EXERCISES 3

GAUSSIAN VECTORS

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space.

1. Linearity, Characteristic function

Exercise 1. Show that the moments of a random variable X of Gaussian law $\mathcal{N}(0,1)$ are given by

$$
\forall n \geq 0, \mathbb{E}\left(X^{2 n}\right)=\frac{(2 n)!}{2^{n} n!}, \mathbb{E}\left(X^{2 n+1}\right)=0
$$

Hint: Use the characteristic function of X.
Exercise 2. Let $m=\left(m_{i}\right)_{1 \leq i \leq n} \in \mathbb{R}^{n}$ and $K=\left(K_{i, j}\right)_{1 \leq i, j \leq n}$ be a non-negative symmetric matix. What is the law of $m+K^{1 / 2}\left(X_{1}, \ldots, X_{n}\right)^{t}$, where X_{1}, \ldots, X_{n} are n I.I.D. random variables of $\mathcal{N}(0,1)$ law?

Exercise 3. Let $\left(X_{1}, \ldots, X_{n}\right)$ be a Gaussian vector and $\left(i_{1}, \ldots, i_{m}\right) \in\{1, \ldots, n\}^{m}$. What we can say about the law of $\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)$?

Exercise 4. Let X be an $\mathcal{N}(0,1)$ r.v. and Z be a uniformly distributed r.v. on $\{-1,1\}$, independent of X.
(1) Show that $Z X$ is Gaussian.
(2) Considering $X+Z X$, show that the pair $(X, Z X)$ isn't Gaussian.
(3) Prove that X and $Z X$ aren't independent, but that their covariance is zero.

Exercise 5. Let X_{1}, \ldots, X_{n} be n Gaussian independant r.v. Check that the sum $\sum_{i=1}^{n} X_{i}$ is a Gaussian r.v., whose mean and variance are respectively given by the sum of the means and the sum of the variances of the $\left(X_{i}\right)_{1 \leq i \leq n}$.

Exercise 6. Let $\left(X_{1}, \ldots, X_{n}\right)$ be a Gaussian random vector with mean $m=\left(m_{j}\right)_{1 \leq j \leq n}$ and covariance matrix $K=\left(K_{j, k}\right)_{1 \leq j, k \leq n}$.
(1) For some $\left(t_{j}\right)_{1 \leq j \leq n} \in \mathbb{R}^{n}$, what is the law of $\sum_{j=1}^{n} t_{j} X_{j}$?
(2) Deduce that

$$
\left.\mathbb{E}\left[\exp \left(i \sum_{j=1}^{n} t_{j} X_{j}\right)\right]=\exp \left(i \sum_{j=1}^{n} t_{j} m_{j}-\frac{1}{2} \sum_{j, k=1}^{n} t_{j} K_{j, k} t_{k}\right)\right] .
$$

(3) What can we say about two Gaussian vectors with the same mean and the same covariance?

2. Independence

Exercise 7. Let $\left(X_{1}, \ldots, X_{m}\right)$ and $\left(Y_{1}, \ldots, Y_{n}\right)$ be two Gaussian vectors such that the vector $\left(X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}\right)$ is Gaussian. Show that $\left(X_{1}, \ldots, X_{m}\right)$ and $\left(Y_{1}, \ldots, Y_{n}\right)$ are independent
if and only if the covariance matrix of $\left(X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}\right)$ is diagonal by block, i.e. has the form

$$
\left(\begin{array}{ccccccc}
\times & \ldots & \ldots & \times & 0 & \ldots & 0 \\
\times & \ldots & \ldots & \times & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\times & \ldots & \ldots & \times & 0 & \ldots & 0 \\
0 & \ldots & \ldots & 0 & \times & \ldots & \times \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & 0 & \times & \ldots & \times
\end{array}\right) .
$$

Exercise 8. Let $\left(X_{i}\right)_{1 \leq i \leq n}, n \geq 2$, be n independent and identically distributed r.v. of Gaussian law $\mathcal{N}(0,1)$. Prove that the r.v. $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $\max _{1 \leq i \leq n} X_{i}-\min _{1 \leq i \leq n} X_{i}$ are independent.

Hint: Consider the vector $\left(\bar{X}_{n}, X_{1}-\bar{X}_{n}, \ldots, X_{n}-\bar{X}_{n}\right)^{t}$.
Exercise 9. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of I.I.D. r.v. of Gaussian law $\mathcal{N}(0,1)$. We set:

$$
B_{0}=0, \forall n \geq 1, B_{n}=\sum_{k=1}^{n} X_{k} .
$$

(1) Give the covariance matrix of $\left(B_{1}, \ldots, B_{n}\right)$ as well as its probability density (if exists).
(2) For $1 \leq m \leq n$, set $Z_{m}=B_{m}-(m / n) B_{n}$. Prove that Z_{m} and B_{n} are independent.
(Above, the first diagonal block is of size $m \times m$ and the second one of size $n \times n$.

3. Conditional Expectation

Exercise 10. (Independence case.)
Let \mathcal{B} a σ-field of \mathcal{A}, X and Y be two r.v., and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a bounded Borel mapping. We assume that X is \mathcal{B}-measurable and that Y is independent of \mathcal{B}.
Prove that:

$$
\mathbb{P} \text {-a.s., } \mathbb{E}[f(X, Y) \mid \mathcal{B}]=\phi(X),
$$

where $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by:

$$
\forall x \in \mathbb{R}^{n}, \phi(x)=\mathbb{E}[f(x, Y)] .
$$

Exercise 11. Let \mathcal{B} a σ-field of \mathcal{A} and X be an independent r.v. of \mathcal{B} of law $\mathcal{N}\left(0, \sigma^{2}\right)$.
(1) What is $\mathbb{E}(Z \mid \mathcal{B})$?
(2) Show that for every \mathcal{B}-measurable r.v. Y, the r.v.

$$
Z=\exp \left(-\frac{\sigma^{2}}{2} Y^{2}+X Y\right)
$$

has 1 as expectation.
Exercise 12. Let X and Y be two independent r.v. of uniform law on $[0,1]$. We set $U=\inf (X, Y)$ and $V=\sup (X, Y)$. What is $\mathbb{E}(U \mid V)$?

