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A Problem in Logic

Does some logic L admit interpolation?

α(x , y)

`L γ(y)

`L β(y , z)

variables of α variables of β
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A Problem in Algebra

Does some class of algebras K have the amalgamation property?
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A Bridge Theorem

L admits interpolation ⇐⇒ KL has the amalgamation property
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This Tutorial

How can we build and cross bridges between logic and algebra?
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Today

How can we do this for intuitionistic logic and Heyting algebras?
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Intuitionistic Logic

Intuitionistic logic was introduced by Heyting in the 1930s to formalize
certain principles used in Brouwer’s constructive mathematics.

The Brouwer-Heyting-Kolmogorov interpretation presents the validity of
formulas in intuitionistic logic in terms of the construction of proofs, e.g.,

“A proof of α ∨ β is given via a proof of α or a proof of β.”

Intuitionistic logic may be presented syntactically via

axiom systems, natural deduction, tableau or sequent calculi, etc.

or semantically via

Heyting algebras, Kripke models, topological semantics, etc.
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An Axiom System

Formulas α, β, γ . . . are defined inductively for a propositional language
with binary connectives ∧,∨,→ and constants ⊥,> over a countably
infinite set of variables x , y , z . . ., where α↔ β := (α→ β) ∧ (β → α).

We write T `IL α to denote that a formula α is derivable from a set of
formulas T using the axiom schema

α→ (β → α) (α→ (β → γ))→ ((α→ β)→ (α→ γ))

(α ∧ β)→ α (α ∧ β)→ β

α→ (α ∨ β) β → (α ∨ β)

α→ (β → (α ∧ β)) (α→ γ)→ ((β → γ)→ ((α ∨ β)→ γ))

α→ > ⊥ → α

together with the modus ponens rule: from α and α→ β, infer β.
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Consequence

It is easy to check that `IL is a finitary structural consequence relation;

that is, for any set of formulas T ∪ T ′ ∪ {α},

(i) if α ∈ T , then T `IL α (reflexivity);

(ii) if T `IL α and T ⊆ T ′, then T ′ `IL α (monotonicity);

(iii) if T `IL α and T ′ `IL β for every β ∈ T , then T ′ `IL α (transitivity);

(iv) if T `IL α, then σ[T ] `IL σ(α) for any substitution σ (structurality);

(v) if T `IL α, then T ′ `IL α for some finite T ′ ⊆ T (finitarity).
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A Deduction Theorem

Theorem
For any set of formulas T ∪ {α, β},

T `IL α→ β ⇐⇒ T ∪ {α} `IL β.

Proof.
(⇒) Suppose that T `IL α→ β. By monotonicity, T ∪ {α} `IL α→ β and,
by reflexivity, T ∪ {α} `IL α. So, by modus ponens, T ∪ {α} `IL β.
(⇐) By induction on the length of a derivation of β from T ∪ {α} in IL.
For β = α, note that T `IL α→ α. If β is in T or an axiom, then T `IL β
and, since T `IL β → (α→ β), also T `IL α→ β. For the induction step,
suppose that T ∪ {α} `IL γ and T ∪ {α} `IL γ → β. By the induction
hypothesis, T `IL α→ γ and T `IL α→ (γ → β). Since also
T `IL (α→ (γ → β))→ ((α→ γ)→ (α→ β)), we get T `IL α→ β.
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Heyting Algebras

A Heyting algebra is an algebraic structure 〈A,∧,∨,→,⊥,>〉 such that

(i) 〈A,∧,∨,⊥,>〉 is a bounded lattice with a ≤ b :⇐⇒ a ∧ b = a;

(ii) a ≤ b → c ⇐⇒ a ∧ b ≤ c for all a, b, c ∈ A.

The class HA of Heyting algebras forms a variety.

Examples:

1. any Boolean algebra;

2. letting U be the set of upsets of a poset 〈X ,≤〉,
〈U ,∩,∪,→, ∅,X 〉 where Y → Z = {a ∈ X | a ≤ b ∈ Y =⇒ b ∈ Z};

3. letting O be the set of open subsets of R with the usual topology,

〈O,∩,∪,→, ∅,R〉 where Y → Z = int(Y c ∪ Z ).
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The Lindenbaum-Tarski Construction

Given any set of formulas T , define a binary relation on formulas by

αΘTβ :⇐⇒ T `IL α↔ β.

Then ΘT is an equivalence relation satisfying for ? ∈ {∧,∨,→},

α1 ΘTβ1 and α2 ΘTβ2 =⇒ α1 ? α2 ΘT β1 ? β2,

and we obtain a Heyting algebra

AT = 〈AT ,∧T ,∨T ,→T , [⊥]T , [>]T 〉

where AT is the set of ΘT -equivalence classes [α]T and for ? ∈ {∧,∨,→},

[α]T ?T [β]T = [α ? β]T .

In particular, `IL α if and only if A∅ |= α ≈ >.
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Equational Consequence

For any set of equations Σ ∪ {α ≈ β}, we write

Σ |=HA α ≈ β

if for any homomorphism e from the formula algebra to a Heyting algebra,

e(γ) = e(δ) for all γ ≈ δ ∈ Σ =⇒ e(α) = e(β).

Note. |=HA is a finitary structural equational consequence relation.
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A First Bridge Theorem

Theorem
HA is an equivalent algebraic semantics for IL

with transformers

τ(α) = α ≈ > and ρ(α ≈ β) = α↔ β.

(i) For any set of formulas T ∪ {α},

T `IL α ⇐⇒ τ [T ] |=HA τ(α).

(ii) For any set of equations Σ ∪ {α ≈ β},

Σ |=HA α ≈ β ⇐⇒ ρ[T ] `IL ρ(α ≈ β).

(iii) For any formulas α, β,

α a`IL ρ(τ(α)) and α ≈ β =||=HA τ(ρ(α ≈ β)).
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Proof Sketch

For (i), we need to prove

T `IL α ⇐⇒ {γ ≈ > | γ ∈ T} |=HA α ≈ >.

(⇒) A straightforward induction on the length of a derivation of α from T
in IL using properties of Heyting algebras.

(⇐) Suppose that T 6`IL α and consider the homomorphism e from the
formula algebra to the Heyting algebra AT given by e(γ) = [γ]T . Since

T `IL γ ⇐⇒ [γ]T = [>]T ,

we have [γ]T = [>]T for all γ ∈ T and [α]T 6= [>]T , so

{γ ≈ > | γ ∈ T} 6|=HA α ≈ >.

(iii) is easy to check, and (ii) follows directly from (i) and (iii).
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Sequent Calculi

The first sequent calculi for (first-order) classical and intuitionistic
logic were introduced by Gentzen in the 1930s.

Proof-search-oriented variants of Gentzen’s sequent calculus for
intuitionistic logic were later developed by Ketonen, Kleene, Ono,
Vorob’ev, Dragalin, Troelstra, Dyckhoff, Hudelmeier. . .

Sequent calculi (and many variants thereof) have been introduced for
many other non-classical logics and classes of algebraic structures.
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Sequents

A sequent is an ordered pair consisting of a finite multiset of formulas Γ
and a formula α, written Γ⇒ α.

We typically write Γ,Π for the multiset sum of Γ and Π, and omit brackets.

A sequent calculus GL consists of a set of rules with instances

S1 . . . Sn
S0

where S0,S1, . . . ,Sn are sequents.

A GL-derivation of a sequent S is a finite tree of sequents with root S
built using the rules of GL. If there exists a GL-derivation of a sequent S of
height at most n, we write `n

GL
S or just `GL S .
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A Sequent Calculus GIL for Intuitionistic Logic

Identity Axioms

Cut Rule

Γ, x ⇒ x
(id)

Γ⇒ α Π, α⇒ δ

Γ,Π⇒ δ
(cut)

Left Operation Rules Right Operation Rules

Γ,⊥ ⇒ δ
(⊥⇒)

Γ⇒ >
(⇒>)

Γ, α, β ⇒ δ

Γ, α ∧ β ⇒ δ
(∧⇒)

Γ⇒ α Γ⇒ β

Γ⇒ α ∧ β
(⇒∧)

Γ, α⇒ δ Γ, β ⇒ δ

Γ, α ∨ β ⇒ δ
(∨⇒)

Γ⇒ α
Γ⇒ α ∨ β

(⇒∨)l
Γ⇒ β

Γ⇒ α ∨ β
(⇒∨)r

Γ, α→ β ⇒ α Γ, β ⇒ δ

Γ, α→ β ⇒ δ
(→⇒)

Γ, α⇒ β

Γ⇒ α→ β
(⇒→)
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An Example Derivation

x → y , x ⇒ x
(id)

y , x ⇒ y
(id)

y , x ⇒ y ∨ z
(⇒∨)l

x → y , x ⇒ y ∨ z
(→⇒)

x → y , z ⇒ z
(id)

x → y , z ⇒ y ∨ z
(⇒∨)r

x → y , x ∨ z ⇒ y ∨ z
(∨⇒)

(x → y) ∧ (x ∨ z)⇒ y ∨ z
(∧⇒)

⇒ ((x → y) ∧ (x ∨ z))→ (y ∨ z)
(⇒→)
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Identity Lemma

Let GIL◦ be the sequent calculus GIL without the cut rule.

Lemma
For any finite multiset of formulas Γ and any formula α,

`GIL◦ Γ, α⇒ α.

Proof.
By induction on the size (number of occurrences of connectives) |α| of α.
The base case Γ, x ⇒ x is an instance of (id). For the inductive step, we
consider the principal connective of α; e.g., for α = α1 ∧ α2, we obtain

...
Γ, α1, α2 ⇒ α1

...
Γ, α1, α2 ⇒ α2

Γ, α1, α2 ⇒ α1 ∧ α2
(⇒∧)

Γ, α1 ∧ α2 ⇒ α1 ∧ α2
(∧⇒)
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Soundness and Completeness

Theorem

`GIL α1, . . . , αn ⇒ β ⇐⇒ `IL (α1 ∧ . . . ∧ αn)→ β.

Proof.
(⇒) By induction on the height of a derivation of α1, . . . , αn ⇒ β in GIL.
It suffices to check that the rules of GIL preserve derivability in IL; e.g.,

`IL (γ ∧ α)→ δ and `IL (γ ∧ β)→ δ =⇒ `IL (γ ∧ (α ∨ β))→ δ.

(⇐) We prove that `IL α implies `GIL⇒ α by induction on the length of a
derivation of α in IL, showing that the axioms are derivable in GIL and that
modus ponens preserves derivability, i.e., cutting twice with β, β → γ ⇒ γ,

`GIL⇒ β and `GIL⇒ β → γ =⇒ `GIL⇒ γ.

Hence if `IL (α1 ∧ . . .∧αn)→ β, then `GIL⇒ (α1 ∧ . . .∧αn)→ β, and the
result follows by cutting with α1, . . . , αn, (α1 ∧ . . . ∧ αn)→ β ⇒ β.
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Weakening, Invertibility, Contraction

Lemma

(a) `n
GIL◦

Γ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

(b) `n
GIL◦

Γ, α ∧ β ⇒ δ =⇒ `n
GIL◦

Γ, α, β ⇒ δ.

(c) `n
GIL◦

Γ⇒ α ∧ β =⇒ `n
GIL◦

Γ⇒ α and `n
GIL◦

Γ⇒ β.

(d) `n
GIL◦

Γ, α ∨ β ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ and `n
GIL◦

Γ, β ⇒ δ.

(e) `n
GIL◦

Γ⇒ α→ β =⇒ `n
GIL◦

Γ, α⇒ β.

(f) `n
GIL◦

Γ, α→ β ⇒ δ =⇒ `n
GIL◦

Γ, β ⇒ δ.

(g) `n
GIL◦

Γ, α, α⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

Proof.
Each claim can be proved by a simple (if rather tedious) induction on n.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 22 / 32



Weakening, Invertibility, Contraction

Lemma

(a) `n
GIL◦

Γ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

(b) `n
GIL◦

Γ, α ∧ β ⇒ δ =⇒ `n
GIL◦

Γ, α, β ⇒ δ.

(c) `n
GIL◦

Γ⇒ α ∧ β =⇒ `n
GIL◦

Γ⇒ α and `n
GIL◦

Γ⇒ β.

(d) `n
GIL◦

Γ, α ∨ β ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ and `n
GIL◦

Γ, β ⇒ δ.

(e) `n
GIL◦

Γ⇒ α→ β =⇒ `n
GIL◦

Γ, α⇒ β.

(f) `n
GIL◦

Γ, α→ β ⇒ δ =⇒ `n
GIL◦

Γ, β ⇒ δ.

(g) `n
GIL◦

Γ, α, α⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

Proof.
Each claim can be proved by a simple (if rather tedious) induction on n.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 22 / 32



Weakening, Invertibility, Contraction

Lemma

(a) `n
GIL◦

Γ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

(b) `n
GIL◦

Γ, α ∧ β ⇒ δ =⇒ `n
GIL◦

Γ, α, β ⇒ δ.

(c) `n
GIL◦

Γ⇒ α ∧ β =⇒ `n
GIL◦

Γ⇒ α and `n
GIL◦

Γ⇒ β.

(d) `n
GIL◦

Γ, α ∨ β ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ and `n
GIL◦

Γ, β ⇒ δ.

(e) `n
GIL◦

Γ⇒ α→ β =⇒ `n
GIL◦

Γ, α⇒ β.

(f) `n
GIL◦

Γ, α→ β ⇒ δ =⇒ `n
GIL◦

Γ, β ⇒ δ.

(g) `n
GIL◦

Γ, α, α⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

Proof.
Each claim can be proved by a simple (if rather tedious) induction on n.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 22 / 32



Weakening, Invertibility, Contraction

Lemma

(a) `n
GIL◦

Γ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

(b) `n
GIL◦

Γ, α ∧ β ⇒ δ =⇒ `n
GIL◦

Γ, α, β ⇒ δ.

(c) `n
GIL◦

Γ⇒ α ∧ β =⇒ `n
GIL◦

Γ⇒ α and `n
GIL◦

Γ⇒ β.

(d) `n
GIL◦

Γ, α ∨ β ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ and `n
GIL◦

Γ, β ⇒ δ.

(e) `n
GIL◦

Γ⇒ α→ β =⇒ `n
GIL◦

Γ, α⇒ β.

(f) `n
GIL◦

Γ, α→ β ⇒ δ =⇒ `n
GIL◦

Γ, β ⇒ δ.

(g) `n
GIL◦

Γ, α, α⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

Proof.
Each claim can be proved by a simple (if rather tedious) induction on n.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 22 / 32



Weakening, Invertibility, Contraction

Lemma

(a) `n
GIL◦

Γ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

(b) `n
GIL◦

Γ, α ∧ β ⇒ δ =⇒ `n
GIL◦

Γ, α, β ⇒ δ.

(c) `n
GIL◦

Γ⇒ α ∧ β =⇒ `n
GIL◦

Γ⇒ α and `n
GIL◦

Γ⇒ β.

(d) `n
GIL◦

Γ, α ∨ β ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ and `n
GIL◦

Γ, β ⇒ δ.

(e) `n
GIL◦

Γ⇒ α→ β =⇒ `n
GIL◦

Γ, α⇒ β.

(f) `n
GIL◦

Γ, α→ β ⇒ δ =⇒ `n
GIL◦

Γ, β ⇒ δ.

(g) `n
GIL◦

Γ, α, α⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

Proof.
Each claim can be proved by a simple (if rather tedious) induction on n.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 22 / 32



Weakening, Invertibility, Contraction

Lemma

(a) `n
GIL◦

Γ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

(b) `n
GIL◦

Γ, α ∧ β ⇒ δ =⇒ `n
GIL◦

Γ, α, β ⇒ δ.

(c) `n
GIL◦

Γ⇒ α ∧ β =⇒ `n
GIL◦

Γ⇒ α and `n
GIL◦

Γ⇒ β.

(d) `n
GIL◦

Γ, α ∨ β ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ and `n
GIL◦

Γ, β ⇒ δ.

(e) `n
GIL◦

Γ⇒ α→ β =⇒ `n
GIL◦

Γ, α⇒ β.

(f) `n
GIL◦

Γ, α→ β ⇒ δ =⇒ `n
GIL◦

Γ, β ⇒ δ.

(g) `n
GIL◦

Γ, α, α⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

Proof.
Each claim can be proved by a simple (if rather tedious) induction on n.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 22 / 32



Weakening, Invertibility, Contraction

Lemma

(a) `n
GIL◦

Γ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

(b) `n
GIL◦

Γ, α ∧ β ⇒ δ =⇒ `n
GIL◦

Γ, α, β ⇒ δ.

(c) `n
GIL◦

Γ⇒ α ∧ β =⇒ `n
GIL◦

Γ⇒ α and `n
GIL◦

Γ⇒ β.

(d) `n
GIL◦

Γ, α ∨ β ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ and `n
GIL◦

Γ, β ⇒ δ.

(e) `n
GIL◦

Γ⇒ α→ β =⇒ `n
GIL◦

Γ, α⇒ β.

(f) `n
GIL◦

Γ, α→ β ⇒ δ =⇒ `n
GIL◦

Γ, β ⇒ δ.

(g) `n
GIL◦

Γ, α, α⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

Proof.
Each claim can be proved by a simple (if rather tedious) induction on n.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 22 / 32



Weakening, Invertibility, Contraction

Lemma

(a) `n
GIL◦

Γ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

(b) `n
GIL◦

Γ, α ∧ β ⇒ δ =⇒ `n
GIL◦

Γ, α, β ⇒ δ.

(c) `n
GIL◦

Γ⇒ α ∧ β =⇒ `n
GIL◦

Γ⇒ α and `n
GIL◦

Γ⇒ β.

(d) `n
GIL◦

Γ, α ∨ β ⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ and `n
GIL◦

Γ, β ⇒ δ.

(e) `n
GIL◦

Γ⇒ α→ β =⇒ `n
GIL◦

Γ, α⇒ β.

(f) `n
GIL◦

Γ, α→ β ⇒ δ =⇒ `n
GIL◦

Γ, β ⇒ δ.

(g) `n
GIL◦

Γ, α, α⇒ δ =⇒ `n
GIL◦

Γ, α⇒ δ.

Proof.
Each claim can be proved by a simple (if rather tedious) induction on n.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 22 / 32



Cut Elimination

Theorem
Any GIL-derivable sequent is GIL◦-derivable.

Proof idea. We push uppermost cuts upwards in GIL-derivations until they
reach axioms and disappear, e.g.. . .

...
Σ⇒ δ Π, δ ⇒ δ

(id)

Σ,Π⇒ δ
(cut)

=⇒
...

Σ,Π⇒ δ

...
Σ⇒ α

Σ⇒ α ∨ β
(⇒∨)l

...
Π, α⇒ δ

...
Π, β ⇒ δ

Π, α ∨ β ⇒ δ
(∨⇒)

Σ,Π⇒ δ
(cut)

=⇒
...

Σ⇒ α

...
Π, α⇒ δ

Σ,Π⇒ δ
(cut)
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More formally. . .

We prove (constructively) that

`m
GIL◦

Σ⇒ α and `n
GIL◦

Π, α⇒ δ =⇒ `GIL◦ Σ,Π⇒ δ,

by induction on the lexicographically ordered pair 〈|α|,m + n〉.

E.g., suppose that α is β → γ and the derivations of the premises end with
...

Σ, β ⇒ γ

Σ⇒ β → γ
(→⇒)

and
...

Π, β → γ ⇒ β

...
Π, γ ⇒ δ

Π, β → γ ⇒ δ
(→⇒)

We apply the induction hypothesis three times:

1. `m
GIL◦

Σ⇒ β → γ and `n−1
GIL◦

Π, β → γ ⇒ β yields `GIL◦ Σ,Π⇒ β

2. `GIL◦ Σ,Π⇒ β and Σ, β ⇒ γ yields `GIL◦ Σ,Σ,Π⇒ γ

3. `GIL◦ Σ,Σ,Π⇒ γ and Π, γ ⇒ δ yields `GIL◦ Σ,Σ,Π,Π⇒ δ.

Finally, using the previous lemma, `GIL◦ Σ,Π⇒ δ.
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...

Σ, β ⇒ γ

Σ⇒ β → γ
(→⇒)

and
...

Π, β → γ ⇒ β

...
Π, γ ⇒ δ

Π, β → γ ⇒ δ
(→⇒)

We apply the induction hypothesis three times:

1. `m
GIL◦

Σ⇒ β → γ and `n−1
GIL◦

Π, β → γ ⇒ β yields `GIL◦ Σ,Π⇒ β

2. `GIL◦ Σ,Π⇒ β and Σ, β ⇒ γ yields `GIL◦ Σ,Σ,Π⇒ γ

3. `GIL◦ Σ,Σ,Π⇒ γ and Π, γ ⇒ δ yields `GIL◦ Σ,Σ,Π,Π⇒ δ.

Finally, using the previous lemma, `GIL◦ Σ,Π⇒ δ.
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A First Quiz

1. Explain how GIL◦ can be used to decide if Γ `IL α for Γ finite.

2. Use GIL◦ to prove the disjunction property for intuitionistic logic

`IL α ∨ β =⇒ `IL α or `IL β.

3. Give an algorithm to check if formulas α1, . . . , αn are independent in
intuitionistic logic, that is, to check if for any formula β(y1, . . . , yn),

`IL β(α1, . . . , αn) =⇒ `IL β.
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Decidability

Theorem (Gentzen 1935)
Finitary consequence in intuitionistic logic is decidable.

Proof.
To decide Γ `IL α for a finite set of formulas Γ ∪ {α}, we search for a
derivation of Γ⇒ α in GIL◦. If the left hand sides of sequents are viewed
as sets, which is possible because of the admissibility of contraction, then
there are only finitely many sequents that can occur in such a derivation.
Hence, loop-checking and backtracking can be used to check all potential
derivations.

Corollary
The quasi-equational theory of Heyting algebras is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 32



Decidability

Theorem (Gentzen 1935)
Finitary consequence in intuitionistic logic is decidable.

Proof.
To decide Γ `IL α for a finite set of formulas Γ ∪ {α}, we search for a
derivation of Γ⇒ α in GIL◦.

If the left hand sides of sequents are viewed
as sets, which is possible because of the admissibility of contraction, then
there are only finitely many sequents that can occur in such a derivation.
Hence, loop-checking and backtracking can be used to check all potential
derivations.

Corollary
The quasi-equational theory of Heyting algebras is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 32



Decidability

Theorem (Gentzen 1935)
Finitary consequence in intuitionistic logic is decidable.

Proof.
To decide Γ `IL α for a finite set of formulas Γ ∪ {α}, we search for a
derivation of Γ⇒ α in GIL◦. If the left hand sides of sequents are viewed
as sets,

which is possible because of the admissibility of contraction, then
there are only finitely many sequents that can occur in such a derivation.
Hence, loop-checking and backtracking can be used to check all potential
derivations.

Corollary
The quasi-equational theory of Heyting algebras is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 32



Decidability

Theorem (Gentzen 1935)
Finitary consequence in intuitionistic logic is decidable.

Proof.
To decide Γ `IL α for a finite set of formulas Γ ∪ {α}, we search for a
derivation of Γ⇒ α in GIL◦. If the left hand sides of sequents are viewed
as sets, which is possible because of the admissibility of contraction,

then
there are only finitely many sequents that can occur in such a derivation.
Hence, loop-checking and backtracking can be used to check all potential
derivations.

Corollary
The quasi-equational theory of Heyting algebras is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 32



Decidability

Theorem (Gentzen 1935)
Finitary consequence in intuitionistic logic is decidable.

Proof.
To decide Γ `IL α for a finite set of formulas Γ ∪ {α}, we search for a
derivation of Γ⇒ α in GIL◦. If the left hand sides of sequents are viewed
as sets, which is possible because of the admissibility of contraction, then
there are only finitely many sequents that can occur in such a derivation.

Hence, loop-checking and backtracking can be used to check all potential
derivations.

Corollary
The quasi-equational theory of Heyting algebras is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 32



Decidability

Theorem (Gentzen 1935)
Finitary consequence in intuitionistic logic is decidable.

Proof.
To decide Γ `IL α for a finite set of formulas Γ ∪ {α}, we search for a
derivation of Γ⇒ α in GIL◦. If the left hand sides of sequents are viewed
as sets, which is possible because of the admissibility of contraction, then
there are only finitely many sequents that can occur in such a derivation.
Hence, loop-checking and backtracking can be used to check all potential
derivations.

Corollary
The quasi-equational theory of Heyting algebras is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 32



Decidability

Theorem (Gentzen 1935)
Finitary consequence in intuitionistic logic is decidable.

Proof.
To decide Γ `IL α for a finite set of formulas Γ ∪ {α}, we search for a
derivation of Γ⇒ α in GIL◦. If the left hand sides of sequents are viewed
as sets, which is possible because of the admissibility of contraction, then
there are only finitely many sequents that can occur in such a derivation.
Hence, loop-checking and backtracking can be used to check all potential
derivations.

Corollary
The quasi-equational theory of Heyting algebras is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 32



The Disjunction Property

Corollary
For any formulas α, β,

`IL α ∨ β =⇒ `IL α or `IL β.

Proof.
Just consider the last step of a derivation of ⇒ α ∨ β in GIL◦.

Note. It follows similarly that the following Visser rules are admissible in
intuitionistic logic:∧n

i=1(αi → βi )→ (αn+1 ∨ αn+2)∨n+2
j=1 (

∧n
i=1(αi → βi )→ αj)

n = 0, 1, 2, . . .
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Interpolation

Theorem (Schütte 1962)
If α(x , y) and β(y , z) are formulas such that α `IL β, then there exists a
formula γ(y) such that α `IL γ and γ `IL β.

Proof sketch. We prove that for any sequent Σ(x , y),Π(y , z)⇒ δ(y , z),

`n
GIL◦

Σ,Π⇒ δ =⇒
there exists a formula γ(y) such that

`GIL◦ Σ⇒ γ and `GIL◦ Π, γ ⇒ δ,

by induction on n.

Base case. E.g., if Σ is Σ′, δ, let γ = δ; if Π is Π′, δ, let γ = >.
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Interpolation

Inductive step. E.g., if Σ is Σ′, α→ β and the derivation ends with
...

Σ′, α→ β,Π⇒ α

...
Σ′, β,Π⇒ δ

Σ′, α→ β,Π⇒ δ
(→⇒)

then by the induction hypothesis twice, there exist formulas γ1(y), γ2(y)
such that the following sequents are GIL-derivable:

Π⇒ γ1; Σ′, α→ β, γ1 ⇒ α; Σ′, β ⇒ γ2; and Π, γ2 ⇒ δ.

We obtain an interpolant γ1 → γ2 with derivations ending with
...

Σ′, α→ β, γ1 ⇒ α

...
Σ′, β, γ1 ⇒ γ2

Σ′, α→ β, γ1 ⇒ γ2
(→⇒)

Σ′, α→ β ⇒ γ1 → γ2
(⇒→)

...
Π, γ1 → γ2 ⇒ γ1

...
Π, γ2 ⇒ δ

Π, γ1 → γ2 ⇒ δ
(→⇒)

�
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An Algebraic Consequence

Theorem (Day 1972)
HA admits the amalgamation property; that is, for any A,B,C ∈ HA
and embeddings i : A→ B and j : A→ C, there exist D ∈ HA and
embeddings h : B→ D and k : C→ D satisfying hi = kj .

B

A D

C

hi

j k

Proof.
By construction or as a consequence of interpolation (shown later).
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Tomorrow

We will. . .

consider Pitts’ uniform interpolation theorem for intuitionistic logic

explain some of the nuts and bolts of universal algebra

define and interpret consequence in classes of algebraic structures
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