Non-finitely axiomatisable canonical varieties of BAOs with infinite canonical axiomatisations

Agi Kurucz
King's College London

Joint work with Christopher Hampson, Stanislav Kikot, and Sérgio Marcelino

BAOs - normal multimodal logics

Jónsson, Tarski, Kripke, . . .

- BAOs Boolean algebras with additional operators that are
- normal $\quad f(\ldots, 0, \ldots)=0$
- additive $f(\ldots, x+y, \ldots)=f(\ldots, x, \ldots)+f(\ldots, y, \ldots)$

BAOs - normal multimodal logics

Jónsson, Tarski, Kripke, ...

- BAOs Boolean algebras with additional operators that are
- normal $f(\ldots, 0, \ldots)=0$
- additive $f(\ldots, x+y, \ldots)=f(\ldots, x, \ldots)+f(\ldots, y, \ldots)$
- normal propositional multimodal logics
- K-axioms and Necessitation rule for each \square modality
- possible world (relational aka Kripke) semantics

Canonicity

- canonical variety of BAOs closed under canonical extensions
canonical modal logic valid in its canonical frames

Canonicity

- canonical variety of BAOs closed under canonical extensions canonical modal logic valid in its canonical frames
- canonical equation the variety it axiomatises is canonical
canonical formula the modal logic it axiomatises is canonical

Canonicity

- canonical variety of BAOs closed under canonical extensions
canonical modal logic valid in its canonical frames
- canonical equation the variety it axiomatises is canonical
canonical formula the modal logic it axiomatises is canonical
- Kracht 1999
canonicity of an equation/formula is an undecidable 'semantical' property
but: there are well-known syntactical descriptions resulting in canonical formulas
- Sahlqvist formulas
- inductive formulas á la Goranko-Vakarelov 2006

Barely canonical logics/varieties

all formulas in Σ are canonical
the logic L_{Σ} axiomatised by Σ
is canonical

Barely canonical logics/varieties

all formulas in Σ are canonical $\quad \Longrightarrow$
there is a
canonical axiomatisation for L
the logic L_{Σ} axiomatised by Σ is canonical
L is a canonical logic

Barely canonical logics/varieties

all formulas in Σ are canonical there is a canonical axiomatisation for $L \stackrel{?}{\rightleftharpoons}$ is a canonical logic

Canonicity of a logic can be shown in other ways:

- Fine 1975 elementarily generated logics are always canonical
- Goldblatt 7989 the logic of an ultraproduct-closed class is always canonical

Barely canonical logics/varieties

all formulas in Σ are canonical there is a
canonical axiomatisation for L
 the logic L_{Σ} axiomatised by Σ is canonical
L is a canonical logic

Canonicity of a logic can be shown in other ways:

- Fine 1975 elementarily generated logics are always canonical
- Goldblatt 1989 the logic of an ultraproduct-closed class is always canonical
- Hodkinson-Venema 2005 there are barely canonical logics/varieties:
- they are canonical, but
- every axiomatisation must contain infinitely many non-canonical axioms

For example: RRA
Goldblatt-Hodkinson 2007, Bulian-Hodkinson 2013, Kikot 2015 $\mathbf{R C A}_{n}, \mathbf{R D f}_{n}$ for $n \geq 3$, Hughes logic, McKinsey-Lemmon logic

Dichotomy?

there are many well-known finitely Sahlqvist axiomatisable logics

Dichotomy?

there are many well-known finitely Sahlqvist axiomatisable logics
is there any "in between"?

- non-finitely axiomatisable, but
- axiomatisable by (infinitely many) canonical axioms ?

Dichotomy?

there are many well-known finitely Sahlqvist axiomatisable logics

is there any "in between"?

- non-finitely axiomatisable, but
- axiomatisable by (infinitely many) canonical axioms ?

Sometimes not:
Kikot 2075 if $\underline{\mathcal{C}}$ is FO-definable by $\forall x_{0} \exists x_{1} \ldots \exists x_{n} \bigwedge x_{i} R_{\lambda} x_{j}$ formulas then:

- either Logic_of (\mathcal{C}) is barely canonical,
- or Logic_of (\mathcal{C}) is axiomatisable by a single inductive formula

Dichotomy?

there are many well-known finitely Sahlqvist axiomatisable logics

is there any "in between"?

- non-finitely axiomatisable, but
- axiomatisable by (infinitely many) canonical axioms ?

Sometimes not:

Kikot 2015 if $\underline{\mathcal{C}}$ is FO-definable by $\forall x_{0} \exists x_{1} \ldots \exists x_{n} \bigwedge x_{i} R_{\lambda} x_{j}$ formulas then:

- either Logic_of (\mathcal{C}) is barely canonical,
- or Logic_of (\mathcal{C}) is axiomatisable by a single inductive formula

Sometimes yes:
Crs_{n} cylindric-relativised set algebras

- Andréka-Németi non-finitely axiomatisable when $\boldsymbol{n} \geq 3$
- Resek-Thompson axiomatisable by an infinite set of Sahlqvist equations

Dichotomy?

there are many well-known finitely Sahlqvist axiomatisable logics

is there any "in between"?

- non-finitely axiomatisable, but
- axiomatisable by (infinitely many) canonical axioms ?

Sometimes not:
Kikot 2015 if $\underline{\mathcal{C}}$ is FO-definable by $\forall x_{0} \exists x_{1} \ldots \exists x_{n} \bigwedge x_{i} R_{\lambda} x_{j}$ formulas then:

- either Logic_of (\mathcal{C}) is barely canonical,
- or Logic_of (\mathcal{C}) is axiomatisable by a single inductive formula

Sometimes yes:
Crs_{n} cylindric-relativised set algebras

- Andréka-Németi non-finitely axiomatisable when $n \geq 3$
- Resek-Thompson axiomatisable by an infinite set of Sahlqvist equations

> is there any product of modal logics "in between"?

Canonical axiomatisations for products of modal logics?

$n \geq 3$ dimensions
if L is a canonical n-modal logic between K^{n} and $\mathrm{S5}^{n}$
then L is barely canonical

Canonical axiomatisations for products of modal logics?

- $n \geq 3$ dimensions
if L is a canonical n-modal logic between K^{n} and $\mathrm{S5}^{n}$
then L is barely canonical
- 2D Gabbay-Shehtman 1998
if L_{i} are axiomatisable by Sahlqvist formulas with Horn FO-correspondents then $L_{0} \times L_{1}$
is Sahlqvist axiomatisable by $\quad L_{0}+L_{1}$
+ commutativity $\quad \diamond_{0} \diamond_{1} p \leftrightarrow \diamond_{1} \diamond_{0} p$
+ confluence $\quad \diamond_{0} \square_{1} p \rightarrow \square_{1} \diamond_{0} p$

Canonical axiomatisations for products of modal logics?

- $n \geq 3$ dimensions
if L is a canonical n-modal logic between K^{n} and $\mathrm{S5}^{n}$ then L is barely canonical
- 2D Gabbay-Shehtman 1998
if L_{i} are axiomatisable by Sahlqvist formulas with Horn FO-correspondents then $L_{0} \times L_{1}$
is Sahlqvist axiomatisable by

$$
L_{0}+L_{1}
$$

$$
+ \text { commutativity } \quad \diamond_{0} \diamond_{1} p \leftrightarrow \diamond_{1} \diamond_{0} p
$$

+ confluence

$$
\diamond_{0} \square_{1} p \rightarrow \square_{1} \diamond_{0} p
$$

FOR EXAMPLE: any 2D product of | K | T | K 4 | S 4 | S 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

is there any 2D product of modal logics "in between"?

- non-finitely axiomatisable
- axiomatisable by (infinitely many) canonical axioms
- (components are finitely axiomatisable by canonical axioms)

Diff: the modal logic of the difference operator

- von Wright 1979 difference frames: (W, \neq) Diff $=$ Logic_of $\{$ all difference frames $\}$

Diff: the modal logic of the difference operator

- von Wright 1979 difference frames: (W, \neq) Diff $=$ Logic_of $\{$ all difference frames $\}$
- Segerberg 1973

Diff is finitely Sahlqvist axiomatisable: pseudo-equivalence relation

- symmetric

$$
p \rightarrow \square \diamond p
$$

- pseudo-transitive $\forall x, y, z(R(x, y) \wedge R(y, z) \rightarrow x=z \vee R(x, z))$

$$
\diamond \diamond p \rightarrow p \vee \diamond p
$$

not Horn

Diff: the modal logic of the difference operator

- von Wright 1979 difference frames: (W, \neq) Diff $=$ Logic_of $\{$ all difference frames $\}$
- Segerberg 1973

Diff is finitely Sahlqvist axiomatisable: pseudo-equivalence relation

- symmetric

$$
p \rightarrow \square \diamond p
$$

- pseudo-transitive $\forall x, y, z(R(x, y) \wedge R(y, z) \rightarrow x=z \vee R(x, z))$

$$
\diamond \diamond p \rightarrow p \vee \diamond p
$$

not Horn

- Diff $+(p \rightarrow \diamond p)=$ S5 $=$ Logic_of $\{$ all universal frames $\}$
reflexive

Diff: the modal logic of the difference operator

- von Wright 1979 difference frames: (W, \neq) Diff $=$ Logic_of $\{$ all difference frames $\}$
- Segerberg 1973

Diff is finitely Sahlqvist axiomatisable: pseudo-equivalence relation

- symmetric

$$
p \rightarrow \square \diamond p
$$

- pseudo-transitive $\forall x, y, z(R(x, y) \wedge R(y, z) \rightarrow x=z \vee R(x, z))$

$$
\diamond \diamond p \rightarrow p \vee \diamond p
$$

not Horn

- Diff $+(p \rightarrow \diamond p)=$ S5 $=$ Logic_of $\{$ all universal frames $\}$
reflexive
- $\forall \varphi: \quad \varphi \wedge \diamond \varphi \quad \diamond \geq^{2} \varphi: \diamond(\varphi \wedge \diamond \varphi) \quad \diamond^{=1} \varphi: \quad(\varphi \vee \diamond \varphi) \wedge \neg \diamond(\varphi \wedge \diamond \varphi)$

2D modal products with Diff

- bimodal formulas: $\quad \varphi:=p\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi\left|\diamond_{0} \varphi\right| \diamond_{1} \varphi \quad p \in$ Variables
- bimodal frames: $\mathfrak{F}=\left(W, R_{0}, R_{1}\right)$

2D modal products with Diff

- bimodal formulas: $\quad \varphi:=p\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi\left|\diamond_{0} \varphi\right| \diamond_{1} \varphi \quad p \in$ Variables
- bimodal frames: $\quad \mathfrak{F}=\left(W, \boldsymbol{R}_{\mathbf{0}}, \boldsymbol{R}_{\mathbf{1}}\right)$

Two special kinds of bimodal frames:

$$
\begin{aligned}
& \text { Rectangles: } \\
& \begin{array}{|lll|}
\hline\left(U \times V, \bar{F}_{0}, \bar{F}_{1}\right) & =(U, \neq) \times(V \neq) \\
\begin{array}{lll}
(u, v) \bar{F}_{0}\left(\boldsymbol{u}^{\prime}, \boldsymbol{v}^{\prime}\right) & \text { iff } & \boldsymbol{u} \neq \boldsymbol{u}^{\prime} \text { and } \boldsymbol{v}=\boldsymbol{v}^{\prime} \\
(\boldsymbol{u}, \boldsymbol{v}) \bar{F}_{1}\left(\boldsymbol{u}^{\prime}, \boldsymbol{v}^{\prime}\right) & \text { iff } & \boldsymbol{u}=\boldsymbol{u}^{\prime} \text { and } \boldsymbol{v} \neq \boldsymbol{v}^{\prime} \\
\hline
\end{array}
\end{array} \\
& \left(\boldsymbol{U} \times \boldsymbol{U}, \overline{\neq}_{0}, \overline{\neq}_{1}\right)
\end{aligned}
$$

2D modal products with Diff

- bimodal formulas:
- bimodal frames:

$$
\varphi:=p\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi\left|\diamond_{0} \varphi\right| \diamond_{1} \varphi \quad p \in \text { Variables }
$$

$$
\mathfrak{F}=\left(W, R_{0}, R_{1}\right)
$$

Two special kinds of bimodal frames:

Rectangles:

$$
\begin{array}{|lll}
\hline\left(U \times V, \bar{F}_{0}, \overline{\neq}_{1}\right) & =(U, \neq) \times(V \neq) \\
\hline(u, v) \overline{\neq}_{0}\left(u^{\prime}, v^{\prime}\right) & \text { iff } & \boldsymbol{u} \neq \boldsymbol{u}^{\prime} \text { and } v=v^{\prime} \\
(\boldsymbol{u}, \boldsymbol{v}) \bar{F}_{1}\left(\boldsymbol{u}^{\prime}, v^{\prime}\right) & \text { iff } & \boldsymbol{u}=\boldsymbol{u}^{\prime} \text { and } \boldsymbol{v} \neq \boldsymbol{v}^{\prime} \\
\hline
\end{array}
$$

Squares:

$$
\left(U \times U, \overline{\neq}_{0}, \overline{\neq}_{1}\right)
$$

Two-variable first-order logic with 'elsewhere' quantifiers

$$
\phi:=P(x, y)|P(y, x)| x=y\left|\phi_{1} \wedge \phi_{2}\right| \neg \phi\left|\exists^{\neq x} x\right| \exists^{\neq y} y
$$

for some binary predicate symbols P

$$
\begin{aligned}
& \mathfrak{M} \models \exists \neq x \phi[a / x, b / y] \quad \text { iff } \quad \exists a^{\prime} \neq a \quad \mathfrak{M} \vDash \phi\left[a^{\prime} / x, b / y\right] \\
& \mathfrak{M} \models \exists \neq y \phi[a / x, b / y] \quad \text { iff } \quad \exists b^{\prime} \neq b \quad \mathfrak{M} \models \phi\left[a / x, b^{\prime} / y\right] \\
& \exists x \phi \leftrightarrow(\phi \vee \exists \neq x \phi) \\
& \exists \boldsymbol{y} \phi \leftrightarrow(\phi \vee \exists \neq \boldsymbol{y} \phi)
\end{aligned}
$$

Two-variable first-order logic with 'elsewhere' quantifiers

$$
\phi:=P(x, y)|P(y, x)| x=y\left|\phi_{1} \wedge \phi_{2}\right| \neg \phi|\exists \neq x \phi| \exists \neq y \phi
$$

for some binary predicate symbols P

$$
\left.\begin{array}{cc}
\mathfrak{M} \models \exists \neq \boldsymbol{x} \phi[\boldsymbol{a} / \boldsymbol{x}, \boldsymbol{b} / \boldsymbol{y}] & \text { iff } \\
\exists a^{\prime} \neq \boldsymbol{a} & \mathfrak{M} \models \phi\left[\boldsymbol{a}^{\prime} / \boldsymbol{x}, \boldsymbol{b} / \boldsymbol{y}\right] \\
\mathfrak{M} \models \exists \neq \boldsymbol{y} \phi[\boldsymbol{a} / \boldsymbol{x}, \boldsymbol{b} / \boldsymbol{y}] & \text { iff } \\
\exists b^{\prime} \neq \boldsymbol{b} & \mathfrak{M} \models \phi\left[\boldsymbol{a} / \boldsymbol{x}, \boldsymbol{b}^{\prime} / \boldsymbol{y}\right]
\end{array}\right] \begin{array}{cc|}
\exists x \phi \leftrightarrow(\phi \vee \exists \neq x \phi) & \exists y \leftrightarrow(\phi \vee \exists \neq y \phi)
\end{array}
$$

The satisfiability problem is

- decidable Grädel-Otto-Rosen 1997
- NEXPTIME-complete Pacholski-Szwast-Tendera 2000
- shorter proof with connections to integer programming Pratt-Hartmann 2010

Two-variable first-order logic with 'elsewhere' quantifiers

$$
\phi:=P(x, y)|P(y, x)| x=y\left|\phi_{1} \wedge \phi_{2}\right| \neg \phi|\exists \neq x \phi| \exists \neq y \phi
$$

for some binary predicate symbols P

$$
\begin{aligned}
& \mathfrak{M} \models \exists \neq x \phi[a / x, b / y] \quad \text { iff } \quad \exists a^{\prime} \neq a \quad \mathfrak{M} \vDash \phi\left[a^{\prime} / x, b / y\right] \\
& \mathfrak{M} \models \exists \neq y \phi[a / x, b / y] \quad \text { iff } \quad \exists b^{\prime} \neq b \quad \mathfrak{M} \models \phi\left[a / x, b^{\prime} / y\right] \\
& \exists x \phi \leftrightarrow\left(\phi \vee \exists^{\neq} x \phi\right) \quad \exists y \phi \leftrightarrow\left(\phi \vee \exists^{\neq} \boldsymbol{y} \phi\right)
\end{aligned}
$$

The satisfiability problem is

- decidable Grädel-Otto-Rosen 1997
- NEXPTIME-complete Pacholski-Szwast-Tendera 2000
- shorter proof with connections to integer programming Pratt-Hartmann 2010

Logic_of(Squares): 'restricted' (equality and substitution-free) fragment

$$
\phi:=P(x, y)\left|\phi_{1} \wedge \phi_{2}\right| \neg \phi\left|\nexists^{\neq} x \phi\right| \exists \neq \boldsymbol{y} \phi
$$

'Strict’ diagonal-free cylindric set algebras

full rectangular set algebras: $\quad \mathfrak{A}=\left(\mathcal{B}(U \times V), C_{0}^{\neq}, C_{1}^{\neq}\right)$
for every $\boldsymbol{X} \subseteq \boldsymbol{U} \times \boldsymbol{V}$,

$$
\begin{gathered}
C_{0}^{\neq(X)=\left\{(u, v): \exists u^{\prime}\left(u^{\prime} \neq u \text { and }\left(u^{\prime}, v\right) \in X\right)\right\}} \begin{array}{c}
C_{1}^{\neq}(X)=\left\{(u, v): \exists v^{\prime}\left(v^{\prime} \neq v \text { and }\left(u, v^{\prime}\right) \in X\right)\right\} \\
C_{i}(X)=X \cup C_{i}^{\neq}(X)
\end{array}
\end{gathered}
$$

full square set algebras:

$$
\mathfrak{A}=\left(\mathcal{B}(U \times U), C_{0}^{\neq}, C_{1}^{\neq}\right)
$$

'Strict' diagonal-free cylindric set algebras

full rectangular set algebras:

$$
\mathfrak{A}=\left(\mathcal{B}(U \times V), C_{0}^{\neq}, C_{1}^{\neq}\right)
$$

for every $\boldsymbol{X} \subseteq \boldsymbol{U} \times \boldsymbol{V}$,

$$
\begin{gathered}
C_{0}^{\neq(X)=\left\{(u, v): \exists u^{\prime}\left(u^{\prime} \neq u \text { and }\left(u^{\prime}, v\right) \in X\right)\right\}} \\
C_{1}^{\neq}(X)=\left\{(u, v): \exists v^{\prime}\left(v^{\prime} \neq v \text { and }\left(u, v^{\prime}\right) \in X\right)\right\} \\
C_{i}(X)=X \cup C_{i}^{\neq}(X)
\end{gathered}
$$

full square set algebras:

$$
\mathfrak{A}=\left(\mathcal{B}(U \times U), C_{0}^{\neq}, C_{1}^{\neq}\right)
$$

- $\mathbf{s R d f}_{2}=\mathbb{S P}\{$ full rectangular set algebras $\}$ and
$\mathbf{s R d f}_{2}^{s a}=\mathbb{S P}\{$ full square set algebras $\}$
are discriminator and canonical varieties

'Strict’ diagonal-free cylindric set algebras

full rectangular set algebras:

$$
\mathfrak{A}=\left(\mathcal{B}(U \times V), C_{0}^{\neq}, C_{1}^{\neq}\right)
$$

for every $\boldsymbol{X} \subseteq \boldsymbol{U} \times \boldsymbol{V}$,

$$
\begin{gathered}
C_{0}^{\neq(X)=\left\{(u, v): \exists u^{\prime}\left(u^{\prime} \neq u \text { and }\left(u^{\prime}, v\right) \in X\right)\right\}} \\
C_{1}^{\neq}(X)=\left\{(u, v): \exists \boldsymbol{v}^{\prime}\left(v^{\prime} \neq \boldsymbol{v} \text { and }\left(u, v^{\prime}\right) \in X\right)\right\} \\
C_{i}(X)=X \cup C_{i}^{\neq}(X)
\end{gathered}
$$

full square set algebras:

$$
\mathfrak{A}=\left(\mathcal{B}(U \times U), C_{0}^{\neq}, C_{1}^{\neq}\right)
$$

- $\mathbf{s R d f}_{2}=\mathbb{S P}\{$ full rectangular set algebras $\}$ and
$\mathbf{s R d f}_{2}^{\text {sa }}=\mathbb{S} \mathbb{P}\{$ full square set algebras $\}$
are discriminator and canonical varieties
- $\mathrm{Eq}\left(\mathrm{sRdf}_{2}\right)$ and $\mathrm{Eq}\left(\mathrm{sRdf}_{2}^{s q}\right)$ are decidable \sim r.e.

'Strict' diagonal-free cylindric set algebras

full rectangular set algebras: $\mathfrak{A}=\left(\mathcal{B}(U \times V), C_{0}^{\neq}, C_{1}^{\neq}\right)$ for every $\boldsymbol{X} \subseteq \boldsymbol{U} \times \boldsymbol{V}$,

$$
\begin{aligned}
& C_{0}^{\neq}(X)=\left\{(u, v): \exists u^{\prime}\left(u^{\prime} \neq u \text { and }\left(u^{\prime}, v\right) \in X\right)\right\} \\
& C_{1}^{\neq}(X)=\left\{(u, v): \exists v^{\prime}\left(v^{\prime} \neq v \text { and }\left(u, v^{\prime}\right) \in X\right)\right\}
\end{aligned}
$$

$$
C_{i}(X)=X \cup C_{i}^{\neq}(X)
$$

full square set algebras: $\quad \mathfrak{A}=\left(\mathcal{B}(U \times U), C_{0}^{\neq}, C_{1}^{\neq}\right)$

- $\mathbf{s R d f}_{2}=\mathbb{S P}\{$ full rectangular set algebras $\}$ and
$\mathbf{s R d f}_{2}^{\text {sa }}=\mathbb{S} \mathbb{P}\{$ full square set algebras $\}$
are discriminator and canonical varieties
- $\mathrm{Eq}\left(\mathrm{sRdf}_{2}\right)$ and $\mathrm{Eq}\left(\mathrm{sRdf}_{2}^{s q}\right)$ are decidable \sim r.e.

Logic_of(Rectangles) ~Eq(sRdf ${ }_{2}$)

```
Logic_of(Squares) ~ Eq(sRdffre
```


Our results on axiomatisations

- Logic_of(Rectangles) $\sim \mathrm{Eq}\left(\mathrm{sRdf}_{2}\right)$ is not finitely axiomatisable
+ but it has an infinite axiomatisation by Sahlqvist formulas/equations
- Logic_of(Squares) $\sim \mathrm{Eq}\left(\mathrm{sRdf}_{2}^{\text {sq }}\right.$) is not finitely axiomatisable over

Logic_of(Rectangles) ~Eq(sRdf ${ }_{2}$)

+ but it can be axiomatised by adding infinitely many
Sahlqvist formulas/equations

Our results on axiomatisations

- Logic_of(Rectangles) $\sim \mathrm{Eq}\left(\mathrm{sRdf}_{2}\right)$ is not finitely axiomatisable
+ but it has an infinite axiomatisation by Sahlqvist formulas/equations
- Logic_of(Squares) $\sim E q\left(s R d f f_{2}^{s q}\right)$ is not finitely axiomatisable over

Logic_of(Rectangles) $\sim \mathrm{Eq}\left(\mathrm{sRdf}_{2}\right)$

+ but it can be axiomatised by adding infinitely many
Sahlqvist formulas/equations

Contrast: \quad S5 \times S5

- $\mathbf{E q}\left(\mathbf{R d f}_{2}\right)=\mathbf{E q}\{r e c t a n g u l a r ~ s e t ~ a l g e b r a s\}=\mathbf{E q}\{$ square set algebras $\}$ has finite Sahlqvist axiomatisation
two commuting complemented closure operators

Our results on axiomatisations

- Logic_of(Rectangles) \sim Eq(sRdf 2) is not finitely axiomatisable
+ but it has an infinite axiomatisation by Sahlqvist formulas/equations
- Logic_of(Squares) $\sim E q\left(\right.$ sRdf $_{2}^{\text {sq }}$) is not finitely axiomatisable over Logic_of(Rectangles) $\sim \mathrm{Eq}\left(\mathrm{sRdf}_{2}\right)$
+ but it can be axiomatised by adding infinitely many
Sahlqvist formulas/equations

Contrast: \quad S5 \times S5

- $\mathbf{E q}\left(\mathbf{R d f}_{2}\right)=\mathbf{E q}\{r e c t a n g u l a r ~ s e t ~ a l g e b r a s\}=E q\{s q u a r e ~ s e t ~ a l g e b r a s\} ~$
has finite Sahlqvist axiomatisation
two commuting complemented closure operators
- $\mathbf{E q}\left(\mathbf{R d f}_{2}\right)$ is finitely axiomatisable over both $\mathbf{E q}\left(\mathbf{s R d f}_{2}\right)$ and $\mathbf{E q}\left(\mathbf{s R d f}_{2}^{5 q}\right)$ just add
$x \leq c_{i}(x)$

$$
p \rightarrow \diamond_{i} p
$$

Axiomatisation basics: grids of bi-clusters

Simple modally/equationally (Sahlqvist) expressible properties of rectangles: łwo commuting pseudo-equivalence relations
[Diff, Diff]
$\mathbf{s D f}_{2}$

Axiomatisation basics: grids of bi-clusters

Simple modally/equationally (Sahlqvist) expressible properties of rectangles:
two commuting pseudo-equivalence relations

[Diff, Diff]	sDf $_{2}$

Axiomatisation basics: grids of bi-clusters

Simple modally/equationally (Sahlqvist) expressible properties of rectangles:
łwo commuting pseudo-equivalence relations

[Diff, Diff]	sDf $_{2}$

Axiomatisation basics: grids of bi-clusters

Simple modally/equationally (Sahlqvist) expressible properties of rectangles:
two commuting pseudo-equivalence relations
[Diff, Diff]
sDf_{2}

00: $\boldsymbol{R}_{\mathbf{0}}$-reflexive, $\boldsymbol{R}_{\mathbf{1}}$-irreflexive
©: \boldsymbol{R}_{0}-irreflexive, \boldsymbol{R}_{1}-reflexive
\rightarrow © : both-irreflexive
∞ : both-reflexive

Non-finite axiomatisability

For every $\boldsymbol{k}<\boldsymbol{\omega}$ there are two grids of bi-clusters:

- \mathfrak{F}_{k} is not a p-morphic image of a rectangle $\leadsto \mathfrak{F}_{k} \not \models$ Logic_of (Rectangles)

Non-finite axiomatisability

For every $\boldsymbol{k}<\boldsymbol{\omega}$ there are two grids of bi-clusters:

- \mathfrak{F}_{k} is not a p-morphic image of a rectangle $\leadsto \mathfrak{F}_{k} \not \vDash$ Logic of (Rectangles)
- \mathfrak{G}_{k} is a p-morphic image of a square $\leadsto \mathfrak{G}_{k} \models$ Logic_of(Squares)

Non-finite axiomatisability

For every $\boldsymbol{k}<\boldsymbol{\omega}$ there are two grids of bi-clusters:

- \mathfrak{F}_{k} is not a p-morphic image of a rectangle $\leadsto \widetilde{\mathfrak{F}}_{k} \not \equiv$ Logic_of(Rectangles)
- \mathfrak{G}_{k} is a p-morphic image of a square $\leadsto \mathfrak{G}_{k} \models$ Logic_of(Squares)
- if $2^{m+1} \leq k$ then with m variables we can't tell \mathfrak{F}_{k} and \mathfrak{G}_{k} apart: \forall m-generated model $\mathfrak{M}=\left(\mathfrak{F}_{k}, \mu\right) \exists$ model $\mathfrak{N}=\left(\mathfrak{G}_{k}, \nu\right)$ such that
\mathfrak{N} is a p-morphic image of \mathfrak{M}

Non-finite axiomatisability

For every $\boldsymbol{k}<\boldsymbol{\omega}$ there are two grids of bi-clusters:

- \mathfrak{F}_{k} is not a p-morphic image of a rectangle $\leadsto \mathfrak{F}_{k} \not \vDash$ Logic_of (Rectangles)
- \mathfrak{G}_{k} is a p-morphic image of a square $\leadsto \mathfrak{G}_{k} \models$ Logic_of(Squares)
- if $2^{m+1} \leq k$ then with m variables we can't tell \mathfrak{F}_{k} and \mathfrak{G}_{k} apart:
\forall m-generated model $\mathfrak{M}=\left(\mathfrak{F}_{k}, \mu\right) \quad \exists$ model $\mathfrak{N}=\left(\mathfrak{G}_{k}, \nu\right)$ such that \mathfrak{N} is a p-morphic image of \mathfrak{M}
neither Logic_of(Rectangles) nor Logic_of(Squares) can be axiomatised using finitely many variables

Explicit axioms via representation game

Hirsch-Hodkinson 1997a

- step-by-step build representations for countable algebras in RA, CA $\boldsymbol{C l}_{n}, \mathbf{D f}_{n}$
- can be described as a game $\mathcal{G}_{\omega}(\mathfrak{A})$ between \forall and \exists :
\mathfrak{A} is representable iff \exists has a winning strategy in $\mathcal{G}_{\omega}(\mathfrak{A})$
- " \exists has a winning strategy" \Longleftrightarrow (infinitely many) universal formulas
- discriminator varieties \leadsto equational axiomatisations

Explicit axioms via representation game

Hirsch-Hodkinson 1997a

- step-by-step build representations for countable algebras in RA, CA $\boldsymbol{D}_{n}, \mathbf{D f}_{n}$
- can be described as a game $\mathcal{G}_{\omega}(\mathfrak{A})$ between \forall and \exists :
\mathfrak{A} is representable iff \exists has a winning strategy in $\mathcal{G}_{\omega}(\mathfrak{A})$
- " \exists has a winning strategy" \Longleftrightarrow (infinitely many) universal formulas
- discriminator varieties \leadsto equational axiomatisations
- are these axioms all canonical? NO, when $n \geq 3$

Explicit axioms via representation game

Hirsch-Hodkinson 1997a

- step-by-step build representations for countable algebras in RA, CA $\mathbf{C f}_{n}$
- can be described as a game $\mathcal{G}_{\omega}(\mathfrak{A})$ between \forall and \exists :
\mathfrak{A} is representable iff \exists has a winning strategy in $\mathcal{G}_{\omega}(\mathfrak{A})$
- " \exists has a winning strategy" \Longleftrightarrow (infinitely many) universal formulas
- discriminator varieties \leadsto equational axiomatisations
- are these axioms all canonical? NO, when $n \geq 3$
same technique can be used to obtain explicit (infinite) axiomatisations

$$
\text { for } E q\left(s^{2} \mathrm{Rdf}_{2}\right) \text { and } E q\left(\mathrm{sRdf}_{2}^{s q}\right)
$$

are these axioms canonical??

Canonical axioms via complete representation game?

Hirsch-Hodkinson 1997b

- step-by-step build complete representations for countable atom-structures (for RA, CA ${ }_{n}$)
- same technique can be used for $\mathbf{s D f}_{2}$:
can be described as a game $\mathcal{G}_{\omega}(\mathfrak{F})$ between \forall and \exists, step-by-step
building homomorphisms from larger and larger rectangles to \mathfrak{F}
\mathfrak{F} is a p-morphic image of a rectangle iff \exists has a winning strategy in $\mathcal{G}_{\omega}(\mathfrak{F})$

Canonical axioms via complete representation game?

Hirsch-Hodkinson 1997b

- step-by-step build complete representations for countable atom-structures (for RA, CA ${ }_{n}$)
- same technique can be used for $\mathbf{s D f}_{2}$:
can be described as a game $\mathcal{G}_{\omega}(\mathfrak{F})$ between \forall and \exists, step-by-step building homomorphisms from larger and larger rectangles to \mathfrak{F}
\mathfrak{F} is a p-morphic image of a rectangle iff \exists has a winning strategy in $\mathcal{G}_{\omega}(\mathfrak{F})$
can we describe this with canonical formulas??

Axioms for elementarily generated logics via hybrid logic

Hodkinson 2006

\mathcal{C} elementary class of frames

$\Pi(\mathcal{C}) \quad$ FO pseudo-equational theory of \mathcal{C}
\dagger algorithmic
$\Phi_{\mathcal{C}} \quad=\left\{\iota_{\theta}: \theta \in \Pi(\mathcal{C})\right\}$ - set of pure hybrid formulas
\dagger algorithmic
$\Sigma_{\Phi_{\mathcal{C}}}=\bigcup_{\iota \in \Phi_{\mathcal{C}}} \Sigma_{\iota}-$ set of modal 'approximants'

$$
\text { Logic_of }(\mathcal{C})=\text { modal logic axiomatised by } \Sigma_{\Phi_{\mathcal{C}}}
$$

> not necessarily canonical axioms

How do we get canonical axioms?

How do we get canonical axioms?

Sahlqvist and inductive axioms Σ are 'nice':

- FO correspondence: $\operatorname{Fr} \Sigma$ is an elementary class
- completeness: the modal logic L_{Σ} axiomatised by Σ is canonical \leadsto Kripke complete: $\quad L_{\Sigma}=\operatorname{Logic}$ _of $(\operatorname{Fr} \Sigma)$
- \leadsto countable frame property: $L_{\Sigma}=\operatorname{Logic}$ of $\{\mathfrak{F} \in \operatorname{Fr} \Sigma: \mathfrak{F}$ is countable $\}$

How do we get canonical axioms?

Sahlqvist and inductive axioms Σ are 'nice':

- FO correspondence: $\operatorname{Fr} \Sigma$ is an elementary class
- completeness: the modal logic L_{Σ} axiomatised by Σ is canonical \leadsto Kripke complete: $\quad L_{\Sigma}=\operatorname{Logic}$ _of $(\operatorname{Fr} \Sigma)$
- \leadsto countable frame property: $L_{\Sigma}=\operatorname{Logic}$ of $\{\mathfrak{F} \in \operatorname{Fr} \Sigma: \mathfrak{F}$ is countable $\}$

$$
\begin{aligned}
& \mathcal{C}_{\text {bad }}=\{\mathfrak{F}: \mathfrak{F} \text { is a countable grid of bi-clusters } \\
& \qquad \text { that is not the p-morphic image of a rectangle }\}
\end{aligned}
$$

How do we get canonical axioms?

Sahlqvist and inductive axioms Σ are 'nice':

- FO correspondence: $\operatorname{Fr} \Sigma$ is an elementary class
- completeness: the modal logic L_{Σ} axiomatised by Σ is canonical \leadsto Kripke complete: $\quad L_{\Sigma}=\operatorname{Logic_ of~}(\operatorname{Fr} \Sigma)$
- \leadsto countable frame property: $\quad L_{\Sigma}=\operatorname{Logic}$ _of $\{\mathfrak{F} \in \operatorname{Fr} \Sigma: \mathfrak{F}$ is countable $\}$

$$
\begin{aligned}
& \mathcal{C}_{\text {bad }}=\{\mathfrak{F}: \mathfrak{F} \text { is a countable grid of bi-clusters } \\
& \\
& \qquad \text { that is not the p-morphic image of a rectangle }\}
\end{aligned}
$$

For every $\mathfrak{F} \in \mathcal{C}_{\text {bad }}$ we define a Sahlqvist formula $\varphi_{\mathfrak{F}}$ such that

- $\varphi_{\mathfrak{F}}$ is valid in every rectangle
- $\neg \varphi_{\mathfrak{F}}$ is satisfiable in \mathfrak{F}
$\leadsto \quad$ Logic_of(Rectangles): $\quad \mathrm{sDf}_{2}+\varphi_{\mathfrak{F}}$ for all $\mathfrak{F} \in \mathcal{C}_{\text {bad }}$

Good and bad countable grids of bi-clusters

a grid \mathscr{F} is a p-morphic image of a rectangle iff

- each bi-cluster in it is a p-morphic image of a rectangle, and
- the 'pre-image' rectangles 'fitt' (= can be 'put together')

Good and bad countable grids of bi-clusters

a grid $\sqrt[F]{ }$ is a p-morphic image of a rectangle iff

- each bi-cluster in it is a p-morphic image of a rectangle, and
- the 'pre-image' rectangles 'fitt' (= can be 'put together')

Good and bad countable grids of bi-clusters

a grid \mathfrak{F} is a p-morphic image of a rectangle iff

- each bi-cluster in it is a p-morphic image of a rectangle, and
- the 'pre-image' rectangles 'fitt' (= can be 'put together')

Good and bad countable grids of bi-clusters

a grid $\sqrt[F]{ }$ is a p-morphic image of a rectangle iff

- each bi-cluster in it is a p-morphic image of a rectangle, and
- the 'pre-image' rectangles 'fitt' (= can be 'put together')

Good and bad countable grids of bi-clusters

a grid $\sqrt{\mathfrak{F}}$ is a p-morphic image of a rectangle iff

- each bi-cluster in it is a p-morphic image of a rectangle, and
- the 'pre-image' rectangles 'fit' (= can be 'put together')

Good and bad countable grids of bi-clusters

a grid $\sqrt{\mathfrak{F}}$ is a p-morphic image of a rectangle iff

- each bi-cluster in it is a p-morphic image of a rectangle, and
- the 'pre-image' rectangles 'fiti' (= can be 'put together')

Good and bad countable grids of bi-clusters

a grid $\sqrt{\mathfrak{F}}$ is a p-morphic image of a rectangle iff

- each bi-cluster in it is a p-morphic image of a rectangle, and
- the 'pre-image' rectangles 'fitt' (= can be 'put together')

Good and bad countable grids of bi-clusters

a grid \mathfrak{F} is a p-morphic image of a rectangle iff

- each bi-cluster in it is a p-morphic image of a rectangle, and
- the 'pre-image' rectangles 'fitt' (= can be 'put together')

Good and bad countable grids of bi-clusters

a grid \mathscr{F} is a p-morphic image of a rectangle iff

- each bi-cluster in it is a p-morphic image of a rectangle, and
- the 'pre-image' rectangles 'fitt' (= can be 'put together')

Constraints on finite good bi-clusters

An integer programming task

\mathfrak{F} : countable grid of bi-clusters containing no bad bi-clusters
\leadsto linear constraint system $\Gamma^{\mathfrak{F}}$:

An integer programming task

\mathfrak{F} : countable grid of bi-clusters containing no bad bi-clusters
\leadsto linear constraint system $\Gamma^{\mathfrak{F}}$:

- we consider the columns and rows in \mathfrak{F} as variables: $\boldsymbol{x}, \ldots, \boldsymbol{y} \ldots$
- constraints on the size of a p-morphic preimage:
- if the bi-cluster at (column x, row y) is infinite, then $x=\aleph_{0} \quad y=\aleph_{0}$
- if the bi-cluster at (column x, row y) is finite, then from the table:

$$
\begin{array}{|l|}
\hline x=c \\
\hline y=c \\
\hline
\end{array}
$$

$x \geq c$
$y \geq c$

$\lambda x \leq y$
$\lambda y \leq x$

An integer programming task

$\sqrt{\mathfrak{F}}$: countable grid of bi-clusters containing no bad bi-clusters
\leadsto linear constraint system $\Gamma^{\mathfrak{F}}$:

- we consider the columns and rows in \mathfrak{F} as variables: $x, \ldots, y \ldots$
- constraints on the size of a p-morphic preimage:
- if the bi-cluster at (column x, row y) is infinite, then $x=\aleph_{0} \quad y=\aleph_{0}$
- if the bi-cluster at (column x, row y) is finite, then from the table:

$x=c$	$x \geq c$	$x \leq y$ $y=c$
$y \geq c$	$\lambda y \leq x$	

Sahlqvist axiomatisations

Logic_of (Rectangles)

for every bad grid \mathfrak{F} there is a 'finitary Sahlqvist reason' for being bad:

- either \mathfrak{F} contains a finite bad bi-cluster
- or $\Gamma^{\tilde{x}}$ contains a finite 'contradictory chain' of constraints

FOR EXAMPLE: $3 \leq y_{1}=x_{1}=y_{2}=x_{2} \quad 2 x_{2} \leq y_{3} \quad y_{3}=5$

Sahlqvist axiomatisations

Logic_of (Rectangles)

for every bad grid \mathfrak{F} there is a 'finitary Sahlqvist reason' for being bad:

- either \mathfrak{F} contains a finite bad bi-cluster
- or $\Gamma^{\mathfrak{F}}$ contains a finite 'contradictory chain' of constraints

FOR EXAMPLE: $\quad 3 \leq y_{1}=x_{1}=y_{2}=x_{2} \quad 2 x_{2} \leq y_{3} \quad y_{3}=5$

Logic_of(Squares)

- inductive formulas describing that

$$
\text { if } \xi \text { is a solution of } \Gamma^{\mathfrak{F}} \quad \text { then } \sum_{x} \xi(x)=\sum_{y} \xi(y)
$$

Sahlqvist axiomatisations

Logic_of (Rectangles)

for every bad grid \mathfrak{F} there is a 'finitary Sahlqvist reason' for being bad:

- either \mathfrak{F} contains a finite bad bi-cluster
- or $\Gamma^{\widetilde{z}}$ contains a finite 'contradictory chain' of constraints

FOR EXAMPLE: $\quad 3 \leq y_{1}=x_{1}=y_{2}=x_{2} \quad 2 x_{2} \leq y_{3} \quad y_{3}=5$

Logic_of (Squares)

- inductive formulas describing that

$$
\text { if } \xi \text { is a solution of } \quad \Gamma^{\tilde{\theta}} \quad \text { then } \sum_{x} \xi(x)=\sum_{y} \xi(y)
$$

- Diff-modalities are 'reversive'
~ Goranko-Vakarelov 2001
inductive formulas are axiomatically equivalent to Sahlqvist formulas

Some papers

- J. Bulian and I. Hodkinson, Bare canonicity of representable cylindric and polyadic algebras, Annals of Pure and Applied Logic, 164:884-906, 2013.
- D. Gabbay and V. Shehtman, Products of modal logics. Part I, Logic Journal of the IGPL, 6:73-146, 1998.
- R. Goldblatt and I. Hodkinson, The McKinsey-Lemmon logic is barely canonical, The Australasian Journal of Logic, 5:1-19, 2007.
- V. Goranko and D. Vakarelov, Sahlqvist formulas in hybrid polyadic modal logics, Journal of Logic and Computation, 11:737-754, 2001.
- V. Goranko and D. Vakarelov, Elementary canonical formulae: extending Sahlqvist's theorem, Annals of Pure and Applied Logic, 141:180-217, 2006.
- R. Hirsch and I. Hodkinson, Step by step - building representations in algebraic logic, Journal of Symbolic Logic, 62:225-279, 1997.
- R. Hirsch and I. Hodkinson, Complete representations in algebraic logic, Journal of Symbolic Logic, 62:816-847, 1997.
- I. Hodkinson Hybrid formulas and elementarily generated modal logics, Notre Dame Journal of Formal Logic, 47:443-478, 2006.
- I. Hodkinson and Y. Venema, Canonical varieties with no canonical axiomatisation, Transactions of the American Mathematical Society, 357:4579-4605, 2005.
- S. Kikot, A dichotomy for some elementarily generated modal logics, Studia Logica, 103:1063-1093, 2015.

