The poset of all logics

Tommaso Moraschini based on joint with Ramon Jansana

Institute of Computer Science Czech Academy of Sciences

TACL 2019

1954. Maltsev discovered that a variety K is congruence permutable iff there is a ternary term $\varphi(x, y, z)$ such that

 $\mathsf{K} \vDash \varphi(x, x, y) \approx y \approx \varphi(y, x, x).$

1954. Maltsev discovered that a variety K is congruence permutable iff there is a ternary term $\varphi(x, y, z)$ such that

$$\mathsf{K} \vDash \varphi(x, x, y) \approx y \approx \varphi(y, x, x).$$

A **new idea**: equations may influence the structure of congruence lattices of algebras!

1954. Maltsev discovered that a variety K is congruence permutable iff there is a ternary term $\varphi(x, y, z)$ such that

$$\mathsf{K} \vDash \varphi(x, x, y) \approx y \approx \varphi(y, x, x).$$

A **new idea**: equations may influence the structure of congruence lattices of algebras!

1967. Jónsson proved that a variety K is congruence distributive iff there are $n \in \omega$ and terms

$$\varphi_0(x, y, z), \ldots, \varphi_n(x, y, z)$$

such that ${\sf K}$ validates the following identities

$$\begin{split} \varphi_0(x, y, z) &\approx x \approx \varphi_n(y, z, x) \\ \varphi_i(x, y, x) &\approx x \text{ for all } 0 \leqslant i \leqslant n \\ \varphi_i(x, x, y) &\approx \varphi_{i+1}(x, x, y) \text{ for all even } i \\ \varphi_i(x, y, y) &\approx \varphi_{i+1}(x, y, y) \text{ for all odd } i. \end{split}$$

1954. Maltsev discovered that a variety K is congruence permutable iff there is a ternary term $\varphi(x, y, z)$ such that

$$\mathsf{K} \vDash \varphi(x, x, y) \approx y \approx \varphi(y, x, x).$$

A **new idea**: equations may influence the structure of congruence lattices of algebras!

1967. Jónsson proved that a variety K is congruence distributive iff there are $n \in \omega$ and terms

$$\varphi_0(x, y, z), \ldots, \varphi_n(x, y, z)$$

such that ${\sf K}$ validates the following identities

$$\begin{split} \varphi_0(x, y, z) &\approx x \approx \varphi_n(y, z, x) \\ \varphi_i(x, y, x) &\approx x \text{ for all } 0 \leqslant i \leqslant n \\ \varphi_i(x, x, y) &\approx \varphi_{i+1}(x, x, y) \text{ for all even } i \\ \varphi_i(x, y, y) &\approx \varphi_{i+1}(x, y, y) \text{ for all odd } i. \end{split}$$

Remark. The number of terms φ_i cannot be bounded in general.

1970. Gratzer introduced the concept of a Maltsev condition, embracing both Maltsev and Jónsson theorems.

- 1970. Gratzer introduced the concept of a Maltsev condition, embracing both Maltsev and Jónsson theorems.
- 1973. Taylor characterized Maltsev classes of varieties, i.e. classes of varieties determined by Maltsev conditions.

- 1970. Gratzer introduced the concept of a Maltsev condition, embracing both Maltsev and Jónsson theorems.
- 1973. Taylor characterized Maltsev classes of varieties, i.e. classes of varieties determined by Maltsev conditions.
- 1974. Neumann rephrased this characterization in terms of a notion of interpretability between varieties.

- 1970. Gratzer introduced the concept of a Maltsev condition, embracing both Maltsev and Jónsson theorems.
- 1973. Taylor characterized Maltsev classes of varieties, i.e. classes of varieties determined by Maltsev conditions.
- 1974. Neumann rephrased this characterization in terms of a notion of interpretability between varieties.
- 1984. When ordered under interpretability, varieties form a lattice that was studied in depth by García and Taylor.

- 1970. Gratzer introduced the concept of a Maltsev condition, embracing both Maltsev and Jónsson theorems.
- 1973. Taylor characterized Maltsev classes of varieties, i.e. classes of varieties determined by Maltsev conditions.
- 1974. Neumann rephrased this characterization in terms of a notion of interpretability between varieties.
- 1984. When ordered under interpretability, varieties form a lattice that was studied in depth by García and Taylor.

- 1970. Gratzer introduced the concept of a Maltsev condition, embracing both Maltsev and Jónsson theorems.
- 1973. Taylor characterized Maltsev classes of varieties, i.e. classes of varieties determined by Maltsev conditions.
- 1974. Neumann rephrased this characterization in terms of a notion of interpretability between varieties.
- 1984. When ordered under interpretability, varieties form a lattice that was studied in depth by García and Taylor.

Problem Is the validity of nontrivial Maltsev conditions equivalent to the validity of nontrivial congruence equations?

- 1970. Gratzer introduced the concept of a Maltsev condition, embracing both Maltsev and Jónsson theorems.
- 1973. Taylor characterized Maltsev classes of varieties, i.e. classes of varieties determined by Maltsev conditions.
- 1974. Neumann rephrased this characterization in terms of a notion of interpretability between varieties.
- 1984. When ordered under interpretability, varieties form a lattice that was studied in depth by García and Taylor.

Problem Is the validity of nontrivial Maltsev conditions equivalent to the validity of nontrivial congruence equations?

1970. Pixley and Wille showed that if a variety satisfies a nontrivial congruence equation in ∧ and ∘ only, then it satisfies a nontrivial idempotent Maltsev condition.

- 1970. Gratzer introduced the concept of a Maltsev condition, embracing both Maltsev and Jónsson theorems.
- 1973. Taylor characterized Maltsev classes of varieties, i.e. classes of varieties determined by Maltsev conditions.
- 1974. Neumann rephrased this characterization in terms of a notion of interpretability between varieties.
- 1984. When ordered under interpretability, varieties form a lattice that was studied in depth by García and Taylor.

Problem Is the validity of nontrivial Maltsev conditions equivalent to the validity of nontrivial congruence equations?

1970. Pixley and Wille showed that if a variety satisfies a nontrivial congruence equation in ∧ and ∘ only, then it satisfies a nontrivial idempotent Maltsev condition.

2013. Kearnes and Kiss showed that the converse holds as well.

1989. Blok and Pigozzi proved that TFAE for a finitary logic \vdash :

1989. Blok and Pigozzi proved that TFAE for a finitary logic \vdash :

 (i) ⊢ is algebraizable, i.e. there is a quasi-variety K such that for every algebra A the expanded lattices of filters of ⊢ on A and of K-congruences of A are isomorphic.

1989. Blok and Pigozzi proved that TFAE for a finitary logic ⊢:

- (i) ⊢ is algebraizable, i.e. there is a quasi-variety K such that for every algebra A the expanded lattices of filters of ⊢ on A and of K-congruences of A are isomorphic.
- (ii) There are a finite set of formulas $\Delta(x, y)$ and a finite set of equations E(x) such that

1989. Blok and Pigozzi proved that TFAE for a finitary logic ⊢:

- (i) ⊢ is algebraizable, i.e. there is a quasi-variety K such that for every algebra A the expanded lattices of filters of ⊢ on A and of K-congruences of A are isomorphic.
- (ii) There are a finite set of formulas $\Delta(x, y)$ and a finite set of equations E(x) such that

A **new** (but familiar) idea: logical rules may influence the relation between filters and congruences of algebras.

1989. Blok and Pigozzi proved that TFAE for a finitary logic ⊢:

- (i) ⊢ is algebraizable, i.e. there is a quasi-variety K such that for every algebra A the expanded lattices of filters of ⊢ on A and of K-congruences of A are isomorphic.
- (ii) There are a finite set of formulas $\Delta(x, y)$ and a finite set of equations E(x) such that

A new (but familiar) idea: logical rules may influence the relation between filters and congruences of algebras.
80-00s. The results by Blok, Pigozzi, Czelakowski, Jansana, and Raftery in the spirit above formed the Leibniz hierarchy.

Problem. Up to now, there is **no** precise definition of what a Leibniz condition is: the known ones were recognized empirically.

Problem. Up to now, there is **no** precise definition of what a Leibniz condition is: the known ones were recognized empirically.

Aim of the talk

To introduce a notion of interpretability between propositional logics and investigate the resulting "poset of all logics" in order to initiate the general study of Leibniz conditions.

Problem. Up to now, there is **no** precise definition of what a Leibniz condition is: the known ones were recognized empirically.

Aim of the talk

To introduce a notion of interpretability between propositional logics and investigate the resulting "poset of all logics" in order to initiate the general study of Leibniz conditions.

Sources of inspiration:

- Matrix semantics (Łukasiewicz, Tarski, Łos, Suszko, Wójcicki ...)
- Leibniz hierarchy of propositional logics (Blok, Pigozzi, Czelakowski, Font, Jansana, Raftery ...)
- Maltsev conditions (Day, Maltsev, Jónsson, Pixley, Kiss, Kearnes, McKenzie, Szendrei ...)
- Interpretations in varieties (Taylor, Neumann, Garcia ...)

Basic questions:

Basic questions:

What do we mean by an interpretation between logics?

Basic questions:

- What do we mean by an interpretation between logics?
- And what do we mean by logic?

Let T be a first-order theory without equality.

Let T be a first-order theory without equality.

Every model M of T is associated with an indiscernibility relation ≡ that mimics equality: for every a, c ∈ M,

Let T be a first-order theory without equality.

• Every model M of T is associated with an indiscernibility relation \equiv that mimics equality: for every *a*, *c* \in *M*,

 $a \equiv c \iff a \text{ and } c \text{ satisfies the same}$ equality-free types with constants \iff for every non-equality atomic formula $\phi(x, y_1, \dots, y_n)$ and for every $b_1, \dots, b_n \in M$, $\mathbf{M} \models \phi(a, b_1, \dots, b_n) \text{ iff } \mathbf{M} \models \phi(c, b_1, \dots, b_n).$

Let T be a first-order theory without equality.

• Every model M of T is associated with an indiscernibility relation \equiv that mimics equality: for every *a*, *c* \in *M*,

 $a \equiv c \iff a \text{ and } c \text{ satisfies the same}$ equality-free types with constants \iff for every non-equality atomic formula $\phi(x, y_1, \dots, y_n)$ and for every $b_1, \dots, b_n \in M$, $\mathbf{M} \models \phi(a, b_1, \dots, b_n) \text{ iff } \mathbf{M} \models \phi(c, b_1, \dots, b_n).$

► The indiscernibility relation is a congruence on M, and the indiscernibility relation of the quotient M/≡ is the identity.

Let T be a first-order theory without equality.

• Every model M of T is associated with an indiscernibility relation \equiv that mimics equality: for every *a*, *c* \in *M*,

 $a \equiv c \iff a$ and c satisfies the same

equality-free types with constants

$$\iff \text{for every non-equality atomic formula } \phi(x, y_1, \dots, y_n)$$

and for every $b_1, \dots, b_n \in M$,
 $\mathbf{M} \models \phi(a, b_1, \dots, b_n) \text{ iff } \mathbf{M} \models \phi(c, b_1, \dots, b_n).$

- ► The indiscernibility relation is a congruence on M, and the indiscernibility relation of the quotient M/≡ is the identity.
- M/\equiv satisfies the same sentences without equality than M.

Let T be a first-order theory without equality.

• Every model M of T is associated with an indiscernibility relation \equiv that mimics equality: for every *a*, *c* \in *M*,

 $a \equiv c \iff a$ and c satisfies the same

equality-free types with constants

$$\iff \text{for every non-equality atomic formula } \phi(x, y_1, \dots, y_n)$$

and for every $b_1, \dots, b_n \in M$,
 $\mathbf{M} \models \phi(a, b_1, \dots, b_n) \text{ iff } \mathbf{M} \models \phi(c, b_1, \dots, b_n).$

- ► The indiscernibility relation is a congruence on M, and the indiscernibility relation of the quotient M/≡ is the identity.
- M/\equiv satisfies the same sentences without equality than M.
- ► Thus, the intended models of *T* are the ones whose indiscernibility relation is the identity relation.

Let T be a first-order theory without equality.

• Every model M of T is associated with an indiscernibility relation \equiv that mimics equality: for every *a*, *c* \in *M*,

 $a \equiv c \iff a$ and c satisfies the same

equality-free types with constants

$$\iff \text{for every non-equality atomic formula } \phi(x, y_1, \dots, y_n)$$

and for every $b_1, \dots, b_n \in M$,
 $\mathbf{M} \models \phi(a, b_1, \dots, b_n) \text{ iff } \mathbf{M} \models \phi(c, b_1, \dots, b_n).$

- ► The indiscernibility relation is a congruence on M, and the indiscernibility relation of the quotient M/≡ is the identity.
- M/\equiv satisfies the same sentences without equality than M.
- ► Thus, the intended models of *T* are the ones whose indiscernibility relation is the identity relation.
- ► This setting subsumes model theory with equality.

A logic is a consequence relation ⊢ on the set Fm of formulas of some algebraic language with infinitely many variables ► A logic is a consequence relation ⊢ on the set Fm of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that A logic is a consequence relation ⊢ on the set Fm of formulas of some algebraic language with infinitely many variables that, moreover, is substitution invariant in the sense that

if $\Gamma \vdash \varphi$, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics are infinitary strict universal Horn theories without equality.

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics are infinitary strict universal Horn theories without equality.

• Let \vdash be a logic and let P(x) be a unary predicate symbol.

if $\Gamma \vdash \varphi$, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics are infinitary strict universal Horn theories without equality.

- Let \vdash be a logic and let P(x) be a unary predicate symbol.
- Let T_⊢ be the theory in the equality-free language obtained extending the algebraic language of ⊢ with P(x),

if $\Gamma \vdash \varphi$, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics are infinitary strict universal Horn theories without equality.

- Let \vdash be a logic and let P(x) be a unary predicate symbol.
- Let T_⊢ be the theory in the equality-free language obtained extending the algebraic language of ⊢ with P(x), axiomatized by the infinitary universal Horn sentences

$$\forall \vec{x} \bigwedge_{\gamma \in \Gamma} \mathcal{P}(\gamma(\vec{x})) \to \mathcal{P}(\varphi(\vec{x}))$$

for all valid inferences $\Gamma \vdash \varphi$ of \vdash .

if
$$\Gamma \vdash \varphi$$
, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics \vdash are infinitary strict universal Horn theories without equality T_{\vdash} .

• A matrix is a pair $\langle \boldsymbol{A}, \boldsymbol{F} \rangle$ where \boldsymbol{A} is an algebra and $\boldsymbol{F} \subseteq \boldsymbol{A}$.

```
if \Gamma \vdash \varphi, then \sigma[\Gamma] \vdash \sigma(\varphi)
```

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics \vdash are infinitary strict universal Horn theories without equality T_{\vdash} .

A matrix is a pair ⟨A, F⟩ where A is an algebra and F ⊆ A. A matrix ⟨A, F⟩ is a

if $\Gamma \vdash \varphi$, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics \vdash are infinitary strict universal Horn theories without equality T_{\vdash} .

A matrix is a pair ⟨A, F⟩ where A is an algebra and F ⊆ A. A matrix ⟨A, F⟩ is a model of a logic ⊢ (in the same language) if for every Γ ∪ {φ} ⊆ Fm,

if $\Gamma \vdash \varphi$, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics \vdash are infinitary strict universal Horn theories without equality T_{\vdash} .

A matrix is a pair ⟨A, F⟩ where A is an algebra and F ⊆ A.
 A matrix ⟨A, F⟩ is a model of a logic ⊢ (in the same language) if for every Γ ∪ {φ} ⊆ Fm,

 $\begin{array}{l} \text{if } \Gamma \vdash \varphi, \text{ then for every hom } v \colon \mathbf{Fm} \to \mathbf{A}, \\ \text{if } v[\Gamma] \subseteq \mathbf{F}, \text{ then } v(\varphi) \in \mathbf{F}. \end{array}$

if $\Gamma \vdash \varphi$, then $\sigma[\Gamma] \vdash \sigma(\varphi)$

for every $\Gamma \cup \{\varphi\} \subseteq \mathbf{Fm}$ and every substitution σ .

Remark. Logics \vdash are infinitary strict universal Horn theories without equality T_{\vdash} .

A matrix is a pair ⟨A, F⟩ where A is an algebra and F ⊆ A. A matrix ⟨A, F⟩ is a model of a logic ⊢ (in the same language) if for every Γ ∪ {φ} ⊆ Fm,

 $\begin{array}{l} \text{if } \Gamma \vdash \varphi \text{, then for every hom } v \colon \mathbf{Fm} \to \mathbf{A}\text{,} \\ \\ \text{if } v[\Gamma] \subseteq \mathbf{F}\text{, then } v(\varphi) \in \mathbf{F}\text{.} \end{array}$

Intuitively, A is an algebra of truth-values and F are the values representing truth.

 $a \equiv c \iff p(a) \in F$ iff $p(c) \in F$,

for all unary polynomial functions p of A.

 $a \equiv c \iff p(a) \in F$ iff $p(c) \in F$,

for all unary polynomial functions p of A.

Examples.

 $a \equiv c \iff p(a) \in F$ iff $p(c) \in F$,

for all unary polynomial functions p of A.

Examples.

• If A is a Heyting algebra and F a lattice filter, then

 $a \equiv c \iff p(a) \in F$ iff $p(c) \in F$,

for all unary polynomial functions p of A.

Examples.

▶ If **A** is a Heyting algebra and *F* a lattice filter, then

$$a \equiv c \iff \{a \rightarrow c, c \rightarrow a\} \subseteq F.$$

 $a \equiv c \iff p(a) \in F$ iff $p(c) \in F$,

for all unary polynomial functions p of A.

Examples.

▶ If **A** is a Heyting algebra and *F* a lattice filter, then

$$a \equiv c \iff \{a \rightarrow c, c \rightarrow a\} \subseteq F.$$

▶ If **A** is a modal algebra and **F** a lattice filter, then

 $a \equiv c \iff p(a) \in F$ iff $p(c) \in F$,

for all unary polynomial functions p of A.

Examples.

▶ If **A** is a Heyting algebra and *F* a lattice filter, then

$$a \equiv c \iff \{a \rightarrow c, c \rightarrow a\} \subseteq F.$$

▶ If **A** is a modal algebra and *F* a lattice filter, then

$$a \equiv c \iff \{\Box^n(a \to c), \Box^n(c \to a) \colon n \in \omega\} \subseteq F.$$

 $\mathsf{Mod}^{\equiv}(\vdash) := \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{A}, F \rangle : \langle \mathbf{A}, F \rangle \text{ is a model of } \vdash \text{ and} \\ \equiv \text{ is the identity relation}\}.$

 $\mathsf{Mod}^{\equiv}(\vdash) := \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{A}, F \rangle : \langle \mathbf{A}, F \rangle \text{ is a model of } \vdash \text{ and} \\ \equiv \text{ is the identity relation}\}.$

Completeness.

$$\mathsf{Mod}^{\equiv}(\vdash) := \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{A}, F \rangle \colon \langle \mathbf{A}, F \rangle \text{ is a model of } \vdash \text{ and} \\ \equiv \text{ is the identity relation}\}.$$

Completeness. \vdash is the logic induced by the class $Mod^{\equiv}(\vdash)$, i.e.

$$\mathsf{Mod}^{\equiv}(\vdash) := \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{A}, F \rangle \colon \langle \mathbf{A}, F \rangle \text{ is a model of } \vdash \text{ and} \\ \equiv \text{ is the identity relation}\}.$$

Completeness. \vdash is the logic induced by the class $Mod^{\equiv}(\vdash)$, i.e.

$$\begin{split} \Gamma \vdash \varphi & \Longleftrightarrow \text{ for every } \langle \pmb{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash) \text{ and hom } \nu \colon \mathbf{Fm} \to \pmb{A}, \\ & \text{ if } \nu[\Gamma] \subseteq F, \text{ then } \nu(\varphi) \in F. \end{split}$$

$$\mathsf{Mod}^{\equiv}(\vdash) := \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{A}, F \rangle \colon \langle \mathbf{A}, F \rangle \text{ is a model of } \vdash \text{ and} \\ \equiv \text{ is the identity relation}\}.$$

Completeness. \vdash is the logic induced by the class $Mod^{\equiv}(\vdash)$, i.e.

$$\begin{split} \Gamma \vdash \varphi & \Longleftrightarrow \text{ for every } \langle \pmb{A}, \pmb{F} \rangle \in \mathsf{Mod}^{\equiv}(\vdash) \text{ and hom } \nu \colon \mathbf{Fm} \to \pmb{A}, \\ & \text{ if } \nu[\Gamma] \subseteq \pmb{F}, \text{ then } \nu(\varphi) \in \pmb{F}. \end{split}$$

Examples.

 $\mathsf{Mod}^{\equiv}(\vdash) := \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{A}, F \rangle : \langle \mathbf{A}, F \rangle \text{ is a model of } \vdash \text{ and} \\ \equiv \text{ is the identity relation}\}.$

Completeness. \vdash is the logic induced by the class $Mod^{\equiv}(\vdash)$, i.e.

$$\begin{split} \Gamma \vdash \varphi & \Longleftrightarrow \text{ for every } \langle \boldsymbol{A}, \boldsymbol{F} \rangle \in \mathsf{Mod}^{\equiv}(\vdash) \text{ and hom } \boldsymbol{v} \colon \mathbf{Fm} \to \boldsymbol{A}, \\ & \text{ if } \boldsymbol{v}[\Gamma] \subseteq \boldsymbol{F}, \text{ then } \boldsymbol{v}(\varphi) \in \boldsymbol{F}. \end{split}$$

Examples.

 $\mathsf{Mod}^{\equiv}(\mathsf{CPC}) = \{ \langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Boolean algebra and } F = \{1\} \}$

 $\mathsf{Mod}^{\equiv}(\vdash) := \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{A}, F \rangle : \langle \mathbf{A}, F \rangle \text{ is a model of } \vdash \text{ and} \\ \equiv \text{ is the identity relation}\}.$

Completeness. \vdash is the logic induced by the class $Mod^{\equiv}(\vdash)$, i.e.

$$\begin{split} \Gamma \vdash \varphi & \Longleftrightarrow \text{ for every } \langle \boldsymbol{A}, \boldsymbol{F} \rangle \in \mathsf{Mod}^{\equiv}(\vdash) \text{ and hom } \boldsymbol{v} \colon \mathbf{Fm} \to \boldsymbol{A}, \\ & \text{ if } \boldsymbol{v}[\Gamma] \subseteq \boldsymbol{F}, \text{ then } \boldsymbol{v}(\varphi) \in \boldsymbol{F}. \end{split}$$

Examples.

 $\mathsf{Mod}^{\equiv}(\mathsf{CPC}) = \{ \langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Boolean algebra and } F = \{1\} \}$ $\mathsf{Mod}^{\equiv}(\mathsf{IPC}) = \{ \langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Heyting algebra and } F = \{1\} \}$

$$\mathsf{Mod}^{\equiv}(\vdash) \coloneqq \mathbb{P}_{\mathsf{sd}}\{\langle \mathbf{A}, F \rangle \colon \langle \mathbf{A}, F \rangle \text{ is a model of } \vdash \text{ and} \\ \equiv \text{ is the identity relation}\}.$$

Completeness. \vdash is the logic induced by the class $Mod^{\equiv}(\vdash)$, i.e.

$$\Gamma \vdash \varphi \iff$$
 for every $\langle \boldsymbol{A}, \boldsymbol{F} \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$ and hom $v \colon \mathsf{Fm} \to \boldsymbol{A}$,
if $v[\Gamma] \subseteq \boldsymbol{F}$, then $v(\varphi) \in \boldsymbol{F}$.

Examples.

$$\begin{split} \mathsf{Mod}^{\equiv}(\mathsf{CPC}) &= \{ \langle \boldsymbol{A}, F \rangle \colon \boldsymbol{A} \text{ is a Boolean algebra and } F = \{1\} \} \\ \mathsf{Mod}^{\equiv}(\mathsf{IPC}) &= \{ \langle \boldsymbol{A}, F \rangle \colon \boldsymbol{A} \text{ is a Heyting algebra and } F = \{1\} \} \\ \mathsf{Mod}^{\equiv}(\mathsf{K}_{\mathsf{loc}}) &= \{ \langle \boldsymbol{A}, F \rangle \colon \boldsymbol{A} \text{ is a modal algebra and } F \text{ a lattice filter} \\ & \text{s.t. } \{1\} \text{ is the unique open filter included in } F \}. \end{split}$$

- A translation of an algebraic language ℒ into another ℒ' is a map τ that assigns an *n*-ary term τ(f)(x₁,...,x_n) of ℒ' to every *n*-ary symbol f(x₁,...,x_n) of ℒ.
- Given an \mathscr{L}' -algebra **A**, we define an \mathscr{L} -algebra

- A translation of an algebraic language ℒ into another ℒ' is a map τ that assigns an *n*-ary term τ(f)(x₁,...,x_n) of ℒ' to every *n*-ary symbol f(x₁,...,x_n) of ℒ.
- Given an \mathscr{L}' -algebra **A**, we define an \mathscr{L} -algebra

$$\boldsymbol{A}^{\boldsymbol{\tau}} \coloneqq \langle \boldsymbol{A}; \{ \boldsymbol{\tau}(f)^{\boldsymbol{A}} \colon f \in \mathscr{L} \} \rangle.$$

- A translation of an algebraic language ℒ into another ℒ' is a map τ that assigns an *n*-ary term τ(f)(x₁,...,x_n) of ℒ' to every *n*-ary symbol f(x₁,...,x_n) of ℒ.
- Given an \mathscr{L}' -algebra **A**, we define an \mathscr{L} -algebra

$$\boldsymbol{A}^{\boldsymbol{\tau}} \coloneqq \langle \boldsymbol{A}; \{ \boldsymbol{\tau}(f)^{\boldsymbol{A}} \colon f \in \mathscr{L} \} \rangle.$$

Example.

- A translation of an algebraic language ℒ into another ℒ' is a map τ that assigns an *n*-ary term τ(f)(x₁,...,x_n) of ℒ' to every *n*-ary symbol f(x₁,...,x_n) of ℒ.
- Given an \mathscr{L}' -algebra **A**, we define an \mathscr{L} -algebra

$$\boldsymbol{A}^{\boldsymbol{\tau}} \coloneqq \langle \boldsymbol{A}; \{ \boldsymbol{\tau}(f)^{\boldsymbol{A}} \colon f \in \mathscr{L} \} \rangle.$$

Example. Let $\mathscr{L}_{\wedge\vee}$ be the language of lattices, and \mathscr{L}_{BA} that of Boolean algebras.

- A translation of an algebraic language ℒ into another ℒ' is a map τ that assigns an *n*-ary term τ(f)(x₁,...,x_n) of ℒ' to every *n*-ary symbol f(x₁,...,x_n) of ℒ.
- Given an \mathscr{L}' -algebra **A**, we define an \mathscr{L} -algebra

$$\boldsymbol{A}^{\boldsymbol{\tau}} \coloneqq \langle \boldsymbol{A}; \{ \boldsymbol{\tau}(f)^{\boldsymbol{A}} \colon f \in \mathscr{L} \} \rangle.$$

Example. Let $\mathscr{L}_{\wedge\vee}$ be the language of lattices, and \mathscr{L}_{BA} that of Boolean algebras. If τ is the inclusion map from $\mathscr{L}_{\wedge\vee}$ to \mathscr{L}_{BA} , and A a Boolean algebra, then A^{τ} is its lattice reduct of A.

- A translation of an algebraic language ℒ into another ℒ' is a map τ that assigns an *n*-ary term τ(f)(x₁,...,x_n) of ℒ' to every *n*-ary symbol f(x₁,...,x_n) of ℒ.
- Given an \mathscr{L}' -algebra **A**, we define an \mathscr{L} -algebra

$$\mathbf{A}^{\tau} \coloneqq \langle A; \{ \boldsymbol{\tau}(f)^{\mathbf{A}} \colon f \in \mathscr{L} \} \rangle.$$

An interpretation of a logic ⊢ into another ⊢' is a translation τ between their languages such that

• Given an \mathscr{L}' -algebra **A**, we define an \mathscr{L} -algebra

$$\boldsymbol{A}^{\boldsymbol{\tau}} \coloneqq \langle \boldsymbol{A}; \{ \boldsymbol{\tau}(f)^{\boldsymbol{A}} \colon f \in \mathscr{L} \} \rangle.$$

An interpretation of a logic ⊢ into another ⊢' is a translation τ between their languages such that

 $\text{if } \langle \boldsymbol{A}, \boldsymbol{F} \rangle \in \mathsf{Mod}^{\equiv}(\vdash') \text{, then } \langle \boldsymbol{A}^{\tau}, \boldsymbol{F} \rangle \in \mathsf{Mod}^{\equiv}(\vdash).$

• Given an \mathscr{L}' -algebra **A**, we define an \mathscr{L} -algebra

$$\boldsymbol{A}^{\boldsymbol{\tau}} \coloneqq \langle \boldsymbol{A}; \{ \boldsymbol{\tau}(f)^{\boldsymbol{A}} \colon f \in \mathscr{L} \} \rangle.$$

An interpretation of a logic ⊢ into another ⊢' is a translation τ between their languages such that

if
$$\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash')$$
, then $\langle \mathbf{A}^{\tau}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$.

Interpretations split in two halves.

• Given an \mathscr{L}' -algebra **A**, we define an \mathscr{L} -algebra

$$\boldsymbol{A}^{\boldsymbol{\tau}} \coloneqq \langle \boldsymbol{A}; \{ \boldsymbol{\tau}(f)^{\boldsymbol{A}} \colon f \in \mathscr{L} \} \rangle.$$

An interpretation of a logic ⊢ into another ⊢' is a translation τ between their languages such that

if
$$\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash')$$
, then $\langle \mathbf{A}^{\tau}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$.

Interpretations split in two halves. Consider logics \vdash and \vdash' .

• Given an \mathscr{L}' -algebra **A**, we define an \mathscr{L} -algebra

$$\boldsymbol{A}^{\boldsymbol{\tau}} \coloneqq \langle \boldsymbol{A}; \{ \boldsymbol{\tau}(f)^{\boldsymbol{A}} \colon f \in \mathscr{L} \} \rangle.$$

An interpretation of a logic ⊢ into another ⊢' is a translation τ between their languages such that

if $\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash')$, then $\langle \mathbf{A}^{\tau}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$.

Interpretations split in two halves. Consider logics \vdash and \vdash' .

▶ \vdash and \vdash' are term-equivalent if so are $Mod^{\equiv}(\vdash)$, $Mod^{\equiv}(\vdash')$.

A translation of an algebraic language ℒ into another ℒ' is a map τ that assigns an *n*-ary term τ(f)(x₁,...,x_n) of ℒ' to every *n*-ary symbol f(x₁,...,x_n) of ℒ.

• Given an \mathscr{L}' -algebra **A**, we define an \mathscr{L} -algebra

$$\boldsymbol{A}^{\boldsymbol{\tau}} \coloneqq \langle \boldsymbol{A}; \{ \boldsymbol{\tau}(f)^{\boldsymbol{A}} \colon f \in \mathscr{L} \} \rangle.$$

An interpretation of a logic ⊢ into another ⊢' is a translation τ between their languages such that

if $\langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash')$, then $\langle \mathbf{A}^{\tau}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$.

Interpretations split in two halves. Consider logics \vdash and \vdash' .

- ▶ \vdash and \vdash' are term-equivalent if so are $\mathsf{Mod}^{\equiv}(\vdash)$, $\mathsf{Mod}^{\equiv}(\vdash')$.
- ⊢' is a compatible expansion of ⊢ if L_⊢ ⊆ L_{⊢'} and the L_⊢-reducts of the matrices in Mod[≡](⊢') belong to Mod[≡](⊢).

- A translation of an algebraic language ℒ into another ℒ' is a map τ that assigns an *n*-ary term τ(f)(x₁,...,x_n) of ℒ' to every *n*-ary symbol f(x₁,...,x_n) of ℒ.
- Given an \mathscr{L}' -algebra **A**, we define an \mathscr{L} -algebra

$$\mathbf{A}^{\tau} \coloneqq \langle \mathbf{A}; \{ \boldsymbol{\tau}(f)^{\mathbf{A}} \colon f \in \mathscr{L} \} \rangle.$$

An interpretation of a logic ⊢ into another ⊢' is a translation τ between their languages such that

$$\text{if } \langle \mathbf{A}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash') \text{, then } \langle \mathbf{A}^{\tau}, F \rangle \in \mathsf{Mod}^{\equiv}(\vdash).$$

Interpretations split in two halves. Consider logics \vdash and \vdash' .

- ▶ \vdash and \vdash' are term-equivalent if so are $\mathsf{Mod}^{\equiv}(\vdash)$, $\mathsf{Mod}^{\equiv}(\vdash')$.
- ▶ \vdash' is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $Mod^{\equiv}(\vdash')$ belong to $Mod^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of \vdash .

- ▶ \vdash and \vdash' are term-equivalent if so are $Mod^{\equiv}(\vdash)$, $Mod^{\equiv}(\vdash')$.
- ⊢' is a compatible expansion of ⊢ if L_⊢ ⊆ L_{⊢'} and the L_⊢-reducts of the matrices in Mod[≡](⊢') belong to Mod[≡](⊢).

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of \vdash .

- ▶ \vdash and \vdash' are term-equivalent if so are $Mod^{\equiv}(\vdash)$, $Mod^{\equiv}(\vdash')$.
- ▶ \vdash' is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $Mod^{\equiv}(\vdash')$ belong to $Mod^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of $\vdash.$

Example. Recall that

 $\mathsf{Mod}^{\equiv}(\mathsf{CPC}) = \{ \langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Boolean algebra and } F = \{1\} \}$ $\mathsf{Mod}^{\equiv}(\mathsf{IPC}) = \{ \langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Heyting algebra and } F = \{1\} \}.$

- ▶ \vdash and \vdash' are term-equivalent if so are $Mod^{\equiv}(\vdash)$, $Mod^{\equiv}(\vdash')$.
- ▶ \vdash' is a compatible expansion of \vdash if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $Mod^{\equiv}(\vdash')$ belong to $Mod^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of $\vdash.$

Example. Recall that

 $\mathsf{Mod}^{\equiv}(\mathsf{CPC}) = \{ \langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Boolean algebra and } F = \{1\} \}$ $\mathsf{Mod}^{\equiv}(\mathsf{IPC}) = \{ \langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Heyting algebra and } F = \{1\} \}.$

The identity map is an interpretation of IPC into CPC.

- ▶ \vdash and \vdash' are term-equivalent if so are $Mod^{\equiv}(\vdash)$, $Mod^{\equiv}(\vdash')$.
- ▶ ⊢' is a compatible expansion of ⊢ if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $Mod^{\equiv}(\vdash')$ belong to $Mod^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of $\vdash.$

Example. Recall that

 $\mathsf{Mod}^{\equiv}(\mathsf{CPC}) = \{ \langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Boolean algebra and } F = \{1\} \}$ $\mathsf{Mod}^{\equiv}(\mathsf{IPC}) = \{ \langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Heyting algebra and } F = \{1\} \}.$

- ► The identity map is an interpretation of IPC into CPC.
- Is CPC interpretable into IPC?

- ▶ \vdash and \vdash' are term-equivalent if so are $Mod^{\equiv}(\vdash)$, $Mod^{\equiv}(\vdash')$.
- ▶ ⊢' is a compatible expansion of ⊢ if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $Mod^{\equiv}(\vdash')$ belong to $Mod^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of $\vdash.$

Example. Recall that

 $\mathsf{Mod}^{\equiv}(\mathsf{CPC}) = \{ \langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Boolean algebra and } F = \{1\} \}$ $\mathsf{Mod}^{\equiv}(\mathsf{IPC}) = \{ \langle \mathbf{A}, F \rangle \colon \mathbf{A} \text{ is a Heyting algebra and } F = \{1\} \}.$

- The **identity** map is an interpretation of **IPC** into **CPC**.
- Is CPC interpretable into IPC? No, on cardinality grounds!

▶ \vdash and \vdash' are term-equivalent if so are $Mod^{\equiv}(\vdash)$, $Mod^{\equiv}(\vdash')$.

▶ ⊢' is a compatible expansion of ⊢ if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $Mod^{\equiv}(\vdash')$ belong to $Mod^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of $\vdash.$

Definition

Intepretability is a preorder on the proper class of all logics.

- ▶ \vdash and \vdash' are term-equivalent if so are $Mod^{\equiv}(\vdash)$, $Mod^{\equiv}(\vdash')$.
- ▶ ⊢' is a compatible expansion of ⊢ if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $Mod^{\equiv}(\vdash')$ belong to $Mod^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of \vdash .

Definition

Intepretability is a preorder on the proper class of all logics. The associated partial order Log is the "**poset of all logics**".

- ▶ \vdash and \vdash' are term-equivalent if so are $Mod^{\equiv}(\vdash)$, $Mod^{\equiv}(\vdash')$.
- ▶ ⊢' is a compatible expansion of ⊢ if $\mathscr{L}_{\vdash} \subseteq \mathscr{L}_{\vdash'}$ and the \mathscr{L}_{\vdash} -reducts of the matrices in $Mod^{\equiv}(\vdash')$ belong to $Mod^{\equiv}(\vdash)$.

Lemma

 \vdash is interpretable into \vdash' iff \vdash' is term-equivalent to a compatible expansion of $\vdash.$

Definition

Intepretability is a preorder on the proper class of all logics. The associated partial order Log is the "**poset of all logics**".

▶ Elements of Log are classes $\llbracket \vdash \rrbracket$ of equi-interpretable logics.

The structure of the poset of all logics

The structure of the poset of all logics

Basic question:

The structure of the poset of all logics

Basic question:

Do infima and suprema exist?

• Given a set of algebraic languages $\{\mathscr{L}_i : i \in I\}$,

► Given a set of algebraic languages { L_i: i ∈ I }, let ⊗_{i∈I} L_i be the language whose *n*-ary operations *f* are the sequences

$$\mathbf{f} = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathscr{L}_i .

► Given a set of algebraic languages { L_i: i ∈ I }, let ⊗_{i∈I} L_i be the language whose *n*-ary operations *f* are the sequences

$$f = \langle \varphi_i(x_1,\ldots,x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathscr{L}_i .

• Given a set of algebras $\{A_i : i \in I\}$ s.t. A_i is an \mathcal{L}_i -algebra,

► Given a set of algebraic languages { L_i: i ∈ I }, let ⊗_{i∈I} L_i be the language whose *n*-ary operations *f* are the sequences

$$\mathbf{f} = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathscr{L}_i .

► Given a set of algebras {A_i: i ∈ I} s.t. A_i is an L_i-algebra, let ⊗_{i∈I} A_i be the ⊗_{i∈I} L_i-algebra with universe ∏_{i∈I} A_i s.t.

$$\boldsymbol{\varphi}^{\otimes_{i\in I}}\boldsymbol{A}_{i}(\vec{a}_{1},\ldots,\vec{a}_{n}) \coloneqq \langle \boldsymbol{\varphi}_{i}^{\boldsymbol{A}_{i}}(\vec{a}_{1}(i),\ldots,\vec{a}_{n}(i)) \colon i \in I \rangle.$$

► Given a set of algebraic languages { L_i: i ∈ I }, let ⊗_{i∈I} L_i be the language whose *n*-ary operations *f* are the sequences

$$\mathbf{f} = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathscr{L}_i .

► Given a set of algebras {A_i: i ∈ I} s.t. A_i is an L_i-algebra, let ⊗_{i∈I} A_i be the ⊗_{i∈I} L_i-algebra with universe ∏_{i∈I} A_i s.t.

$$\boldsymbol{\varphi}^{\otimes_{i\in I}} \boldsymbol{A}_i(\vec{a}_1,\ldots,\vec{a}_n) \coloneqq \langle \varphi_i^{\boldsymbol{A}_i}(\vec{a}_1(i),\ldots,\vec{a}_n(i)) \colon i \in I \rangle.$$

• Given a set of logics $\{\vdash_i : i \in I\}$,

► Given a set of algebraic languages { L_i: i ∈ I }, let ⊗_{i∈I} L_i be the language whose *n*-ary operations *f* are the sequences

$$\mathbf{f} = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathscr{L}_i .

Given a set of algebras {A_i: i ∈ I} s.t. A_i is an ℒ_i-algebra, let ⊗_{i∈I} A_i be the ⊗_{i∈I} ℒ_i-algebra with universe ∏_{i∈I} A_i s.t.

$$\boldsymbol{\varsigma}^{\otimes_{i\in I}}\boldsymbol{A}_{i}(\vec{a}_{1},\ldots,\vec{a}_{n}):=\langle \varphi_{i}^{\boldsymbol{A}_{i}}(\vec{a}_{1}(i),\ldots,\vec{a}_{n}(i))\colon i\in I\rangle.$$

► Given a set of logics {⊢_i: i ∈ I}, let ⊗_{i∈I} ⊢_i be the logic induced by the class of matrices

$$\{\langle \bigotimes_{i \in I} \mathbf{A}_i, \prod_{i \in I} F_i \rangle \colon \langle \mathbf{A}_i, F_i \rangle \in \mathsf{Mod}^{\equiv}(\vdash_i)\}$$

► Given a set of algebraic languages { L_i: i ∈ I }, let ⊗_{i∈I} L_i be the language whose *n*-ary operations *f* are the sequences

$$f = \langle \varphi_i(x_1,\ldots,x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathscr{L}_i .

Given a set of algebras {A_i: i ∈ I} s.t. A_i is an L_i-algebra, let ⊗_{i∈I} A_i be the ⊗_{i∈I} L_i-algebra with universe ∏_{i∈I} A_i s.t.

$$\mathbf{f}^{\otimes_{i\in I}\mathbf{A}_i}(\vec{a}_1,\ldots,\vec{a}_n) \coloneqq \langle \varphi_i^{\mathbf{A}_i}(\vec{a}_1(i),\ldots,\vec{a}_n(i)) \colon i \in I \rangle.$$

► Given a set of logics {⊢_i: i ∈ I}, let ⊗_{i∈I} ⊢_i be the logic induced by the class of matrices

$$\{\langle \bigotimes_{i \in I} \mathbf{A}_i, \prod_{i \in I} F_i \rangle \colon \langle \mathbf{A}_i, F_i \rangle \in \mathsf{Mod}^{\equiv}(\vdash_i)\}$$

formulated with $\prod_{i \in I} |\mathbf{Fm}(\vdash_i)|$ variables.

► Given a set of algebraic languages { L_i: i ∈ I }, let ⊗_{i∈I} L_i be the language whose *n*-ary operations *f* are the sequences

$$f = \langle \varphi_i(x_1,\ldots,x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathscr{L}_i .

Given a set of algebras {A_i: i ∈ I} s.t. A_i is an L_i-algebra, let ⊗_{i∈I} A_i be the ⊗_{i∈I} L_i-algebra with universe ∏_{i∈I} A_i s.t.

$$\mathbf{f}^{\otimes_{i\in I}\mathbf{A}_i}(\vec{a}_1,\ldots,\vec{a}_n) \coloneqq \langle \varphi_i^{\mathbf{A}_i}(\vec{a}_1(i),\ldots,\vec{a}_n(i)) \colon i \in I \rangle.$$

► Given a set of logics {⊢_i: i ∈ I}, let ⊗_{i∈I} ⊢_i be the logic induced by the class of matrices

$$\{\langle \bigotimes_{i \in I} \mathbf{A}_i, \prod_{i \in I} F_i \rangle \colon \langle \mathbf{A}_i, F_i \rangle \in \mathsf{Mod}^{\equiv}(\vdash_i) \}.$$

 $\bigotimes_{i \in I} \vdash_i$ is called the non-indexed product of the various \vdash_i .

► Given a set of algebraic languages {*L_i*: *i* ∈ *I*}, let ⊗_{*i*∈*I*} *L_i* be the language whose *n*-ary operations *f* are the sequences

 $\mathbf{f} = \langle \varphi_i(\mathbf{x}_1, \ldots, \mathbf{x}_n) \colon i \in \mathbf{I} \rangle$

where φ_i is an *n*-ary term of \mathscr{L}_i .

- Given a set of algebras {A_i: i ∈ I} s.t. A_i is an ℒ_i-algebra, let ⊗_{i∈I} A_i be the ⊗_{i∈I} ℒ_i-algebra with universe ∏_{i∈I} A_i s.t.
 f ^{⊗_{i∈I} A_i}(a₁,..., a_n) := ⟨φ_i^{A_i}(a₁(i),..., a_n(i)): i ∈ I⟩.
- ► Given a set of logics {⊢_i: i ∈ I}, let ⊗_{i∈I} ⊢_i be the logic induced by the class of matrices

$$\{\langle \bigotimes_{i\in I} \mathbf{A}_i, \prod_{i\in I} F_i \rangle \colon \langle \mathbf{A}_i, F_i \rangle \in \mathsf{Mod}^{\equiv}(\vdash_i) \}.$$

Theorem

 Mod[≡](⊗_{i∈I}⊢_i) is the closure under P_{sd} of the class of matrices in the above display.

► Given a set of algebraic languages { L_i: i ∈ I }, let ⊗_{i∈I} L_i be the language whose *n*-ary operations *f* are the sequences

 $\mathbf{f} = \langle \varphi_i(\mathbf{x}_1, \ldots, \mathbf{x}_n) \colon i \in \mathbf{I} \rangle$

where φ_i is an *n*-ary term of \mathscr{L}_i .

- Given a set of algebras {A_i: i ∈ I} s.t. A_i is an L_i-algebra, let ⊗_{i∈I} A_i be the ⊗_{i∈I} L_i-algebra with universe ∏_{i∈I} A_i s.t. f ⊗_{i∈I} A_i(ā₁,...,ā_n) := ⟨φ_i^{A_i}(ā₁(i),...,ā_n(i)): i ∈ I⟩.
- ► Given a set of logics {⊢_i: i ∈ I}, let ⊗_{i∈I} ⊢_i be the logic induced by the class of matrices

$$\{\langle \bigotimes_{i\in I} \mathbf{A}_i, \prod_{i\in I} F_i \rangle \colon \langle \mathbf{A}_i, F_i \rangle \in \mathsf{Mod}^{\equiv}(\vdash_i) \}.$$

Theorem

- Mod[≡](⊗_{i∈I}⊢_i) is the closure under P_{sd} of the class of matrices in the above display.
- $[\otimes_{i \in I} \vdash_i]$ is the infimum of $\{ [\vdash_i] : i \in I \}$ in Log.

► Given a set of algebraic languages { L_i: i ∈ I }, let ⊗_{i∈I} L_i be the language whose *n*-ary operations *f* are the sequences

$$f = \langle \varphi_i(x_1, \ldots, x_n) \colon i \in I \rangle$$

where φ_i is an *n*-ary term of \mathscr{L}_i .

► Given a set of algebras {A_i: i ∈ I} s.t. A_i is an L_i-algebra, let ⊗_{i∈I} A_i be the ⊗_{i∈I} L_i-algebra with universe ∏_{i∈I} A_i s.t.

$$\boldsymbol{A}^{\otimes_{i\in I}} \boldsymbol{A}_{i}(\vec{a}_{1},\ldots,\vec{a}_{n}) \coloneqq \langle \varphi_{i}^{\boldsymbol{A}_{i}}(\vec{a}_{1}(i),\ldots,\vec{a}_{n}(i)) \colon i \in I \rangle.$$

► Given a set of logics {⊢_i: i ∈ I}, let ⊗_{i∈I} ⊢_i be the logic induced by the class of matrices

$$\{\langle \bigotimes_{i\in I} \mathbf{A}_i, \prod_{i\in I} F_i \rangle \colon \langle \mathbf{A}_i, F_i \rangle \in \mathsf{Mod}^{\equiv}(\vdash_i)\}.$$

Theorem

Log is a **set-complete** meet-semilattice.

▶ No: even binary suprema may fail to exist.

- ▶ No: even binary suprema may fail to exist.
- ► Let CPC¬ be the negation fragment of classical logic,

- ▶ No: even binary suprema may fail to exist.
- ► Let **CPC**¬ be the **negation** fragment of classical logic,

 $x \rhd \neg \neg x \quad \neg \neg x \rhd x \quad x, \neg x \rhd y.$

- ▶ No: even binary suprema may fail to exist.
- ► Let **CPC**_¬ be the **negation** fragment of classical logic,

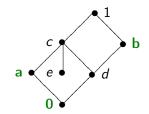
 $x \triangleright \neg \neg x \quad \neg \neg x \triangleright x \quad x, \neg x \triangleright y.$

• Consider the algebra $\mathbf{A} = \langle A; \lor, a, b, 0 \rangle$ depicted below.

- ▶ No: even binary suprema may fail to exist.
- ▶ Let **CPC**¬ be the **negation** fragment of classical logic,

$$x \triangleright \neg \neg x \neg \neg x \triangleright x x, \neg x \triangleright y.$$

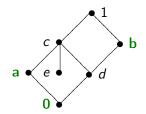
• Consider the algebra $\mathbf{A} = \langle A; \lor, a, b, 0 \rangle$ depicted below.



- ▶ No: even binary suprema may fail to exist.
- ► Let **CPC**_¬ be the **negation** fragment of classical logic,

$$x \triangleright \neg \neg x \neg \neg x \triangleright x x, \neg x \triangleright y.$$

• Consider the algebra $\mathbf{A} = \langle A; \lor, a, b, 0 \rangle$ depicted below.



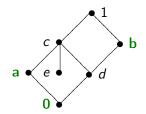
Then let L be the logic induced by the pair of matrices

 $\{\langle \pmb{A}, \{1\} \rangle, \langle \pmb{A}, \{1, c\} \rangle\}.$

- ▶ No: even binary suprema may fail to exist.
- ► Let **CPC**_¬ be the **negation** fragment of classical logic,

$$x \triangleright \neg \neg x \neg \neg x \triangleright x x, \neg x \triangleright y.$$

• Consider the algebra $\mathbf{A} = \langle A; \lor, a, b, 0 \rangle$ depicted below.



Then let L be the logic induced by the pair of matrices

$$\{\langle \boldsymbol{A}, \{1\} \rangle, \langle \boldsymbol{A}, \{1, c\} \rangle\}.$$

► The supremum of **[CPC**¬] and **[L]** does not exist in Log.

 It is therefore sensible to ask whether the most prominent logics are meet-irreducible in Log.

 It is therefore sensible to ask whether the most prominent logics are meet-irreducible in Log.

Theorem

Logics \vdash satisfying the following conditions are meet-irreducible:

 It is therefore sensible to ask whether the most prominent logics are meet-irreducible in Log.

Theorem

Logics \vdash satisfying the following conditions are meet-irreducible: 1. Mod^{\equiv}(\vdash) has the infinite joint embedding property,

It is therefore sensible to ask whether the most prominent logics are meet-irreducible in Log.

Theorem

Logics \vdash satisfying the following conditions are meet-irreducible:

 Mod[≡](⊢) has the infinite joint embedding property, i.e. for every set X ⊆ Mod[≡](⊢) there is a matrix ⟨A, F⟩ ∈ Mod[≡](⊢) such that X ⊆ IS(⟨A, F⟩);

 It is therefore sensible to ask whether the most prominent logics are meet-irreducible in Log.

Theorem

Logics \vdash satisfying the following conditions are meet-irreducible:

- Mod[≡](⊢) has the infinite joint embedding property, i.e. for every set X ⊆ Mod[≡](⊢) there is a matrix ⟨A, F⟩ ∈ Mod[≡](⊢) such that X ⊆ IS(⟨A, F⟩);
- Non-trivial members of Mod[≡](⊢) have finite substructures whose cardinality is prime;

 It is therefore sensible to ask whether the most prominent logics are meet-irreducible in Log.

Theorem

 $\mathsf{Logics} \vdash \mathsf{satisfying \ the \ following \ conditions \ are \ meet-irreducible:}$

- Mod[≡](⊢) has the infinite joint embedding property, i.e. for every set X ⊆ Mod[≡](⊢) there is a matrix ⟨A, F⟩ ∈ Mod[≡](⊢) such that X ⊆ IS(⟨A, F⟩);
- Non-trivial members of Mod[≡](⊢) have finite substructures whose cardinality is prime;
- 3. Non-trivial members of $Mod^{\equiv}(\vdash)$ lack trivial substructures.

 It is therefore sensible to ask whether the most prominent logics are meet-irreducible in Log.

Theorem

 $\mathsf{Logics} \vdash \mathsf{satisfying \ the \ following \ conditions \ are \ meet-irreducible:}$

- Mod[≡](⊢) has the infinite joint embedding property, i.e. for every set X ⊆ Mod[≡](⊢) there is a matrix ⟨A, F⟩ ∈ Mod[≡](⊢) such that X ⊆ IS(⟨A, F⟩);
- Non-trivial members of Mod[≡](⊢) have finite substructures whose cardinality is prime;
- 3. Non-trivial members of $Mod^{\equiv}(\vdash)$ lack trivial substructures.

Examples.

It is therefore sensible to ask whether the most prominent logics are meet-irreducible in Log.

Theorem

 $\mathsf{Logics} \vdash \mathsf{satisfying \ the \ following \ conditions \ are \ meet-irreducible:}$

- Mod[≡](⊢) has the infinite joint embedding property, i.e. for every set X ⊆ Mod[≡](⊢) there is a matrix ⟨A, F⟩ ∈ Mod[≡](⊢) such that X ⊆ IS(⟨A, F⟩);
- 2. Non-trivial members of Mod[≡](⊢) have finite substructures whose cardinality is **prime**;
- 3. Non-trivial members of $Mod^{\equiv}(\vdash)$ lack trivial substructures.

Examples.

 All superintuitionistic logics; the main fuzzy logics (e.g. Łukasiewicz, product, and Gödel logic); the modal logic S4; relevance logic R etc.

Leibniz classes and hierarchy

Leibniz classes and hierarchy

Basic question:

Leibniz classes and hierarchy

Basic question:

What are Leibniz classes of logics?

The Leibniz hierarchy is a classification of logics in terms of rules that govern the correspondence between filters and congruences.

The Leibniz hierarchy is a classification of logics in terms of rules that govern the correspondence between filters and congruences.

Example.

The Leibniz hierarchy is a classification of logics in terms of rules that govern the correspondence between filters and congruences.

Example.

A logic ⊢ is algebraizable if there is a generalized quasi-variety K such that for every algebra A the (expanded) lattices of filters of ⊢ on A and of K-congruences of A are isomorphic.

The Leibniz hierarchy is a classification of logics in terms of rules that govern the correspondence between filters and congruences.

Example.

- A logic ⊢ is algebraizable if there is a generalized quasi-variety K such that for every algebra A the (expanded) lattices of filters of ⊢ on A and of K-congruences of A are isomorphic.
- Syntactic characterization. A logic ⊢ is algebraizable iff there are a set of formulas Δ(x, y) and a set of equations E(x) s.t.

The Leibniz hierarchy is a classification of logics in terms of rules that govern the correspondence between filters and congruences.

Example.

- A logic ⊢ is algebraizable if there is a generalized quasi-variety K such that for every algebra A the (expanded) lattices of filters of ⊢ on A and of K-congruences of A are isomorphic.
- Syntactic characterization. A logic ⊢ is algebraizable iff there are a set of formulas Δ(x, y) and a set of equations E(x) s.t.

for every n-ary connective f.

The Leibniz hierarchy is a classification of logics in terms of rules that govern the correspondence between filters and congruences.

Example.

- A logic ⊢ is algebraizable if there is a generalized quasi-variety K such that for every algebra A the (expanded) lattices of filters of ⊢ on A and of K-congruences of A are isomorphic.
- Syntactic characterization. A logic ⊢ is algebraizable iff there are a set of formulas Δ(x, y) and a set of equations E(x) s.t.

for every n-ary connective f.

• Algebraizable logics form a Leibniz class.

if $\alpha \leq \beta$, then \vdash_{β} is interpretable into \vdash_{α} .

if $\alpha \leq \beta$, then \vdash_{β} is **interpretable** into \vdash_{α} .

• A logic \vdash satisfies Φ if some \vdash_{α} is intepretable in \vdash .

if $\alpha \leq \beta$, then \vdash_{β} is interpretable into \vdash_{α} .

► A logic \vdash satisfies Φ if some \vdash_{α} is intepretable in \vdash . Let

 $Log(\Phi) \coloneqq \{\vdash: \vdash \text{ is a logic and satisfies } \Phi\}.$

if $\alpha \leq \beta$, then \vdash_{β} is interpretable into \vdash_{α} .

► A logic \vdash satisfies Φ if some \vdash_{α} is intepretable in \vdash . Let

 $Log(\Phi) \coloneqq \{\vdash: \vdash \text{ is a logic and satisfies } \Phi\}.$

A Leibniz class is a class of logics of the form Log(Φ), for some Leibniz condition Φ.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

Proof sketch of $3 \Rightarrow 1$.

• Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in OR\}$.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the **cumulative hierarchy** of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\bigotimes \mathsf{K}_{\alpha}$.
- Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\bigotimes \mathsf{K}_{\alpha}$.
- Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\bigotimes \mathsf{K}_{\alpha}$.
- Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- If \vdash satisfies Φ ,

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\bigotimes \mathsf{K}_{\alpha}$.
- Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- ▶ If \vdash satisfies Φ , then some \vdash_{α} is interpretable into \vdash .

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in OR\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- ▶ If \vdash satisfies Φ , then \vdash is a term-equivalent to a compatible expansion of some \vdash_{α} .

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in OR\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\bigotimes K_{\alpha}$.
- Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $\mathsf{K}_{\alpha} \subseteq \mathsf{K}_{\beta}$.
- ▶ If \vdash satisfies Φ , then \vdash is a term-equivalent to a compatible expansion of a non-indexed product of a set of logics in K.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\bigotimes \mathsf{K}_{\alpha}$.
- Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- If \vdash satisfies Φ , then $\vdash \in K$.

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\bigotimes \mathsf{K}_{\alpha}$.
- Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- If \vdash satisfies Φ , then $\vdash \in K$.
- If $\vdash \in K$,

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\bigotimes \mathsf{K}_{\alpha}$.
- Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- If \vdash satisfies Φ , then $\vdash \in K$.
- ▶ If $\vdash \in K$, then $\vdash \in V_{\alpha} \cap K = K_{\alpha}$ for some α .

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\bigotimes \mathsf{K}_{\alpha}$.
- Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $K_{\alpha} \subseteq K_{\beta}$.
- If \vdash satisfies Φ , then $\vdash \in K$.
- ▶ If $\vdash \in K$, then \vdash_{α} is intepretable in \vdash for some α .

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\bigotimes \mathsf{K}_{\alpha}$.
- Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $\mathsf{K}_{\alpha} \subseteq \mathsf{K}_{\beta}$.
- If \vdash satisfies Φ , then $\vdash \in K$.
- If $\vdash \in \mathsf{K}$, then \vdash satisfies Φ .

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is "essentially" a set-complete filter of Log.
- 3. K is closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products indexed by arbitrarily large sets.

- Consider the cumulative hierarchy of sets $\{V_{\alpha} : \alpha \in \mathsf{OR}\}$.
- For every ordinal α , define the set $K_{\alpha} := K \cap V_{\alpha}$.
- Let \vdash_{α} be the non-indexed product $\bigotimes \mathsf{K}_{\alpha}$.
- Then consider the sequence $\Phi = \{\vdash_{\alpha} : \alpha \in \mathsf{OR}\}.$
- Φ is a Leibniz condition, as if $\alpha \leq \beta$, then $\mathsf{K}_{\alpha} \subseteq \mathsf{K}_{\beta}$.
- If \vdash satisfies Φ , then $\vdash \in K$.
- If $\vdash \in \mathsf{K}$, then \vdash satisfies Φ .
- K is the class of logics satisfying Φ .

Indecomposable Leibniz classes

Indecomposable Leibniz classes

Basic question:

Indecomposable Leibniz classes

Basic question:

Which of Leibniz classes are primitive or fundamental?

Definition

A Leibniz class K is said to be

Definition

- A Leibniz class K is said to be
 - meet-irreducible if for every pair K₁ and K₂ of Leibniz classes (of logics with some theorem),

if $K = K_1 \cap K_2$, then either $K = K_1$ or $K = K_2$.

Definition

- A Leibniz class K is said to be
 - meet-irreducible if for every pair K₁ and K₂ of Leibniz classes (of logics with some theorem),

if $K = K_1 \cap K_2$, then either $K = K_1$ or $K = K_2$.

 meet-prime if for every pair of Leibniz classes K₁ and K₂ (of logics with some theorem),

if $K_1 \cap K_2 \subseteq K$, then either $K_1 \subseteq K$ or $K_2 \subseteq K$.

Definition

- A Leibniz class K is said to be
 - meet-irreducible if for every pair K₁ and K₂ of Leibniz classes (of logics with some theorem),

if $K = K_1 \cap K_2$, then either $K = K_1$ or $K = K_2$.

 meet-prime if for every pair of Leibniz classes K₁ and K₂ (of logics with some theorem),

if $K_1 \cap K_2 \subseteq K$, then either $K_1 \subseteq K$ or $K_2 \subseteq K$.

Intuitively, a Leibniz class is meet-prime (resp. irreducible) when it captures a fundamental concept.

Are algebraizable logics meet-irreducible?

Are algebraizable logics meet-irreducible? No, because:
 Algebraizable = Equivalential + Truth-equational.

- Are algebraizable logics meet-irreducible? No, because:
 Algebraizable = Equivalential + Truth-equational.
- A logic ⊢ is equivalential if there is a non-empty set of formulas Δ(x, y) that defines indiscernibility

- Are algebraizable logics meet-irreducible? No, because:
 Algebraizable = Equivalential + Truth-equational.
- A logic ⊢ is equivalential if there is a non-empty set of formulas Δ(x, y) that defines indiscernibility, i.e. for all models ⟨A, F⟩ of ⊢ and a, c ∈ A,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F.$$

- Are algebraizable logics meet-irreducible? No, because:
 Algebraizable = Equivalential + Truth-equational.
- A logic ⊢ is equivalential if there is a non-empty set of formulas Δ(x, y) that defines indiscernibility, i.e. for all models ⟨A, F⟩ of ⊢ and a, c ∈ A,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F.$$

A logic ⊢ is truth-equational if there is a set of equations E(x) that defines truth-sets

- Are algebraizable logics meet-irreducible? No, because:
 Algebraizable = Equivalential + Truth-equational.
- A logic ⊢ is equivalential if there is a non-empty set of formulas Δ(x, y) that defines indiscernibility, i.e. for all models ⟨A, F⟩ of ⊢ and a, c ∈ A,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F.$$

A logic ⊢ is truth-equational if there is a set of equations
 E(x) that defines truth-sets, i.e. for every
 ⟨*A*, *F*⟩ ∈ Mod[≡](⊢)

$$a \in F \iff \mathbf{A} \models \mathbf{E}(a)$$
, for all $a \in A$.

- Are algebraizable logics meet-irreducible? No, because: Algebraizable = Equivalential + Truth-equational.
- A logic ⊢ is equivalential if there is a non-empty set of formulas Δ(x, y) that defines indiscernibility, i.e. for all models (A, F) of ⊢ and a, c ∈ A,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F.$$

 A logic ⊢ is truth-equational if there is a set of equations *E*(x) that defines truth-sets, i.e. for every ⟨*A*, *F*⟩ ∈ Mod[≡](⊢)

 $a \in F \iff \mathbf{A} \models \mathbf{E}(a)$, for all $a \in A$.

Slogan

Algebraizability = truth-sets and indiscernibility are both definable.

- Are algebraizable logics meet-irreducible? No, because: Algebraizable = Equivalential + Truth-equational.
- A logic ⊢ is equivalential if there is a non-empty set of formulas Δ(x, y) that defines indiscernibility, i.e. for all models (A, F) of ⊢ and a, c ∈ A,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F.$$

► A logic \vdash is truth-equational if there is a set of equations E(x) that defines truth-sets, i.e. for every $\langle A, F \rangle \in Mod^{\equiv}(\vdash)$ $a \in F \iff A \models E(a)$, for all $a \in A$.

Slogan

Algebraizability = truth-sets and indiscernibility are both definable.

It is therefore sensible to ask whether truth-equational and equivalential logics form meet-irreducible Leibniz classes.

A logic ⊢ is truth-equational if there is a set of equations E(x) s.t. for every (A, F) ∈ Mod[≡](⊢)

$$a \in F \iff \mathbf{A} \models E(a)$$
, for all $a \in A$.

▶ A logic \vdash with theorems is truth-equational if there are no $\langle \boldsymbol{A}, F \rangle, \langle \boldsymbol{A}, G \rangle \in \text{Mod}^{\equiv}(\vdash)$ such that $\emptyset \subsetneq F \subsetneq G$.

▶ A logic \vdash with theorems is truth-equational if there are no $\langle \boldsymbol{A}, F \rangle, \langle \boldsymbol{A}, G \rangle \in \text{Mod}^{\equiv}(\vdash)$ such that $\emptyset \subsetneq F \subsetneq G$.

Theorem

Truth-equational logics form a meet-prime Leibniz class.

Proof sketch.

► A logic \vdash with theorems is truth-equational if there are no $\langle \boldsymbol{A}, F \rangle, \langle \boldsymbol{A}, G \rangle \in \text{Mod}^{\equiv}(\vdash)$ such that $\emptyset \subsetneq F \subsetneq G$.

Theorem

Truth-equational logics form a meet-prime Leibniz class.

Proof sketch.

▶ Let \vdash_1 , \vdash_2 be non truth-equational logics (with theorems).

► A logic \vdash with theorems is truth-equational if there are no $\langle \boldsymbol{A}, F \rangle, \langle \boldsymbol{A}, G \rangle \in \text{Mod}^{\equiv}(\vdash)$ such that $\emptyset \subsetneq F \subsetneq G$.

Theorem

Truth-equational logics form a meet-prime Leibniz class.

Proof sketch.

- Let \vdash_1 , \vdash_2 be non truth-equational logics (with theorems).
- Goal: find a non truth-equational logics in which ⊢₁ and ⊢₂ are interpretable.

▶ A logic \vdash with theorems is truth-equational if there are no $\langle \boldsymbol{A}, F \rangle, \langle \boldsymbol{A}, G \rangle \in \text{Mod}^{\equiv}(\vdash)$ such that $\emptyset \subsetneq F \subsetneq G$.

Theorem

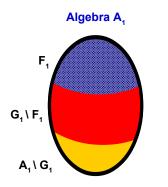
Truth-equational logics form a meet-prime Leibniz class.

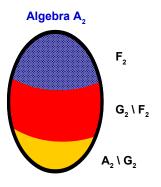
Proof sketch.

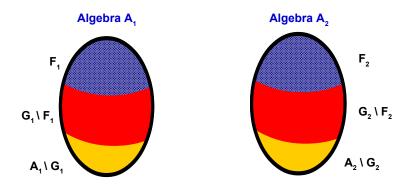
- Let \vdash_1 , \vdash_2 be non truth-equational logics (with theorems).
- Goal: find a non truth-equational logics in which ⊢₁ and ⊢₂ are interpretable.
- As \vdash_1 and \vdash_2 are not truth-equational, there are matrices

$$\langle \mathbf{A}_1, F_1 \rangle, \langle \mathbf{A}_1, G_1 \rangle \in \mathsf{Mod}^{\equiv}(\vdash_1) \text{ s.t. } \emptyset \subsetneq F_1 \subsetneq G_1$$

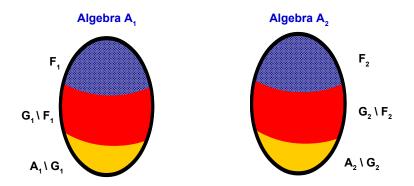
 $\langle \mathbf{A}_2, F_2 \rangle, \langle \mathbf{A}_2, G_2 \rangle \in \mathsf{Mod}^{\equiv}(\vdash_2) \text{ s.t. } \emptyset \subsetneq F_2 \subsetneq G_2.$



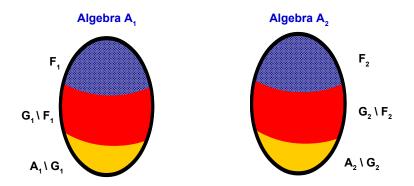




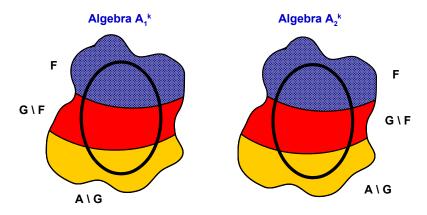
• We want to merge the two algebras into a single one.



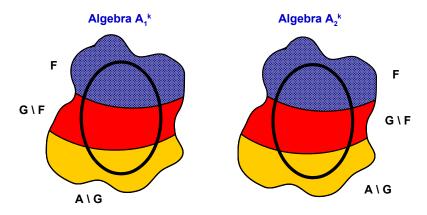
- We want to merge the two algebras into a single one.
- ▶ The problem is that **A**₁ and **A**₂ have not the same universe.



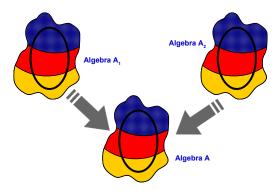
- We want to merge the two algebras into a single one.
- ▶ The problem is that **A**₁ and **A**₂ have not the same universe.
- This is solved by "adding points" to A₁ and A₂, taking sufficiently large direct powers.



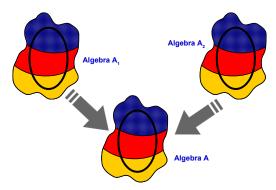
- We want to merge the two algebras into a single one.
- The problem is that A_1 and A_2 have not the same universe.
- This is solved by "adding points" to A₁ and A₂, taking sufficiently large direct powers.



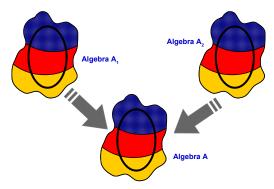
- We want to merge the two algebras into a single one.
- ▶ The problem is that **A**₁ and **A**₂ have not the same universe.
- This is solved by "adding points" to A₁ and A₂, taking sufficiently large direct powers.
- We assume w.l.o.g. that A_1 is A_1^{κ} and A_2 is A_2^{κ} .



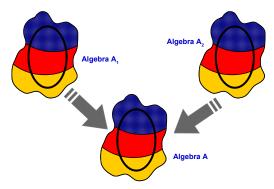
▶ We merge A₁ and A₂ into an algebra A with universe A = A₁ = A₂ endowed with all finitary operations.



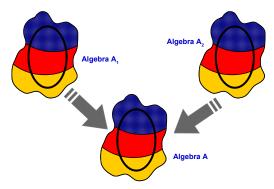
- We merge A_1 and A_2 into an algebra A with universe $A = A_1 = A_2$ endowed with all finitary operations.
- ▶ Let \vdash be the logic induced by the matrices $\langle \mathbf{A}, \mathbf{F} \rangle$ and $\langle \mathbf{A}, \mathbf{G} \rangle$.



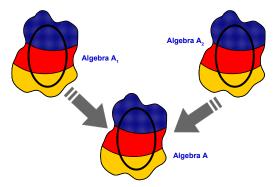
- We merge A_1 and A_2 into an algebra A with universe $A = A_1 = A_2$ endowed with all finitary operations.
- ▶ Let \vdash be the logic induced by the matrices $\langle \mathbf{A}, \mathbf{F} \rangle$ and $\langle \mathbf{A}, \mathbf{G} \rangle$.
- Goal: to show that ⊢ is not truth-equational and that ⊢₁ and ⊢₂ are interpretable in ⊢.



- We merge A_1 and A_2 into an algebra A with universe $A = A_1 = A_2$ endowed with all finitary operations.
- ▶ Let \vdash be the logic induced by the matrices $\langle \mathbf{A}, \mathbf{F} \rangle$ and $\langle \mathbf{A}, \mathbf{G} \rangle$.
- ► \vdash is not truth-equational, since $\langle \boldsymbol{A}, \boldsymbol{F} \rangle$, $\langle \boldsymbol{A}, \boldsymbol{G} \rangle \in \mathsf{Mod}^{\equiv}(\vdash)$ and $\emptyset \subsetneq \boldsymbol{F} \subsetneq \boldsymbol{G}$.



- We merge A_1 and A_2 into an algebra A with universe $A = A_1 = A_2$ endowed with all finitary operations.
- ▶ Let \vdash be the logic induced by the matrices $\langle \mathbf{A}, \mathbf{F} \rangle$ and $\langle \mathbf{A}, \mathbf{G} \rangle$.
- ► \vdash_i is interpretable into \vdash , since \vdash is induced by matrices $\langle \mathbf{A}, F \rangle, \langle \mathbf{A}, G \rangle$ with a reduct in $Mod^{\equiv}(\vdash_i)$.



- We merge A_1 and A_2 into an algebra A with universe $A = A_1 = A_2$ endowed with all finitary operations.
- ▶ Let \vdash be the logic induced by the matrices $\langle \mathbf{A}, \mathbf{F} \rangle$ and $\langle \mathbf{A}, \mathbf{G} \rangle$.
- ► \vdash_i is interpretable into \vdash , since \vdash is induced by matrices $\langle \mathbf{A}, F \rangle, \langle \mathbf{A}, G \rangle$ with a reduct in $Mod^{\equiv}(\vdash_i)$.
- The Leibniz class of truth-equational logics is a prime.

A logic ⊢ is equivalential if there is a non-empty set of formulas Δ(x, y) s.t. for all models (A, F) of ⊢ and a, c ∈ A,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F.$$

A logic ⊢ is equivalential if there is a non-empty set of formulas Δ(x, y) s.t. for all models (A, F) of ⊢ and a, c ∈ A,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F.$$

Problem.

The class of equivalential logics is not meet-irreducible.

A logic ⊢ is equivalential if there is a non-empty set of formulas Δ(x, y) s.t. for all models ⟨A, F⟩ of ⊢ and a, c ∈ A,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F.$$

Problem.

The class of equivalential logics is not meet-irreducible.

The class of equivalential logics is given by the Leibniz condition

$$\Phi = \{\vdash^{\mathsf{eq}}_{\alpha} \colon \alpha \in \mathsf{OR}\}$$

where \vdash_{α}^{eq} is the logic in the language with binary symbols $\{-\circ_{\epsilon}: \epsilon < \max\{\omega, |\alpha|\}\}$ axiomatized by the rules

A logic ⊢ is equivalential if there is a non-empty set of formulas Δ(x, y) s.t. for all models (A, F) of ⊢ and a, c ∈ A,

$$a \equiv c \iff \Delta^{\mathbf{A}}(a, c) \subseteq F.$$

Problem.

The class of equivalential logics is not meet-irreducible.

The class of equivalential logics is given by the Leibniz condition

$$\Phi = \{\vdash^{\mathsf{eq}}_{\alpha} \colon \alpha \in \mathsf{OR}\}$$

where \vdash_{α}^{eq} is the logic axiomatized by the rules

Theorem

The logic \vdash_{α}^{eq} is **meet-prime** in Log. Thus equivalential logics are determined by a Leibniz condition consisting only of meet-prime logics.

Thank you for your attention!