Lagrange multipliers

Sylvain Rubenthaler

28 octobre 2019

Université
nice sophia antipolis

Gradients

When $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is sufficiently differentiable. We can write a first order development, using many equivalent notations for the first order differential of f :

$$
\begin{aligned}
f(x+u) & =f(x)+d f(x)(u)+o(\|u\|) \\
& =f(x)+f^{\prime}(x) \cdot u+o(\|u\|) .
\end{aligned}
$$

We have

$$
f^{\prime}(x) \cdot u=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x) \times u_{i} .
$$

So, if we define the gradient of f by

$$
\nabla f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right)
$$

Gradients

we then get

$$
f^{\prime}(x) \cdot u=\langle\nabla f(x), u\rangle
$$

($\langle\ldots, \ldots\rangle$ is the scalar product).
\triangle This is not a real proof.

Maximization of f

Suppose, we have $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g_{1}, \ldots, g_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We set $M=\left\{x: g_{i}(x)=c_{i}, 1 \leq i \leq p\right\}$ (for some constants c_{i}). We are interested in

$$
\underset{x \in M}{\operatorname{argmax}} f(x),
$$

which is the same as finding

$$
\left\{\begin{array}{l}
\max f(x) \tag{1}\\
\operatorname{under} g_{i}(x)=c_{i}, 1 \leq i \leq p .
\end{array}\right.
$$

Necessary condition

Suppose we have found a maximum in x_{0}. Then, for any "small" move u such that $g_{i}^{\prime}\left(x_{0}\right) \cdot u=0$ (that is, a move that stays in M), we have

$$
f\left(x_{0}+u\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot u+o(\|u\|) .
$$

So $f^{\prime}\left(x_{0}\right) \cdot u=0$. This means that

$$
\nabla f\left(x_{0}\right) \in \operatorname{Span}\left(\nabla g_{1}\left(x_{0}\right), \ldots, \nabla g_{p}\left(x_{0}\right)\right)
$$

Lagrangian function

We set

$$
L\left(x, \lambda_{1}, \ldots, \lambda_{p}\right)=f(x)-\sum_{i=1}^{p} \lambda_{i}\left(g_{i}(x)-c_{i}\right)
$$

$\left(L: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}\right) . \ln x_{0}$, there exist $\lambda_{1}^{(0)}, \ldots, \lambda_{p}^{(0)}$ such that

$$
\nabla f\left(x_{0}\right)=\sum_{i=1}^{p} \lambda_{i}^{(0)} \nabla g_{i}\left(x_{0}\right) .
$$

Lagrangian function

Let us compute

$$
\nabla L\left(x, \lambda_{1}, \ldots, \lambda_{p}\right)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x)-\sum_{i=1}^{p} \lambda_{i} \frac{\partial g_{i}}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)-\sum_{i=1}^{p} \lambda_{i} \frac{\partial g_{i}}{\partial x_{n}}(x) \\
-\left(g_{1}(x)-c_{1}\right) \\
\vdots \\
-\left(g_{p}(x)-c_{p}\right)
\end{array}\right)
$$

We observe that

$$
\nabla L\left(x_{0}, \lambda_{1}^{(0)}, \ldots, \lambda_{p}^{(0)}\right)=0
$$

Working our way back

The conclusion is that, when trying to find the solution of (1), a good candidate is x_{0} such that there exists $\left(\lambda_{i}^{(0)}\right)_{1 \leq i \leq p}$ with $\nabla L\left(x_{0}, \lambda_{1}^{(0)}, \ldots, \lambda_{p}^{(0)}\right)=0$.

The coefficients $\lambda_{i}^{(0)}$ are called "Lagrange multipliers".

Maximization of f

Suppose, we have $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g_{1}, \ldots, g_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We are interested in

$$
\left\{\begin{array}{l}
\max f(x) \tag{2}\\
\text { under } g_{i}(x) \leq c_{i}, 1 \leq i \leq p .
\end{array}\right.
$$

for some c_{1}, \ldots, c_{p}.

Necessary condition

Suppose we have found a maximum x_{0}. We then divide the indexes into

- for $1 \leq i \leq k, g_{i}\left(x_{0}\right)=c_{i}$ (we say the constraint is binding)
- for $k+1 \leq i \leq p, g_{i}\left(x_{0}\right)<c_{i}$ (we say the constraint is not binding)
for some k in $\{0,1, \ldots p\}$.

Necessary condition

For v such that $g_{i}^{\prime}\left(x_{0}\right) \cdot v=0(1 \leq i \leq k)$, we have

$$
f^{\prime}\left(x_{0}\right) \cdot v=0
$$

(because x_{0} is a maximum of f restrained to $\left.\left\{x: g_{i}(x)=c_{i}, 1 \leq i \leq k\right\}\right)$. So there exist $\lambda_{1}^{(0)}, \ldots, \lambda_{k}^{(0)}$ such that

$$
\nabla f\left(x_{0}\right)=\sum_{i=1}^{k} \lambda_{i}^{(0)} \nabla g_{i}\left(x_{0}\right)
$$

We set

$$
\lambda_{k+1}^{(0)}=\cdots=\lambda_{p}^{(0)}=0 .
$$

Necessary condition

Let us now take $h>0$ ("small'). We have, for all i in $\{1,2, \ldots, k\}$,

$$
f\left(x_{0}-h \nabla g_{i}\left(x_{0}\right)\right)=f\left(x_{0}\right)-h\left\langle\nabla f\left(x_{0}\right), \nabla g_{i}\left(x_{0}\right)\right\rangle+o(h)
$$

and we should have $f\left(x_{0}-h \nabla g_{i}\left(x_{0}\right)\right) \leq f\left(x_{0}\right)$. So

$$
\left\langle\nabla f\left(x_{0}\right), \nabla g_{i}\left(x_{0}\right)\right\rangle \geq 0
$$

In the case where the $\nabla g_{i}\left(x_{0}\right)$ are orthogonal, the above implies $\lambda_{i}^{(0)} \geq 0$.

Lagrangian function

We define

$$
L\left(x, \lambda_{1}, \ldots, \lambda_{p}\right)=f(x)-\sum_{i=1}^{p} \lambda_{i}\left(g_{i}(x)-c_{i}\right)
$$

$\left(L: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}\right)$. The gradient of L is (the same as before)

$$
\nabla L\left(x, \lambda_{1}, \ldots, \lambda_{p}\right)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x)-\sum_{i=1}^{p} \lambda_{i} \frac{\partial g_{i}}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)-\sum_{i=1}^{p} \lambda_{i} \frac{\partial g_{i}}{\partial x_{n}}(x) \\
-\left(g_{1}(x)-c_{1}\right) \\
\vdots \\
-\left(g_{p}(x)-c_{p}\right)
\end{array}\right)
$$

Lagrangian function

We get that

$$
\left\{\begin{array}{l}
\frac{\partial L}{\partial x_{1}}\left(x_{0}\right)=0, \ldots, \frac{\partial L}{\partial x_{n}}\left(x_{0}\right)=0, \\
\lambda_{i}^{(0)}\left(g_{i}\left(x_{i}\right)-c_{i}\right)=0,1 \leq i \leq p, \tag{3}\\
g_{i}\left(x_{0}\right) \leq c_{i}, 1 \leq i \leq p \\
\left\langle\nabla f\left(x_{0}\right), \nabla g_{i}\left(x_{0}\right)\right\rangle \geq 0,1 \leq i \leq k .
\end{array}\right.
$$

Working our way back

The conclusion is that, when trying to find the solution of (2), a good candidate is x_{0} such that there exists $\left(\lambda_{i}^{(0)}\right)_{1 \leq i \leq p}$ such that Equation (3) is statisfied.

