Sylvain Rubenthaler

28 octobre 2019

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Gradients

When $f : \mathbb{R}^n \to \mathbb{R}$ is sufficiently differentiable. We can write a first order development, using many equivalent notations for the first order differential of f:

$$f(x+u) = f(x) + df(x)(u) + o(||u||)$$

= $f(x) + f'(x).u + o(||u||).$

We have

$$f'(x).u = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x) \times u_i.$$

So, if we define the gradient of f by

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{pmatrix},$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Gradients

we then get

$$f'(x).u = \langle \nabla f(x), u \rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $(\langle \dots, \dots \rangle$ is the scalar product). A This is not a real proof.

Maximization of f

Suppose, we have $f : \mathbb{R}^n \to \mathbb{R}$ and $g_1, \ldots, g_p : \mathbb{R}^n \to \mathbb{R}$. We set $M = \{x : g_i(x) = c_i, 1 \le i \le p\}$ (for some constants c_i). We are interested in

 $\operatorname{argmax}_{x \in M} f(x),$

which is the same as finding

$$\begin{cases} \max f(x) \\ \text{under } g_i(x) = c_i, 1 \le i \le p. \end{cases}$$
(1)

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Suppose we have found a maximum in x_0 . Then, for any "small" move u such that $g'_i(x_0).u = 0$ (that is, a move that stays in M), we have

$$f(x_0 + u) = f(x_0) + f'(x_0).u + o(||u||).$$

So $f'(x_0).u = 0$. This means that

$$\nabla f(x_0) \in \operatorname{Span}(\nabla g_1(x_0), \dots, \nabla g_p(x_0)).$$

ション ふゆ アメリア メリア しょうくしゃ

Lagrangian function

We set

$$L(x,\lambda_1,\ldots,\lambda_p)=f(x)-\sum_{i=1}^p\lambda_i(g_i(x)-c_i)$$

 $(L: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R})$. In x_0 , there exist $\lambda_1^{(0)}, \ldots, \lambda_p^{(0)}$ such that

$$\nabla f(x_0) = \sum_{i=1}^p \lambda_i^{(0)} \nabla g_i(x_0).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Lagrangian function

Let us compute

$$\nabla L(x,\lambda_1,\ldots,\lambda_p) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) - \sum_{i=1}^p \lambda_i \frac{\partial g_i}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) - \sum_{i=1}^p \lambda_i \frac{\partial g_i}{\partial x_n}(x) \\ -(g_1(x) - c_1) \\ \vdots \\ -(g_p(x) - c_p) \end{pmatrix}.$$

We observe that

$$\nabla L(x_0,\lambda_1^{(0)},\ldots,\lambda_p^{(0)})=0.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Working our way back

The conclusion is that, when trying to find the solution of (1), a good candidate is x_0 such that there exists $(\lambda_i^{(0)})_{1 \le i \le p}$ with $\nabla L(x_0, \lambda_1^{(0)}, \dots, \lambda_p^{(0)}) = 0.$

The coefficients $\lambda_i^{(0)}$ are called "Lagrange multipliers".

Maximization of f

Suppose, we have $f : \mathbb{R}^n \to \mathbb{R}$ and $g_1, \dots, g_p : \mathbb{R}^n \to \mathbb{R}$. We are interested in $\begin{cases} \max f(x) \\ \inf g_i(x) \le c_i, 1 \le i \le p. \end{cases}$ (2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for some c_1, \ldots, c_p .

Suppose we have found a maximum x_0 . We then divide the indexes into

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- ▶ for $1 \le i \le k$, $g_i(x_0) = c_i$ (we say the constraint is binding)
- For k+1≤i≤p, g_i(x₀) < c_i (we say the constraint is not binding)

for some k in $\{0, 1, ..., p\}$.

For v such that $g'_i(x_0).v = 0$ $(1 \le i \le k)$, we have

$$f'(x_0).v=0$$

(because x_0 is a maximum of f restrained to $\{x : g_i(x) = c_i, 1 \le i \le k\}$). So there exist $\lambda_1^{(0)}, \ldots, \lambda_k^{(0)}$ such that

$$\nabla f(x_0) = \sum_{i=1}^k \lambda_i^{(0)} \nabla g_i(x_0).$$

We set

$$\lambda_{k+1}^{(0)} = \cdots = \lambda_p^{(0)} = 0.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

Let us now take h > 0 ("small"). We have, for all *i* in $\{1, 2, ..., k\}$,

$$f(x_0 - h\nabla g_i(x_0)) = f(x_0) - h\langle \nabla f(x_0), \nabla g_i(x_0) \rangle + o(h),$$

and we should have $f(x_0 - h\nabla g_i(x_0)) \le f(x_0)$. So

 $\langle \nabla f(x_0), \nabla g_i(x_0) \rangle \geq 0.$

ション ふゆ アメリア メリア しょうくしゃ

In the case where the $\nabla g_i(x_0)$ are orthogonal, the above implies $\lambda_i^{(0)} \ge 0$.

Lagrangian function

We define

$$L(x,\lambda_1,\ldots,\lambda_p) = f(x) - \sum_{i=1}^p \lambda_i (g_i(x) - c_i)$$

 $(L: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R})$. The gradient of L is (the same as before)

$$\nabla L(x,\lambda_1,\ldots,\lambda_p) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) - \sum_{i=1}^p \lambda_i \frac{\partial g_i}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) - \sum_{i=1}^p \lambda_i \frac{\partial g_i}{\partial x_n}(x) \\ -(g_1(x) - c_1) \\ \vdots \\ -(g_p(x) - c_p) \end{pmatrix}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lagrangian function

We get that

$$\begin{cases} \frac{\partial L}{\partial x_1}(x_0) = 0, \dots, \frac{\partial L}{\partial x_n}(x_0) = 0, \\ \lambda_i^{(0)}(g_i(x_i) - c_i) = 0, 1 \le i \le p, \\ g_i(x_0) \le c_i, 1 \le i \le p, \\ \langle \nabla f(x_0), \nabla g_i(x_0) \rangle \ge 0, 1 \le i \le k. \end{cases}$$
(3)

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Working our way back

The conclusion is that, when trying to find the solution of (2), a good candidate is x_0 such that there exists $(\lambda_i^{(0)})_{1 \le i \le p}$ such that Equation (3) is statisfied.

ション ふゆ アメリア メリア しょうくしゃ