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Our object of study: the use of quantum resources in performing information processing tasks.

As quantum technologies and the nascent quantum computing industry emerge, it is crucial to
understand the scope and structure of quantum advantage.

This does fundamentally relate to logic!

The possibility of quantum advantage is intimately related to the non-classicality of quantum
mechanics. And this non-classicality manifests itself in logical terms.

This non-classical picture of the world lives “at the borders of paradox”, as indicated by
foundational results such as the EPR paradox, the Kochen-Specker paradox, the Hardy
paradox, etc.

In articulating the mathematical structure of these phenomena, we use tools from category
theory, topology, algebra.
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e Verifier chooses an input x € {0, 1} for Alice, and similarly an input y for Bob. We assume the
uniform distribution for Nature’s choices.

e Alice and Bob each have to choose an output, a € {0,1} for Alice, b € {0,1} for Bob,
depending on their input. They are not allowed to communicate during the game.

e The winning condition: a b =xAy.

A table of conditional probabilities p(a,b|x,y) defines a probabilistic strategy for this game. The
success probability for this strategy is:

1/4[p(a=blx=0,y=0)+pla=blx=0,y=1)+pla=blx=1,y=0)

tpla#blx=1ly=1)]
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A Strategy for the Alice-Bob game
Example: The Bell Model

The entry in row 2 column 3 says:

If the Verifier sends Alice a; and Bob bj, then with probability 1/8, Alice outputs a O
and Bob outputs a 1.

This gives a winning probability of % ~ 0.81.
The optimal classical probability is 0.75!
The proof of this uses (and is essentially the same as) the use of Bell inequalities.

The Bell table exceeds this bound. Since it is quantum realizable using an entangled pair of qubits,
it shows that quantum resources yield a quantum advantage in an information-processing task.
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(Story: perform experiment to test the variables in ¢;; p; is the relative frequency of the trials
satisfying ¢;.)

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)
N-1 N-1
/\ ¢; = —¢y, orequivalently ¢y = \/ —¢;.
i=1 i=1
Using elementary probability theory, we can calculate:
N—1

N—1
PN S PI’Ob( \/ —\(]),') S Z PrOb(—\(b,') = Z (1 —p,') = (N— 1) — Z Di-
i=1 i

i=1
Hence we obtain the inequality

N
Zpi < N-1
i=1
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If we read O as true and 1 as false, the highlighted entries in each row of the table are represented by

the following propositions:

¢ =
q}z —
q)3 —
oy =

These propositions are easily seen to be contradictory.
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ap
ap
az
az

®©T T

by
by
by

bs.

6/32



Logical analysis of the Bell table

| (0,0) (1,0) (0,1) (1,1)
(al,bl) 1/2 0 0 172
(ar,b2) | (318 1/8 1/8 3/8
(a2,by) | (318 1/8 1/8 3/8
(a2,02) | 1/8 [38] [38] 1/8

If we read O as true and 1 as false, the highlighted entries in each row of the table are represented by

the following propositions:

P = (a1 /\b])
P = (a1 /\bz)
Pz = (az /\bl)
Py = (—\az /\bz)

These propositions are easily seen to be contradictory.

\Y
V
V
V

(—|a1 A —|b1)
(ﬁal A\ ﬁbz)
(—\a2 A —\bl)

((12 /\—|b2)

The violation of the logical Bell inequality is 1/4.

All Bell inequalities arise this way.

Abramsky, Hardy, Logical Bell inequalities, Physical Review A 2012.
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NATURE | LETTER
B L)

Loophole-free Bell inequality violation using electron spins separated by 1.3
kilometres

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruif R.F.L. R.N. C. Abellan, W.
Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau & R. Hanson

Nature 526, 682-686 (29 October 2015)  doi:10.1038/nature15759
Received 19 August 2015 Accepted 28 September 2015 Published online 21 October 2015

More than 50 years ago‘, John Bell proved that no theory of nature that obeys locality and realism? can reproduce all the predictions of
quantum theory: in any local-realist theory, the i between of on distant particles satisfy an inequality
that can be violated if the particles are Bell i ity tests have been reported® 4 5,6, 7,8, 9, 10, 11,12, 13; however, all
experiments reported so far required to obtain a with local realism, resulting in ‘loopholes'!3 14,15,
16_ Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell’s
inequality. We use an event-ready scheme7: 18, 19 that enables the of robust between distant electron spins
(estimated state fidelity of 0.92 + 0.03). Efficient spin read-out avoids the fai i i 14, 15) while the use
of fast random-basis selection and spin read-out i ‘with a spatial ion of 1.3 kil ensure the required locality
conditions 3. We performed 245 trials that tested the CHSH-Bell inequality2® S < 2 and found S = 2.42 + 0.20 (where S quantifies the

between A null is test yields a probability of at most P = 0.039 that a local-realist model for
space-like separated sites could produce data with a violation at least as large as we observe, even when allowing for mamory“‘ 21in the
devices. Our data hence imply isti jection of the local-realist null is. This ion may be further

in future i for instance, ing a value of P =0.001 would require approximately 700 trials for an observed S =
2.4. With |mprovements, our experiment could be used for testing less-conventional theories, and for implementing device-independent
ion22 and certification23 24, 7%




NATURE | NEWS

Quantum ‘spookiness’ passes toughest test yet

Experiment plugs loopholes in previous demonstrations of ‘action at a di , agai

t Einstein's

encryption safer.
Zeeya Merali

27 August 2015

— and could make data

CERN
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A8 PhysTCs ~

Viewpoint: Closing the Door on Einstein and Bohr’s Quantum
Debate

Alain Aspect, Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, Palaiseau, France
December 16,2015 « Physics 8,123

By closing two loopholes at once, three il tests of Bell’s i
local realism. They also open the door to new

ies remove the last doubts that we should renounce
information i

Source

APS/Alan Stonebraker

Figure 1: An apparatus for performing a Bell test. A source emits a pair of entangled photons v, and v

. ’ . 2 » . o 2
Thoir nnlarisatinme are anahmad by nalarisare & and B lareu hlarke) whicrh ars alionad rocnortiuels 9/32



1932
1935
1964
1982

1984
1985
1993

1994
2015

Timeline

von Neumann’s Mathematical Foundations of Quantum Mechanics
EPR Paradox, the Einstein-Bohr debate

Bell’s Theorem

First experimental test of EPR and Bell inequalities
(Aspect, Grangier, Roger, Dalibard)
Bennett-Brassard quantum key distribution protocol
Deutch Quantum Computing paper

Quantum teleportation

(Bennett, Brassard, Crépeau, Jozsa, Peres, Wooters)
Shor’s algorithm

First loophole-free Bell tests (Delft, NIST, Vienna)
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Formalising empirical data*

*SA, Brandenburger, New Journal of Physics, 2011.

in\out | (0,0) (0,1)

(1,0)

(

(a,b) —
A measurement scenario X = (X, X, 0): (a, vy | - -
e X — a finite set of measurements EZ/:Z)) B B
e ¥ —asimplicial complex on X
faces are called the measurement contexts
e O = (0y)yex —for each x € X a finite °
non-empty set of possible outcomes O, (1) : ®
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Contextuality defined

An empirical model {ec}cex on a measurement scenario (X, X, O) is non-contextual if there is a
distribution d on [],cx O, such that, for all o € X:

de = e5.

That is, we can glue all the local information together into a global consistent description from
which the local information can be recovered.

We call such a d a global section.
If no such global section exists, the empirical model is contextual.

Thus contextuality arises where we have a family of data which is locally consistent but globally
inconsistent.

The import of Bell’s theorem and similar results is that there are empirical models arising from
quantum mechanics which are contextual.
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Categorical formulation

Given a scenario X = (X, X, O), we can define a presheaf Z o & : X°P — Set, where:
e £(0) = [leo Ox

e 9 is the discrete distributions monad on Set

Restriction for this presheaf is marginalization.

An empirical model e is an natural transformation e : 1 = Z o &.

Thus e5 € Z([1eq Ox)-

The compatibility/no-signalling condition is just naturality.

There is also topology at work here. We can use Cech cohomology of our (pre)sheaf to define

invariants to capture contextuality.

e Abramsky, Barbosa, Mansfield, The cohomology of non-locality and contextuality, QPL 2011.
e Abramsky, Barbosa, Kishida, Lal, Mansfield, Contextuality, Cohomology and Paradox, CSL 2015.
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Bundle Pictures

Strong Contextuality
e E.g. the PR box:

| 00| 01]10]11 |
ab || v | x | x | V
ab' || v | x | x | V
ab|| v | x | x | V
dabv'|| x | v | v | x
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Contextuality and quantum advantage

e Measurement-based quantum computation (MBQC)

» Raussendorf, Physical Review A, 2018.
> Abramsky, Barbosa, SM, Physical Review Letters, 2018.

error hardness

—_— A quantifiable
1—ps > [1-CF(e)] v(f) relationship!
—_——
classicality

e Magic state distillation

» Howard, Wallman, Veitch, Emerson, Nature, 2014.
e Shallow circuits

> Bravyi, Gossett, Keenig, Science, 2018.

Contextuality analysis using empirical models, logical Bell inequalities, contextual fraction:

» Aasneass, Forthcoming, 2019.
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Contextuality as a resource

Comparing contextual behaviours

e When can we say that one resource is more powerful than another?

e Can one resource simulate the usefulness of another?

[ .1 11

Rui’s resource Martti’s resource

Example
Barrett, Pironio, PRL, 2005.

e PR boxes simulate all 2-outcome bipartite boxes

e A tripartite quantum box that cannot be simulated from PR boxes
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Structure of resources

Two views

1. Resource theories: An algebraic theory of free operations which do not use any of the
resource in question, i.e. under which contextuality is non-increasing (Physics approach).

18732



Structure of resources

Two views

1. Resource theories: An algebraic theory of free operations which do not use any of the
resource in question, i.e. under which contextuality is non-increasing (Physics approach).

Resource B can be obtained from resource A if it can be built from A using free operations.

Two resources are equivalent if each can be built from the other.

> Abramsky, Barbosa, SM, PRL, 2017.
» Amaral, Cabello, Terra Cunha, Aolita, PRL, 2017.

18732



Structure of resources

Two views

1. Resource theories: An algebraic theory of free operations which do not use any of the
resource in question, i.e. under which contextuality is non-increasing (Physics approach).

Resource B can be obtained from resource A if it can be built from A using free operations.

Two resources are equivalent if each can be built from the other.

> Abramsky, Barbosa, SM, PRL, 2017.
» Amaral, Cabello, Terra Cunha, Aolita, PRL, 2017.

2. Simulations and reducibility:
A notion of simulation between systems of behaviours.
One resource can be reduced to another if it can be simulated by it.

18/32



Structure of resources

Two views

1. Resource theories: An algebraic theory of free operations which do not use any of the
resource in question, i.e. under which contextuality is non-increasing (Physics approach).

Resource B can be obtained from resource A if it can be built from A using free operations.

Two resources are equivalent if each can be built from the other.

> Abramsky, Barbosa, SM, PRL, 2017.
» Amaral, Cabello, Terra Cunha, Aolita, PRL, 2017.

2. Simulations and reducibility:
A notion of simulation between systems of behaviours.
One resource can be reduced to another if it can be simulated by it.

A category of resources and simulations (CS approach™).
*Cf. (in)computability, degrees of unsolvability, complexity classes

» Karvonen, QPL, 2018.
Abramsky, Barbosa, Karvonen, Mansfield, LiCS, 2019.
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Towards morphisms

e We have defined mathematical objects (empirical models)

e What are the morphisms?

1. Givene: X and d: Y, a morphism d — e is a way of transforming d to e using free operations

2. Alternatively: a morphism d — e is a way of simulating e using d

[ .1

|

Rui’s resource

Martti’s resource

19/32



Free operations

From Abramsky, Barbosa, SM, Contextual fraction, PRL 2017.

e Zero model z: unique empirical model on the empty measurement scenario
(0,40 = {0}, 0)) -
e Singleton model u: unique empirical model on the 1-outcome 1-measurement scenario
(1 ={3 A ={0,1}, (0, =1)) .

e Probabilistic mixing: Given empirical models e and d in X and A € [0, 1], the model
e+, d : X is given by the mixture Ae+ (1 —A1)d

20/32



Free operations ctd

e Tensor: Lete: (X,X,0) and d : (Y,0,P). Then
e®d: (XUY,Z%0,(0x)rex U (Py)yer)
where 2+ @ := {cUB|o € X,0 € ®}. Runs e and d independently and in parallel

e Coarse-graining: Given ¢ : (X,X,0) and a family of functions & = (hy: Oy — 0,y geta
coarse-grained model
e/h:(X,x,0")

e Measurement translation: Given e : (X,X, O) and a simplicial map f: X" — X, the model
fFe: (X',X,0) is defined by pulling e back along the map f
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New free operation

e Conditioning on a measurement: Given ¢ : (X,X,0), x € X and a family of measurements

(o) peo, With y, € Vert(Ik,X). Consider a new measurement x?(y, ), . - abbreviated x?y. Get

elx?y] (X U{x}, Z[x7y],0[x?y = Oyoy))

that results from adding x?y to e.

The link

If ¥ is a simplicial complex and a ¢ € X is a face, the link of ¢ in X is the subcomplex of X whose
faces are
keX:={reX|ont=0,0UteX} .
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Summary of operations

The operations generate terms

Terms>t:=acVar | z | u | f't | t/h
14t | t@1 | tix2y)]

typed by measurement scenarios.

Proposition

A term without variables always represents a noncontextual empirical model. Conversely, every
noncontextual empirical model can be represented by a term without variables.

e Can e be built from d using free operations?
e Formally: is there a typed term & : Y b7 : X such that ¢[d /&] = e?
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Basic simulations

m To simulate B using A:

[ [T e map inputs of B (measurements) to inputs of A
A B e runA
7 T T e map outputs of A (measurement outcomes) back to
outputs of B
‘\//

Formally

A morphism of scenarios (7,4) : (X,X,0) — (Y, 0, P) is given by:
e A simplicial map 7: ©@ — X.
e ForeachyeY,amap hy: Ogy — B
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Basic simulations

A morphism of scenarios induces a natural action on empirical models:
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A morphism of scenarios induces a natural action on empirical models:

If e is an empirical model on (X, X, 0), then (7, h)*e is an empirical model on (Y, A, P), given by:

(m,h)*(e)c = 2(7)(ex(c))

the push-forward of the probability measure e;(c) along the map

y: HO%HP

xen(C) yeC

given by ¥(s)y = hy (sz(y))-

This gives a category Emp, with objects e : (X,X,0), and morphisms (7,4) : e — ¢’ such that

(m,h)*(e) =¢.
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Idea: allow adaptive use of A
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General simulations

Idea: allow adaptive use of A

These protocols proceed recursively by first performing a
measurement over the given scenario, and then
conditioning their further measurements on the outcome.

Note that different paths can lead into different,
incompatible contexts.

Thus they incorporate adaptive classical processing, of the
kind used e.g. in Measurement-Based Quantum

Computing.

Formally, we define the measurement protocol
completion MP(X) of X recursively by

MP(X) ::=01 (x, f)

where x € X and f: O, — MP(1k,X)
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The MP construction

Given a scenario X = (X, X, O) we build a new scenario MP(X), where:
e measurements are the measurement protocols on X
e measurement protocols are compatible if they can be combined consistently

e outcomes are the joint outcomes observed during a run of the protocol
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The MP construction

Given a scenario X = (X, X, O) we build a new scenario MP(X), where:
e measurements are the measurement protocols on X
e measurement protocols are compatible if they can be combined consistently

e outcomes are the joint outcomes observed during a run of the protocol

Theorem

MP defines a comonoidal comonad on the category of empirical models

Roughly: comultiplication MP(X) — MP?(X) by “flattening”, unit MP(X) — X, and
MP(X®Y) — MP(X) @ MP(Y).
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Simulation

Simulation

Given empirical models e and d, a simulation of e by d is a map
d®c—e
in Empy,p, the coKleisli category of MP, i.e. a map
MP(d®c) —e

in Emp, for some noncontextual model c.
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Simulation

Simulation

Given empirical models e and d, a simulation of e by d is a map
d®c—e
in Empy,p, the coKleisli category of MP, i.e. a map
MP(d®c) — e

in Emp, for some noncontextual model c.

The use of the noncontextual model c is to allow for classical randomness in the simulation.

We denote the existence of a general simulation by d ~~ e.
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Some results

Theorem [Viewpoints agree]

Lete: X and d : Y be empirical models. Then d ~~ e if and only if there is a typed terma: Y7 :X
such that 7[d/a] ~ e.

Roughly: We develop the equational theory of free operations, and use this to obtain normal forms.
These provide a means of decomposing morphisms into operations.
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Lete: X and d : Y be empirical models. Then d ~~ e if and only if there is a typed terma: Y7 :X
such that 7[d/a] ~ e.

Roughly: We develop the equational theory of free operations, and use this to obtain normal forms.
These provide a means of decomposing morphisms into operations.

Theorem [Generalised no-cloning]

e ~» e®e if and only if e is noncontextual.

Roughly: Use the monotonicity properties of the contextual fraction under free operations
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Degrees of Contextuality

The relation d ~~ e is a preorder on empirical models. The induced equivalence classes are the
degrees of contextuality. They are partially ordered by the existence of simulations between
representatives.
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Relative contextuality

The property of (non)contextuality itself can be equivalently formulated as the existence of a
simulation by an empirical model over the empty scenario.

(N.B. MP(0) = 1).

This suggests that much of contextuality theory can be generalized to a “relative” form.
So we can ask if B requires additional contextuality relative to A, where A may itself be contextual.

As an example, consider the classic theorem of Vorob'ev. It characterizes those scenarios over
which all empirical models are noncontextual, in terms of an acyclicity condition on the underlying
simplicial complex.

This can be formulated as characterizing those scenarios such that every model over them can be
simulated by a model over the empty scenario.

More generally, we can ask for conditions on scenarios (X,X,0) and (Y, A, P) such that every
empirical model over (Y, A, P) can be simulated by some empirical model over (X,X,0).
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Summary
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Contextual fraction is a monotone under operations/morphisms

Contextuality <— simulatable from the trivial model

Logical contextuality <— no possibilistic simulation from the trivial model

Strong contextuality «— no possibilistic submodel can be simulated from the trivial model
No-cloning: There exists a simulation e ~~ e ® e if and only if e is noncontextual

Abramsky, Barbosa, Karvonen, Mansfield, A comonadic view of simulation and quantum resources, LiCS
2019.

Some directions

e ’~~’ defines a preorder on empirical models. How rich is this order?
e "Relative" forms of contextuality

e Graded versions of simulability: e.g. by adaptivity width or depth, available classical
randomness, numbers of copies of resource, approximate simulations, .. .
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