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Congruence lattices

Problem. For a given class K of algebras describe Con K =all

lattices isomorphic to Con A for some A ∈ K.

Or, at least,

for given classes K, L determine if Con K = Con L
and, if Con K * Con L, determine

Crit(K,L) = min{card(Lc) | L ∈ ConK \ ConL}

(Lc = compact elements of L)
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Two approaches

In the sequel we assume that K is a �nitely generated

congruence-distributive variety. Even under such restrictions, the

problem of describing of ConK is still hard. There are two main

approaches: topological representations and lifting of semilattice

diagrams. We try to connect these two methods.
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Topological approach

M(L)....completely meet-irreducible elements of a lattice L,
including the top element

(a = infX implies a ∈ X)

Fact: if L is algebraic, then every element is a meet of completely

meet-irreducible elements.

Topology on M(L): all sets of the form

M(L) ∩ ↑x = {a ∈ M(L) | a ≥ x}

are closed.

Theorem

If L is distributive algebraic, then L ∼= O(M(L)). (The lattice of all

proper open subsets of M(L).
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Topological approach

If L = ConA (A in a �n. generated CD variety), then the basis of

the topology is given by all sets of the form

U(B, δ) = {α ∈ M(ConA) | α�B ≤ δ},

where B is a �nite subalgebra of A and δ ∈ ConB.

Sometimes the properties of ConA are more e�ectively expressed

as topological properties of M(ConA). A sample:

If A is a distributive lattice, then M(ConA) \ {1} is Hausdor�.
There exists a countable B ∈M3 (the lattice variety

generated by M3) such that M(ConB) \ {1} is not Hausdor�.
Therefore, Con(M3) * Con(D).

The topological approach was used to establish e.g.

Crit(M4,M3) = ℵ2. (But the argument is much more

complicated.)
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Con functor

The Con functor:

For any homomorphism of algebras f : A→ B we de�ne

Con f : ConA→ ConB

by

α 7→ congruence generated by {(f(x), f(y)) | (x, y) ∈ α}.

Fact. Con f preserves ∨ and 0, not necessarily ∧.
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Lifting of semilattice morphisms

Let

ϕ : S → T be a (∨, 0)-homomorphisms of lattices;

f : A→ B be a homomorphisms of algebras.

We say that f lifts ϕ, if there are isomorphisms ψ1 : S → ConA,
ψ2 : T → ConB such that

S
ϕ−−−−→ T

ψ1

y ψ2

y
ConA

Con f−−−−→ ConB

commutes.

A generalization: lifting of semilattice diagrams
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Result of P. Gillibert

Let K, L be �nitely generated congruence distributive varieties.

Theorem

TFAE

ConK * ConL;
there exists a diagram of �nite (∨, 0)-semilattices indexed by a

�nite ordered set liftable in K but not in L
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Looking for a link

So, the list of all �nite semilattice diagrams liftable in K
characterizes the class Con(K). However, it is not clear what the
(un)liftability of a particular diagram means for the properties of

lattices ConA with A ∈ K.

We provide a partial answer. We start with diagrams consisting of a

single arrow.
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Convergence of nets

Let N = (kp | p ∈ P ) be a net in a topological space X, and let

Y ⊆ X. We say that N converges precisely to Y if

every y ∈ Y is a limit point of N ;

no y ∈ X \ Y is an accumulation point of N .

Miroslav Plo²£ica Topological representations of congruence lattices



Separability

Let s : S0 → S1 be a (∨, 0)- homomorphism of �nite distributive

lattices. Let s← be the dual (∧, 1)-homomorphism de�ned by

s←(β) =
∨
{α ∈ S0 | s(α) ≤ β}.

Let X be a topological space, let ≤ be its specialization order

(x ≤ y i� y is in the closure of {x}).
Let Ki denote the set of all order embeddings M(Si)→ X whose

range is an upper subset of X.

De�nition

We say that X is s-nonseparable, if there exist k0 ∈ K0 and a net

(kp | p ∈ P ) in K1 such that for every β ∈ M(S1) the net

(kp(β) | p ∈ P ) converges precisely to the set

{k0(α) | α ∈ M(S0), α ≥ s←(β)}.
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Result for single arrow

Theorem

TFAE

M(ConA) is s-nonseparable for some A ∈ K;
M(ConF (ℵ0)) is s-nonseparable (F (ℵ0) free in K);
s has a lifting in K.
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Example1

The semilattice homomorphism

u
0

-
s

u

u
s(0)

1

has a lifting in D (distributive lattices), but not in D01 (bounded

distributive lattices). Therefore, Crit(D,D01) ≤ ℵ0. Intuitively: in
ConD, where D is a distributive lattice, a sequence of coatoms

can converge to the top element. This cannot happen when D is

bounded.
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Example2

The semilattice homomorphism

u u
u

u���
��

@
@

@
@@
�
�
�
��

@
@
@

@@

0

1

x y -
s

u

us(0)

s(x) = s(y) = s(1)

1

has a lifting in M3 (the embedding of a 3-element chain into M3

lifts it), but not in D. Therefore, Crit(M3,D) ≤ ℵ0.
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Diagrams indexed by �nite chains

Let S be the diagram

S0
s01−−−−→ S1

s12−−−−→ S2
s23−−−−→ . . .

sn−1,n−−−−→ Sn

of �nite distributive lattices and (∨, 0)-homomorphisms. Let X be

a topological space, let Ki denote the set of all order embeddings

M(Si)→ X whose range is an upper subset of X.

De�nition

We say that X is S-nonseparable, if there exist k0 ∈ K0 and nets

(kp | p ∈ P1 × . . . Pi) in Ki such that for every β ∈ M(Si) and
every r = (p1, . . . , pi−1) ∈ P1 × . . . Pi−1 the net

(k(r,pi)(β) | pi ∈ Pi) converges precisely to the set

{kr(α) | α ∈ M(Si−1), α ≥ s←i−1,1(β)}.
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Result for �nite chains

Theorem

TFAE

M(ConA) is S-nonseparable for some A ∈ K;
M(ConF (ℵ0)) is S-nonseparable (F (ℵ0) free in K);
S has a lifting in K.
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Example3

Consider the following lattices

u u u
u

u u u
u u u

u

@
@
@

�
�
�
�
�
�
�
��

�
�
�
�
�
�

@
@
@

�
�
�

@
@
@

@
@
@

M

u u u
u

u u u
u

u

@
@
@

�
�
�

@
@
@

�
�
�

@
@
@

�
�
�

@
@
@

�
�
�

uu @
@
@

�
�
�

L

1

Miroslav Plo²£ica Topological representations of congruence lattices



Example3

Consider the diagram A in HSP (L):
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Then S = ConA has a lifting in HSP (L), but not in HSP (M).
Therefore, Crit(HSP (L), HSP (M)) ≤ ℵ0.
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Congruence intersection

A variety V has the Compact Congruence Intersection Property

(CCIP) if the intersection of two compact congruences on any

A ∈ V is compact.

Examples:

Boolean algebras;

distributive lattices;

Stone algebras;

HSP (A), where A is a �nite algebra generating a CD variety,

which has no proper subalgebras.
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Congruence intersection

For varieties vith CCIP we have a nicer topological representation

of congruence lattices. Since ConcA is now a distributive lattice,

we can consider its Priestley dual space. This space has the same

underlying set as before (prime ideals of ConcA correspond to

completely ∧-irreducible elements of ConA), but the basis of the

topology consists of all sets of the form

U(B, δ) = {α ∈ M(ConA) | α�B = δ},

where B is a �nite subalgebra of A and δ ∈ ConB.
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Congruence intersection

Using this representation is convenient because

the spaces M(ConA) are Hausdor�, so nets can have only one

limit points;

if f : A→ B is a homomorphism of �nite algebras, then

Con f is a lattice homomorphism (preserves meets);

(Con f)←(β) ∈ M(ConA) whenever β ∈ M(ConB).
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Congruence intersection

This enables to simplify the de�nition of S-nonseparability.
De�nition

We say that X is S-nonseparable, if there exist k0 ∈ K0 and nets

(kp | p ∈ P1 × . . . Pi) in Ki such that for every β ∈ M(Si) and
every r = (p1, . . . , pi−1) ∈ P1 × . . . Pi−1 the net

(k(r,pi)(β) | pi ∈ Pi) converges to kr(s←i−1,1(β)).

Under this de�nition, the previous theorems hold exactly as stated.
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Finite chains are not enough

There are varieties K and L such that ConK 6= ConL, but exactly
the same diagrams indexed by �nite chains have lifting in K as in

L. So, we need S-nonseparability for other types of index sets. So

far, I am only able to do it in the following special case.

A poset P is a generalized chain if it has a smallest element and

any two subsets of the form ↓ x \ {x} are comparable (with respect

to inclusion).
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Square diagrams - CCIP version

Let S be the commutative diagram

S0
s01−−−−→ S1

s02

y s13

y
S2

s23−−−−→ S3

of �nite distributive lattices and lattice 0-homomorphisms.

De�nition

We say that X is S-nonseparable, if there exist k0 ∈ K0 such that

for every open set Uk0 containing k0 and every family

(Uk | k ∈ K1 ∪K2) (Uk containing k) there are k1 ∈ K1, k2 ∈ K2,

k3 ∈ K3 such that kj(β) ∈ Uki(sij) for every arrow sij and every

β ∈ M(Sj).

Uk = (Uk(α) | α ∈ M(Si)) ⊆ XM(Si)

and k ∈ Uk means k(α) ∈ Uk(α) for every α.
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Result for square diagrams

K......CCIP
S......square diagram

Theorem

TFAE

M(ConA) is S-nonseparable for some A ∈ K;
M(ConF (ℵ1)) is S-nonseparable (F (ℵ1) free in K);
S has a lifting in K.

A similar theorem holds for diagrams indexed by �nite generalized

chains.
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Finite generalised chains are still not enough

We have ConM4 6= ConM3, but exactly the same diagrams

indexed by �nite generalized chains have lifting in these varieties.

The diagram distinguishing them:
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M3 versus M4
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Gillibert's bound

Theorem

Let K and L be �nitely generated CD varieties such that

ConK * ConL. Then ConFK(ℵ2) /∈ ConL.

Conjecture: for CCIP varieties, the cardinality ℵ2 can be replaced

by ℵ1.
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