Exercice 1 Let $\left(Y_{n}\right)_{n \geq 1}$ be an i.i.d sequence of uniform r.v. on $[0,1]$. We set $\mathcal{F}_{n}=$ $\sigma\left(Y_{1}, \ldots, Y_{n}\right)$, and we define the process $\left(X_{n}\right)_{n \in \mathbb{N}}$ by $X_{0}=1$ and

$$
X_{n+1}= \begin{cases}X_{n}+1 & \text { if } 0 \leq Y_{n+1}<\frac{X_{n}}{X_{n}+1} \\ 0 & \text { if } \frac{X_{n}}{X_{n}+1} \leq Y_{n+1} \leq 1\end{cases}
$$

1. Show X_{n} converges almost surely towards an r.v. X_{∞}.
2. Show that the process $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a $\left(\mathcal{F}_{n}\right)$-martingale.
3. Do we have $X_{n}=\mathbb{E}\left[X_{\infty} \mid \mathcal{F}_{n}\right]$? Is the martingale $\left(X_{n}\right)_{n \in \mathbb{N}}$ uniformly integrable?
4. Let $T:=\inf \left\{n \geq 0, X_{n}=0\right\}$. Show that T is a stopping and that T is almost surely finite. Do we have $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]$?

Exercice 2 Let $\left(X_{n}\right)$ be a submartingale and $a>0$.

1. Show the maximal inequality

$$
a \mathbb{P}\left(\sup _{0 \leq k \leq n} X_{k} \geq a\right) \leq \mathbb{E}\left[X_{n} \mathbb{1}_{\left\{\sup _{0 \leq k \leq n} X_{k} \geq a\right\}}\right] \leq \mathbb{E}\left[X_{n}^{+}\right]
$$

Hint : use the decomposition $\left\{\sup _{0 \leq k \leq n} X_{k} \geq a\right\}=F_{0} \cup F_{1} \cup \cdots \cup F_{n}$ with $F_{k}=$ $\left\{X_{0}<a\right\} \cap \cdots \cap\left\{X_{k-1}<a\right\} \cap\left\{X_{k} \geq a\right\}$.
2. Show that:

$$
a \mathbb{P}\left(\sup _{0 \leq k \leq n}\left|X_{k}\right| \geq a\right) \leq 2 \mathbb{E}\left[\left|X_{n}\right|\right]-\mathbb{E}\left[X_{0}\right] \leq 2 \mathbb{E}\left[\left|X_{n}\right|\right]+\mathbb{E}\left[\left|X_{0}\right|\right]
$$

Hint : use the stopping time $T=\inf \left\{k, X_{k} \leq-a\right\}$.
Exercice 3 Let $\left(X_{n}\right)$ be a martingale.

1. For Z nonegative r.v. and $p \geq 1$, show that

$$
\mathbb{E}\left[Z^{p}\right]=\int_{0}^{\infty} p a^{p-1} \mathbb{P}(Z \geq a) \mathrm{d} a
$$

2. We set $S_{n}:=\sup _{0 \leq k \leq n}\left|X_{k}\right|$. Let $p>1$ and $q=\frac{p}{p-1}$. Show that $\left(\left|X_{n}\right|\right)$ is a submartingale, then that

$$
\mathbb{E}\left[S_{n}^{p}\right] \leq q \mathbb{E}\left[\left|X_{n}\right| S_{n}^{p-1}\right]
$$

3. Show Doob's inequality :

$$
\left\|S_{n}\right\|_{p} \leq q\left\|X_{n}\right\|_{p}
$$

