EXERCISES 4

INDEPENDENCE OF GAUSSIAN VECTORS - GAUSSIAN PROCESSES - BROWNIAN MOTION

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space.

1. Law of a Process

Exercise 1. Let $\left(X_{t}\right)_{0 \leq t \leq 1}$ be a real-valued continuous process.
(1) Show that the following mapping is a random variable:

$$
\omega \in \Omega \mapsto \int_{0}^{1} X_{s}(\omega) d s
$$

(Hint: think of Riemann sums.)
(2) Let $\left(Y_{t}\right)_{0 \leq t \leq 1}$ be another real-valued continuous process.
(a) Assume that X and Y have the same law, prove that $\int_{0}^{1} X_{s} d s$ and $\int_{0}^{1} Y_{s} d s$ have the same law.
(b) Assume that X and Y are independent, prove that $\int_{0}^{1} X_{s} d s$ and $\int_{0}^{1} Y_{s} d s$ are independent.

2. Gaussian Processes

Exercise 2. Let $\left(X_{t}\right)_{t \geq 0}$ be a Gaussian process. For a function ψ from \mathbb{R}_{+}into itself, show that $\left(X_{\psi(t)}\right)_{t \geq 0}$ is also Gaussian.
Exercise 3. Let $\left(X_{t}\right)_{0 \leq t \leq 1}$ be a real-valued continuous Gaussian process. We suppose that the functions $t \mapsto \mathbb{E}\left(X_{t}\right)$ and $(t, s) \mapsto \mathbb{E}\left(X_{s} X_{t}\right)$ are continuous. Show that $\int_{0}^{1} X_{s} d s$ has a Gaussian law. Compute its mean and its covariance.

Exercise 4. Let $\left(B_{t}\right)_{t \geq 0}$ be a (real) Brownian motion and $\left(Z_{t}\right)_{0 \leq t \leq 1}$ be the process:

$$
\forall t \in[0,1], Z_{t}=B_{t}-t B_{1} .
$$

(1) Show that $\left(Z_{t}\right)_{0 \leq t \leq 1}$ is a Gaussian process and is independent of B_{1}. Compute the mean and the covariance functions of Z.
(2) We define the time reversal of Z by:

$$
\forall t \in[0,1], Y_{t}=Z_{1-t}
$$

Show that both processes have the same law.

3. Brownian Motion

Exercise 5. Let $\left(B_{t}\right)_{t \geq 0}$ be a (real) Brownian motion. Show that $\left(-B_{t}\right)_{t \geq 0}$ is a Brownian motion.
Exercise 6. Let $\left(B_{t}\right)_{t \geq 0}$ be a (real) Brownian motion. For a real $a>0$, show that $\left(B_{a+t}-B_{a}\right)_{t \geq 0}$ is a Brownian motion and is independent of $\left(B_{t}\right)_{0 \leq t \leq a}$.

Exercise 7. Let $\left(B_{t}\right)_{t \geq 0}$ be a (real) Brownian motion et and $\left(\widetilde{B}_{t}\right)_{t \geq 0}$ be the family of random variables given by:

$$
\widetilde{B}_{0}=0, \forall t>0, \widetilde{B}_{t}=t B_{t^{-1}}
$$

(1) Show that $\left(\widetilde{B}_{t}\right)_{t \geq 0}$ is a centered Gaussian process with $(s, t) \in \mathbb{R}_{+}^{2} \mapsto s \wedge t$ as covariance function.
(2) Deduce that $\left(\widetilde{B}_{t}\right)_{t \geq 0}$ and $\left(B_{t}\right)_{t \geq 0}$ have the same law.

Exercise 8. A d-dimensional Brownian motion is a process of the form $\left(B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{d}\right)\right)_{t \geq 0}$, where $\left(B_{t}^{i}\right)_{t \geq 0}, 1 \leq i \leq d$, are independent (real) Brownian motions. Show that for such a B and for a matrix U of size $d \times d$ with $U U^{*}$ equal to the identity matrix, the process $\left(U B_{t}\right)_{t \geq 0}$ is also a d-dimensional Brownian motion.
(To simplify, you may choose $d=2$.)
Exercise 9. Show that the probability that a Brownian motion is non-decreasing on a given interval $[a, b], 0 \leq a<b$, is zero.
Exercise 10. Let $\left(B_{t}^{1}\right)_{t \geq 0}$ and $\left(B_{t}^{2}\right)_{t \geq 0}$ be two independent Brownian motions. Show that ($B_{t}=$ $\left.2^{-1 / 2}\left(B_{t}^{1}+B_{t}^{2}\right)\right)_{t \geq 0}$ is a Brownian motion.

