イヨト

Point processes and conditional intensity

$$\lambda(t) =$$
 instantaneous frequency
= random, depends on previous points

Local independence graphs

(Didelez (2008))

크

Image: A math a math

Local independence graphs

If one is able to infer a local independence graph, then we may have access to "functional connectivity". \hookrightarrow needs a "model".

Multivariate Hawkes processes

	∢ [《문》 《문》	$\equiv \mathcal{O} \land \mathcal{O}$
P.Reynaud-Bouret	Hawkes	Aussois 2015	34 / 129

Multivariate Hawkes processes

P.Reynaud-Boure	t
-----------------	---

크

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

More formally

• Only excitation (all the $h_{\ell}^{(r)}$ are positive) : for all r,

$$\lambda^{(r)}(t) = \nu_r + \sum_{\ell=1}^{M} \int_{-\infty}^{t-} h_{\ell}^{(r)}(t-u) dN_{u}^{(\ell)}$$

Branching / Cluster representation, stationary process if the spectral radius of $\left(\int h_\ell^{(r)}(t)dt\right)$ is < 1.

イロト イポト イヨト イヨト

More formally

• Only excitation (all the $h_{\ell}^{(r)}$ are positive) : for all r,

$$\lambda^{(r)}(t) = \nu_r + \sum_{\ell=1}^{M} \int_{-\infty}^{t-} h_{\ell}^{(r)}(t-u) dN_{u}^{(\ell)}$$

Branching / Cluster representation, stationary process if the spectral radius of $\left(\int h_{\ell}^{(r)}(t)dt\right)$ is < 1.

 Interaction, for instance, (in general any 1-Lipschitz function, Brémaud Massoulié 1996)

$$\lambda^{(r)}(t) = \left(\nu_r + \sum_{\ell=1}^M \int_{-\infty}^{t-} h_\ell^{(r)}(t-u) dN_u^{(\ell)}\right)_+$$

イロト イポト イヨト イヨト

More formally

• Only excitation (all the $h_{\ell}^{(r)}$ are positive) : for all r,

$$\lambda^{(r)}(t) = \nu_r + \sum_{\ell=1}^{M} \int_{-\infty}^{t-} h_{\ell}^{(r)}(t-u) dN_{u}^{(\ell)}$$

Branching / Cluster representation, stationary process if the spectral radius of $\left(\int h_{\ell}^{(r)}(t)dt\right)$ is < 1.

 Interaction, for instance, (in general any 1-Lipschitz function, Brémaud Massoulié 1996)

$$\lambda^{(r)}(t) = \left(\nu_r + \sum_{\ell=1}^{M} \int_{-\infty}^{t-} h_{\ell}^{(r)}(t-u) dN_{u}^{(\ell)}\right)_{+}$$

• Exponential (Multiplicative shape but no guarantee of a stationary version ...) $\lambda^{(r)}(t) = \exp\left(\nu_r + \sum_{\ell=1}^{M} \int_{-\infty}^{t-} h_{\ell}^{(r)}(t-u) dN_u^{(\ell)}\right)$. P.Revnaud-Bouret Hawkes Aussois 2015 35 / 129

Previous works

- Maximum likelihood estimates eventually (Ogata, Vere-Jones etc mainly for sismology, Chornoboy et al., for neuroscience, Gusto and Schbath for genomics)
- Parametric tests for the detection of edge + Maximum likelihood + exponential formula + spline estimation (Carstensen et al., in genomics)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Previous works

- Maximum likelihood estimates eventually (Ogata, Vere-Jones etc mainly for sismology, Chornoboy et al., for neuroscience, Gusto and Schbath for genomics)
- Parametric tests for the detection of edge + Maximum likelihood + exponential formula + spline estimation (Carstensen et al., in genomics)
- Main problem not enough spikes ! so either over-fitting because d (number of parameters) too large or bad estimation if d too small (see later).
- Also MLE are not that easy to compute (EM algorithm etc)
- \neq least-squares if linear parametric model.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Observation on [0, T]
- A good estimate of the parameters should correspond to an intensity candidate close to the true one.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Observation on [0, T]
- A good estimate of the parameters should correspond to an intensity candidate close to the true one.
- Hence one would like to minimize $\|\eta \lambda\|^2 = \int_0^T [\eta(t) \lambda(t)]^2 dt$ in η

- Observation on [0, T]
- A good estimate of the parameters should correspond to an intensity candidate close to the true one.
- Hence one would like to minimize $\|\eta \lambda\|^2 = \int_0^T [\eta(t) \lambda(t)]^2 dt$ in η

• or equivalently
$$-2\int_0^T \eta(t)\lambda(t)dt + \int_0^T \eta(t)^2 dt$$
.

- Observation on [0, T]
- A good estimate of the parameters should correspond to an intensity candidate close to the true one.
- Hence one would like to minimize $\|\eta \lambda\|^2 = \int_0^T [\eta(t) \lambda(t)]^2 dt$ in η
- or equivalently $-2\int_0^T \eta(t)\lambda(t)dt + \int_0^T \eta(t)^2 dt$.
- But dN_t randomly fluctuates around $\lambda(t)dt$ and is observable.

イロト 不得下 イヨト イヨト 二日

- Observation on [0, T]
- A good estimate of the parameters should correspond to an intensity candidate close to the true one.
- Hence one would like to minimize $\|\eta \lambda\|^2 = \int_0^T [\eta(t) \lambda(t)]^2 dt$ in η
- or equivalently $-2\int_0^T \eta(t)\lambda(t)dt + \int_0^T \eta(t)^2 dt$.
- But dN_t randomly fluctuates around $\lambda(t)dt$ and is observable.
- Hence minimize

$$\gamma(\eta) = -2\int_0^T \eta(t)dN_t + \int_0^T \eta(t)^2 dt,$$

for a model $\eta = \lambda_{a}(t)$,

• If multivariate minimize $\sum_{m} \gamma_m(\eta^{(m)})$.

イロト イポト イヨト イヨト 二日

Let [a, b] an interval of \mathbb{R}^+ .

2

イロト イポト イヨト イヨト

Let [a, b] an interval of \mathbb{R}^+ .

$$\eta(t) = \sum_{T \in N} \alpha \mathbf{1}_{a \le t - T \le b} = \alpha N_{[t-b, t-a]}$$

There is only one parameter $\alpha \rightarrow$ minimizing γ

P.Re	eyna	ud-	Βου	iret
------	------	-----	-----	------

3

イロト イヨト イヨト

Let [a, b] an interval of \mathbb{R}^+ .

$$\eta(t) = \sum_{T \in N} \alpha \mathbf{1}_{a \le t - T \le b} = \alpha N_{[t-b,t-a]}$$

There is only one parameter $\alpha \rightarrow$ minimizing γ

$$\gamma(\eta) = -2\alpha \int_0^T N_{[t-b,t-a]} dN_t + \alpha^2 \int_0^T N_{[t-b,t-a]}^2 dt$$

3

・ロン ・四 ・ ・ ヨン

Let [a, b] an interval of \mathbb{R}^+ .

$$\eta(t) = \sum_{T \in N} \alpha \mathbf{1}_{a \le t - T \le b} = \alpha N_{[t-b, t-a]}$$

There is only one parameter $\alpha \rightarrow$ minimizing γ

$$\hat{\alpha} = \frac{\int_0^T N_{[t-b,t-a]} dN_t}{\int_0^T N_{[t-b,t-a]}^2 dt}$$

2

イロト 不得 トイヨト イヨト

Let [a, b] an interval of \mathbb{R}^+ .

$$\eta(t) = \sum_{T \in N} \alpha \mathbf{1}_{a \le t - T \le b} = \alpha N_{[t-b, t-a]}$$

There is only one parameter $\alpha \rightarrow$ minimizing γ

$$\hat{\alpha} = \frac{\int_0^T N_{[t-b,t-a]} dN_t}{\int_0^T N_{[t-b,t-a]}^2 dt}$$

Let [a, b] an interval of \mathbb{R}^+ .

$$\eta(t) = \sum_{T \in N} \alpha \mathbf{1}_{a \le t - T \le b} = \alpha N_{[t-b, t-a]}$$

There is only one parameter $\alpha \rightarrow$ minimizing γ

$$\hat{\alpha} = \frac{\int_0^T N_{[t-b,t-a]} dN_t}{\int_0^T N_{[t-b,t-a]}^2 dt}$$

Let [a, b] an interval of \mathbb{R}^+ .

$$\eta(t) = \sum_{T \in N} \alpha \mathbf{1}_{a \le t - T \le b} = \alpha N_{[t-b, t-a]}$$

There is only one parameter $\alpha \rightarrow$ minimizing γ

$$\hat{\alpha} = \frac{\int_0^T N_{[t-b,t-a]} dN_t}{\int_0^T N_{[t-b,t-a]}^2 dt}$$

38 / 129

Let [a, b] an interval of \mathbb{R}^+ .

$$\eta(t) = \sum_{T \in N} \alpha \mathbf{1}_{a \le t - T \le b} = \alpha N_{[t-b, t-a]}$$

There is only one parameter $\alpha \rightarrow$ minimizing γ

$$\hat{\alpha} = \frac{\int_0^T N_{[t-b,t-a]} dN_t}{\int_0^T N_{[t-b,t-a]}^2 dt}$$

P.Reynaud-Bouret

Let [a, b] an interval of \mathbb{R}^+ .

$$\eta(t) = \sum_{T \in N} \alpha \mathbf{1}_{a \le t - T \le b} = \alpha N_{[t-b,t-a]}$$

There is only one parameter $\alpha \rightarrow$ minimizing γ

$$\hat{\alpha} = \frac{\int_0^T N_{[t-b,t-a]} dN_t}{\int_0^T N_{[t-b,t-a]}^2 dt}$$

The numerator is the number of pairs of points with delay in [a, b]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\lambda^{(r)}(t) \stackrel{?}{=} \nu^{(r)} + \sum_{\ell=1}^{M} \sum_{T < t, T \text{ in } N^{(\ell)}} h_{\ell}^{(r)}(t-T).$$

P.Re	ynauc	I-Bou	ret
------	-------	-------	-----

3

$$\lambda^{(r)}(t) \stackrel{?}{=} \nu^{(r)} + \sum_{\ell=1}^{M} \sum_{T < t, T \text{ in } N^{(\ell)}} h_{\ell}^{(r)}(t-T).$$

+ Piecewise constant model with parameter **a**

$$\lambda^{(r)}(t) \stackrel{?}{=} \nu^{(r)} + \sum_{\ell=1}^{M} \sum_{T < t, T \text{ in } N^{(\ell)}} h_{\ell}^{(r)}(t-T).$$

+ Piecewise constant model with parameter ${\bf a}$ By linearity,

$$\lambda^{(r)}(t) \stackrel{?}{=} (\mathbf{R}\mathbf{c}_t)'\mathbf{a},$$

P.Re	ynaud-	Bouret
------	--------	--------

Image: A math a math

$$\lambda^{(r)}(t) \stackrel{?}{=} \nu^{(r)} + \sum_{\ell=1}^{M} \sum_{T < t, T \text{ in } N^{(\ell)}} h_{\ell}^{(r)}(t-T).$$

+ Piecewise constant model with parameter ${\bf a}$ By linearity,

$$\lambda^{(r)}(t) \stackrel{?}{=} (\mathbf{R}\mathbf{c}_t)'\mathbf{a},$$

with \mathbf{Rc}_t being the renormalized instantaneous count given by

$$(\mathbf{Rc}_t)' = \left(1, \delta^{-1/2}(\mathbf{c}_t^{(1)})', ..., \delta^{-1/2}(\mathbf{c}_t^{(M)})'\right),$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\lambda^{(r)}(t) \stackrel{?}{=} \nu^{(r)} + \sum_{\ell=1}^{M} \sum_{T < t, T \text{ in } N^{(\ell)}} h_{\ell}^{(r)}(t-T).$$

+ Piecewise constant model with parameter ${\bf a}$ By linearity,

$$\lambda^{(r)}(t) \stackrel{?}{=} (\mathbf{R}\mathbf{c}_t)'\mathbf{a},$$

with \mathbf{Rc}_t being the renormalized instantaneous count given by

$$(\mathbf{R}\mathbf{c}_{t})' = \left(1, \delta^{-1/2}(\mathbf{c}_{t}^{(1)})', ..., \delta^{-1/2}(\mathbf{c}_{t}^{(M)})'\right),$$

and with $\mathbf{c}_t^{(\ell)}$ being the vector of instantaneous count with delay of N_ℓ i.e.

$$(\mathbf{c}_t^{(\ell)})' = \left(N_{[t-\delta,t)}^{(\ell)}, \dots, N_{[t-\kappa\delta,t-(\kappa-1)\delta)}^{(\ell)}\right).$$

Informally, the link between the point process and its intensity can be written as

$$d {\sf N}^{(r)}(t) \simeq ({\sf Rc}_t)' {\sf a}_*^{(r)} dt + ext{ noise}.$$

Informally, the link between the point process and its intensity can be written as

$$d {\sf N}^{(r)}(t) \simeq ({\sf Rc}_t)' {\sf a}_*^{(r)} dt + ext{ noise}.$$

Let

$$\mathbf{G} = \int_0^T \mathbf{R} \mathbf{c}_t (\mathbf{R} \mathbf{c}_t)' dt,$$

the integrated covariation of the renormalized instantaneous count.

Informally, the link between the point process and its intensity can be written as

$$d {\sf N}^{(r)}(t) \simeq ({\sf Rc}_t)' {\sf a}_*^{(r)} dt + ext{ noise}.$$

Let

$$\mathbf{G} = \int_0^T \mathbf{R} \mathbf{c}_t (\mathbf{R} \mathbf{c}_t)' dt,$$

the integrated covariation of the renormalized instantaneous count.

$$\mathbf{b}^{(r)} := \int_0^T \mathbf{R} \mathbf{c}_t dN^{(r)}(t) \simeq \mathbf{G} \mathbf{a}^{(r)}_* + \text{ noise.}$$

P.Reynaud-Bouret

Aussois 2015 40 / 129

Informally, the link between the point process and its intensity can be written as

$$d {\sf N}^{(r)}(t) \simeq ({\sf Rc}_t)' {\sf a}_*^{(r)} dt + ext{ noise}.$$

Let

$$\mathbf{G} = \int_0^T \mathbf{R} \mathbf{c}_t (\mathbf{R} \mathbf{c}_t)' dt,$$

the integrated covariation of the renormalized instantaneous count.

$$\mathbf{b}^{(r)} := \int_0^T \mathbf{R} \mathbf{c}_t dN^{(r)}(t) \simeq \mathbf{G} \mathbf{a}^{(r)}_* + \text{ noise.}$$

where in b lies again the number of couples with a certain delay (cross-correlogram).

P.Reynaud	l-Bouret
-----------	----------

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Least-square estimate

$$\mathbf{G} = \int_0^T \mathbf{R} \mathbf{c}_t (\mathbf{R} \mathbf{c}_t)' dt,$$

 $\mathbf{b}^{(r)} := \int_0^T \mathbf{R} \mathbf{c}_t dN^{(r)}(t)$

Least-square estimate

 $\hat{\mathbf{a}}^{(r)} = \mathbf{G}^{-1} \mathbf{b}^{(r)},$

 \rightarrow simpler formula than Maximum Likelihood Estimators for similar properties (except efficiency).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What gain wrt cross correlogramm?

only 2 non zero interaction functions over 9

P.Reynaud-Bo

(日)

What gain wrt cross correlogramm?

What gain wrt cross correlogramm?

P.Reynaud-Bouret

Aussois 2015 42 / 129

Adaptive statistics

- If no model known, one usually wants to consider the largest possible model (piecewise constant with hundreds of parameters etc)
- ullet If use MLE or OLS, each parameter estimate has a variance $\simeq 1/\mathcal{T}$

< ロ > < 同 > < 回 > < 回 > < 回

Adaptive statistics

- If no model known, one usually wants to consider the largest possible model (piecewise constant with hundreds of parameters etc)
- ullet If use MLE or OLS, each parameter estimate has a variance $\simeq 1/\mathcal{T}$
- If there are d parameters, global variance $\simeq d/T$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Adaptive statistics

- If no model known, one usually wants to consider the largest possible model (piecewise constant with hundreds of parameters etc)
- ullet If use MLE or OLS, each parameter estimate has a variance $\simeq 1/\mathcal{T}$
- If there are d parameters, global variance $\simeq d/T$

Over-fitting ! ! ! !

イロト イヨト イヨト

 log-likelihood penalized by AIC (Akaike Criterion) (Ogata, Vere-Jones, Gusto and Schbath) : choose the model with d parameters such that

$$\ell(\lambda_{\hat{\theta}_d}) + d$$

Generally works well if few models and largest dimension fixed whereas $\mathcal{T} \to \infty$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 log-likelihood penalized by AIC (Akaike Criterion) (Ogata, Vere-Jones, Gusto and Schbath) : choose the model with d parameters such that

$$\ell(\lambda_{\hat{\theta}_d}) + d$$

Generally works well if few models and largest dimension fixed whereas $\mathcal{T} \to \infty$

• least-squares+ ℓ_0 penalty, (RB and Schbath)

$$\gamma(\lambda_{\hat{\theta}_d}) + \hat{c}d$$

with \hat{c} data-driven. Proof that if $\hat{c} > \kappa$, it works even if d grows with T (moderately, log(T) with d)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 log-likelihood penalized by AIC (Akaike Criterion) (Ogata, Vere-Jones, Gusto and Schbath) : choose the model with d parameters such that

$$\ell(\lambda_{\hat{\theta}_d}) + d$$

Generally works well if few models and largest dimension fixed whereas $\mathcal{T} \to \infty$

• least-squares+ ℓ_0 penalty, (RB and Schbath)

$$\gamma(\lambda_{\hat{\theta}_d}) + \hat{c}d$$

with \hat{c} data-driven. Proof that if $\hat{c} > \kappa$, it works even if d grows with T (moderately, log(T) with d)

 $\bullet \rightarrow$ possible mathematically to search for the "zeros"

イロト 不得 トイヨト イヨト

 log-likelihood penalized by AIC (Akaike Criterion) (Ogata, Vere-Jones, Gusto and Schbath) : choose the model with d parameters such that

$$\ell(\lambda_{\hat{\theta}_d}) + d$$

Generally works well if few models and largest dimension fixed whereas $\mathcal{T} \to \infty$

• least-squares+ ℓ_0 penalty, (RB and Schbath)

$$\gamma(\lambda_{\hat{\theta}_d}) + \hat{c}d$$

with \hat{c} data-driven. Proof that if $\hat{c} > \kappa$, it works even if d grows with T (moderately, log(T) with d)

- ullet ightarrow possible mathematically to search for the "zeros"
- Problem only for univariate because computational time and memory size awfully large !

 log-likelihood penalized by AIC (Akaike Criterion) (Ogata, Vere-Jones, Gusto and Schbath) : choose the model with d parameters such that

$$\ell(\lambda_{\hat{\theta}_d}) + d$$

Generally works well if few models and largest dimension fixed whereas $T \to \infty$

 \bullet least-squares+ ℓ_0 penalty, (RB and Schbath)

 $\gamma(\lambda_{\hat{\theta}_d}) + \hat{c}d$

with \hat{c} data-driven. Proof that if $\hat{c} > \kappa$, it works even if d grows with T (moderately, log(T) with d)

- ullet ightarrow possible mathematically to search for the "zeros"
- Problem only for univariate because computational time and memory size awfully large !

• \rightarrow convex criterion

P.Reynaud-Bouret

Other works

- Maximum likelihood + exponential formula + l₁ "group Lasso" penalty (Pillow et al. in neuroscience) but no mathematical proof
- Thresholding + tests for very particular bivariate models, oracle inequality (Sansonnet)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ℓ_1 penalty

$$\begin{aligned} \hat{\mathbf{a}}^{(r)} &= \operatorname{argmin}_{\mathbf{a}} \{ \gamma_{\mathcal{T}}(\lambda_{\mathbf{a}}^{(r)}) + \operatorname{pen}(\mathbf{a}) \} \\ &= \operatorname{argmin}_{\mathbf{a}} \{ -2\mathbf{a}'\mathbf{b}_r + \mathbf{a}'\mathbf{G}\mathbf{a} + 2(\mathbf{d}^{(r)})' |\mathbf{a}| \} \end{aligned}$$

ℓ_1 penalty

with N.R. Hansen (Copenhagen), and V. Rivoirard (Dauphine) (2012) The Lasso criterion can be expressed independently for each sub-process by :

Lasso criterion

$$\hat{\mathbf{a}}^{(r)} = \operatorname{argmin}_{\mathbf{a}} \{ \gamma_{\mathcal{T}}(\lambda_{\mathbf{a}}^{(r)}) + \operatorname{pen}(\mathbf{a}) \}$$

$$= \operatorname{argmin}_{\mathbf{a}} \{ -2\mathbf{a}'\mathbf{b}_r + \mathbf{a}'\mathbf{G}\mathbf{a} + 2(\mathbf{d}^{(r)})' |\mathbf{a}| \}$$

- The crucial choice is the $\mathbf{d}^{(r)}$, should be data-driven !
- The theoretical validation : be able to state that our choice is the best possible choice.
- The practical validation : on simulated Hawkes processes (done), on simulated neuronal networks, on real data (RNRP Paris 6 work in progress)...

Lasso criterion

Theoretical Validation

Recall that

$$\mathbf{b}^{(r)} = \int_0^T \mathbf{R} \mathbf{c}_t dN^{(r)}(t)$$

and

$$\mathbf{G} = \int_0^T \mathbf{R} \mathbf{c}_t (\mathbf{R} \mathbf{c}_t)' dt.$$

Hansen, Rivoirard, RB

If $\mathbf{G} \geq c\mathbf{I}$ with c > 0 and if

$$ig| \int_0^T \mathsf{Rc}_t \left(d \mathsf{N}^{(r)}(t) - \lambda^{(r)}(t) dt
ight) ig| \leq \mathsf{d}^{(r)}, \quad orall r$$

then

$$\sum_{r} \|\lambda^{(r)} - \mathbf{R}\mathbf{c}_t \hat{\mathbf{a}}^{(r)}\|^2 \leq \Box \inf_{\mathbf{a}} \left\{ \sum_{r} \|\lambda^{(r)} - \mathbf{R}\mathbf{c}_t \mathbf{a}\|^2 + \frac{1}{c} \sum_{i \in supp(\mathbf{a})} (d_i^{(r)})^2 \right\}.$$

Let us fix some **a** and let $\eta_{\mathbf{a}}(t) = \mathbf{Rc}'_t \mathbf{a}$, our candidate intensity. Since $\mathbf{G} = \int_0^T \mathbf{Rc}_t (\mathbf{Rc}_t)' dt$, $\mathbf{a}' \mathbf{Ga} = \|\eta_{\mathbf{a}}\|^2$

Lasso criterion

Small proof (Univariate case)

Let us fix some **a** and let $\eta_{\mathbf{a}}(t) = \mathbf{Rc}'_{t}\mathbf{a}$, our candidate intensity. Since $\mathbf{G} = \int_{0}^{T} \mathbf{Rc}_{t}(\mathbf{Rc}_{t})' dt$, $\mathbf{a}'\mathbf{Ga} = \|\eta_{\mathbf{a}}\|^{2}$

$$\begin{split} \|\lambda - \eta_{\hat{\mathbf{a}}}\|^2 &= \|\lambda\|^2 + \|\eta_{\hat{\mathbf{a}}}\| - 2\int_0^T \eta_{\hat{\mathbf{a}}}(t)\lambda(t)dt \\ &= \|\lambda\|^2 + \gamma(\eta_{\hat{\mathbf{a}}}) + 2\int_0^T \eta_{\hat{\mathbf{a}}}(t)(dN_t - \lambda(t)dt) \end{split}$$

Let us fix some **a** and let $\eta_{\mathbf{a}}(t) = \mathbf{Rc}'_t \mathbf{a}$, our candidate intensity. Since $\mathbf{G} = \int_0^T \mathbf{Rc}_t (\mathbf{Rc}_t)' dt$, $\mathbf{a}' \mathbf{Ga} = \|\eta_{\mathbf{a}}\|^2$

$$\begin{split} \|\lambda - \eta_{\hat{\mathbf{a}}}\|^{2} &= \|\lambda\|^{2} + \|\eta_{\hat{\mathbf{a}}}\| - 2\int_{0}^{T}\eta_{\hat{\mathbf{a}}}(t)\lambda(t)dt \\ &= \|\lambda\|^{2} + \gamma(\eta_{\hat{\mathbf{a}}}) + 2\int_{0}^{T}\eta_{\hat{\mathbf{a}}}(t)(dN_{t} - \lambda(t)dt) \\ &\leq \|\lambda\|^{2} + \gamma(\eta_{\mathbf{a}}) + 2\mathbf{d}'(|\mathbf{a}| - |\hat{\mathbf{a}}|) + 2\int_{0}^{T}\eta_{\hat{\mathbf{a}}}(t)(dN_{t} - \lambda(t)dt) \end{split}$$

(日) (圖) (E) (E) (E)

Let us fix some **a** and let $\eta_{\mathbf{a}}(t) = \mathbf{R}\mathbf{c}'_{t}\mathbf{a}$, our candidate intensity. Since $\mathbf{G} = \int_0^T \mathbf{R} \mathbf{c}_t (\mathbf{R} \mathbf{c}_t)' dt$, $\mathbf{a}' \mathbf{G} \mathbf{a} = \| \eta_{\mathbf{a}} \|^2$

$$\begin{split} \|\lambda - \eta_{\hat{\mathbf{a}}}\|^{2} &= \|\lambda\|^{2} + \|\eta_{\hat{\mathbf{a}}}\| - 2\int_{0}^{T}\eta_{\hat{\mathbf{a}}}(t)\lambda(t)dt \\ &= \|\lambda\|^{2} + \gamma(\eta_{\hat{\mathbf{a}}}) + 2\int_{0}^{T}\eta_{\hat{\mathbf{a}}}(t)(dN_{t} - \lambda(t)dt) \\ &\leq \|\lambda\|^{2} + \gamma(\eta_{\mathbf{a}}) + 2\mathbf{d}'(|\mathbf{a}| - |\hat{\mathbf{a}}|) + 2\int_{0}^{T}\eta_{\hat{\mathbf{a}}}(t)(dN_{t} - \lambda(t)dt) \\ &\leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + 2\mathbf{d}'(|\mathbf{a}| - |\hat{\mathbf{a}}|) + 2\int_{0}^{T}[\eta_{\hat{\mathbf{a}}}(t) - \eta_{\mathbf{a}}(t)](dN_{t} - \lambda(t)dt) \end{split}$$

Lasso criterion

Small proof (Univariate case)

Let us fix some **a** and let $\eta_{\mathbf{a}}(t) = \mathbf{Rc}'_t \mathbf{a}$, our candidate intensity. Since $\mathbf{G} = \int_0^T \mathbf{Rc}_t(\mathbf{Rc}_t)' dt$, $\mathbf{a}' \mathbf{Ga} = \|\eta_{\mathbf{a}}\|^2$

$$\begin{split} \|\lambda - \eta_{\hat{\mathbf{a}}}\|^{2} &= \|\lambda\|^{2} + \|\eta_{\hat{\mathbf{a}}}\| - 2\int_{0}^{T}\eta_{\hat{\mathbf{a}}}(t)\lambda(t)dt \\ &= \|\lambda\|^{2} + \gamma(\eta_{\hat{\mathbf{a}}}) + 2\int_{0}^{T}\eta_{\hat{\mathbf{a}}}(t)(dN_{t} - \lambda(t)dt) \\ &\leq \|\lambda\|^{2} + \gamma(\eta_{\mathbf{a}}) + 2\mathbf{d}'(|\mathbf{a}| - |\hat{\mathbf{a}}|) + 2\int_{0}^{T}\eta_{\hat{\mathbf{a}}}(t)(dN_{t} - \lambda(t)dt) \\ &\leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + 2\mathbf{d}'(|\mathbf{a}| - |\hat{\mathbf{a}}|) + 2\left(\int_{0}^{T}\mathbf{Rc}'_{t}(dN_{t} - \lambda(t)dt)\right)(\hat{\mathbf{a}} - \mathbf{a}) \end{split}$$

(日) (圖) (E) (E) (E)

Let us fix some **a** and let $\eta_{\mathbf{a}}(t) = \mathbf{Rc}'_{t}\mathbf{a}$, our candidate intensity. Since $\mathbf{G} = \int_0^T \mathbf{R} \mathbf{c}_t (\mathbf{R} \mathbf{c}_t)' dt$, $\mathbf{a}' \mathbf{G} \mathbf{a} = \| \eta_{\mathbf{a}} \|^2$

$$\begin{split} \|\lambda - \eta_{\hat{\mathbf{a}}}\|^2 &= \|\lambda\|^2 + \|\eta_{\hat{\mathbf{a}}}\| - 2\int_0^T \eta_{\hat{\mathbf{a}}}(t)\lambda(t)dt \\ &= \|\lambda\|^2 + \gamma(\eta_{\hat{\mathbf{a}}}) + 2\int_0^T \eta_{\hat{\mathbf{a}}}(t)(dN_t - \lambda(t)dt) \\ &\leq \|\lambda\|^2 + \gamma(\eta_{\mathbf{a}}) + 2\mathbf{d}'(|\mathbf{a}| - |\hat{\mathbf{a}}|) + 2\int_0^T \eta_{\hat{\mathbf{a}}}(t)(dN_t - \lambda(t)dt) \end{split}$$

$$\leq \|\lambda - \eta_{\mathbf{a}}\|^2 + 2\mathbf{d}'(|\mathbf{a}| - |\mathbf{\hat{a}}|) + 2\mathbf{d}'|\mathbf{a} - \mathbf{\hat{a}}|$$

P.Reynaud-Bouret

$$\|\lambda - \eta_{\hat{\mathbf{a}}}\|^2 \le \|\lambda - \eta_{\mathbf{a}}\|^2 + 2\mathbf{d}'(|\mathbf{a}| - |\hat{\mathbf{a}}|) + 2\mathbf{d}'|\mathbf{a} - \hat{\mathbf{a}}|$$

P.Re	ynau	d-B	ouret
------	------	-----	-------

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\begin{split} \|\lambda - \eta_{\hat{\mathbf{a}}}\|^{2} &\leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + 2\mathbf{d}'(|\mathbf{a}| - |\hat{\mathbf{a}}|) + 2\mathbf{d}'|\mathbf{a} - \hat{\mathbf{a}}| \\ &\leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + 4\sum_{i \in supp(\mathbf{a})} \mathbf{d}_{i}|\mathbf{a}_{i} - \hat{\mathbf{a}}_{i}| \end{split}$$

3

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

$$\begin{split} \|\lambda - \eta_{\hat{\mathbf{a}}}\|^{2} &\leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + 2\mathbf{d}'(|\mathbf{a}| - |\hat{\mathbf{a}}|) + 2\mathbf{d}'|\mathbf{a} - \hat{\mathbf{a}}| \\ &\leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + 4\sum_{i \in supp(\mathbf{a})} \mathbf{d}_{i}|\mathbf{a}_{i} - \hat{\mathbf{a}}_{i}| \\ &\leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + 4\|\mathbf{a} - \hat{\mathbf{a}}\| \left(\sum_{i \in supp(\mathbf{a})} \mathbf{d}_{i}^{2}\right)^{1/2} \end{split}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Lasso criterion

Small proof (Univariate case)(2)

$$\begin{split} \|\lambda - \eta_{\hat{\mathbf{a}}}\|^{2} &\leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + 2\mathbf{d}'(|\mathbf{a}| - |\hat{\mathbf{a}}|) + 2\mathbf{d}'|\mathbf{a} - \hat{\mathbf{a}}| \\ &\leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + 4\sum_{i \in supp(\mathbf{a})} \mathbf{d}_{i}|\mathbf{a}_{i} - \hat{\mathbf{a}}_{i}| \\ &\leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + 4\|\mathbf{a} - \hat{\mathbf{a}}\| \left(\sum_{i \in supp(\mathbf{a})} \mathbf{d}_{i}^{2}\right)^{1/2} \end{split}$$

But

$$\begin{split} \|\mathbf{a} - \hat{\mathbf{a}}\|^2 &\leq \frac{1}{c} (\mathbf{a} - \hat{\mathbf{a}})' \mathbf{G} (\mathbf{a} - \hat{\mathbf{a}}) = \frac{1}{c} \|\eta_{\mathbf{a}} - \eta_{\hat{\mathbf{a}}}\|^2 \\ &\leq \frac{2}{c} \left[\|\eta_{\mathbf{a}} - \lambda\|^2 + \|\lambda - \eta_{\hat{\mathbf{a}}}\|^2 \right] \end{split}$$

3

・ロト ・聞ト ・ヨト ・ヨト

$$\begin{split} \|\lambda - \eta_{\hat{\mathbf{a}}}\|^{2} &\leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + 2\mathbf{d}'(|\mathbf{a}| - |\hat{\mathbf{a}}|) + 2\mathbf{d}'|\mathbf{a} - \hat{\mathbf{a}}| \\ &\leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + 4\sum_{i \in supp(a)} \mathbf{d}_{i}|\mathbf{a}_{i} - \hat{\mathbf{a}}_{i}| \\ &\stackrel{\text{NB: } \mathcal{O}_{AV} \leq \mathcal{E}_{u}^{\lambda} + \frac{1}{\mathcal{E}} v^{L-4\mathcal{E}_{D}}}{(\mathbb{E}_{u, 4, \frac{v}{\mathcal{V}_{c}}})^{1} + \mathcal{E}_{u}^{\lambda} + \frac{v}{\mathcal{E}} + \frac{2w}{\mathcal{E}}} \\ &\leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + 4\|\mathbf{a} - \hat{\mathbf{a}}\| \left(\sum_{i \in supp(a)} \mathbf{d}_{i}^{2}\right)^{1/2} \end{split}$$

Hence for all $\alpha > 0$

$$\|\lambda - \eta_{\hat{\mathbf{a}}}\|^{2} \leq \|\lambda - \eta_{\mathbf{a}}\|^{2} + \alpha \left[\|\eta_{\mathbf{a}} - \lambda\|^{2} + \|\lambda - \eta_{\hat{\mathbf{a}}}\|^{2}\right] + \frac{8\alpha}{c} \sum_{i \in supp(a)} \mathbf{d}_{i}^{2}$$

크

イロト イポト イヨト イヨト

What did we proved? (Univariate)

Recall that

$$\mathbf{b} = \int_0^T \mathbf{R} \mathbf{c}_t dN(t)$$

and

$$\mathbf{G} = \int_0^T \mathbf{R} \mathbf{c}_t (\mathbf{R} \mathbf{c}_t)' dt.$$

Hansen, Rivoirard, RB

If $\mathbf{G} > cI$ with c > 0 and if

$$\left|\int_{0}^{T}\mathbf{R}\mathbf{c}_{t}\left(dN(t)-\lambda(t)dt\right)\right|\leq\mathbf{d},$$

then

$$\|\lambda - \mathbf{R}\mathbf{c}_t \hat{\mathbf{a}}\|^2 \le \Box \inf_{\mathbf{a}} \left\{ \|\lambda - \mathbf{R}\mathbf{c}_t \mathbf{a}\|^2 + \frac{1}{c} \sum_{i \in supp(\mathbf{a})} (d_i)^2 \right\}$$

.

Known support

If there is a true parameter \mathbf{a}^* , then $\lambda(t) = \mathbf{R}\mathbf{c}_t'\mathbf{a}^*$ and

$$ar{\mathbf{b}} = \int_0^T \mathbf{R} \mathbf{c}_t \lambda(t) dt = \mathbf{G} \mathbf{a}^*$$

= 990

(日) (同) (三) (三) (三)

Known support

If there is a true parameter \mathbf{a}^* , then $\lambda(t) = \mathbf{Rc}_t' \mathbf{a}^*$ and

$$ar{\mathbf{b}} = \int_0^T \mathbf{R} \mathbf{c}_t \lambda(t) dt = \mathbf{G} \mathbf{a}^*$$

If support of \mathbf{a}^* , S, known, the least-square estimate on $S
ightarrow \hat{\mathbf{a}}_S$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Known support

If there is a true parameter \mathbf{a}^* , then $\lambda(t) = \mathbf{R}\mathbf{c}_t'\mathbf{a}^*$ and

$$ar{\mathbf{b}} = \int_0^T \mathbf{R} \mathbf{c}_t \lambda(t) dt = \mathbf{G} \mathbf{a}^*$$

If support of \mathbf{a}^* , S, known, the least-square estimate on $S
ightarrow \hat{\mathbf{a}}_S$

$$\begin{aligned} \|\lambda - \mathbf{R}\mathbf{c}_t \hat{\mathbf{a}}_S\|^2 &= (\mathbf{a}^* - \hat{\mathbf{a}}_S)' \mathbf{G} (\mathbf{a}^* - \hat{\mathbf{a}}_S) \\ &= (\bar{\mathbf{b}} - \mathbf{b})' \mathbf{G}^{-1} (\bar{\mathbf{b}} - \mathbf{b}) \\ &\leq \frac{1}{c} \|\bar{\mathbf{b}} - \mathbf{b}\|^2 \end{aligned}$$

P.Reynaud-Bouret

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Oracle inequality

Lasso criterion

$$\hat{\mathbf{a}}^{(r)} = \operatorname{argmin}_{\mathbf{a}} \{ \gamma_{\mathcal{T}}(\lambda_{\mathbf{a}}^{(r)}) + \operatorname{pen}(\mathbf{a}) \}$$

= $\operatorname{argmin}_{\mathbf{a}} \{ -2\mathbf{a}'\mathbf{b}_r + \mathbf{a}'\mathbf{G}\mathbf{a} + 2(\mathbf{d}^{(r)})' |\mathbf{a}| \}$

Hansen, Rivoirard, RB

If $\mathbf{G} \ge cI$ with c > 0 and if

$$\left|\mathbf{b}^{(r)}-\bar{\mathbf{b}}^{(r)}\right|\leq\mathbf{d}^{(r)},\quad\forall r$$

then

$$\sum_{r} \|\lambda^{(r)} - \mathbf{R}\mathbf{c}_t \hat{\mathbf{a}}^{(r)}\|^2 \leq \Box \inf_{\mathbf{a}} \left\{ \sum_{r} \|\lambda^{(r)} - \mathbf{R}\mathbf{c}_t \mathbf{a}\|^2 + \frac{1}{c} \sum_{i \in supp(\mathbf{a})} (d_i^{(r)})^2 \right\}.$$

Comments

- If we can find **d** sharp and data-driven, then this is an oracle inequality !! :
 - Only an oracle could know the support in advance
 - Up to constant, we can do as well as the oracle

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Comments

- If we can find **d** sharp and data-driven, then this is an oracle inequality !! :
 - Only an oracle could know the support in advance
 - Up to constant, we can do as well as the oracle
- \bullet We do not pay anything here for the size, except ${\bf G}$ invertible
 - it's a "cheap" oracle inequality ... In fact could be done under more relaxed assumption...
 - *c* large (and we can observe it !) → quite confident for good reconstruction =quality indicator.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Comments

- If we can find **d** sharp and data-driven, then this is an oracle inequality !! :
 - Only an oracle could know the support in advance
 - Up to constant, we can do as well as the oracle
- \bullet We do not pay anything here for the size, except ${\bf G}$ invertible
 - it's a "cheap" oracle inequality ... In fact could be done under more relaxed assumption...
 - c large (and we can observe it !) → quite confident for good reconstruction =quality indicator.
- True even if the Hawkes linear model not true !!! and we just pay "quality of approximation"
- quality of approximation + unavoidable price due to estimation.

イロト イポト イヨト イヨト

Mathematical "debts"

- works for other models (anything that is linear), works for other basis and dictionary ...
- Choice of $\mathbf{d} : \rightarrow$ martingale calculus
- G invertible in some cases ? ? ? \rightarrow branching structure

3

イロト イポト イヨト イヨト

Simulations

Simulation study - Estimation

P.Reynaud-Bouret

Hawkes

Aussois 2015 56 / 129

Another example with inhibition

P.Reynaud-Bouret

Hawkes

Aussois 2015 57 / 129

On real (genomic) data

4290 genes and 1036 tataat of E. coli (T = 9288442, A = 10000)

P.Reynaud-Bouret

Aussois 2015 58 / 129

э

Real data analysis

Sensory-motor task

(F. Grammont (Nice), A. Riehle (Marseille))

On neuronal data (sensorimotor task)

30 trials : monkey trained to touch the correct target when illuminated. Accept the test of Hawkes hypothesis. Work with F. Grammont. V. $\frac{2}{P,Reynaud-Bouret}$ $\frac{2}{60} \sqrt{\frac{2}{129}}$

Tests

with C. Tuleau-Malot, F. Grammont (Nice) and V. Rivoirard (Dauphine) (2013)

• It is possible to test whether a process is a Hawkes process with prescribed interaction functions by using the time-rescaling theorem. (known since Ogata)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tests

with C. Tuleau-Malot, F. Grammont (Nice) and V. Rivoirard (Dauphine) (2013)

- It is possible to test whether a process is a Hawkes process with prescribed interaction functions by using the time-rescaling theorem. (known since Ogata)
- By using subsampling, it is possible to plug an estimate of the functions and still to test with controlled asymptotic level.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tests

with C. Tuleau-Malot, F. Grammont (Nice) and V. Rivoirard (Dauphine) (2013)

- It is possible to test whether a process is a Hawkes process with prescribed interaction functions by using the time-rescaling theorem. (known since Ogata)
- By using subsampling, it is possible to plug an estimate of the functions and still to test with controlled asymptotic level.
- On both previous data sets, the Hawkes hypothesis is accepted (p-values depends on the sub-sample, usually between 20 and 80 %), whereas the homogeneous Poisson hypothesis (i.e. no interactions) is rejected (p-values in 10⁻⁴, 10⁻¹⁶ for the neuronal data)

イロト イポト イヨト イヨト 二日

Functional Connectivity?

(Equipe RNRP de Paris 6)

< ロ > < 同 > < 回 > < 回 > < 回

크

Tetrode data on the rat

(Equipe RNRP de Paris 6)

On neuronal data (vibrissa excitation)

Joint work with RNRP (Paris 6). Behavior : vibrissa excitation at low frequency. T = 90.5, M = 10

Neuron	$TT1_{02}$	TT2 ₀₁	TT2 ₀₂	TT2 ₀₄	TT301	TT3 ₀₃	TT4 ₀₁	TT4 ₀₂	TT4 ₀₃	TT4 ₀₄
Spikes	9191	99	544	149	15	18	136	282	8	6

Comportement 1 ; k 10 ; delta 0.005 ; gamma 1

Application on real data

Data :

Neuron	$TT1_{02}$	TT2 ₀₁	TT202	TT2 ₀₄	TT301	TT3 ₀₃	TT 4 ₀₁	TT4 ₀₂	TT 4 ₀₃	TT 4 ₀₄
Spikes	9191	99	544	149	15	18	136	282	8	6

Simulation :

Neuron	$TT1_{02}$	TT2 ₀₁	TT2 ₀₂	TT2 ₀₄	TT301	TT3 ₀₃	TT4 ₀₁	TT4 ₀₂	TT4 ₀₃	TT4 ₀₄
Spikes	9327	92	585	148	13	23	133	271	8	3

P.Rey	nau	ıd-B	ouret
-------	-----	------	-------

э.

・ロト ・聞ト ・ヨト ・ヨト

Application on real data

Data :

Neuron	$TT1_{02}$	TT201	TT202	TT2 ₀₄	TT301	TT303	TT4 ₀₁	TT4 ₀₂	TT 4 ₀₃	TT 4 ₀₄
Spikes	9191	99	544	149	15	18	136	282	8	6

Simulation :

P.Reynaud-Bouret

time in seconds

< 177 ▶

크

A B K A B K

Evolution of the dependance graph as a fonction of the vibrissa excitation

Table of Contents

Point process and Counting process

Multivariate Hawkes processes and Lasso

Probabilistic ingredients

- Exponential inequalities (Concentration of measure)
- Controls via a branching structure

Back to Lasso

5) PDE and point processes

4 E N

Table of Contents

Point process and Counting process

2 Multivariate Hawkes processes and Lasso

Probabilistic ingredients

- Exponential inequalities (Concentration of measure)
 - The Poisson case
 - The martingale case
 - Back to Lasso
- Controls via a branching structure

4) Back to Lasso

5 PDE and point processes

4 E 6 4

Probability generating functional and Laplace transform

p.g.fl

For any point process N, the functional which associates to any positive function h

 $\mathbb{E}(\prod_{x\in N}h(x))$

Laplace functional

For any point process N, the functional which associates to any function f

$$\mathbb{E}\left(\exp\left[\int f(x)dN_x\right]\right).$$

equivalence with $f = \log(h)$.

	۹ ۱		1 = 7 1 = 7	-	*) 4 (*
P.Reynaud-Bouret	Hawkes		Aussois 2015		69 / 129

Campbell's theorem

Let *N* be a Poisson process with mean measure μ ,

Poisson processes

- for all integer *n*, for all A_1, \ldots, A_n disjoint measurable subsets of \mathbb{X} , N_{A_1}, \ldots, N_{A_n} are independent random variables.
- for all measurable subset A of X, N_A obeys a Poisson law with parameter depending on A and denoted $\mu(A)$.

Campbell's theorem

Let N be a Poisson process with mean measure μ , typically, $d\mu_t = \lambda(t)dt$, with λ deterministic,

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Campbell's theorem

Let N be a Poisson process with mean measure μ , typically, $d\mu_t = \lambda(t)dt$, with λ deterministic,

Campbell's theorem

If f is such that $\int \min(|f(x)|,1)d\mu_x < \infty$, then

$$\mathbb{E}\left(\exp\left[\int f(x)dN_{x}
ight]
ight)=\exp\left(\int\left[e^{f(x)}-1
ight]d\mu_{x}
ight).$$

Image: A math a math

Small proof

Take f piecewise constant, $f=\sum_{I}\alpha_{I}\mathbf{1}_{I}.$ ď, I, I, $\mathbb{E}\left(\exp\left[\int f(x)dN_{x}\right]\right) = \mathbb{E}\left(\prod e^{\alpha_{I}N_{I}}\right)$ $= \prod \mathbb{E}\left(e^{lpha_{I}N_{I}}
ight)$ (by independence) $| \exp((e^{\alpha_I} - 1)\mu_I)$ (Laplace of a Poisson) $= \exp\left(\int (e^{f(x)}-1)d\mu_x\right)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Exponential inequality for Poisson process

Aim

For all $\xi > 0$,

$$\mathbb{P}\left(\int f(x)[dN_x - \lambda(x)dx] \ge ???(y)\right) \le e^{-y}$$

NB : easier this way for interpretation in statistics... (quantile)

Let f be some fixed function (deterministic) and let $\theta > 0$. Apply Campbell's theorem to θf :

$$\mathbb{E}\left(\exp\left[\int \theta f(x)[dN_x - \lambda(x)dx]\right]\right) = \exp\left(\int (e^{\theta f(x)} - \theta f(x) - 1)d\mu_x\right).$$

Exponential inequality for Poisson process

Aim

For all $\xi > 0$,

$$\mathbb{P}\left(\int f(x)[dN_x - \lambda(x)dx] \ge ???(y)\right) \le e^{-y}$$

NB : easier this way for interpretation in statistics... (quantile)

Let f be some fixed function (deterministic) and let $\theta > 0$. Apply Campbell's theorem to θf :

$$\mathbb{E}\left(\exp\left[\int \theta f(x)[dN_{x} - \lambda(x)dx]\right]\right) = \exp\left(\int (e^{\theta f(x)} - \theta f(x) - 1)d\mu_{x}\right).$$

Hence if $E = \exp\left[\int \theta f(x)[dN_{x} - \lambda(x)dx] - \int (e^{\theta f(x)} - \theta f(x) - 1)d\mu_{x}\right],$
$$\mathbb{E}(E) = 1.$$

Therefore for all y > 0

$$\mathbb{P}\left(\int \theta f(x)[dN_x - \lambda(x)dx] \geq \int (e^{\theta f(x)} - \theta f(x) - 1)d\mu_x + y\right) = \mathbb{P}(E \geq e^y)$$

3

イロト イポト イヨト イヨト

Therefore for all y > 0

$$\mathbb{P}\left(\int \theta f(x)[dN_x - \lambda(x)dx] \geq \int (e^{\theta f(x)} - \theta f(x) - 1)d\mu_x + y\right) = \mathbb{P}(E \geq e^y)$$

By Markov,

$$\mathbb{P}\left(\int \theta f(x)[dN_x - \lambda(x)dx] \geq \int (e^{\theta f(x)} - \theta f(x) - 1)d\mu_x + y\right) \leq \mathbb{E}(E)e^{-y}.$$

크

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Therefore for all y > 0

$$\mathbb{P}\left(\int \theta f(x)[dN_x - \lambda(x)dx] \geq \int (e^{\theta f(x)} - \theta f(x) - 1)d\mu_x + y\right) = \mathbb{P}(E \geq e^y)$$

Hence for all $\theta, y > 0$

$$\mathbb{P}\left(\int f(x)[dN_x-\lambda(x)dx]\geq \frac{1}{\theta}\int (e^{\theta f(x)}-\theta f(x)-1)d\mu_x+y/\theta\right)\leq e^{-y}.$$

3

イロト イポト イヨト イヨト

Therefore for all y > 0

$$\mathbb{P}\left(\int \theta f(x)[dN_x - \lambda(x)dx] \geq \int (e^{\theta f(x)} - \theta f(x) - 1)d\mu_x + y\right) = \mathbb{P}(E \geq e^y)$$

Hence for all $\theta, y > 0$

$$\mathbb{P}\left(\int f(x)[dN_x-\lambda(x)dx]\geq \frac{1}{\theta}\int (e^{\theta f(x)}-\theta f(x)-1)d\mu_x+y/\theta\right)\leq e^{-y}.$$

But

$$\begin{aligned} e^{\theta f(x)} - \theta f(x) - 1 &\leq \sum_{k=2}^{\infty} \frac{\theta^k}{k!} \|f\|_{\infty}^{k-2} f(x)^2 \\ &\leq \frac{\theta^2 f(x)^2}{2\left(1 - \frac{\theta \|f\|_{\infty}}{3}\right)} \end{aligned}$$

Let
$$v = \int f(x)^2 d\mu_x$$
.

P.Reynaud-Bouret

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let $v = \int f(x)^2 \lambda(x) dx$. Hence for all $\theta, y > 0$

$$\mathbb{P}\left(\int f(x)[dN_x - \lambda(x)dx] \geq \frac{\theta v}{2\left(1 - \frac{\theta \|f\|_{\infty}}{3}\right)} + y/\theta\right) \leq e^{-y}$$

Let $v = \int f(x)^2 \lambda(x) dx$. Hence for all $\theta, y > 0$

$$\mathbb{P}\left(\int f(x)[dN_x - \lambda(x)dx] \geq \frac{\theta v}{2\left(1 - \frac{\theta \|f\|_{\infty}}{3}\right)} + y/\theta\right) \leq e^{-y}$$

Optimum in $\theta = g(v, ||f||_{\infty}, y)$ and Exponential inequality "à la" Bernstein For all y > 0,

$$\frac{\text{NB}: \text{Si} X \sim \mathcal{N}(m_1 \sigma^2)}{P(xm_1 t) \langle e^{-\frac{L^2}{2\sigma^2}}}$$

ie $P(x-m_2 \sqrt{2\sigma^2 y}) \langle e^{-\frac{L^2}{2\sigma^2}}$

$$\mathbb{P}\left(\int f(x)[dN_x - \lambda(x)dx] \geq \sqrt{2vy} + \frac{\|f\|_{\infty \mathbb{V}}}{3}\right) \leq e^{-y}$$

NB: $v = \mathbb{E}\left(\left[\int f(x)[dN_x - \lambda(x)dx]\right]^2\right) = Var\left(\int f(x)dN_x\right)$. Hence first order Gaussian tail with variance v

P.Reynaud-Bouret

Aussois 2015 74 / 129

Aim

- same kind of exponential inequality for Hawkes (or other general counting process)
- f(.) deterministic has to be replaced by H_t (ex : \mathbf{Rc}_t) predictable
- The "variance" term v should follow $\int H_s dN_s \rightarrow$ expectation given the past.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Aim

- same kind of exponential inequality for Hawkes (or other general counting process)
- f(.) deterministic has to be replaced by H_t (ex : \mathbf{Rc}_t) predictable
- The "variance" term v should follow $\int H_s dN_s \rightarrow$ expectation given the past.
- optional : v still depends on λ , unknown \rightarrow as to be replaced by observable quantity.

3

イロト イポト イヨト イヨト

Martingale

Let N counting process with (predictable) intensity λ . Let H_s be any predictable process and t > u, then

$$\mathbb{E}(H_t dN_t \Big| \text{ past at t}) = H_t \mathbb{E}(dN_t | \text{ past at t}) = H_t \lambda(t) dt$$

3

イロト イポト イヨト イヨト

Martingale

Let N counting process with (predictable) intensity λ . Let H_s be any predictable process and t > u, then

$$\mathbb{E}(H_t dN_t | \text{ past at t}) = H_t \mathbb{E}(dN_t | \text{ past at t}) = H_t \lambda(t) dt$$

$$\mathbb{E}\left(\int_0^\tau H_s[dN_s - \lambda(s)ds] \middle| \text{ past at } \mathsf{u}\right) = \int_0^u H_s[dN_s - \lambda(s)ds]$$

 \rightarrow martingale.

I

크

< ロ > < 同 > < 回 > < 回 > < 回 > <
Bracket

A Stieljes integration by part : whatever the bounded variation càd-làg functions (i.e. works for dN_t , $\lambda(t)dt$ or $dN_t - \lambda((t)dt)$

Bracket

A Stieljes integration by part : whatever the bounded variation càd-làg functions (i.e. works for dN_t , $\lambda(t)dt$ or $dN_t - \lambda((t)dt)$

$$f(t)g(t) = f(0)g(0) + \int_0^t f(s)dg_s + \int_0^t g(s^-)df_s$$

Hence, with $f(t) = g(t) = \int_0^t H_s[dN_s - \lambda(s)ds]$,

$$\left(\int_0^t H_s[dN_s - \lambda(s)ds]\right)^2 = \int_0^t \left(\int_0^s H_u[dN_u - \lambda(u)du]\right) H_s[dN_s - \lambda(s)ds] + \int_0^t \left(\int_0^{s-} H_u[dN_u - \lambda(u)du]\right) H_s[dN_s - \lambda(s)ds]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bracket

A Stieljes integration by part : whatever the bounded variation càd-làg functions (i.e. works for dN_t , $\lambda(t)dt$ or $dN_t - \lambda((t)dt)$

$$f(t)g(t) = f(0)g(0) + \int_0^t f(s)dg_s + \int_0^t g(s^-)df_s$$

Hence, with $f(t) = g(t) = \int_0^t H_s[dN_s - \lambda(s)ds]$,

$$\left(\int_0^t H_s[dN_s - \lambda(s)ds]\right)^2 =$$

 $\int_0^t \left(\int_0^s H_u[dN_u - \lambda(u)du] \right) H_s[dN_s - \lambda(s)ds] + \int_0^t \left(\int_0^{s-} H_u[dN_u - \lambda(u)du] \right) H_s[dN_s - \lambda(s)ds]$

$$=\int_0^t H_s^2 dN_s + \text{ martingale}$$

 $\rightarrow \text{ compensator } (\simeq \text{ variance given the past}) \quad V_t = \int_0^t H_s^2 \lambda(s) ds$ $\text{predictable and } \left(\int_0^t H_s[dN_s - \lambda(s)ds] \right)^2 - V_t \text{ martingale}_{\text{Hawkes}}$ $\text{P.Reynaud-Bouret} \quad \text{Hawkes} \quad \text{Aussois 2015} \quad 77 / 129$

Exponential martingale

Aim : the martingale equivalent of Campbell's theorem.

P.Reynaud-Bo	u	ire	et
--------------	---	-----	----

크

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Exponential martingale

Aim : the martingale equivalent of Campbell's theorem. $\lambda = 1$

$$E_t = \exp\left(\int_0^t H_s[dN_s - \lambda(s)ds] - \int_0^t (e^{H_s} - H_s - 1)\lambda(s)ds
ight)$$

is the unique solution of

$$E_t = E_0 + \int_0^t E_{s-}(e^{H_s}-1)[dN_s-\lambda(s)ds].$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Exponential martingale

Aim : the martingale equivalent of Campbell's theorem.

$$E_t = \exp\left(\int_0^t H_s[dN_s - \lambda(s)ds] - \int_0^t (e^{H_s} - H_s - 1)\lambda(s)ds
ight)$$

is the unique solution of

$$E_t = E_0 + \int_0^t E_{s-}(e^{H_s} - 1)[dN_s - \lambda(s)ds].$$

Hence martingale and $\mathbb{E}(E_t) = E_0 = 1$. NB : eventually, integrability problems, so $\mathbb{E}(E_t) \leq 1$...

イロト イポト イヨト イヨト

Exponential inequality à la Bernstein

 $H_s o heta H_s$ and the corresponding $E_t o E$ in the Poisson Bernstein proof : for all heta, y > 0

$$\mathbb{P}\left(\int_0^t H_s[dN_s - \lambda(s)ds] \ge \frac{\theta V_t}{2\left(1 - \frac{\theta \|H\|_{\infty}}{3}\right)} + y/\theta\right) \le e^{-y}$$

3

イロト イポト イヨト イヨト

Exponential inequality à la Bernstein

 $H_s \to \theta H_s$ and the corresponding $E_t \to E$ in the Poisson Bernstein proof : for all $\theta, y > 0$

$$\mathbb{P}\left(\int_0^t H_s[dN_s - \lambda(s)ds] \ge \frac{\theta V_t}{2\left(1 - \frac{\theta \|H\|_{\infty}}{3}\right)} + y/\theta\right) \le e^{-y}$$

- Assuming ||H||_∞ ≤ b deterministic and known, not a big deal since second order term,
- but assuming $V_t \leq v$ and replacing V_t by v deterministic is not sharp at all!
- However optimising in θ needs a θ deterministic (because ultimately E_t depends on θ)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $S = \{w \le V_t \le v = (1 + \epsilon)^K w\}$ and consider the slice $S_k = \{(1 + \epsilon)^k w \le V_t \le (1 + \epsilon)^{k+1} w)\}$

Let $S = \{w \le V_t \le v = (1 + \epsilon)^K w\}$ and consider the slice $S_k = \{(1 + \epsilon)^k w \le V_t \le (1 + \epsilon)^{k+1} w)\}$

Then

$$\mathbb{P}\left(\int_0^t H_s[dN_s - \lambda(s)ds] \geq \frac{\theta V_t}{2\left(1 - \frac{\theta b}{3}\right)} + y/\theta \text{ and } \mathcal{S}_k\right) \leq e^{-y}$$

Let $S = \{w \le V_t \le v = (1 + \epsilon)^K w\}$ and consider the slice $S_k = \{(1 + \epsilon)^k w \le V_t \le (1 + \epsilon)^{k+1} w)\}$

Then

$$\mathbb{P}\left(\int_0^t H_s[dN_s - \lambda(s)ds] \ge \frac{\theta V_t}{2\left(1 - \frac{\theta b}{3}\right)} + y/\theta \text{ and } \mathcal{S}_k\right) \le e^{-y}$$
$$\mathbb{P}\left(\int_0^t H_s[dN_s - \lambda(s)ds] \ge \frac{\theta(1 + \epsilon)^{k+1}w}{2\left(1 - \frac{\theta b}{3}\right)} + y/\theta \text{ and } \mathcal{S}_k\right) \le e^{-y}$$

Let $S = \{w \le V_t \le v = (1 + \epsilon)^K w\}$ and consider the slice $\mathcal{S}_k = \{(1+\epsilon)^k w \le V_t \le (1+\epsilon)^{k+1} w)\}$

Then

$$\mathbb{P}\left(\int_{0}^{t} H_{s}[dN_{s} - \lambda(s)ds] \geq \frac{\theta V_{t}}{2\left(1 - \frac{\theta b}{3}\right)} + y/\theta \text{ and } \mathcal{S}_{k}\right) \leq e^{-y}$$

$$\mathbb{P}\left(\int_{0}^{t} H_{s}[dN_{s} - \lambda(s)ds] \geq \frac{\theta(1 + \epsilon)^{k+1}w}{2\left(1 - \frac{\theta b}{3}\right)} + y/\theta \text{ and } \mathcal{S}_{k}\right) \leq e^{-y}$$
re choose $\theta = g((1 + \epsilon)^{k+1}w, b, y)$ optimising ...
$$\mathbb{P}\left(\int_{0}^{t} H_{s}[dN_{s} - \lambda(s)ds] \geq \sqrt{2(1 + \epsilon)^{k+1}wy} + \frac{by}{2} \text{ and } \mathcal{S}_{k}\right) \leq e^{-y}$$

Her

$$\mathbb{P}\left(\int_0^t \textit{H}_{s}[\textit{dN}_{s} - \lambda(s)\textit{ds}] \geq \sqrt{2(1+\epsilon)^{k+1}wy} + \frac{by}{3} \text{ and } \mathcal{S}_k\right) \leq e^{-y}$$

Let $S = \{w \le V_t \le v = (1 + \epsilon)^K w\}$ and consider the slice $S_k = \{(1 + \epsilon)^k w \le V_t \le (1 + \epsilon)^{k+1} w)\}$

Then

$$\mathbb{P}\left(\int_{0}^{t} H_{s}[dN_{s} - \lambda(s)ds] \geq \frac{\theta V_{t}}{2\left(1 - \frac{\theta b}{3}\right)} + y/\theta \text{ and } \mathcal{S}_{k}\right) \leq e^{-y}$$

$$\mathbb{P}\left(\int_{0}^{t} H_{s}[dN_{s} - \lambda(s)ds] \geq \frac{\theta(1 + \epsilon)^{k+1}w}{2\left(1 - \frac{\theta b}{3}\right)} + y/\theta \text{ and } \mathcal{S}_{k}\right) \leq e^{-y}$$
Here choose $\theta = g((1 + \epsilon)^{k+1}w, b, y)$ optimising ...
$$\mathbb{P}\left(\int_{0}^{t} H_{s}[dN_{s} - \lambda(s)ds] \geq \sqrt{2(1 + \epsilon)^{k+1}wy} + \frac{by}{3} \text{ and } \mathcal{S}_{k}\right) \leq e^{-y}$$

$$\mathbb{P}\left(\int_{0}^{t} H_{s}[dN_{s} - \lambda(s)ds] \geq \sqrt{2(1 + \epsilon)V_{t}y} + \frac{by}{3} \text{ and } \mathcal{S}_{k}\right) \leq e^{-y}$$

P.Reynaud-Bouret

Aussois 2015 80 / 129

Almost there

Grouping the slices

$$\mathbb{P}\left(\int_0^t H_s[dN_s - \lambda(s)ds] \geq \sqrt{2(1+\epsilon)V_ty} + \frac{by}{3} \text{ and } \mathcal{S}\right) \leq K e^{-y}$$

∃ 990

イロト イヨト イヨト イヨト

Almost there

Grouping the slices

$$\mathbb{P}\left(\int_0^t H_s[dN_s - \lambda(s)ds] \geq \sqrt{2(1+\epsilon)V_ty} + \frac{by}{3} \text{ and } \mathcal{S}\right) \leq Ke^{-y}$$

But $V_t = \int_0^t H_s^2 \lambda(s) ds$, still depends on the unknown λ

▲ロ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ● ● ●

Almost there

Grouping the slices

$$\mathbb{P}\left(\int_0^t H_s[dN_s - \lambda(s)ds] \geq \sqrt{2(1+\epsilon)V_ty} + \frac{by}{3} \text{ and } \mathcal{S}\right) \leq Ke^{-y}$$

But $V_t = \int_0^t H_s^2 \lambda(s) ds$, still depends on the unknown $\lambda \rightarrow$ one more turn using the fact that

$$\hat{V}_t = \int_0^t H_s^2 dN_s$$

is observable and

$$\hat{V}_t - V_t = martingale$$

(日) (圖) (E) (E) (E)

Bernstein-type inequality for general counting process (Hansen, RB, Rivoirard)

Let $(H_s)_{s\geq 0}$ be a predictable process and $M_t = \int_0^t H_s(dN_s - \lambda(s)ds)$. Let b > 0 and v > w > 0. For all $x, \mu > 0$ such that $\mu > \phi(\mu)$, let

$$\hat{V}^{\mu}_{\tau}=rac{\mu}{\mu-\phi(\mu)}\int_{0}^{ au}H_{s}^{2}dN_{s}+rac{b^{2}x}{\mu-\phi(\mu)},$$

where $\phi(u) = \exp(u) - u - 1$. Then for every stopping time τ and every $\varepsilon > 0$

$$\mathbb{P}\left(M_{\tau} \geq \sqrt{2(1+\varepsilon)\hat{V}_{\tau}^{\mu}x} + bx/3, \quad w \leq \hat{V}_{\tau}^{\mu} \leq v \text{ and } \sup_{s \in [0,\tau]} |H_s| \leq b\right)$$
$$\leq 2\frac{\log(v/w)}{\log(1+\varepsilon)}e^{-x}.$$

 \rightsquigarrow a generic choice of d for the Lasso whatever the underlying process..., $_{n,n,n}$

In the Hawkes case, $H_s
ightarrow \mathbf{Rc}_s$, renormalized counts in small intervals.

• Hence there is no absolute v or b.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In the Hawkes case, $H_s
ightarrow \mathbf{Rc}_s$, renormalized counts in small intervals.

- Hence there is no absolute v or b.
- If controlled number of points in small intervals via exponential inequality, then can find v and b such that $\mathbb{P}(V_t \ge v \text{ or } ||H||_{\infty} \ge b)$ exponentially small

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In the Hawkes case, $H_s \rightarrow \mathbf{Rc}_s$, renormalized counts in small intervals.

- Hence there is no absolute v or b.
- If controlled number of points in small intervals via exponential inequality, then can find v and b such that $\mathbb{P}(V_{\mu}t \geq v \text{ or } \|H\|_{\infty} \geq b)$ exponentially small
- Use to stop the martingale before $\bigvee_{\mu=-\phi(\mu)}^{\wedge}$ reaches level ν (same for b) one can always choose $w = \frac{b^2 x}{\mu \phi(\mu)}$, nice since cannot stop the martingale on this side.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In the Hawkes case, $H_s
ightarrow \mathbf{Rc}_s$, renormalized counts in small intervals.

- Hence there is no absolute v or b.
- If controlled number of points in small intervals via exponential inequality, then can find v and b such that $\mathbb{P}(\bigvee_{\mu t}^{r} \geq v \text{ or } ||H||_{\infty} \geq b)$ exponentially small
- Use to stop the martingale before V_{t} reaches level v (same for b)
- one can always choose $w = \frac{b^2 x}{\mu \phi(\mu)}^{f}$, nice since cannot stop the martingale on this side.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lasso criterion

$$\hat{\mathbf{a}}^{(r)} = \operatorname{argmin}_{\mathbf{a}} \{ \gamma_{\mathcal{T}}(\lambda_{\mathbf{a}}^{(r)}) + \operatorname{pen}(\mathbf{a}) \}$$

$$= \operatorname{argmin}_{\mathbf{a}} \{ -2\mathbf{a}'\mathbf{b}_r + \mathbf{a}'\mathbf{G}\mathbf{a} + 2(\mathbf{d}^{(r)})' |\mathbf{a}| \}$$

M number of interacting processes, K number of bins, A maximal interaction delay.

Oracle inequality in probability

If $\mathbf{d} = \sqrt{2(1+arepsilon)\hat{V}^{\mu}_{T}x + bx/3}$ then with probability larger than

 $1 - \Box M^2 K \log(T)^2 e^{-x} - \mathbb{P}(\forall t < T, i, N^i_{[t-A,t]} > \Box \log(T)^2) - \mathbb{P}(\textbf{G} \not\geq c\textbf{\textit{I}})$

Lasso criterion

$$\hat{\mathbf{a}}^{(r)} = \operatorname{argmin}_{\mathbf{a}} \{ \gamma_{\mathcal{T}}(\lambda_{\mathbf{a}}^{(r)}) + \operatorname{pen}(\mathbf{a}) \}$$

= $\operatorname{argmin}_{\mathbf{a}} \{ -2\mathbf{a}'\mathbf{b}_r + \mathbf{a}'\mathbf{G}\mathbf{a} + 2(\mathbf{d}^{(r)})' |\mathbf{a}| \}$

M number of interacting processes, K number of bins, A maximal interaction delay.

Oracle inequality in probability

If $\mathbf{d} = \sqrt{2(1+arepsilon)\hat{V}^{\mu}_{T}x + bx/3}$ then with probability larger than

$$1 - \Box M^2 K \log(\mathcal{T})^2 e^{-x} - \mathbb{P}(\forall t < \mathcal{T}, i, N^i_{[t-\mathcal{A}, t]} > \Box \log(\mathcal{T})^2) - \mathbb{P}(\mathbf{G} \geq cl)$$

$$\sum_{r} \|\lambda^{(r)} - \mathbf{R}\mathbf{c}_t \hat{\mathbf{a}}^{(r)}\|^2 \leq \Box \inf_{\mathbf{a}} \left\{ \sum_{r} \|\lambda^{(r)} - \mathbf{R}\mathbf{c}_t \mathbf{a}\|^2 + \frac{1}{c} \sum_{i \in supp(\mathbf{a})} (d_i^{(r)})^2 \right\}.$$

Mathematical debts

- Control of the number of points per interval
- Control of c the smallest eigenvalue of G
- Choice of *x*.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

Point process and Counting process

2 Multivariate Hawkes processes and Lasso

Probabilistic ingredients

• Exponential inequalities (Concentration of measure)

• Controls via a branching structure

- Branching structure
- Number of points
- ${\color{black} \bullet}$ Control of ${\color{black} G}$

4) Back to Lasso

5 PDE and point processes

→ ∃ →

• Start = homogeneous Poisson (ν) = ancestors

・ロト ・同ト ・ヨト ・ヨ

- Linear Hawkes process= Branching process on a Poisson process
- Start = homogeneous Poisson (ν) = ancestors
- Each point generates children according to a Poisson process of intensity h

- Linear Hawkes process= Branching process on a Poisson process
- Start = homogeneous Poisson (ν) = ancestors
- Each point generates children according to a Poisson process of intensity h

- Linear Hawkes process= Branching process on a Poisson process
- Start = homogeneous Poisson (ν) = ancestors
- Each point generates children according to a Poisson process of intensity *h*
- Again and again until extinction (almost sure when $\int h < 1$)

- Linear Hawkes process= Branching process on a Poisson process
- Start = homogeneous Poisson (ν) = ancestors
- Each point generates children according to a Poisson process of intensity *h*
- Again and again until extinction (almost sure when $\int h < 1$)

- Linear Hawkes process= Branching process on a Poisson process
- Start = homogeneous Poisson (ν) = ancestors
- Each point generates children according to a Poisson process of intensity *h*
- Again and again until extinction (almost sure when $\int h < 1$)

→ Ξ →

- Linear Hawkes process= Branching process on a Poisson process
- Start = homogeneous Poisson (ν) = ancestors
- Each point generates children according to a Poisson process of intensity h
- Again and again until extinction (almost sure when $\int h < 1$)
- Hawkes= Final process without colors

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A branching representation of the linear Hawkes model (multivariate)

Univariate and multivariate clusters

			1 = 1	1 = 1	-	*) 4(*
P.Reynaud-Bouret	Hawkes		Auss	ois 2015		89 / 129

Univariate and multivariate clusters

If multivariate, the distribution of the cluster depends on the type of the ancestor.

If ancestor of type $\ell \to \mathbb{E}_{\ell}$.

- K(n) vector of the number of points per type in the *n*th generation
- If ancestor of type ℓ , $K(0) = e_{\ell}$

(日) (圖) (E) (E) (E)

If ancestor of type $\ell \to \mathbb{E}_{\ell}$.

- K(n) vector of the number of points per type in the *n*th generation
- If ancestor of type ℓ , $K(0) = e_{\ell}$
- $W(n) = \sum_{0}^{n} K(1)$: number of points in the cluster per type up to generation n

(日) (圖) (E) (E) (E)

If ancestor of type $\ell \to \mathbb{E}_{\ell}$.

- K(n) vector of the number of points per type in the *n*th generation
- If ancestor of type ℓ , $K(0) = e_{\ell}$
- $W(n) = \sum_{0}^{n} K(n)$: number of points in the cluster per type up to generation n
- Has W = W(∞) a Laplace transform? i.e. can we find a vector θ of positive coordinates such that

$$\mathbb{E}_{\ell}\left(e^{\theta'W(\infty)}\right) < \infty$$

If ancestor of type $\ell \to \mathbb{E}_{\ell}$.

- K(n) vector of the number of points per type in the *n*th generation
- If ancestor of type ℓ , $K(0) = e_{\ell}$
- $W(n) = \sum_{0}^{n} K(\frac{1}{2})$: number of points in the cluster per type up to generation n
- Has W = W(∞) a Laplace transform? i.e. can we find a vector θ of positive coordinates such that

$$\mathbb{E}_{\ell}\left(e^{\theta'W(\infty)}\right) < \infty$$

If yes,

$$\mathbb{P}_{\ell}(N_{tot} \geq x) \leq \mathbb{E}_{\ell}\left(e^{\min_{i}(\theta_{i})N_{tot}}\right)e^{-\min_{i}(\theta_{i})x} \leq \mathbb{E}_{\ell}\left(e^{\theta'W(\infty)}\right)e^{-\min_{i}(\theta_{i})x}$$

exponentially small

P.Reynaud-Bouret

Laplace transform for the cluster

$$egin{aligned} \phi(heta)' &= (\phi_1(heta),...,\phi_M(heta)), \ \phi_\ell(heta) &= \log \mathbb{E}_\ell(e^{ heta'K(1)}). \end{aligned}$$

э.

イロト イヨト イヨト イヨト

Laplace transform for the cluster

$$egin{aligned} \phi(heta)' &= (\phi_1(heta),...,\phi_M(heta)), \ \phi_\ell(heta) &= \log \mathbb{E}_\ell(e^{ heta'K(1)}). \end{aligned}$$

$$\mathbb{E}_{\ell}\left(e^{\theta'W(n)}\right) = \mathbb{E}_{\ell}\left(e^{\theta'W(n-1)}\mathbb{E}\left[e^{\theta'K(n)}\middle| \text{ generations} < n\right]\right)$$

э.

イロト イヨト イヨト イヨト

Laplace transform for the cluster

$$\phi(heta)' = (\phi_1(heta), ..., \phi_M(heta)),$$

 $\phi_\ell(heta) = \log \mathbb{E}_\ell(e^{ heta' K(1)}).$

$$\mathbb{E}_{\ell} \left(e^{\theta' W(n)} \right) = \mathbb{E}_{\ell} \left(e^{\theta' W(n-1)} \mathbb{E} \left[e^{\theta' K(n)} \right| \text{ generations} < n \right] \right)$$

$$= \mathbb{E}_{\ell} \left(e^{\theta' W(n-1)} e^{\phi(\theta)' K(n-1)} \right)$$

$$= \exp(u_n(\theta)_{\ell})$$

with $u_n(\theta) = \theta + \phi(u_{n-1}(\theta)), u_0(\theta) = \theta$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Laplace transform for the cluster(2)

If ϕ local contraction for a certain norm $\|.\|$: there exists r > 0 and C < 1 st if $\|s\| < r$ then

 $\|\phi(s)\|\leq C\|s\|.$

P.Reyna	ud-E	Souret
---------	------	--------

3

イロト イポト イヨト イヨト

Laplace transform for the cluster(2)

If ϕ local contraction for a certain norm $\|.\|$: there exists r>0 and C<1 st if $\|s\| < r$ then

 $\|\phi(s)\|\leq C\|s\|.$

 $||f|||\theta|| \leq r(1-C),$

$$\|u_n(\theta)\| \leq \|\theta\| + \|\phi(u_{n-1}(\theta))\|$$

$$\leq \|\theta\| + C\|u_{n-1}(\theta)\|$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Laplace transform for the cluster(2)

If ϕ local contraction for a certain norm $\|.\|$: there exists r > 0 and C < 1 st if $\|s\| < r$ then

 $\|\phi(s)\|\leq C\|s\|.$

 $||f||| \theta || \le r(1-C),$

$$\begin{aligned} |u_n(\theta)| &\leq \|\theta\| + \|\phi(u_{n-1}(\theta))\| \\ &\leq \|\theta\| + C\|u_{n-1}(\theta)\| \\ &\leq \|\theta\|(1+C+\ldots+C^n) \\ &\leq \frac{\|\theta\|}{1-C} \leq r \end{aligned}$$

Hence each coordinate of $u_n(\theta)$ increases (since W(n) increases but remains in a compact set. Therefore it converges and for θ small enough, $W(\infty)$ has a Laplace transform.

K(1) has a Laplace transform (only thing needed \Leftarrow it's Poisson).

$$\phi_\ell(heta) = \log \mathbb{E}_\ell(e^{ heta' K(1)}).$$

Hence $\partial \phi(0) = \Gamma = (\int h_{\ell}^{(m)})_{\ell,m}$ with spectral radius < 1.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

K(1) has a Laplace transform (only thing needed \Leftarrow it's Poisson).

 $\phi_{\ell}(\theta) = \log \mathbb{E}_{\ell}(e^{\theta' K(1)}).$

Hence $\partial \phi(0) = \Gamma = (\int h_{\ell}^{(m)})_{\ell,m}$ with spectral radius < 1.

Householder theorem

there exists a norm on \mathbb{R}^M s.t. the associated operator norm of $\Gamma < 1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

K(1) has a Laplace transform (only thing needed \Leftarrow it's Poisson).

 $\phi_{\ell}(\theta) = \log \mathbb{E}_{\ell}(e^{\theta' K(1)}).$

Hence $\partial \phi(0) = \Gamma = (\int h_{\ell}^{(m)})_{\ell,m}$ with spectral radius < 1.

Householder theorem

there exists a norm on \mathbb{R}^M s.t. the associated operator norm of $\Gamma < 1$

By continuity (ϕ infinitely differentiable in a neighborhood of 0),

$$\exists c \in (0,1), \xi > 0, \quad \forall \|s\| < \xi, \quad \|\partial \phi(s)\| \le c.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

K(1) has a Laplace transform (only thing needed \Leftarrow it's Poisson).

 $\phi_{\ell}(\theta) = \log \mathbb{E}_{\ell}(e^{\theta' K(1)}).$

Hence $\partial \phi(0) = \Gamma = (\int h_{\ell}^{(m)})_{\ell,m}$ with spectral radius < 1.

Householder theorem

there exists a norm on \mathbb{R}^M s.t. the associated operator norm of $\Gamma < 1$

By continuity (ϕ infinitely differentiable in a neighborhood of 0),

$$\exists c \in (0,1), \xi > 0, \quad \forall \|s\| < \xi, \quad \|\partial \phi(s)\| \leq c.$$

Since $\phi(0) = 0$, by continuity

 $\exists C \in (0,1), r > 0, \quad \forall \|s\| < r, \quad \| \ \phi(s)\| \leq C \|s\|.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Number of points for Hawkes processes per interval

Assume

- stationary (spectral radius of $\Gamma < 1$)
- *h* has bounded support.

・ロト ・ 同ト ・ ヨト ・ ヨ

Number of points for Hawkes processes per interval

Assume

Number of points for Hawkes processes per interval(2)

Let
$$H_n(\theta_\ell) = \mathbb{E}_\ell \left(e^{\theta_\ell \max\{W - n + \lceil A \rceil, 0\}} \right)$$
, then
 $\mathbb{E} \left(e^{\theta_\ell \tilde{N}_{A,\ell}} \right) \leq \prod_n \mathbb{E}(H_n(\theta_\ell)^{A_n})$
 $\leq \prod_n \exp\left(\nu_\ell(H_n(\theta_\ell) - 1)\right)$

Since W has a Laplace transform, H_n exponentially decreasing with n and it converges.

(日) (同) (三) (三)

Number of points for Hawkes processes per interval(2)

Let
$$H_n(heta_\ell) = \mathbb{E}_\ell \left(e^{ heta_\ell \max\{W - n + \lceil A \rceil, 0\}} \right)$$
, then

$$\mathbb{E}\left(e^{ heta_{\ell} ilde{N}_{A,\ell}}
ight) \hspace{.1in} \leq \hspace{.1in} \prod_n \mathbb{E}(H_n(heta_{\ell})^{\mathcal{A}_n}) \ \leq \hspace{.1in} \prod_n \exp\left(
u_{\ell}(H_n(heta_{\ell})-1)
ight)$$

Since W has a Laplace transform, H_n exponentially decreasing with n and it converges.

 \rightarrow Laplace transform of $N_{[-A,0)}$ exists

 $\rightarrow \mathbb{P}(N_{[-A,0)} > y)$ exponentially small...

NB : true as soon as the branching distribution has a Laplace, constant unknown... depends on M !!!

(日) (圖) (E) (E) (E)

The expectation of G

Recall that

$$\eta_{\mathbf{a}}(t) = \mathbf{R}\mathbf{c}'_{t}\mathbf{a} = \nu + \sum_{k} a_{k} \int_{-\infty}^{t} \delta^{-1/2} \mathbf{1}_{[t-(k+1)\delta, t-k\delta]} dN_{t-u}$$
$$\mathbf{a}'\mathbf{G}\mathbf{a} = \int_{0}^{T} \eta_{\mathbf{a}}(t)^{2} dt$$

P.R	leyr	าลน	d-l	Bo	ure	ŧt
-----	------	-----	-----	----	-----	----

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

The expectation of G

Recall that

$$\eta_{\mathbf{a}}(t) = \mathbf{R}\mathbf{c}_{t}'\mathbf{a} = \nu + \sum_{k} a_{k} \int_{-\infty}^{t} \delta^{-1/2} \mathbf{1}_{[t-(k+1)\delta, t-k\delta]} dN_{t-u}$$

$$\mathbf{a}'\mathbf{G}\mathbf{a} = \int_0^t \eta_{\mathbf{a}}(t)^2 dt$$

Hence

$$\mathbb{E}(\mathsf{G}) \geq c l \Longleftrightarrow orall \mathbf{a}, \mathbb{E}(\int_0^T \eta_{\mathsf{a}}(t)^2 dt) \geq c \|\mathbf{a}\|^2.$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

The expectation of G

Recall that

$$\eta_{\mathbf{a}}(t) = \mathbf{R}\mathbf{c}'_{t}\mathbf{a} = \nu + \sum_{k} a_{k} \int_{-\infty}^{t} \delta^{-1/2} \mathbf{1}_{[t-(k+1)\delta, t-k\delta]} dN_{t-u}$$

$$\mathbf{a}'\mathbf{G}\mathbf{a} = \int_0^t \eta_{\mathbf{a}}(t)^2 dt$$

Hence

$$\mathbb{E}(\mathbf{G}) \geq c \boldsymbol{l} \Longleftrightarrow orall \mathbf{a}, \mathbb{E}(\int_0^T \eta_{\mathbf{a}}(t)^2 dt) \geq c \|\mathbf{a}\|^2.$$

If the process is stationnary $\mathbb{E}(\eta_{\mathbf{a}}(t)^2)$ does not depend on t. Hence we want to show that $c = T\alpha$ with $\mathbb{E}(\eta_{\mathbf{a}}(0)^2) \ge \alpha \|\mathbf{a}\|^2$. Then we need to concentrate $\frac{1}{T}\mathbf{G}$ around its expectation.

Minoration of the expectation

If

$$\eta_{\mathbf{a}}(t) = \nu + \sum_{k} a_{k} \int_{-\infty}^{t} \delta^{-1/2} \mathbf{1}_{[t-(k+1)\delta, t-k\delta]} dN_{t-u}$$

and N homogeneous Poisson process, then we can find α s.t. $\mathbb{E}(\eta_{\mathbf{a}}(0)^2) \geq \alpha \|\mathbf{a}\|^2$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Minoration of the expectation

If

$$\eta_{\mathbf{a}}(t) = \nu + \sum_{k} a_{k} \int_{-\infty}^{t} \delta^{-1/2} \mathbf{1}_{[t-(k+1)\delta, t-k\delta]} dN_{t-u}$$

and N homogeneous Poisson process, then we can find α s.t. $\mathbb{E}(\eta_{\mathbf{a}}(0)^2) \geq \alpha \|\mathbf{a}\|^2$.

- Use the likelihood and Girsanov theorem, to transfer the minoration for Poisson to another minoration for Hawkes....
- because of the likelihood, need again to have a Laplace transform of the number of points...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(Univariate)

• Cluster = ancestor in 0 + all its family

P.Reynaud-Bouret	
------------------	--

æ

Image: A match a ma

(Univariate)

• Cluster = ancestor in 0 + all its family

(Univariate)

• Cluster = ancestor in 0 + all its family

- Size of cluster $H \leq GW * A$ where A maximal support size for h
- and GW total number of births in a Galton-Watson process (Poisson(∫ h)).

▲ □ ▶ ▲ □ ▶ ▲

(Univariate)

• Cluster = ancestor in 0 + all its family

- Size of cluster $H \leq GW * A$ where A maximal support size for h
- and GW total number of births in a Galton-Watson process (Poisson(∫ h)).
- Hence $\mathbb{P}(H > t)$ exponentially small

▲ @ ▶ ▲ @ ▶ ▲

• Extinction time Te = time from 0 until the last birth, if no ancestor after 0

P. Revnaud-Dourei	P.Rev	vnaud-Bouret	
-------------------	-------	--------------	--

크

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Extinction time $\mathsf{Te}=\mathsf{time}$ from 0 until the last birth, if no ancestor after 0

Poisson ancestor process before 0 marked by the size of the associated cluster, H

P.Reynaud-Bouret

• Extinction time Te = time from 0 until the last birth, if no ancestor after 0

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Extinction time Te = time from 0 until the last birth, if no ancestor after 0

3

< ロ > < 同 > < 回 > < 回 > < 回

• Extinction time $\mathsf{Te}=\mathsf{time}$ from 0 until the last birth, if no ancestor after 0

- Hence $\mathbb{P}(\text{Te} > a)$ exponentially small
- Approximated simulation of a stationnary Hawkes process.

< ロ > < 同 > < 回 > < 回 > < 回

• Extinction time Te = time from 0 until the last birth, if no ancestor after 0

- Hence $\mathbb{P}(\text{Te} > a)$ exponentially small
- Approximated simulation of a stationnary Hawkes process.
- For exact simulation see work of Möller etc

< □ > < 同 > < 回 > < 回 > < 回

P.Re	ynau	ud-B	ouret
------	------	------	-------

<ロト < 団ト < 団ト < 団ト

3

Cut [0, T] in almost independent pieces (cf Berbee's lemma, discrete case (Baraud, Comte et Viennet))

э

通下 イヨト イ

Cut [0, T] in almost independent pieces (cf Berbee's lemma, discrete case (Baraud,Comte et Viennet))

• Control of the total variation distance.

Cut [0, T] in almost independent pieces (cf Berbee's lemma, discrete case (Baraud,Comte et Viennet))

- Control of the total variation distance.
- Up to this error = sum of two groups of independent variables.

Cut [0, T] in almost independent pieces (cf Berbee's lemma, discrete case (Baraud,Comte et Viennet))

- Control of the total variation distance.
- Up to this error = sum of two groups of independent variables.
- All concentration inequalities for i.i.d. variables apply (Bernstein ...)

Table of Contents

- Point process and Counting process
- 2) Multivariate Hawkes processes and Lasso
- 3) Probabilistic ingredients
- 4 Back to Lasso
 - Theory
 - Simulations

P.R	eyn	aud-	Bou	ret
-----	-----	------	-----	-----

(日)

Lasso criterion

$$\hat{\mathbf{a}}^{(r)} = \operatorname{argmin}_{\mathbf{a}} \{ \gamma_{\mathcal{T}}(\lambda_{\mathbf{a}}^{(r)}) + \operatorname{pen}(\mathbf{a}) \}$$

= $\operatorname{argmin}_{\mathbf{a}} \{ -2\mathbf{a}'\mathbf{b}_r + \mathbf{a}'\mathbf{G}\mathbf{a} + 2(\mathbf{d}^{(r)})' |\mathbf{a}| \}$

M number of interacting processes, K number of bins, A maximal interaction delay. If linear stationnary Hawkes

Oracle inequality in probability

If
$${f d}=\sqrt{2(1+arepsilon)\hat{V}^{\mu}_{T}x+bx/3}$$
 then with probability larger than

$$1 - \Box M^2 K \log(T)^2 e^{-x} - \mathbb{P}(\forall t < T, i, N^i_{[t-A,t]} > \Box \log(T)^2) - \mathbb{P}(\mathbf{G} \not\geq \Box \mathbf{I} / T)$$

Lasso criterion

$$\hat{\mathbf{a}}^{(r)} = \operatorname{argmin}_{\mathbf{a}} \{ \gamma_{\mathcal{T}}(\lambda_{\mathbf{a}}^{(r)}) + \operatorname{pen}(\mathbf{a}) \}$$

= $\operatorname{argmin}_{\mathbf{a}} \{ -2\mathbf{a}'\mathbf{b}_r + \mathbf{a}'\mathbf{G}\mathbf{a} + 2(\mathbf{d}^{(r)})' |\mathbf{a}| \}$

M number of interacting processes, K number of bins, A maximal interaction delay. If linear stationnary Hawkes

Oracle inequality in probability

If ${f d}=\sqrt{2(1+arepsilon)\hat{V}^{\mu}_{T}x+bx/3}$ then with probability larger than

$$1 - \Box M^2 K \log(T)^2 e^{-x} - \mathbb{P}(\forall t < T, i, N^i_{[t-A,t]} > \Box \log(T)^2) - \mathbb{P}(\mathbf{G} \not\geq \Box I / T)$$

$$\sum_{r} \|\lambda^{(r)} - \mathbf{R}\mathbf{c}_{t}\hat{\mathbf{a}}^{(r)}\|^{2} \leq \Box \inf_{\mathbf{a}} \left\{ \sum_{r} \|\lambda^{(r)} - \mathbf{R}\mathbf{c}_{t}\mathbf{a}\|^{2} + \frac{1}{T} \sum_{i \in supp(\mathbf{a})} (d_{i}^{(r)})^{2} \right\}.$$

Lasso criterion...

$$\hat{\mathbf{a}}^{(r)} = \operatorname{argmin}_{\mathbf{a}} \{ \gamma_{\mathcal{T}}(\lambda_{\mathbf{a}}^{(r)}) + \operatorname{pen}(\mathbf{a}) \}$$

$$= \operatorname{argmin}_{\mathbf{a}} \{ -2\mathbf{a}'\mathbf{b}_r + \mathbf{a}'\mathbf{G}\mathbf{a} + 2(\mathbf{d}^{(r)})' |\mathbf{a}| \}$$

M number of interacting processes, *K* number of bins, *A* maximal interaction delay. If linear stationnary Hawkes and *K* not too large $(K \le \sqrt{T}/\log(T)^3)$

Oracle inequality in probability

If $\mathbf{d} = \sqrt{2(1+arepsilon)}\hat{V}^{\mu}_{T}x + bx/3$ then with probability larger than

$$1 - \Box M^2 K \log(T)^2 e^{-x} - \Box T^{-1}$$

Lasso criterion...

$$\hat{\mathbf{a}}^{(r)} = \operatorname{argmin}_{\mathbf{a}} \{ \gamma_{\mathcal{T}}(\lambda_{\mathbf{a}}^{(r)}) + \operatorname{pen}(\mathbf{a}) \}$$

= $\operatorname{argmin}_{\mathbf{a}} \{ -2\mathbf{a}'\mathbf{b}_r + \mathbf{a}'\mathbf{G}\mathbf{a} + 2(\mathbf{d}^{(r)})' |\mathbf{a}| \}$

M number of interacting processes, K number of bins, A maximal interaction delay. If linear stationnary Hawkes and K not too large $(K < \sqrt{T} / \log(T)^3)$

Oracle inequality in probability

If $\mathbf{d} = \sqrt{2(1+arepsilon)}\hat{V}^{\mu}_{T}x + bx/3$ then with probability larger than

$$1 - \Box M^2 K \log(T)^2 e^{-x} - \Box T^{-1}$$

$$\sum_{r} \|\lambda^{(r)} - \mathbf{R}\mathbf{c}_{t}\hat{\mathbf{a}}^{(r)}\|^{2} \leq \Box \inf_{\mathbf{a}} \left\{ \sum_{r} \|\lambda^{(r)} - \mathbf{R}\mathbf{c}_{t}\mathbf{a}\|^{2} + \frac{1}{T} \sum_{i \in supp(\mathbf{a})} (d_{i}^{(r)})^{2} \right\}.$$
P.Revnaud-Bouret Hawkes Aussois 2015 103 / 129

If
$$x = \gamma \log(T)$$
, with probability larger than

$$1 - M^2 K \log(T)^2 T^{-\gamma} - \Box T^{-1}$$

$$\sum_r \|\lambda^{(r)} - \mathbf{Rc}_t \hat{\mathbf{a}}^{(r)}\|^2 \le \Box \inf_{\mathbf{a}} \left\{ \sum_r \|\lambda^{(r)} - \mathbf{Rc}_t \mathbf{a}\|^2 + \frac{1}{T} \sum_{i \in supp(\mathbf{a})} (d_i^{(r)})^2 \right\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

.

If $x = \gamma \log(T)$, with probability larger than

$$1 - M^2 \mathcal{K} \log(T)^2 T^{-\gamma} - \Box T^{-1}$$
$$\sum_r \|\lambda^{(r)} - \mathbf{R} \mathbf{c}_t \hat{\mathbf{a}}^{(r)}\|^2 \le \Box \inf_{\mathbf{a}} \left\{ \sum_r \|\lambda^{(r)} - \mathbf{R} \mathbf{c}_t \mathbf{a}\|^2 + \frac{1}{T} \sum_{i \in supp(\mathbf{a})} (d_i^{(r)})^2 \right\}$$

• good renormalization by $T \rightsquigarrow$, if piecewise constant true,

loss on interaction function
$$\leq 0 + \frac{|\mathbf{a}^*|_0 \log(\mathcal{T})^3}{\mathcal{T}}$$

with probability larger than $1 - \Box M^2 K \log(T)^2 T^{-\gamma} - \Box T^{-1}$

P.Reynaud-Bouret

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

If $x = \gamma \log(T)$, with probability larger than

$$1 - M^2 \mathcal{K} \log(T)^2 T^{-\gamma} - \Box T^{-1}$$
$$\sum_r \|\lambda^{(r)} - \mathbf{R} \mathbf{c}_t \hat{\mathbf{a}}^{(r)}\|^2 \le \Box \inf_{\mathbf{a}} \left\{ \sum_r \|\lambda^{(r)} - \mathbf{R} \mathbf{c}_t \mathbf{a}\|^2 + \frac{1}{T} \sum_{i \in supp(\mathbf{a})} (d_i^{(r)})^2 \right\}$$

• If distance bounded (reasonable),

$$\mathbb{E}(\text{ loss }) \leq \underline{\mathbb{I}}\frac{|\mathbf{a}^*|_0 \log(T)^3}{T} + \Box M^2 K \log(T)^2 T^{-\gamma} + \Box T^{-1}$$

E 990

・ロト ・四ト ・ヨト ・ヨト

If $x = \gamma \log(T)$, with probability larger than

$$1 - M^2 \mathcal{K} \log(T)^2 T^{-\gamma} - \Box T^{-1}$$
$$\sum_r \|\lambda^{(r)} - \mathbf{R} \mathbf{c}_t \hat{\mathbf{a}}^{(r)}\|^2 \le \Box \inf_{\mathbf{a}} \left\{ \sum_r \|\lambda^{(r)} - \mathbf{R} \mathbf{c}_t \mathbf{a}\|^2 + \frac{1}{T} \sum_{i \in supp(\mathbf{a})} (d_i^{(r)})^2 \right\}$$

• If distance bounded (reasonable),

$$\mathbb{E}(\text{ loss }) \leq \mathbb{I}\frac{|\mathbf{a}^*|_0 \log(T)^3}{T} + \Box M^2 K \log(T)^2 T^{-\gamma} + \Box T^{-1}$$

• Hence $\gamma > 1$

= 990

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $x = \gamma \log(T)$, with probability larger than

$$1 - M^2 K \log(T)^2 T^{-\gamma} - \Box T^{-1}$$

$$\sum_r \|\lambda^{(r)} - \mathbf{Rc}_t \hat{\mathbf{a}}^{(r)}\|^2 \le \Box \inf_{\mathbf{a}} \left\{ \sum_r \|\lambda^{(r)} - \mathbf{Rc}_t \mathbf{a}\|^2 + \frac{1}{T} \sum_{i \in supp(\mathbf{a})} (d_i^{(r)})^2 \right\}$$

• If distance bounded (reasonable),

$$\mathbb{E}(\text{ loss }) \leq \frac{|\mathbf{a}^*|_0 \log(T)^3}{T} + \Box M^2 K \log(T)^2 T^{-\gamma} + \Box T^{-1}$$

• Hence $\gamma > 1$

• Good reason to believe (proof in Poisson case) that $\gamma \in [1, \Box]$, γ smaller changes the rate, γ larger changes the constant ...

э.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bernstein-type inequality for general counting process (Hansen, RB, Rivoirard)

Let $(H_s)_{s\geq 0}$ be a predictable process and $M_t = \int_0^t H_s(dN_s - \lambda(s)ds)$. Let b > 0 and v > w > 0. For all $x, \mu > 0$ such that $\mu > \phi(\mu)$, let

$$\hat{V}^{\mu}_{\tau} = \frac{\mu}{\mu - \phi(\mu)} \int_{0}^{\tau} H_{s}^{2} dN_{s} + \frac{b^{2}x}{\mu - \phi(\mu)}$$

where $\phi(u) = \exp(u) - u - 1$. Then for every stopping time τ and every $\varepsilon > 0$

$$\mathbb{P}\left(M_{\tau} \geq \sqrt{2(1+\varepsilon)\hat{V}_{\tau}^{\mu}x} + \frac{bx}{3}, w \leq \hat{V}_{\tau}^{\mu} \leq v \text{ and } \sup_{s \in [0,\tau]} |H_s| \leq b\right)$$
$$\leq 2\frac{\log(v/w)}{\log(1+\varepsilon)}e^{-x}.$$

 \rightsquigarrow a generic choice of **d** for the Lasso whatever the underlying process... $_{n < n}$

Practical choice of **d**

Recall that the oracle inequality needs

$$\left|\mathbf{b}^{(r)}-\mathbf{ar{b}}^{(r)}
ight|\leq\mathbf{d}^{(r)},\quadorall r$$

with

$$\mathbf{b} = \int_0^T \mathbf{R} \mathbf{c}_t dN_t^{(r)}$$
 and $ar{\mathbf{b}} = \int_0^T \mathbf{R} \mathbf{c}_t \lambda^{(r)}(t) dt.$

- 'Bernstein Lasso' and 'Bernstein Lasso + OLS'

$$d_i = \sqrt{2\gamma \log(T) \hat{V}_i} + \frac{B_i \gamma \log(T)}{3},$$
$$\hat{V}_i = \int_0^T (\mathbf{R} \mathbf{c}_{t,i})^2 \mathrm{d} N_{t,r_i}, \quad B_i = \sup_{t \in [0,T],m} |\mathbf{R} \mathbf{c}_{t,i}|.$$

P.Reynaud-Bouret

Aussois 2015 106 / 129

3

・ロン ・四 ・ ・ ヨン

Practical choice of **d**

Recall that the oracle inequality needs

$$\left|\mathbf{b}^{(r)}-\mathbf{ar{b}}^{(r)}
ight|\leq\mathbf{d}^{(r)},\quadorall r$$

with

$$\mathbf{b} = \int_0^T \mathbf{R} \mathbf{c}_t dN_t^{(r)}$$
 and $ar{\mathbf{b}} = \int_0^T \mathbf{R} \mathbf{c}_t \lambda^{(r)}(t) dt.$

- 'Bernstein Lasso' and 'Bernstein Lasso + OLS'

$$d_i = \sqrt{2\gamma \log(T)\hat{V}_i} + \frac{B_i\gamma \log(T)}{3},$$
$$\hat{V}_i = \int_0^T (\mathbf{R}\mathbf{c}_{t,i})^2 \mathrm{d}N_{t,r_i}, \quad B_i = \sup_{t \in [0,T],m} |\mathbf{R}\mathbf{c}_{t,i}|.$$

- 'Adaptive Lasso' (Zou)

$$d_i=\frac{\gamma}{2|\hat{a}_i^{ols}|}.$$

P.Reynaud-Bouret

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why +OLS?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\mathbf{G} = I$, minimizing

 $-2\mathbf{a}'b + \mathbf{a}'G\mathbf{a} + 2\mathbf{d}'|\mathbf{a}|$

 \rightsquigarrow a soft-thresholding estimator, i.e.

$$\hat{\mathbf{a}}_{Lasso} = (\mathbf{b} - sign(\mathbf{b})\mathbf{d})_+.$$

P.I	Rey	na	ud-	Boi	uret

크

Why +OLS?

If $\mathbf{G} = I$, minimizing

$$-2\mathbf{a}'b+\mathbf{a}'G\mathbf{a}+2\mathbf{d}'|\mathbf{a}|$$

 \rightsquigarrow a soft-thresholding estimator, i.e.

$$\hat{a}_{\textit{Lasso}} = (\mathbf{b} - \textit{sign}(\mathbf{b})\mathbf{d})_+.$$

Hence small bias anytime \rightsquigarrow

once the support is estimated by Lasso, compute the ordinary least-square estimate (OLS) on the resulting support.

3

イロト イポト イヨト イヨト

Choices of the weights d_{λ}

NB : Adaptive Lasso (Zou) $d_{\lambda} = \gamma/(2|\hat{a}_{\lambda}|)$

P.Reynaud-Bouret

э

イロト イヨト イヨト イヨト

Simulation study - Support recovery

We perform 100 runs with T = 2, M = 8, K = 4 (264 coefficients to be estimated by using 636 observations)

	Bernstein Lasso		Adaptive Lass		asso	
Tuning parameter γ	0.5	1	2	2	200	1000
Correct clusters identif. \in [0, 100]	0	32	24	0	0	32
False non-zero interactions \in [0, 55]	17	6	1	55	13	1
False zero interactions $\in [0, 9]$	0	0	2	0	0	2
False zero spontaneous rates \in [0,8]	0	0	0	0	1	3
False non-zero coeff. $\in [0, 238]$	22	7	1	199	17	1
False zero coeff. \in [0, 18]	1	2	7	0	2	7

э.

イロト 不得 トイヨト イヨト

Simulation study - Support recovery

We perform 100 runs with T = 20, M = 8, K = 4

	Bernstein Lasso		Adaptive La		asso	
Tuning parameter γ	0.5	1	2	2	200	1000
Correct clusters identif. \in [0, 100]	63	99	100	0	0	90
False non-zero interactions \in [0, 55]	3	1	0	55	10	0
False zero interactions \in [0, 9]	0	0	0	0	0	0
False zero spontaneous rates $\in [0, 8]$	0	0	0	0	0	0
False non-zero coeff. $\in [0, 238]$	4	1	0	197	13	0
False zero coeff. \in [0, 18]	0	0	0	0	0	0

For T = 20.

• $\gamma = 1$ or $\gamma = 2$ is convenient for Bernstein Lasso. It was also the case for T = 2.

• $\gamma = 1000$ is convenient for Adaptive Lasso. It was not the case for T = 2.

= nar

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simulation study - Influence of the OLS step

We perform 100 runs with T = 20, M = 8, K = 4.

	Bernstein Lasso		Adaptive Lasso
Tuning parameter γ	$\gamma = 1$	$\gamma = 2$	$\gamma = 1000$
MSE for spontaneous rates	37	69	27
MSE for spontaneous rates after OLS	10	9	10
MSE for interaction functions	3	6	0.5
MSE for interaction functions after OLS	0.5	0.4	0.4

MSE for spontaneous rates
$$=\sum_{m=1}^{M} (\hat{
u}^{(m)} -
u^{(m)})^2$$

MSE for interaction functions
$$=\sum_{m=1}^{M}\sum_{\ell=1}^{M}\int (\hat{h}_{\ell}^{(m)}(t) - h_{\ell}^{(m)}(t))^2 dt$$

3

ヘロト 人間 とくほとく ヨトー

Another (more realistic?) neuronal network : Integrate and Fire

Another (more realistic?) neuronal network : Integrate and Fire

Nb Inter+/-

T = 60s

P.Reynaud-Bouret

Hawkes

Aussois 2015 112 / 129

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Another (more realistic?) neuronal network : Integrate and Fire

P.Reyna

aud-Bouret	Hawkes	Aussois 2015	112 / 129

イロト イポト イヨト イヨト

э

Another (more realistic?) neuronal network : Integrate and Fire

P.Reyn

aud-Bouret	Hawkes	Aussois 2015	112 / 129

イロト イポト イヨト イヨト

3

Open questions for Lasso

- Branching arguments ok for linear Hawkes
- Hence number of points controlled if intensity smaller than stationnary Hawkes (thinning) and in particular for $(.)_+$ and inhibition.

イロト イヨト イヨト

Open questions for Lasso

- Branching arguments ok for linear Hawkes
- Hence number of points controlled if intensity smaller than stationnary Hawkes (thinning) and in particular for $(.)_+$ and inhibition.
- Minoration of $\mathbb{E}(\mathbf{G})$ can be done if intensity lower bounded and upper bounded by Hawkes

イロト イヨト イヨト

Open questions for Lasso

- Branching arguments ok for linear Hawkes
- Hence number of points controlled if intensity smaller than stationnary Hawkes (thinning) and in particular for $(.)_+$ and inhibition.
- Minoration of $\mathbb{E}(\mathbf{G})$ can be done if intensity lower bounded and upper bounded by Hawkes
- The "Berbee's lemma" : no idea how to get it without linear Hawkes. Hence what about $(.)_+$???

э.

イロト イポト イヨト イヨト

Open questions for Lasso

- Branching arguments ok for linear Hawkes
- Hence number of points controlled if intensity smaller than stationnary Hawkes (thinning) and in particular for $(.)_+$ and inhibition.
- Minoration of $\mathbb{E}(\mathbf{G})$ can be done if intensity lower bounded and upper bounded by Hawkes
- The "Berbee's lemma" : no idea how to get it without linear Hawkes. Hence what about $(.)_+$???
- Still on simulation works even if not Hawkes and $\gamma = 1.5$ works!

= nar

ヘロト 人間ト 人間ト 人目ト

Open questions for Lasso

- Branching arguments ok for linear Hawkes
- Hence number of points controlled if intensity smaller than stationnary Hawkes (thinning) and in particular for $(.)_+$ and inhibition.
- Minoration of $\mathbb{E}(\mathbf{G})$ can be done if intensity lower bounded and upper bounded by Hawkes
- The "Berbee's lemma" : no idea how to get it without linear Hawkes. Hence what about $(.)_+$???
- Still on simulation works even if not Hawkes and $\gamma = 1.5$ works!
- What about group Lasso? (no sharp enough concentration inequality yet)
- What about non stationnarity? Segmentation, clustering (F. Picard, C. Tuleau-Malot)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Table of Contents

Point process and Counting process

2) Multivariate Hawkes processes and Lasso

3 Probabilistic ingredients

Back to Lasso

- 5 PDE and point processes
 - Billions of neurons
 - Microscopic PPS?
 - Microscopic to Macroscopic

.

Biological context

P.Reynaud-I

Physiological constraint : refractory period.

Bouret	Hawkes	

Aussois 2015 115 / 129

Э

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Age structured equations (Pakdaman, Perthame, Salort, 2010)

Age = delay since last spike.

 $n(t,s) = \begin{cases} \text{probability density of finding a neuron with age } s \text{ at time } t. \\ \text{ratio of the population with age } s \text{ at time } t. \end{cases}$
Age structured equations (Pakdaman, Perthame, Salort, 2010)

Age = delay since last spike.

 $n(t,s) = \begin{cases} \text{probability density of finding a neuron with age } s \text{ at time } t. \\ \text{ratio of the population with age } s \text{ at time } t. \end{cases}$

$$\begin{cases} \frac{\partial n(t,s)}{\partial t} + \frac{\partial n(t,s)}{\partial s} + p(s,X(t))n(t,s) = 0\\ m(t) := n(t,0) = \int_{0}^{+\infty} p(s,X(t))n(t,s) ds \end{cases}$$
(PPS)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Age structured equations (Pakdaman, Perthame, Salort, 2010)

Age = delay since last spike.

 $n(t,s) = \begin{cases} \text{probability density of finding a neuron with age } s \text{ at time } t. \\ \text{ratio of the population with age } s \text{ at time } t. \end{cases}$

$$\begin{cases} \frac{\partial n(t,s)}{\partial t} + \frac{\partial n(t,s)}{\partial s} + p(s,X(t))n(t,s) = 0\\ m(t) := n(t,0) = \int_0^{+\infty} p(s,X(t))n(t,s) \, ds \end{cases}$$
(PPS)

p represents the firing rate. For example, $p(s, X) = \mathbb{1}_{\{s > \sigma(X)\}}$.

$$X(t) = \int_0^t d(x)m(t-v)dv$$
 (global neural activity)

d = delay function. For example, $d(v) = e^{-\tau v}$.

One neuron = point process \rightsquigarrow age?

Microscopic age

- We consider the continuous to the left (hence predictable) version of the age.
- The age at time 0 depends on the spiking times before time 0.
- The dynamic is characterized by the spiking times after time 0.

Framework

 $\cdots < T_{-1} < T_0 \le 0 < T_1 < \ldots$ the ordered sequence of points of *N*. Dichotomy of the behaviour of *N* with respect to time 0 :

= ~ ~ ~

イロト 不得 トイヨト イヨト

Framework

 $\cdots < T_{-1} < T_0 \le 0 < T_1 < \ldots$ the ordered sequence of points of *N*. Dichotomy of the behaviour of *N* with respect to time 0 :

N₋ = N ∩ (-∞, 0] is a point process with distribution P₀ (initial condition).

The age at time 0 is finite $\Leftrightarrow N_- \neq \emptyset$.

• $N_+ = N \cap (0, +\infty)$ is a point process admitting some intensity $\lambda(t, \mathcal{F}_{t-}^N) \rightsquigarrow$ "probability to find a new point at time t given the past"

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Framework

 $\cdots < T_{-1} < T_0 \le 0 < T_1 < \ldots$ the ordered sequence of points of *N*. Dichotomy of the behaviour of *N* with respect to time 0 :

N₋ = N ∩ (-∞, 0] is a point process with distribution P₀ (initial condition).

The age at time 0 is finite $\Leftrightarrow N_- \neq \emptyset$.

- $N_+ = N \cap (0, +\infty)$ is a point process admitting some intensity $\lambda(t, \mathcal{F}_{t-}^N) \rightsquigarrow$ "probability to find a new point at time t given the past"
- p(s, X(t)) and $\lambda(t, \mathcal{F}_{t-}^N)$ are analogous.

Some classical point processes in neuroscience

- Poisson process : $\lambda(t, \mathcal{F}_{t-}^{N}) = \lambda(t) =$ deterministic function.
- Renewal process : $\lambda(t, \mathcal{F}_{t-}^N) = f(S_{t-}) \Leftrightarrow \text{ i.i.d. ISIs.}$

• Hawkes process : $\lambda(t, \mathcal{F}_{t-}^{N}) = \mu + \int_{-\infty}^{t-} h(t-v)N(dv)$

$$\int_{-\infty}^{t-} h(t-v)N(dv) \quad \longleftrightarrow \quad \int_{0}^{t} d(v)m(t-v)dv = X(t).$$

Microscopic PPS?

A microscopic analogous to n

- n(t,.) is the probability density of the age at time t.
- At fixed time t, we are looking at a Dirac mass at S_{t-} .

= ~ ~ ~

イロト 不得 トイヨト イヨト

A microscopic analogous to n

- n(t,.) is the probability density of the age at time t.
- At fixed time t, we are looking at a Dirac mass at S_{t-} .

What we need

- Random measure U on \mathbb{R}^2 .
- Action over test functions : $\forall \varphi \in C^{\infty}_{c,b}(\mathbb{R}^2_+)$,

$$\int \varphi(t,s) U(dt,ds) = \int \varphi(t,S_{t-}) dt.$$

What we define

We construct an ad hoc random measure U which satisfies a system of stochastic differential equations similar to (PPS).

P.Reynaud-Bouret	Hawkes	

Aussois 2015 121 / 129

3.5 3

Microscopic equation (Chevallier, Cáceres, Doumic, RB)

Let Π be a Poisson measure. Let $(\lambda(t, \mathcal{F}_{t-}^N))_{t>0}$ be some non negative predictable process which is L^1_{loc} a.s. The measure U satisfies the following system a.s.

$$\begin{cases} (\partial_t + \partial_s) \{ U(dt, ds) \} + \left(\int_{x=0}^{\lambda(t, \mathcal{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds) = 0, \\ U(dt, 0) = \int_{s \in \mathbb{R}} \left(\int_{x=0}^{\lambda(t, \mathcal{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds), \end{cases}$$

in the weak sense with initial condition $\lim_{t\to 0^+} U(t, \cdot) = \delta_{-T_0}$. $(-T_0 \text{ is the age at time 0})$

Microscopic equation (Chevallier, Cáceres, Doumic, RB)

Let Π be a Poisson measure. Let $(\lambda(t, \mathcal{F}_{t-}^N))_{t>0}$ be some non negative predictable process which is \mathcal{L}_{loc}^1 a.s. The measure U satisfies the following system a.s.

$$\begin{cases} (\partial_t + \partial_s) \{ U(dt, ds) \} + \left(\int_{x=0}^{\lambda(t, \mathcal{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds) = 0, \\ U(dt, 0) = \int_{s \in \mathbb{R}} \left(\int_{x=0}^{\lambda(t, \mathcal{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds), \end{cases}$$

in the weak sense with initial condition $\lim_{t\to 0^+} U(t, \cdot) = \delta_{-T_0} \cdot (-T_0 \text{ is the age at time 0})$

$$\xrightarrow{} p(s, X(t)) \text{ is replaced by } \int_{x=0}^{\lambda(t, \mathcal{F}_{t-}^{N})} \Pi(dt, dx). \\ \mathbb{E}\left[\int_{x=0}^{\lambda(t, \mathcal{F}_{t-}^{N})} \Pi(dt, dx) \middle| \mathcal{F}_{t-}^{N}\right] = \lambda\left(t, \mathcal{F}_{t-}^{N}\right) dt.$$

P.Reynaud-Bouret

Aussois 2015 122 / 129

Taking the expectation

[...] defining $u = \mathbb{T}\mathbb{E}(U)$, u(t, .) distribution of S_{t-} . Let $(\lambda(t, \mathcal{F}_{t-}^N))_{t>0}$ be some non negative predictable process which is L^1_{loc} a.s.

The measure U satisfies the following system,

$$\begin{cases} (\partial_t + \partial_s) \{ U(dt, ds) \} + \left(\int_{x=0}^{\lambda(t, \mathcal{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds) = 0, \\ U(dt, 0) = \int_{s \in \mathbb{R}} \left(\int_{x=0}^{\lambda(t, \mathcal{F}_{t-}^N)} \Pi(dt, dx) \right) U(t, ds), \end{cases}$$

in the weak sense with initial condition $\lim_{t\to 0^+} U(t,\cdot) = \delta_{-T_0}$.

Taking the expectation

[...] defining $u = "\mathbb{E}(U)"$, u(t, .) distribution of S_{t-} . Let $(\lambda(t, \mathcal{F}_{t-}^N))_{t>0}$ be some non negative predictable process which is L^1_{loc} in expectation, and which admits a finite mean. The measure $u = "\mathbb{E}(U)"$ satisfies the following system,

$$\begin{cases} (\partial_t + \partial_s) u (dt, ds) + \rho_{\lambda, \mathbb{P}_0} (t, s) u (dt, ds) = 0, \\ u (dt, 0) = \int_{s \in \mathbb{R}} \rho_{\lambda, \mathbb{P}_0} (t, s) u (t, ds) dt, \end{cases}$$

in the weak sense where $\rho_{\lambda,\mathbb{P}_0}(t,s) = \mathbb{E}\left[\lambda\left(t,\mathcal{F}_{t-}^N\right)|S_{t-}=s\right]$ for almost every t. The initial condition $\lim_{t\to 0^+} u(t,\cdot)$ is given by the distribution of $-T_0$.

Law of large numbers

- Law of large numbers.
- Population-based approach.

Theorem

Let $(N^i)_{i\geq 1}$ be some *i.i.d.* point processes on \mathbb{R} with L^1_{loc} intensity in expectation. For each *i*, let $(S^i_{t-})_{t>0}$ denote the age process associated to N^i . Then, for every test function φ ,

$$\int \varphi(t,s) \left(\frac{1}{n} \sum_{i=1}^{n} \delta_{S_{t-}^{i}}(ds)\right) dt \xrightarrow[n \to \infty]{a.s.} \int \varphi(t,s) u(dt,ds),$$

with u satisfying the deterministic system.

Review of the examples

The system in expectation

$$\begin{cases} (\partial_t + \partial_s) u (dt, ds) + \rho_{\lambda, \mathbb{P}_0} (t, s) u (dt, ds) = 0\\ u (dt, 0) = \int_{s \in \mathbb{R}} \rho_{\lambda, \mathbb{P}_0} (t, s) u (t, ds) dt. \end{cases}$$

where $\rho_{\lambda,\mathbb{P}_{0}}(t,s) = \mathbb{E}\left[\lambda\left(t,\mathcal{F}_{t-}^{N}\right) \middle| S_{t-}=s\right]$.

- This result may seem OK to a probabilist,
- But analysts need some explicit expression for ρ .
- In particular, this system may seem linear, but it is non-linear in general.

Review of the examples

The system in expectation

$$\begin{cases} (\partial_t + \partial_s) u (dt, ds) + \rho_{\lambda, \mathbb{P}_0} (t, s) u (dt, ds) = 0 \\ u (dt, 0) = \int_{s \in \mathbb{R}} \rho_{\lambda, \mathbb{P}_0} (t, s) u (t, ds) dt. \end{cases}$$

where $\rho_{\lambda,\mathbb{P}_{0}}(t,s) = \mathbb{E}\left[\lambda\left(t,\mathcal{F}_{t-}^{N}\right) \middle| S_{t-}=s\right]$.

- This result may seem OK to a probabilist,
- But analysts need some explicit expression for ρ .
- In particular, this system may seem linear, but it is non-linear in general.
- Poisson process. $\rightarrow \rho_{\lambda,\mathbb{P}_0}(t,s) = f(t).$ • Renewal process. $\rightarrow \rho_{\lambda,\mathbb{P}_0}(t,s) = f(s).$

イロト 人間ト イヨト イヨト

Review of the examples

The system in expectation

$$\begin{cases} (\partial_t + \partial_s) u (dt, ds) + \rho_{\lambda, \mathbb{P}_0} (t, s) u (dt, ds) = 0 \\ u (dt, 0) = \int_{s \in \mathbb{R}} \rho_{\lambda, \mathbb{P}_0} (t, s) u (t, ds) dt. \end{cases}$$

where $\rho_{\lambda,\mathbb{P}_{0}}(t,s) = \mathbb{E}\left[\lambda\left(t,\mathcal{F}_{t-}^{N}\right) \middle| S_{t-}=s\right]$.

- This result may seem OK to a probabilist,
- But analysts need some explicit expression for ρ .
- In particular, this system may seem linear, but it is non-linear in general.
- Poisson process.
- Renewal process.
- Hawkes process.
 P.Revnaud-Bouret

 $egin{array}{lll}
ightarrow
ho_{\lambda,\mathbb{P}_0}\left(t,s
ight)=f(t).\
ho
ho_{\lambda,\mathbb{P}_0}\left(t,s
ight)=f(s). \end{array}$

For Hawkes

Recall that

$$\int_{-\infty}^{t-} h(t-x)N(dx) \quad \longleftrightarrow \quad \int_{0}^{t} d(x)m(t-x)dx = X(t).$$

			1 = 1 1 = 1	E DAG
P.Reynaud-Bouret	Hawkes		Aussois 2015	126 / 129

For Hawkes

Recall that

$$\int_{-\infty}^{t-} h(t-x)N(dx) \quad \longleftrightarrow \quad \int_{0}^{t} d(x)m(t-x)dx = X(t).$$

What we expected

Replacement of p(s, X(t)) by

$$\mathbb{E}\left[\lambda(t,\mathcal{F}_{t-}^{N})\right] = \mu + \int_{0}^{t} h(t-x) u(dx,0) \longleftrightarrow X(t)$$

What we find

p(s, X(t)) is replaced by $\rho_{\lambda, \mathbb{P}_0}(t, s)$ which is the conditional expectation, not the full expectation.

Conclusions : work in progress of J. Chevallier

• Univariate Hawkes processes do NOT lead to a PPS of the form $p(s, X_t) = \nu + X_t$, but to another completely explicit closed PDE system (NB : Non Markovian process)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions : work in progress of J. Chevallier

- Univariate Hawkes processes do NOT lead to a PPS of the form $p(s, X_t) = \nu + X_t$, but to another completely explicit closed PDE system (NB : Non Markovian process)
- Interacting Hawkes processes without refractory periods DO lead to this intuition (mean field)
- Even true for more realistic models with refractory periods and special $p(s, X_t)$.
- Propagation of chaos, CLT ...

イロト イポト イヨト イヨト

Open questions

- But then when we pick some neurons and measure their activity via electrodes, why do we measure interactions?
- What kind of models would allow both : independence with most of the neurons, sparse dependence with some (functional connectivity)?
- What can we exactly infer in the reconstructed graphs?
- Can it be couple to a more global measure of activity (LFP) to infer more information ?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Many thanks to :

M. Albert, Y. Bouret, J. Chevallier, F. Delarue, F. Grammont, T. Laloë, A. Rouis, C. Tuleau-Malot (Nice), N.R Hansen (Copenhagen), V. Rivoirard (Dauphine), M. Fromont (Rennes 2), M. Doumic (Inria Rocquencourt), M. Cáceres (Granada), L. Sansonnet (AgroParisTech), S. Schbath (INRA Jouy-en-Josas), F. Picard (LBBE Lyon), T. Bessaïh, R. Lambert, N. Leresche (Neuronal Networks and Physiopathological Rhythms, NPA, Paris 6)

and to Sylvie Méléard and Vincent Bansaye for this very nice opportunity !

Slides and references on http://math.unice.fr/vreynaudb/

P.Reynaud-Bouret

Image: A marked and A marked

Many thanks to :

M. Albert, Y. Bouret, J. Chevallier, F. Delarue, F. Grammont, T. Laloë, A. Rouis, C. Tuleau-Malot (Nice), N.R Hansen (Copenhagen), V. Rivoirard (Dauphine), M. Fromont (Rennes 2), M. Doumic (Inria Rocquencourt), M. Cáceres (Granada), L. Sansonnet (AgroParisTech), S. Schbath (INRA Jouy-en-Josas), F. Picard (LBBE Lyon), T. Bessaïh, R. Lambert, N. Leresche (Neuronal Networks and Physiopathological Rhythms, NPA, Paris 6)

and to Sylvie Méléard and Vincent Bansaye for this very nice opportunity !

Slides and references on http://math.unice.fr/ reynaudb/

P.Reynaud-Bouret

Image: A marked and A marked