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Quantum resources at TACL?

• Our object of study: the use of quantum resources in performing information processing tasks.

• As quantum technologies and the nascent quantum computing industry emerge, it is crucial to
understand the scope and structure of quantum advantage.

• This does fundamentally relate to logic!

• The possibility of quantum advantage is intimately related to the non-classicality of quantum
mechanics. And this non-classicality manifests itself in logical terms.

• This non-classical picture of the world lives “at the borders of paradox”, as indicated by
foundational results such as the EPR paradox, the Kochen-Specker paradox, the Hardy
paradox, etc.

• In articulating the mathematical structure of these phenomena, we use tools from category
theory, topology, algebra.
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Alice-Bob games

Verifier

Alice Bob
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The XOR Game
Alice and Bob play a cooperative game against Verifier (or Nature!):

• Verifier chooses an input x ∈ {0,1} for Alice, and similarly an input y for Bob. We assume the
uniform distribution for Nature’s choices.

• Alice and Bob each have to choose an output, a ∈ {0,1} for Alice, b ∈ {0,1} for Bob,
depending on their input. They are not allowed to communicate during the game.

• The winning condition: a⊕b = x∧ y.

A table of conditional probabilities p(a,b|x,y) defines a probabilistic strategy for this game. The
success probability for this strategy is:

1/4[p(a = b|x = 0,y = 0)+ p(a = b|x = 0,y = 1)+ p(a = b|x = 1,y = 0)

+ p(a 6= b|x = 1,y = 1)]
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A Strategy for the Alice-Bob game

Example: The Bell Model

The entry in row 2 column 3 says:

If the Verifier sends Alice a1 and Bob b2, then with probability 1/8, Alice outputs a 0
and Bob outputs a 1.

This gives a winning probability of 3.25
4 ≈ 0.81.

The optimal classical probability is 0.75!

The proof of this uses (and is essentially the same as) the use of Bell inequalities.

The Bell table exceeds this bound. Since it is quantum realizable using an entangled pair of qubits,
it shows that quantum resources yield a quantum advantage in an information-processing task.
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A Simple Observation

Suppose we have propositional formulas φ1, . . . ,φN

Suppose further we can assign a probability pi = Prob(φi) to each φi.
(Story: perform experiment to test the variables in φi; pi is the relative frequency of the trials
satisfying φi.)

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)
N−1∧
i=1

φi ⇒ ¬φN , or equivalently φN ⇒
N−1∨
i=1

¬φi.

Using elementary probability theory, we can calculate:

pN ≤ Prob(
N−1∨
i=1

¬φi) ≤
N−1

∑
i=1

Prob(¬φi) =
N−1

∑
i=1

(1− pi) = (N−1)−
N−1

∑
i=1

pi.

Hence we obtain the inequality
N

∑
i=1

pi ≤ N−1.
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Logical analysis of the Bell table

(0,0) (1,0) (0,1) (1,1)
(a1,b1) 1/2 0 0 1/2
(a1,b2) 3/8 1/8 1/8 3/8
(a2,b1) 3/8 1/8 1/8 3/8
(a2,b2) 1/8 3/8 3/8 1/8

If we read 0 as true and 1 as false, the highlighted entries in each row of the table are represented by
the following propositions:

ϕ1 = (a1∧b1) ∨ (¬a1∧¬b1) = a1 ↔ b1
ϕ2 = (a1∧b2) ∨ (¬a1∧¬b2) = a1 ↔ b2
ϕ3 = (a2∧b1) ∨ (¬a2∧¬b1) = a2 ↔ b1
ϕ4 = (¬a2∧b2) ∨ (a2∧¬b2) = a2 ⊕ b2.

These propositions are easily seen to be contradictory.
The violation of the logical Bell inequality is 1/4.

All Bell inequalities arise this way.
Abramsky, Hardy, Logical Bell inequalities, Physical Review A 2012.
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Science Fiction? – The News from Delft

First Loophole-free Bell test, 2015

7 / 32



Science Fiction? – The News from Delft
First Loophole-free Bell test, 2015

7 / 32



Science Fiction? – The News from Delft
First Loophole-free Bell test, 2015

7 / 32



8 / 32



9 / 32



Timeline

1932 von Neumann’s Mathematical Foundations of Quantum Mechanics
1935 EPR Paradox, the Einstein-Bohr debate
1964 Bell’s Theorem
1982 First experimental test of EPR and Bell inequalities

(Aspect, Grangier, Roger, Dalibard)
1984 Bennett-Brassard quantum key distribution protocol
1985 Deutch Quantum Computing paper
1993 Quantum teleportation

(Bennett, Brassard, Crépeau, Jozsa, Peres, Wooters)
1994 Shor’s algorithm
2015 First loophole-free Bell tests (Delft, NIST, Vienna)
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Formalising empirical data*

*SA, Brandenburger, New Journal of Physics, 2011.

A measurement scenario X = 〈X ,Σ,O〉:
• X – a finite set of measurements
• Σ – a simplicial complex on X

faces are called the measurement contexts

• O = (Ox)x∈X – for each x ∈ X a finite
non-empty set of possible outcomes Ox

in\out (0,0) (0,1) (1,0) (1,1)
(a,b) − − − −
(a,b′) − − − −
(a′,b) − − − −
(a′,b′) − − − −

•a • b
• a′

•b′

•0
•1 •

•

• 0
• 1

•
•
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Contextuality defined

An empirical model {eC}C∈Σ on a measurement scenario (X ,Σ,O) is non-contextual if there is a
distribution d on ∏x∈X Ox such that, for all σ ∈ Σ:

d|σ = eσ .

That is, we can glue all the local information together into a global consistent description from
which the local information can be recovered.

We call such a d a global section.

If no such global section exists, the empirical model is contextual.

Thus contextuality arises where we have a family of data which is locally consistent but globally
inconsistent.

The import of Bell’s theorem and similar results is that there are empirical models arising from
quantum mechanics which are contextual.
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Categorical formulation
Given a scenario X = 〈X ,Σ,O〉, we can define a presheaf D ◦E : Σop→ Set, where:

• E (σ) = ∏x∈σ Ox

• D is the discrete distributions monad on Set

Restriction for this presheaf is marginalization.

An empirical model e is an natural transformation e : 1 =⇒D ◦E .

Thus eσ ∈D(∏x∈σ Ox).

The compatibility/no-signalling condition is just naturality.

There is also topology at work here. We can use C̆ech cohomology of our (pre)sheaf to define
invariants to capture contextuality.
• Abramsky, Barbosa, Mansfield, The cohomology of non-locality and contextuality, QPL 2011.
• Abramsky, Barbosa, Kishida, Lal, Mansfield, Contextuality, Cohomology and Paradox, CSL 2015.
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Bundle Pictures

Logical Contextuality

• Ignore precise probabilities
• Events are possible or not
• E.g. the Hardy model:

00 01 10 11
ab X X X X
ab′ × X X X
a′b × X X X
a′b′ X X X ×

•a

• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•
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Bundle Pictures

Strong Contextuality

• E.g. the PR box:

00 01 10 11
ab X × × X
ab′ X × × X
a′b X × × X
a′b′ × X X ×

•a

• b

• a′
•b′
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•1
•
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Contextuality and quantum advantage

• Measurement-based quantum computation (MBQC)
I Raussendorf, Physical Review A, 2018.
I Abramsky, Barbosa, SM, Physical Review Letters, 2018.

error︷ ︸︸ ︷
1− p̄S ≥ [1−CF(e)]︸ ︷︷ ︸

classicality

hardness︷︸︸︷
ν( f )

quantifiable
relationship!

• Magic state distillation
I Howard, Wallman, Veitch, Emerson, Nature, 2014.

• Shallow circuits
I Bravyi, Gossett, Kœnig, Science, 2018.

Contextuality analysis using empirical models, logical Bell inequalities, contextual fraction:
I Aasnæss, Forthcoming, 2019.
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Contextuality as a resource

Comparing contextual behaviours

• When can we say that one resource is more powerful than another?
• Can one resource simulate the usefulness of another?

Rui’s resource

. . .

. . .

Martti’s resource

. . .

. . .

Example
Barrett, Pironio, PRL, 2005.

• PR boxes simulate all 2-outcome bipartite boxes
• A tripartite quantum box that cannot be simulated from PR boxes
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Structure of resources
Two views

1. Resource theories: An algebraic theory of free operations which do not use any of the
resource in question, i.e. under which contextuality is non-increasing (Physics approach).

Resource B can be obtained from resource A if it can be built from A using free operations.
Two resources are equivalent if each can be built from the other.
I Abramsky, Barbosa, SM, PRL, 2017.
I Amaral, Cabello, Terra Cunha, Aolita, PRL, 2017.

2. Simulations and reducibility:
A notion of simulation between systems of behaviours.
One resource can be reduced to another if it can be simulated by it.

A category of resources and simulations (CS approach*).
*Cf. (in)computability, degrees of unsolvability, complexity classes
I Karvonen, QPL, 2018.

Abramsky, Barbosa, Karvonen, Mansfield, LiCS, 2019.
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Towards morphisms

• We have defined mathematical objects (empirical models)

• What are the morphisms?
1. Given e : X and d : Y, a morphism d→ e is a way of transforming d to e using free operations

2. Alternatively: a morphism d→ e is a way of simulating e using d

Rui’s resource

. . .

. . .

Martti’s resource

. . .

. . .
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Free operations

From Abramsky, Barbosa, SM, Contextual fraction, PRL 2017.

• Zero model z: unique empirical model on the empty measurement scenario

〈 /0,∆0 = { /0},()〉 .

• Singleton model u: unique empirical model on the 1-outcome 1-measurement scenario

〈1 = {?},∆1 = { /0,1},(O? = 1)〉 .

• Probabilistic mixing: Given empirical models e and d in X and λ ∈ [0,1], the model
e+λ d : X is given by the mixture λe+(1−λ )d

20 / 32



Free operations ctd

• Tensor: Let e : 〈X ,Σ,O〉 and d : 〈Y,Θ,P〉. Then

e⊗d : 〈X tY,Σ∗Θ,(Ox)x∈X ∪ (Py)y∈Y 〉

where Σ∗Θ := {σ ∪θ |σ ∈ Σ,θ ∈Θ}. Runs e and d independently and in parallel

• Coarse-graining: Given e : 〈X ,Σ,O〉 and a family of functions h = (hx : Ox −→ O′x)x∈X , get a
coarse-grained model

e/h : 〈X ,Σ,O′〉

• Measurement translation: Given e : 〈X ,Σ,O〉 and a simplicial map f : Σ′ −→ Σ, the model
f ∗e : 〈X ′,Σ′,O〉 is defined by pulling e back along the map f
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New free operation

• Conditioning on a measurement: Given e : 〈X ,Σ,O〉, x ∈ X and a family of measurements
(yo)o∈Ox

with yo ∈ Vert(lkxΣ). Consider a new measurement x?(yo)o∈Ox
, abbreviated x?y. Get

e[x?y] : 〈X ∪{x?y},Σ[x?y],O[x?y 7→ Ox?y]〉

that results from adding x?y to e.

The link
If Σ is a simplicial complex and a σ ∈ Σ is a face, the link of σ in Σ is the subcomplex of Σ whose
faces are

lkσ Σ := {τ ∈ Σ | σ ∩ τ = /0,σ ∪ τ ∈ Σ} .
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Summary of operations

The operations generate terms

Terms 3 t :=a ∈ Var | z | u | f ∗t | t/h

| t +λ t | t⊗ t | t[x?y]

typed by measurement scenarios.

Proposition

A term without variables always represents a noncontextual empirical model. Conversely, every
noncontextual empirical model can be represented by a term without variables.

• Can e be built from d using free operations?
• Formally: is there a typed term ξ : Y ` t : X such that t[d/ξ ] = e?
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Basic simulations

A

. . .

. . .

B

. . .

. . .

To simulate B using A:
• map inputs of B (measurements) to inputs of A

• run A

• map outputs of A (measurement outcomes) back to
outputs of B

Formally

A morphism of scenarios (π,h) : 〈X ,Σ,O〉 → 〈Y,Θ,P〉 is given by:
• A simplicial map π : Θ→ Σ.
• For each y ∈ Y , a map hy : Oπ(y)→ Py.
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Basic simulations

A morphism of scenarios induces a natural action on empirical models:

If e is an empirical model on (X ,Σ,O), then (π,h)∗e is an empirical model on (Y,∆,P), given by:

(π,h)∗(e)C = D(γ)(eπ(C))

the push-forward of the probability measure eπ(C) along the map

γ : ∏
x∈π(C)

Ox → ∏
y∈C

Py

given by γ(s)y = hy
(
sπ(y)

)
.

This gives a category Emp, with objects e : (X ,Σ,O), and morphisms (π,h) : e→ e′ such that
(π,h)∗(e) = e′.

25 / 32



Basic simulations

A morphism of scenarios induces a natural action on empirical models:

If e is an empirical model on (X ,Σ,O), then (π,h)∗e is an empirical model on (Y,∆,P), given by:

(π,h)∗(e)C = D(γ)(eπ(C))

the push-forward of the probability measure eπ(C) along the map

γ : ∏
x∈π(C)

Ox → ∏
y∈C

Py

given by γ(s)y = hy
(
sπ(y)

)
.

This gives a category Emp, with objects e : (X ,Σ,O), and morphisms (π,h) : e→ e′ such that
(π,h)∗(e) = e′.

25 / 32



Basic simulations

A morphism of scenarios induces a natural action on empirical models:

If e is an empirical model on (X ,Σ,O), then (π,h)∗e is an empirical model on (Y,∆,P), given by:

(π,h)∗(e)C = D(γ)(eπ(C))

the push-forward of the probability measure eπ(C) along the map

γ : ∏
x∈π(C)

Ox → ∏
y∈C

Py

given by γ(s)y = hy
(
sπ(y)

)
.

This gives a category Emp, with objects e : (X ,Σ,O), and morphisms (π,h) : e→ e′ such that
(π,h)∗(e) = e′.

25 / 32



General simulations

A

. . .

. . .

B

. . .

. . .

Idea: allow adaptive use of A

These protocols proceed recursively by first performing a
measurement over the given scenario, and then
conditioning their further measurements on the outcome.

Note that different paths can lead into different,
incompatible contexts.

Thus they incorporate adaptive classical processing, of the
kind used e.g. in Measurement-Based Quantum
Computing.

Formally, we define the measurement protocol
completion MP(X) of X recursively by

MP(X) ::= /0 | (x, f )

where x ∈ X and f : Ox→MP(lkxΣ)
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The MP construction

Given a scenario X = (X ,Σ,O) we build a new scenario MP(X), where:

• measurements are the measurement protocols on X
• measurement protocols are compatible if they can be combined consistently
• outcomes are the joint outcomes observed during a run of the protocol

Theorem
MP defines a comonoidal comonad on the category of empirical models

Roughly: comultiplication MP(X)→MP2(X) by “flattening”, unit MP(X)→ X, and
MP(X⊗Y)→MP(X)⊗MP(Y).
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Simulation

Simulation
Given empirical models e and d, a simulation of e by d is a map

d⊗ c→ e

in EmpMP, the coKleisli category of MP, i.e. a map

MP(d⊗ c)→ e

in Emp, for some noncontextual model c.

The use of the noncontextual model c is to allow for classical randomness in the simulation.

We denote the existence of a general simulation by d e.
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Some results

Theorem [Viewpoints agree]

Let e : X and d : Y be empirical models. Then d e if and only if there is a typed term a : Y ` t : X
such that t[d/a]' e.

Roughly: We develop the equational theory of free operations, and use this to obtain normal forms.
These provide a means of decomposing morphisms into operations.

Theorem [Generalised no-cloning]

e e⊗ e if and only if e is noncontextual.

Roughly: Use the monotonicity properties of the contextual fraction under free operations
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Degrees of Contextuality
The relation d e is a preorder on empirical models. The induced equivalence classes are the
degrees of contextuality. They are partially ordered by the existence of simulations between
representatives.

This allows a much finer classification of contextual behaviours than any particular numerical
measure of contextuality.
(N.B. If d e, then CF(d)≥ CF(e)).

This partial order can be seen as a fundamental structure in the study of quantum resources.

E.g. we can ask: How rich is this order?

Existing results in the non-locality literature can be leveraged to prove the following theorem.

Theorem
The order contains both infinite strict chains, and infinite antichains.

This is just a preliminary observation. Many questions arise, and there are natural variations and
refinements.

30 / 32



Degrees of Contextuality
The relation d e is a preorder on empirical models. The induced equivalence classes are the
degrees of contextuality. They are partially ordered by the existence of simulations between
representatives.

This allows a much finer classification of contextual behaviours than any particular numerical
measure of contextuality.
(N.B. If d e, then CF(d)≥ CF(e)).

This partial order can be seen as a fundamental structure in the study of quantum resources.

E.g. we can ask: How rich is this order?

Existing results in the non-locality literature can be leveraged to prove the following theorem.

Theorem
The order contains both infinite strict chains, and infinite antichains.

This is just a preliminary observation. Many questions arise, and there are natural variations and
refinements.

30 / 32



Degrees of Contextuality
The relation d e is a preorder on empirical models. The induced equivalence classes are the
degrees of contextuality. They are partially ordered by the existence of simulations between
representatives.

This allows a much finer classification of contextual behaviours than any particular numerical
measure of contextuality.
(N.B. If d e, then CF(d)≥ CF(e)).

This partial order can be seen as a fundamental structure in the study of quantum resources.

E.g. we can ask: How rich is this order?

Existing results in the non-locality literature can be leveraged to prove the following theorem.

Theorem
The order contains both infinite strict chains, and infinite antichains.

This is just a preliminary observation. Many questions arise, and there are natural variations and
refinements.

30 / 32



Degrees of Contextuality
The relation d e is a preorder on empirical models. The induced equivalence classes are the
degrees of contextuality. They are partially ordered by the existence of simulations between
representatives.

This allows a much finer classification of contextual behaviours than any particular numerical
measure of contextuality.
(N.B. If d e, then CF(d)≥ CF(e)).

This partial order can be seen as a fundamental structure in the study of quantum resources.

E.g. we can ask: How rich is this order?

Existing results in the non-locality literature can be leveraged to prove the following theorem.

Theorem
The order contains both infinite strict chains, and infinite antichains.

This is just a preliminary observation. Many questions arise, and there are natural variations and
refinements.

30 / 32



Degrees of Contextuality
The relation d e is a preorder on empirical models. The induced equivalence classes are the
degrees of contextuality. They are partially ordered by the existence of simulations between
representatives.

This allows a much finer classification of contextual behaviours than any particular numerical
measure of contextuality.
(N.B. If d e, then CF(d)≥ CF(e)).

This partial order can be seen as a fundamental structure in the study of quantum resources.

E.g. we can ask: How rich is this order?

Existing results in the non-locality literature can be leveraged to prove the following theorem.

Theorem
The order contains both infinite strict chains, and infinite antichains.

This is just a preliminary observation. Many questions arise, and there are natural variations and
refinements.

30 / 32



Degrees of Contextuality
The relation d e is a preorder on empirical models. The induced equivalence classes are the
degrees of contextuality. They are partially ordered by the existence of simulations between
representatives.

This allows a much finer classification of contextual behaviours than any particular numerical
measure of contextuality.
(N.B. If d e, then CF(d)≥ CF(e)).

This partial order can be seen as a fundamental structure in the study of quantum resources.

E.g. we can ask: How rich is this order?

Existing results in the non-locality literature can be leveraged to prove the following theorem.

Theorem
The order contains both infinite strict chains, and infinite antichains.

This is just a preliminary observation. Many questions arise, and there are natural variations and
refinements.

30 / 32



Relative contextuality

The property of (non)contextuality itself can be equivalently formulated as the existence of a
simulation by an empirical model over the empty scenario.
(N.B. MP(0) = 1).

This suggests that much of contextuality theory can be generalized to a “relative” form.
So we can ask if B requires additional contextuality relative to A, where A may itself be contextual.

As an example, consider the classic theorem of Vorob'ev. It characterizes those scenarios over
which all empirical models are noncontextual, in terms of an acyclicity condition on the underlying
simplicial complex.

This can be formulated as characterizing those scenarios such that every model over them can be
simulated by a model over the empty scenario.

More generally, we can ask for conditions on scenarios (X ,Σ,O) and (Y,∆,P) such that every
empirical model over (Y,∆,P) can be simulated by some empirical model over (X ,Σ,O).
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Summary

• The free operation and morphism viewpoints agree
• Contextual fraction is a monotone under operations/morphisms
• Contextuality←→ simulatable from the trivial model
• Logical contextuality←→ no possibilistic simulation from the trivial model
• Strong contextuality←→ no possibilistic submodel can be simulated from the trivial model
• No-cloning: There exists a simulation e e⊗ e if and only if e is noncontextual

Abramsky, Barbosa, Karvonen, Mansfield, A comonadic view of simulation and quantum resources, LiCS
2019.

Some directions

• ’ ’ defines a preorder on empirical models. How rich is this order?
• "Relative" forms of contextuality
• Graded versions of simulability: e.g. by adaptivity width or depth, available classical

randomness, numbers of copies of resource, approximate simulations, . . .
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