EXERCISES 4

INDEPENDENCE OF GAUSSIAN VECTORS - GAUSSIAN PROCESSES - BROWNIAN MOTION

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space.

1. Law of a Process

Exercise 1. Let $(X_t)_{0 \le t \le 1}$ be a real-valued continuous process.

(1) Show that the following mapping is a random variable:

$$\omega \in \Omega \mapsto \int_0^1 X_s(\omega) ds.$$

(Hint: think of Riemann sums.)

- (2) Let $(Y_t)_{0 \le t \le 1}$ be another real-valued continuous process.
 - (a) Assume that X and Y have the same law, prove that $\int_0^1 X_s ds$ and $\int_0^1 Y_s ds$ have the same law.
 - (b) Assume that X and Y are independent, prove that $\int_0^1 X_s ds$ and $\int_0^1 Y_s ds$ are independent.

2. Gaussian Processes

Exercise 2. Let $(X_t)_{t\geq 0}$ be a Gaussian process. For a function ψ from \mathbb{R}_+ into itself, show that $(X_{\psi(t)})_{t\geq 0}$ is also Gaussian.

Exercise 3. Let $(X_t)_{0 \le t \le 1}$ be a real-valued continuous Gaussian process. We suppose that the functions $t \mapsto \mathbb{E}(X_t)$ and $(t,s) \mapsto \mathbb{E}(X_sX_t)$ are continuous. Show that $\int_0^1 X_s ds$ has a Gaussian law. Compute its mean and its covariance.

Exercise 4. Let $(B_t)_{t\geq 0}$ be a (real) Brownian motion and $(Z_t)_{0\leq t\leq 1}$ be the process:

$$\forall t \in [0,1], \ Z_t = B_t - tB_1.$$

- (1) Show that $(Z_t)_{0 \le t \le 1}$ is a Gaussian process and is independent of B_1 . Compute the mean and the covariance functions of Z.
- (2) We define the time reversal of Z by:

$$\forall t \in [0,1], Y_t = Z_{1-t}.$$

Show that both processes have the same law.

3. Brownian Motion

Exercise 5. Let $(B_t)_{t\geq 0}$ be a (real) Brownian motion. Show that $(-B_t)_{t\geq 0}$ is a Brownian motion.

Exercise 6. Let $(B_t)_{t\geq 0}$ be a (real) Brownian motion. For a real a>0, show that $(B_{a+t}-B_a)_{t\geq 0}$ is a Brownian motion and is independent of $(B_t)_{0\leq t\leq a}$.

Exercise 7. Let $(B_t)_{t\geq 0}$ be a (real) Brownian motion et and $(\widetilde{B}_t)_{t\geq 0}$ be the family of random variables given by:

$$\widetilde{B}_0 = 0, \ \forall t > 0, \ \widetilde{B}_t = tB_{t^{-1}}.$$

- (1) Show that $(\widetilde{B}_t)_{t\geq 0}$ is a centered Gaussian process with $(s,t)\in \mathbb{R}^2_+\mapsto s\wedge t$ as covariance function.
- (2) Deduce that $(\widetilde{B}_t)_{t\geq 0}$ and $(B_t)_{t\geq 0}$ have the same law.

Exercise 8. A d-dimensional Brownian motion is a process of the form $(B_t = (B_t^1, \ldots, B_t^d))_{t \geq 0}$, where $(B_t^i)_{t \geq 0}$, $1 \leq i \leq d$, are independent (real) Brownian motions. Show that for such a B and for a matrix U of size $d \times d$ with UU^* equal to the identity matrix, the process $(UB_t)_{t \geq 0}$ is also a d-dimensional Brownian motion.

(To simplify, you may choose d=2.)

Exercise 9. Show that the probability that a Brownian motion is non-decreasing on a given interval [a, b], $0 \le a < b$, is zero.

Exercise 10. Let $(B_t^1)_{t\geq 0}$ and $(B_t^2)_{t\geq 0}$ be two independent Brownian motions. Show that $(B_t = 2^{-1/2}(B_t^1 + B_t^2))_{t\geq 0}$ is a Brownian motion.