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Once upon a time...
1954. Maltsev discovered that a variety K is congruence

permutable iff there is a ternary term φ(x , y , z) such that

K ⊨ φ(x , x , y) ≈ y ≈ φ(y , x , x).

A new idea: equations may influence the structure of
congruence lattices of algebras!

1967. Jónsson proved that a variety K is congruence distributive iff
there are n ∈ ω and terms

φ0(x , y , z), . . . , φn(x , y , z)

such that K validates the following identities

φ0(x , y , z) ≈ x ≈ φn(y , z , x)

φi (x , y , x) ≈ x for all 0 ⩽ i ⩽ n

φi (x , x , y) ≈ φi+1(x , x , y) for all even i

φi (x , y , y) ≈ φi+1(x , y , y) for all odd i .

Remark. The number of terms φi cannot be bounded in
general.
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1970. Gratzer introduced the concept of a Maltsev condition,
embracing both Maltsev and Jónsson theorems.

1973. Taylor characterized Maltsev classes of varieties, i.e. classes
of varieties determined by Maltsev conditions.

1974. Neumann rephrased this characterization in terms of a notion
of interpretability between varieties.

1984. When ordered under interpretability, varieties form a lattice
that was studied in depth by García and Taylor.

The idea behind Maltsev conditions is to describe the structure of
congruence lattices in terms of equations.
Problem Is the validity of nontrivial Maltsev conditions equivalent
to the validity of nontrivial congruence equations?

1970. Pixley and Wille showed that if a variety satisfies a nontrivial
congruence equation in ∧ and ◦ only, then it satisfies a
nontrivial idempotent Maltsev condition.

2013. Kearnes and Kiss showed that the converse holds as well.
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A parallel history in algebraic logic.

1989. Blok and Pigozzi proved that TFAE for a finitary logic ⊢:

(i) ⊢ is algebraizable, i.e. there is a quasi-variety K such that for
every algebra A the expanded lattices of filters of ⊢ on A and
of K-congruences of A are isomorphic.

(ii) There are a finite set of formulas ∆(x , y) and a finite set of
equations E (x) such that

∅ ⊢∆(x , x)
x ,∆(x , y) ⊢y

∆(x1, y1) ∪ · · · ∪ ∆(xn, yn) ⊢∆(f (⃗x), f (⃗y))∪
{∆(φ,ψ) : φ ≈ ψ ∈ E (x)} ⊣⊢x .

A new (but familiar) idea: logical rules may influence the
relation between filters and congruences of algebras.

80-00s. The results by Blok, Pigozzi, Czelakowski, Jansana, and
Raftery in the spirit above formed the Leibniz hierarchy.
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2011. The question of whether the analogy between the Maltsev
and Leibniz hierarchies can be made precise emerged.

Problem. Up to now, there is no precise definition of what a
Leibniz condition is: the known ones were recognized empirically.

Aim of the talk
To introduce a notion of interpretability between propositional
logics and investigate the resulting “poset of all logics” in order to
initiate the general study of Leibniz conditions.

Sources of inspiration:

▶ Matrix semantics (Łukasiewicz, Tarski, Łos, Suszko,
Wójcicki . . . )

▶ Leibniz hierarchy of propositional logics (Blok, Pigozzi,
Czelakowski, Font, Jansana, Raftery . . . )

▶ Maltsev conditions (Day, Maltsev, Jónsson, Pixley, Kiss,
Kearnes, McKenzie, Szendrei . . . )

▶ Interpretations in varieties (Taylor, Neumann, Garcia . . . )
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▶ What do we mean by an interpretation between logics?
▶ And what do we mean by logic?
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Equality-free model theory
Let T be a first-order theory without equality.

▶ Every model M of T is associated with an indiscernibility
relation ≡ that mimics equality: for every a, c ∈ M,

a≡ c ⇐⇒ a and c satisfies the same
equality-free types with constants

⇐⇒ for every non-equality atomic formula ϕ(x , y1, . . . , yn)
and for every b1, . . . , bn ∈ M,

M ⊨ ϕ(a, b1, . . . , bn) iff M ⊨ ϕ(c , b1, . . . , bn).

▶ The indiscernibility relation is a congruence on M, and the
indiscernibility relation of the quotient M/≡ is the identity.

▶ M/≡ satisfies the same sentences without equality than M.
▶ Thus, the intended models of T are the ones whose

indiscernibility relation is the identity relation.
▶ This setting subsumes model theory with equality.
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▶ A matrix is a pair ⟨A,F ⟩ where A is an algebra and F ⊆ A.
A matrix ⟨A,F ⟩ is a model of a logic ⊢ (in the same
language) if for every Γ ∪ {φ} ⊆ Fm,

if Γ ⊢ φ, then for every hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .
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▶ The indiscernibility relation ≡ associated with a matrix
⟨A,F ⟩ can be described as follows: for every a, c ∈ A,

a≡ c ⇐⇒ p(a) ∈ F iff p(c) ∈ F ,

for all unary polynomial functions p of A.

Examples.
▶ If A is a Heyting algebra and F a lattice filter, then

a≡ c ⇐⇒ {a → c , c → a} ⊆ F .

▶ If A is a modal algebra and F a lattice filter, then

a≡ c ⇐⇒ {2n(a → c),2n(c → a) : n ∈ ω} ⊆ F .
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▶ The class of intended models of a logic ⊢ is

Mod≡(⊢) := Psd{⟨A,F ⟩ : ⟨A,F ⟩ is a model of ⊢ and
≡ is the identity relation}.

Completeness. ⊢ is the logic induced by the class Mod≡(⊢), i.e.

Γ ⊢ φ ⇐⇒ for every ⟨A,F ⟩ ∈ Mod≡(⊢) and hom v : Fm → A,

if v [Γ] ⊆ F , then v(φ) ∈ F .
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▶ A translation of an algebraic language L into another L ′ is
a map τ that assigns an n-ary term τ(f )(x1, . . . , xn) of L ′ to
every n-ary symbol f (x1, . . . , xn) of L .

▶ Given an L ′-algebra A, we define an L -algebra

Aτ := ⟨A; {τ(f )A : f ∈ L }⟩.

▶ An interpretation of a logic ⊢ into another ⊢′ is a translation
τ between their languages such that▶ ⊢ and ⊢′ are term-equivalent if so are Mod≡(⊢), Mod≡(⊢′).

▶ ⊢′ is a compatible expansion of ⊢ if L⊢ ⊆ L⊢′ and the
L⊢-reducts of the matrices in Mod≡(⊢′) belong to Mod≡(⊢).
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Do infima exist?
▶ Given a set of algebraic languages {Li : i ∈ I},
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f = ⟨φi (x1, . . . , xn) : i ∈ I ⟩

where φi is an n-ary term of Li .
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i∈I Ai be the
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i∈I Li -algebra with universe ∏i∈I Ai s.t.
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Ai (⃗a1(i), . . . , a⃗n(i)) : i ∈ I ⟩.
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Do suprema exist?

▶ No: even binary suprema may fail to exist.
▶ Let CPC¬ be the negation fragment of classical logic,

x �¬¬x ¬¬x � x x ,¬x � y .

▶ Consider the algebra A = ⟨A;∨, a,b, 0⟩ depicted below.
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Then let L be the logic induced by the pair of matrices

{⟨A, {1}⟩, ⟨A, {1, c}⟩}.

▶ The supremum of JCPC¬K and JLK does not exist in Log.
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Obs. The fact that a logic is meet-irreducible in Log certifies that
it is fundamental, i.e. it cannot be built out of two simpler logics.

▶ It is therefore sensible to ask whether the most prominent
logics are meet-irreducible in Log.

Theorem
Logics ⊢ satisfying the following conditions are meet-irreducible:

1. Mod≡(⊢) has the infinite joint embedding property, i.e. for
every set X ⊆ Mod≡(⊢) there is a matrix ⟨A,F ⟩ ∈ Mod≡(⊢)
such that X ⊆ IS(⟨A,F ⟩);

2. Non-trivial members of Mod≡(⊢) have finite substructures
whose cardinality is prime;

3. Non-trivial members of Mod≡(⊢) lack trivial substructures.

Examples.
▶ All superintuitionistic logics; the main fuzzy logics (e.g.

Łukasiewicz, product, and Gödel logic); the modal logic S4;
relevance logic R etc.
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▶ The Leibniz hierarchy is a classification of logics in terms of
rules that govern the correspondence between filters and
congruences.

Example.
▶ A logic ⊢ is algebraizable if there is a generalized quasi-variety

K such that for every algebra A the (expanded) lattices of
filters of ⊢ on A and of K-congruences of A are isomorphic.

▶ Syntactic characterization. A logic ⊢ is algebraizable iff
there are a set of formulas ∆(x , y) and a set of equations
E (x) s.t.
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A Leibniz class K is said to be

▶ meet-irreducible if for every pair K1 and K2 of Leibniz classes
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▶ Intuitively, a Leibniz class is meet-prime (resp. irreducible)
when it captures a fundamental concept.



▶ When ordered under inclusion, Leibniz classes form a “lattice”.

Definition
A Leibniz class K is said to be

▶ meet-irreducible if for every pair K1 and K2 of Leibniz classes
(of logics with some theorem),

if K = K1 ∩ K2, then either K = K1 or K = K2.

▶ meet-prime if for every pair of Leibniz classes K1 and K2 (of
logics with some theorem),

if K1 ∩ K2 ⊆ K, then either K1 ⊆ K or K2 ⊆ K.

▶ Intuitively, a Leibniz class is meet-prime (resp. irreducible)
when it captures a fundamental concept.



▶ When ordered under inclusion, Leibniz classes form a “lattice”.

Definition
A Leibniz class K is said to be

▶ meet-irreducible if for every pair K1 and K2 of Leibniz classes
(of logics with some theorem),

if K = K1 ∩ K2, then either K = K1 or K = K2.

▶ meet-prime if for every pair of Leibniz classes K1 and K2 (of
logics with some theorem),

if K1 ∩ K2 ⊆ K, then either K1 ⊆ K or K2 ⊆ K.

▶ Intuitively, a Leibniz class is meet-prime (resp. irreducible)
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Definability of truth-sets.
▶ A logic ⊢ is truth-equational if there is a set of equations

E (x) s.t. for every ⟨A,F ⟩ ∈ Mod≡(⊢)

a ∈ F ⇐⇒ A ⊨ E (a), for all a ∈ A.

▶ Let ⊢1, ⊢2 be non truth-equational logics (with theorems).
▶ Goal: find a non truth-equational logics in which ⊢1 and ⊢2

are interpretable.
▶ As ⊢1 and ⊢2 are not truth-equational, there are matrices

⟨A1,F1⟩, ⟨A1,G1⟩ ∈ Mod≡(⊢1) s.t. ∅ ⊊ F1 ⊊ G1

⟨A2,F2⟩, ⟨A2,G2⟩ ∈ Mod≡(⊢2) s.t. ∅ ⊊ F2 ⊊ G2.
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▶ We want to merge the two algebras into a single one.
▶ The problem is that A1 and A2 have not the same universe.
▶ This is solved by “adding points” ’ to A1 and A2, taking

sufficiently large direct powers.
▶ We assume w.l.o.g. that A1 is Aκ

1 and A2 is Aκ
2.
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▶ We merge A1 and A2 into an algebra A with universe
A = A1 = A2 endowed with all finitary operations.

▶ Let ⊢ be the logic induced by the matrices ⟨A,F ⟩ and ⟨A,G ⟩.
▶

▶ The Leibniz class of truth-equational logics is a prime.
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▶ We merge A1 and A2 into an algebra A with universe
A = A1 = A2 endowed with all finitary operations.

▶ Let ⊢ be the logic induced by the matrices ⟨A,F ⟩ and ⟨A,G ⟩.
▶ Goal: to show that ⊢ is not truth-equational and that ⊢1 and

⊢2 are interpretable in ⊢.

▶ The Leibniz class of truth-equational logics is a prime.
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Definability of the indiscernibility relation.

▶ A logic ⊢ is equivalential if there is a non-empty set of
formulas ∆(x , y) s.t. for all models ⟨A,F ⟩ of ⊢ and a, c ∈ A,

a≡ c ⇐⇒ ∆A(a, c) ⊆ F .

▶ Problem.
The class of equivalential logics is not meet-irreducible.

▶ The class of equivalential logics is given by the Leibniz
condition

Φ = {⊢eq
α : α ∈ OR}

where ⊢eq
α is the logic axiomatized by the rules

∅ � ∆α(x , x) x ,∆α(x , y)� y

∆α(x1, y1) ∪ ∆α(x2, y2)� ∆α(x1 ⊸ϵ x2, y1 ⊸ϵ y2)
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Definability of the indiscernibility relation.
▶ A logic ⊢ is equivalential if there is a non-empty set of

formulas ∆(x , y) s.t. for all models ⟨A,F ⟩ of ⊢ and a, c ∈ A,

a≡ c ⇐⇒ ∆A(a, c) ⊆ F .

▶ Problem.
The class of equivalential logics is not meet-irreducible.

▶ The class of equivalential logics is given by the Leibniz
condition

Φ = {⊢eq
α : α ∈ OR}

where ⊢eq
α is the logic axiomatized by the rules

∅ � ∆α(x , x) x ,∆α(x , y)� y

∆α(x1, y1) ∪ ∆α(x2, y2)� ∆α(x1 ⊸ϵ x2, y1 ⊸ϵ y2).

Theorem
The logic ⊢eq

α is meet-prime in Log. Thus equivalential logics are
determined by a Leibniz condition consisting only of meet-prime
logics.



Thank you for your attention!


