Bridges between Logic and Algebra Part 2: Pitts' Theorem & A General Framework

George Metcalfe

Mathematical Institute University of Bern

TACL 2019 Summer School, Île de Porquerolles, June 2019

• has the class of Heyting algebras as an equivalent algebraic semantics

- has the class of Heyting algebras as an equivalent algebraic semantics
- can be presented via a sequent calculus that admits cut elimination

- has the class of Heyting algebras as an equivalent algebraic semantics
- can be presented via a sequent calculus that admits cut elimination
- is decidable,

- has the class of Heyting algebras as an equivalent algebraic semantics
- can be presented via a sequent calculus that admits cut elimination
- is decidable, has the disjunction property,

- has the class of Heyting algebras as an equivalent algebraic semantics
- can be presented via a sequent calculus that admits cut elimination
- is decidable, has the disjunction property, and admits interpolation.

э.

・ロト ・日下・ ・ ヨト・

• consider Pitts' uniform interpolation theorem for intuitionistic logic

- consider Pitts' uniform interpolation theorem for intuitionistic logic
- explain some of the nuts and bolts of universal algebra

- consider Pitts' uniform interpolation theorem for intuitionistic logic
- explain some of the nuts and bolts of universal algebra
- investigate consequence and interpolation in this algebraic setting.

Classical logic admits interpolation: for any formulas $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, $\beta(\overline{\mathbf{y}}, \overline{z})$ satisfying $\alpha \vdash_{\mathsf{CL}} \beta$,

Classical logic admits interpolation: for any formulas $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, $\beta(\overline{\mathbf{y}}, \overline{z})$ satisfying $\alpha \vdash_{\mathsf{CL}} \beta$, there exists a formula $\gamma(\overline{\mathbf{y}})$ such that $\alpha \vdash_{\mathsf{CL}} \gamma$ and $\gamma \vdash_{\mathsf{CL}} \beta$.

Classical logic admits interpolation: for any formulas $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, $\beta(\overline{\mathbf{y}}, \overline{z})$ satisfying $\alpha \vdash_{\mathsf{CL}} \beta$, there exists a formula $\gamma(\overline{\mathbf{y}})$ such that $\alpha \vdash_{\mathsf{CL}} \gamma$ and $\gamma \vdash_{\mathsf{CL}} \beta$.

For example. . .

$$\alpha = \neg(\mathbf{x} \to \mathbf{y})$$

$$\beta = \mathbf{y} \to \neg \mathbf{z}$$

 $\gamma =$

Classical logic admits interpolation: for any formulas $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, $\beta(\overline{\mathbf{y}}, \overline{z})$ satisfying $\alpha \vdash_{\mathsf{CL}} \beta$, there exists a formula $\gamma(\overline{\mathbf{y}})$ such that $\alpha \vdash_{\mathsf{CL}} \gamma$ and $\gamma \vdash_{\mathsf{CL}} \beta$.

For example. . .

$$\alpha = \neg(\mathbf{x} \to \mathbf{y})$$

$$\beta = \mathbf{y} \to \neg z$$

 $\gamma =$

Classical logic admits interpolation: for any formulas $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, $\beta(\overline{\mathbf{y}}, \overline{z})$ satisfying $\alpha \vdash_{\mathsf{CL}} \beta$, there exists a formula $\gamma(\overline{\mathbf{y}})$ such that $\alpha \vdash_{\mathsf{CL}} \gamma$ and $\gamma \vdash_{\mathsf{CL}} \beta$.

For example. . .

$$\alpha = \neg(\mathbf{x} \to \mathbf{y})$$

$$\beta = \mathbf{y} \to \neg \mathbf{z}$$

 $\gamma =$

Classical logic admits interpolation: for any formulas $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, $\beta(\overline{\mathbf{y}}, \overline{z})$ satisfying $\alpha \vdash_{\mathsf{CL}} \beta$, there exists a formula $\gamma(\overline{\mathbf{y}})$ such that $\alpha \vdash_{\mathsf{CL}} \gamma$ and $\gamma \vdash_{\mathsf{CL}} \beta$.

For example. . .

$$\alpha = \neg(\mathbf{x} \rightarrow \mathbf{y})$$

$$\beta = \mathbf{y} \to \neg \mathbf{z}$$

 $\gamma = \neg \mathbf{y}$

Classical logic admits interpolation: for any formulas $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, $\beta(\overline{\mathbf{y}}, \overline{z})$ satisfying $\alpha \vdash_{\mathsf{CL}} \beta$, there exists a formula $\gamma(\overline{\mathbf{y}})$ such that $\alpha \vdash_{\mathsf{CL}} \gamma$ and $\gamma \vdash_{\mathsf{CL}} \beta$.

For example. . .

 $\alpha = \neg(\mathbf{x} \to \mathbf{y})$

$$\beta = \mathbf{y} \to \neg \mathbf{z}$$

 $\gamma = \neg \mathbf{y}$

In fact, for any formula $\delta(\mathbf{y}, \overline{\mathbf{z}})$,

$$\alpha \vdash_{\mathsf{CL}} \delta \ \iff \ \gamma \vdash_{\mathsf{CL}} \delta.$$

Classical logic admits uniform interpolation: for any formula $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, there exist formulas $\alpha^{L}(\overline{\mathbf{y}})$ and $\alpha^{R}(\overline{\mathbf{y}})$

Classical logic admits uniform interpolation: for any formula $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, there exist formulas $\alpha^{L}(\overline{\mathbf{y}})$ and $\alpha^{R}(\overline{\mathbf{y}})$ such that for any formula $\beta(\overline{\mathbf{y}}, \overline{\mathbf{z}})$,

 $\beta(\overline{\mathbf{y}},\overline{z})\vdash_{\mathsf{CL}} \alpha(\overline{\mathbf{x}},\overline{\mathbf{y}}) \iff \beta(\overline{\mathbf{y}},\overline{z})\vdash_{\mathsf{CL}} \alpha^{\mathsf{L}}(\overline{\mathbf{y}})$

Classical logic admits uniform interpolation: for any formula $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, there exist formulas $\alpha^{L}(\overline{\mathbf{y}})$ and $\alpha^{R}(\overline{\mathbf{y}})$ such that for any formula $\beta(\overline{\mathbf{y}}, \overline{\mathbf{z}})$, $\beta(\overline{\mathbf{y}}, \overline{\mathbf{z}}) \vdash_{\mathsf{CL}} \alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \iff \beta(\overline{\mathbf{y}}, \overline{\mathbf{z}}) \vdash_{\mathsf{CL}} \alpha^{L}(\overline{\mathbf{y}})$

$$\alpha(\overline{\mathbf{x}},\overline{\mathbf{y}}) \vdash_{\mathsf{CL}} \beta(\overline{\mathbf{y}},\overline{z}) \iff \alpha^{R}(\overline{\mathbf{y}}) \vdash_{\mathsf{CL}} \beta(\overline{\mathbf{y}},\overline{z}).$$

Classical logic admits uniform interpolation: for any formula $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, there exist formulas $\alpha^{L}(\overline{\mathbf{y}})$ and $\alpha^{R}(\overline{\mathbf{y}})$ such that for any formula $\beta(\overline{\mathbf{y}}, \overline{\mathbf{z}})$,

$$\beta(\overline{\mathbf{y}}, \overline{z}) \vdash_{\mathsf{CL}} \alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \iff \beta(\overline{\mathbf{y}}, \overline{z}) \vdash_{\mathsf{CL}} \alpha^{L}(\overline{\mathbf{y}})$$
$$\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \vdash_{\mathsf{CL}} \beta(\overline{\mathbf{y}}, \overline{z}) \iff \alpha^{R}(\overline{\mathbf{y}}) \vdash_{\mathsf{CL}} \beta(\overline{\mathbf{y}}, \overline{z}).$$

Proof.

Given any formula $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, we just define

$$\alpha^{L}(\overline{\mathbf{y}}) = \bigwedge \{ \alpha(\overline{\mathbf{a}}, \overline{\mathbf{y}}) \mid \overline{\mathbf{a}} \subseteq \{\bot, \top\} \}$$

Classical logic admits uniform interpolation: for any formula $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, there exist formulas $\alpha^{L}(\overline{\mathbf{y}})$ and $\alpha^{R}(\overline{\mathbf{y}})$ such that for any formula $\beta(\overline{\mathbf{y}}, \overline{\mathbf{z}})$,

$$\beta(\overline{\mathbf{y}}, \overline{z}) \vdash_{\mathsf{CL}} \alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \iff \beta(\overline{\mathbf{y}}, \overline{z}) \vdash_{\mathsf{CL}} \alpha^{\mathsf{L}}(\overline{\mathbf{y}})$$
$$\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \vdash_{\mathsf{CL}} \beta(\overline{\mathbf{y}}, \overline{z}) \iff \alpha^{\mathsf{R}}(\overline{\mathbf{y}}) \vdash_{\mathsf{CL}} \beta(\overline{\mathbf{y}}, \overline{z}).$$

Proof.

Given any formula $\alpha(\overline{\mathbf{x}},\overline{\mathbf{y}})$, we just define

$$\alpha^{\mathcal{L}}(\overline{\mathbf{y}}) = \bigwedge \{ \alpha(\overline{\mathbf{a}}, \overline{\mathbf{y}}) \mid \overline{\mathbf{a}} \subseteq \{\bot, \top\} \}$$

$$\alpha^{R}(\overline{\mathbf{y}}) = igvee\{lpha(ar{\mathbf{a}},\overline{\mathbf{y}}) \mid ar{\mathbf{a}} \subseteq \{ot,ot\}\}.$$

Theorem (Pitts 1992)

Intuitionistic logic admits uniform interpolation: for any formula $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, there exist formulas $\alpha^{L}(\overline{\mathbf{y}})$ and $\alpha^{R}(\overline{\mathbf{y}})$ such that for any formula $\beta(\overline{\mathbf{y}}, \overline{\mathbf{z}})$,

$$\begin{aligned} &\alpha(\overline{\mathbf{x}},\overline{\mathbf{y}}) \vdash_{\mathsf{IL}} \beta(\overline{\mathbf{y}},\overline{z}) &\iff \alpha^{R}(\overline{\mathbf{y}}) \vdash_{\mathsf{IL}} \beta(\overline{\mathbf{y}},\overline{z}) \\ &\beta(\overline{\mathbf{y}},\overline{z}) \vdash_{\mathsf{IL}} \alpha(\overline{\mathbf{x}},\overline{\mathbf{y}}) \iff \beta(\overline{\mathbf{y}},\overline{z}) \vdash_{\mathsf{IL}} \alpha^{L}(\overline{\mathbf{y}}). \end{aligned}$$

Theorem (Pitts 1992)

Intuitionistic logic admits uniform interpolation: for any formula $\alpha(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, there exist formulas $\alpha^{L}(\overline{\mathbf{y}})$ and $\alpha^{R}(\overline{\mathbf{y}})$ such that for any formula $\beta(\overline{\mathbf{y}}, \overline{\mathbf{z}})$,

$$\begin{aligned} &\alpha(\overline{\mathbf{x}},\overline{\mathbf{y}}) \vdash_{\mathsf{IL}} \beta(\overline{\mathbf{y}},\overline{z}) &\iff \alpha^{R}(\overline{\mathbf{y}}) \vdash_{\mathsf{IL}} \beta(\overline{\mathbf{y}},\overline{z}) \\ &\beta(\overline{\mathbf{y}},\overline{z}) \vdash_{\mathsf{IL}} \alpha(\overline{\mathbf{x}},\overline{\mathbf{y}}) \iff \beta(\overline{\mathbf{y}},\overline{z}) \vdash_{\mathsf{IL}} \alpha^{L}(\overline{\mathbf{y}}). \end{aligned}$$

Proof idea. We define $\alpha^{L}(\overline{y})$ and $\alpha^{R}(\overline{y})$ by induction on the "weight" of α , guided by derivability in a suitable terminating sequent calculus...

Identity Axioms

 $\overline{\Gamma, x \Rightarrow x}$ (id)

Left Operation Rules **Right Operation Rules** $\frac{1}{\Gamma_{\perp} + \Rightarrow \delta} \stackrel{(\perp \Rightarrow)}{=}$ $\Gamma \Rightarrow \top$ ($\Rightarrow \top$) $\frac{\Gamma, \alpha, \beta \Rightarrow \delta}{\Gamma \alpha \land \beta \Rightarrow \delta} (\land \Rightarrow)$ $\frac{\Gamma \Rightarrow \alpha \quad \Gamma \Rightarrow \beta}{\Gamma \Rightarrow \alpha \land \beta} \; (\Rightarrow \land)$ $\frac{\Gamma, \alpha \Rightarrow \delta \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \lor \beta \Rightarrow \delta} \ (\lor \Rightarrow)$ $\frac{\Gamma \Rightarrow \alpha}{\Gamma \Rightarrow \alpha \lor \beta} (\Rightarrow \lor)_{I} \quad \frac{\Gamma \Rightarrow \beta}{\Gamma \Rightarrow \alpha \lor \beta} (\Rightarrow \lor)_{r}$ $\frac{\Gamma, \alpha \to \beta \Rightarrow \alpha \quad \Gamma, \beta \Rightarrow \delta}{\Gamma \quad \alpha \to \beta \Rightarrow \delta} \quad (\to \Rightarrow) \qquad \frac{\Gamma, \alpha \Rightarrow \beta}{\Gamma \Rightarrow \alpha \to \beta} \quad (\Rightarrow \to)$

A (10) A (10)

$$\frac{\Gamma, \alpha \to \beta \Rightarrow \alpha \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \to \beta \Rightarrow \delta} \ (\to \Rightarrow)$$

$$\frac{\Gamma, \alpha \to \beta \Rightarrow \alpha \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \to \beta \Rightarrow \delta} \ (\to \Rightarrow)$$

with the decomposition rules

 $\frac{\Gamma \Rightarrow \delta}{\Gamma, \bot \to \beta \Rightarrow \delta}$

$$\frac{\Gamma, \alpha \to \beta \Rightarrow \alpha \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \to \beta \Rightarrow \delta} \ (\to \Rightarrow)$$

$$\frac{\Gamma \Rightarrow \delta}{\Gamma, \bot \to \beta \Rightarrow \delta} \qquad \frac{\Gamma, x, \beta \Rightarrow \delta}{\Gamma, x, x \to \beta \Rightarrow \delta}$$

$$\frac{\Gamma, \alpha \to \beta \Rightarrow \alpha \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \to \beta \Rightarrow \delta} \ (\to \Rightarrow)$$

$$\frac{\Gamma \Rightarrow \delta}{\Gamma, \bot \to \beta \Rightarrow \delta} \qquad \frac{\Gamma, x, \beta \Rightarrow \delta}{\Gamma, x, x \to \beta \Rightarrow \delta} \qquad \qquad \frac{\Gamma, \alpha_1 \to (\alpha_2 \to \beta) \Rightarrow \delta}{\Gamma, (\alpha_1 \land \alpha_2) \to \beta \Rightarrow \delta}$$

$$\frac{\Gamma, \alpha \to \beta \Rightarrow \alpha \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \to \beta \Rightarrow \delta} \ (\to \Rightarrow)$$

$$\frac{\Gamma \Rightarrow \delta}{\Gamma, \bot \to \beta \Rightarrow \delta} \qquad \frac{\Gamma, x, \beta \Rightarrow \delta}{\Gamma, x, x \to \beta \Rightarrow \delta} \qquad \frac{\Gamma, \alpha_1 \to (\alpha_2 \to \beta) \Rightarrow \delta}{\Gamma, (\alpha_1 \land \alpha_2) \to \beta \Rightarrow \delta}$$
$$\frac{\Gamma, \beta \Rightarrow \delta}{\Gamma, \top \to \beta \Rightarrow \delta}$$

$$\frac{\Gamma, \alpha \to \beta \Rightarrow \alpha \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \to \beta \Rightarrow \delta} \ (\to \Rightarrow)$$

$$\frac{\Gamma \Rightarrow \delta}{\Gamma, \bot \to \beta \Rightarrow \delta} \qquad \frac{\Gamma, x, \beta \Rightarrow \delta}{\Gamma, x, x \to \beta \Rightarrow \delta} \qquad \frac{\Gamma, \alpha_1 \to (\alpha_2 \to \beta) \Rightarrow \delta}{\Gamma, (\alpha_1 \land \alpha_2) \to \beta \Rightarrow \delta} \\
\frac{\Gamma, \beta \Rightarrow \delta}{\Gamma, \top \to \beta \Rightarrow \delta} \qquad \frac{\Gamma, \alpha_1 \to \beta, \alpha_2 \to \beta \Rightarrow \delta}{\Gamma, (\alpha_1 \lor \alpha_2) \to \beta \Rightarrow \delta}$$

$$\frac{\Gamma, \alpha \to \beta \Rightarrow \alpha \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \to \beta \Rightarrow \delta} \ (\to \Rightarrow)$$

$$\frac{\Gamma \Rightarrow \delta}{\Gamma, \bot \to \beta \Rightarrow \delta} \qquad \frac{\Gamma, x, \beta \Rightarrow \delta}{\Gamma, x, x \to \beta \Rightarrow \delta} \qquad \frac{\Gamma, \alpha_1 \to (\alpha_2 \to \beta) \Rightarrow \delta}{\Gamma, (\alpha_1 \land \alpha_2) \to \beta \Rightarrow \delta} \\
\frac{\Gamma, \beta \Rightarrow \delta}{\Gamma, \top \to \beta \Rightarrow \delta} \qquad \frac{\Gamma, \alpha_1 \to \beta, \alpha_2 \to \beta \Rightarrow \delta}{\Gamma, (\alpha_1 \lor \alpha_2) \to \beta \Rightarrow \delta} \qquad \frac{\Gamma, \alpha_2 \to \beta \Rightarrow \alpha_1 \to \alpha_2 \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, (\alpha_1 \to \alpha_2) \to \beta \Rightarrow \delta}$$

$$\overline{\Rightarrow ((x \to y) \land ((x \to y) \to x)) \to y} \ (\Rightarrow \to)$$

George Metcalfe (University of Bern) Bridges between Logic and Algebra

Image: A match a ma

$$\frac{\overline{(x \to y) \land ((x \to y) \to x) \Rightarrow y}}{\Rightarrow ((x \to y) \land ((x \to y) \to x)) \to y} \stackrel{(\land \Rightarrow)}{\Rightarrow}$$

▶ ৰ≣ ▶ ≣ ৩৭৫ June 2019 9/29

Image: A match a ma

$$\frac{x \to y, (x \to y) \to x \Rightarrow y}{(x \to y) \land ((x \to y) \to x) \Rightarrow y} \xrightarrow{(\land \Rightarrow)} (\Rightarrow)$$

$$\frac{(\to \Rightarrow)}{\Rightarrow ((x \to y) \land ((x \to y) \to x)) \to y} \xrightarrow{(\Rightarrow \to)} (\Rightarrow)$$

George Metcalfe (University of Bern) Bridges between Logic and Algebra

Image: A match a ma
$$\frac{\overline{x \to y, y \to x \Rightarrow x \to y}}{\left|\frac{x \to y, (x \to y) \to x \Rightarrow y}{(x \to y) \land ((x \to y) \to x) \Rightarrow y}\right|} (\rightarrow \Rightarrow)$$

$$\frac{\frac{x \to y, (x \to y) \to x \Rightarrow y}{(x \to y) \land ((x \to y) \to x) \Rightarrow y}}{\Rightarrow ((x \to y) \land ((x \to y) \to x)) \to y} (\Rightarrow \rightarrow)$$

Image: A match a ma

$$\frac{\overline{x \to y, y \to x, x \Rightarrow y}}{x \to y, y \to x \Rightarrow x \to y} \xrightarrow{(\Rightarrow \to)} (\to \Rightarrow)$$

$$\frac{x \to y, y \to x \Rightarrow x \to y}{(x \to y, (x \to y) \to x \Rightarrow y} \xrightarrow{(\land \Rightarrow)} (\to \Rightarrow)$$

$$\frac{\overline{(x \to y) \land ((x \to y) \to x) \Rightarrow y}}{\Rightarrow ((x \to y) \land ((x \to y) \to x)) \to y} \xrightarrow{(\Rightarrow \to)} (\to \Rightarrow)$$

Image: A match a ma

An Example Derivation

$$\frac{\overline{y, y \to x, x \Rightarrow y}}{x \to y, y \to x, x \Rightarrow y} \stackrel{(id)}{(\Rightarrow \to)} \\
\frac{\overline{x \to y, y \to x, x \Rightarrow y}}{x \to y, y \to x \Rightarrow x \to y} \stackrel{(\to \Rightarrow)}{(\Rightarrow \to)} \\
\frac{\overline{x \to y, (x \to y) \to x \Rightarrow y}}{(x \to y) \land ((x \to y) \to x) \Rightarrow y} \stackrel{(\land \Rightarrow)}{(\Rightarrow \to)} \\
\frac{\overline{(x \to y) \land ((x \to y) \to x) \Rightarrow y}}{\Rightarrow ((x \to y) \land ((x \to y) \to x)) \to y} \stackrel{(\Rightarrow \to)}{(\Rightarrow \to)}$$

্ৰ≣> ≣ পিও June 2019 9/29

Image: A match a ma

An Example Derivation

June 2019 9 / 29

An Example Derivation

•
$$\operatorname{wt}(x) = \operatorname{wt}(\bot) = \operatorname{wt}(\top) = 1;$$

•
$$\operatorname{wt}(x) = \operatorname{wt}(\bot) = \operatorname{wt}(\top) = 1;$$

•
$$\operatorname{wt}(\alpha \lor \beta) = \operatorname{wt}(\alpha \to \beta) = \operatorname{wt}(\alpha) + \operatorname{wt}(\beta) + 1;$$

•
$$\operatorname{wt}(x) = \operatorname{wt}(\bot) = \operatorname{wt}(\top) = 1;$$

•
$$\operatorname{wt}(\alpha \lor \beta) = \operatorname{wt}(\alpha \to \beta) = \operatorname{wt}(\alpha) + \operatorname{wt}(\beta) + 1;$$

•
$$\operatorname{wt}(\alpha \wedge \beta) = \operatorname{wt}(\alpha) + \operatorname{wt}(\beta) + 2$$
,

•
$$\operatorname{wt}(x) = \operatorname{wt}(\bot) = \operatorname{wt}(\top) = 1;$$

•
$$\operatorname{wt}(\alpha \lor \beta) = \operatorname{wt}(\alpha \to \beta) = \operatorname{wt}(\alpha) + \operatorname{wt}(\beta) + 1;$$

•
$$\operatorname{wt}(\alpha \wedge \beta) = \operatorname{wt}(\alpha) + \operatorname{wt}(\beta) + 2$$
,

yielding a well-ordering \prec on formulas

$$\alpha \prec \beta :\iff \operatorname{wt}(\alpha) < \operatorname{wt}(\beta).$$

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

$$\label{eq:Gamma-constraint} \begin{split} \Gamma \prec \Pi \ : & \longleftrightarrow \quad \begin{aligned} \Gamma = \Gamma', \Delta \ \text{and} \ \Pi = \Pi', \Delta \ \text{with} \ \Pi' \neq \emptyset \ \text{and} \\ \text{each} \ \alpha \in \Gamma' \ \text{is} \ \prec \text{-smaller than some} \ \beta \in \Pi' \end{split}$$

$$\label{eq:Gamma-constraint} \begin{split} \Gamma \prec \Pi \ : & \longleftrightarrow \quad \begin{aligned} & \Gamma = \Gamma', \Delta \text{ and } \Pi = \Pi', \Delta \text{ with } \Pi' \neq \emptyset \text{ and} \\ & \text{ each } \alpha \in \Gamma' \text{ is } \prec \text{-smaller than some } \beta \in \Pi' \end{aligned}$$

and on sequents by defining

$$\mathsf{\Gamma} \Rightarrow \alpha \ \prec \ \mathsf{\Pi} \Rightarrow \beta \ : \Longleftrightarrow \ \mathsf{\Gamma}, \alpha \ \prec \ \mathsf{\Pi}, \beta.$$

$$\label{eq:Gamma-constraint} \begin{split} \Gamma \prec \Pi \; : & \longleftrightarrow \; \begin{array}{l} \Gamma = \Gamma', \Delta \text{ and } \Pi = \Pi', \Delta \text{ with } \Pi' \neq \emptyset \text{ and} \\ \text{ each } \alpha \in \Gamma' \text{ is } \prec \text{-smaller than some } \beta \in \Pi' \end{split}$$

and on sequents by defining

$$\Gamma \Rightarrow \alpha \ \prec \ \Pi \Rightarrow \beta \ : \Longleftrightarrow \ \Gamma, \alpha \ \prec \ \Pi, \beta.$$

The premises of each rule of GIL^* are all \prec -smaller than its conclusion;

$$\label{eq:Gamma-constraint} \begin{split} \Gamma \prec \Pi \ : & \longleftrightarrow \quad \begin{matrix} \Gamma = \Gamma', \Delta \text{ and } \Pi = \Pi', \Delta \text{ with } \Pi' \neq \emptyset \text{ and} \\ \text{ each } \alpha \in \Gamma' \text{ is } \prec \text{-smaller than some } \beta \in \Pi' \end{split}$$

and on sequents by defining

$$\Gamma \Rightarrow \alpha \prec \Pi \Rightarrow \beta \iff \Gamma, \alpha \prec \Pi, \beta.$$

The premises of each rule of GIL^{*} are all \prec -smaller than its conclusion; e.g., wt($\alpha_1 \rightarrow (\alpha_2 \rightarrow \beta)$) < wt(($\alpha_1 \land \alpha_2$) $\rightarrow \beta$)

$$\label{eq:Gamma-constraint} \begin{split} \Gamma \prec \Pi \ : & \longleftrightarrow \quad \begin{aligned} & \Gamma = \Gamma', \Delta \text{ and } \Pi = \Pi', \Delta \text{ with } \Pi' \neq \emptyset \text{ and} \\ & \text{ each } \alpha \in \Gamma' \text{ is } \prec \text{-smaller than some } \beta \in \Pi' \end{aligned}$$

and on sequents by defining

$$\label{eq:Gamma-state-formula} \Gamma \Rightarrow \alpha \ \prec \ \Pi \Rightarrow \beta \ : \Longleftrightarrow \ \ \Gamma, \alpha \ \prec \ \Pi, \beta.$$

The premises of each rule of GIL^{*} are all \prec -smaller than its conclusion; e.g., wt($\alpha_1 \rightarrow (\alpha_2 \rightarrow \beta)$) < wt(($\alpha_1 \land \alpha_2$) $\rightarrow \beta$) and

$$\Gamma, \alpha_1 \to (\alpha_2 \to \beta) \Rightarrow \delta \prec \Gamma, (\alpha_1 \land \alpha_2) \to \beta \Rightarrow \delta.$$

$$\label{eq:Gamma-constraint} \begin{split} \Gamma \prec \Pi \ : & \longleftrightarrow \quad \begin{aligned} & \Gamma = \Gamma', \Delta \text{ and } \Pi = \Pi', \Delta \text{ with } \Pi' \neq \emptyset \text{ and} \\ & \text{ each } \alpha \in \Gamma' \text{ is } \prec \text{-smaller than some } \beta \in \Pi' \end{aligned}$$

and on sequents by defining

$$\mathsf{\Gamma} \Rightarrow \alpha \ \prec \ \mathsf{\Pi} \Rightarrow \beta \ : \Longleftrightarrow \ \mathsf{\Gamma}, \alpha \ \prec \ \mathsf{\Pi}, \beta.$$

The premises of each rule of GIL^{*} are all \prec -smaller than its conclusion; e.g., wt($\alpha_1 \rightarrow (\alpha_2 \rightarrow \beta)$) < wt(($\alpha_1 \land \alpha_2$) $\rightarrow \beta$) and

$$\Gamma, \alpha_1 \to (\alpha_2 \to \beta) \Rightarrow \delta \prec \Gamma, (\alpha_1 \land \alpha_2) \to \beta \Rightarrow \delta.$$

Hence proof search in GIL* is terminating.

$$\vdash_{\mathsf{GIL}^*} \alpha_1, \ldots, \alpha_n \Rightarrow \beta \iff \vdash_{\mathsf{IL}} (\alpha_1 \land \ldots \land \alpha_n) \to \beta.$$

George Metcalfe (University of Bern) Bridges between Logic and Algebra

$$\vdash_{\mathsf{GIL}^*} \alpha_1, \dots, \alpha_n \Rightarrow \beta \iff \vdash_{\mathsf{IL}} (\alpha_1 \land \dots \land \alpha_n) \to \beta.$$

Proof.

 (\Rightarrow) It suffices to check that the new implication left rules of GIL* preserve derivability in IL;

$$\vdash_{\mathsf{GIL}^*} \alpha_1, \dots, \alpha_n \Rightarrow \beta \iff \vdash_{\mathsf{IL}} (\alpha_1 \land \dots \land \alpha_n) \to \beta.$$

Proof.

 (\Rightarrow) It suffices to check that the new implication left rules of GIL* preserve derivability in IL; e.g.,

 $\vdash_{\mathsf{IL}} (\gamma \land (\alpha_1 \to \beta) \land (\alpha_2 \to \beta)) \to \delta \implies \vdash_{\mathsf{IL}} (\gamma \land ((\alpha_1 \lor \alpha_2) \to \beta)) \to \delta.$

・日・ ・ ヨ・・

$$\vdash_{\mathsf{GIL}^*} \alpha_1, \dots, \alpha_n \Rightarrow \beta \iff \vdash_{\mathsf{IL}} (\alpha_1 \land \dots \land \alpha_n) \to \beta.$$

Proof.

 (\Rightarrow) It suffices to check that the new implication left rules of GIL* preserve derivability in IL; e.g.,

 $\vdash_{\mathsf{IL}} (\gamma \land (\alpha_1 \to \beta) \land (\alpha_2 \to \beta)) \to \delta \implies \vdash_{\mathsf{IL}} (\gamma \land ((\alpha_1 \lor \alpha_2) \to \beta)) \to \delta.$

(\Leftarrow) It suffices to prove that any sequent that is derivable in GIL° is also derivable in GIL*,

< 口 > < 四 > < 回 > < 回 > < 回

$$\vdash_{\mathsf{GIL}^*} \alpha_1, \dots, \alpha_n \Rightarrow \beta \iff \vdash_{\mathsf{IL}} (\alpha_1 \land \dots \land \alpha_n) \to \beta.$$

Proof.

 (\Rightarrow) It suffices to check that the new implication left rules of GIL* preserve derivability in IL; e.g.,

 $\vdash_{\mathsf{IL}} (\gamma \land (\alpha_1 \to \beta) \land (\alpha_2 \to \beta)) \to \delta \implies \vdash_{\mathsf{IL}} (\gamma \land ((\alpha_1 \lor \alpha_2) \to \beta)) \to \delta.$

(\Leftarrow) It suffices to prove that any sequent that is derivable in GIL° is also derivable in GIL*, proceeding by induction on the weight of the sequent and considering all possible last steps of the GIL°-derivation.

June 2019 12 / 29

$$\vdash_{\mathsf{GIL}^*} \alpha_1, \ldots, \alpha_n \Rightarrow \beta \iff \vdash_{\mathsf{IL}} (\alpha_1 \land \ldots \land \alpha_n) \to \beta.$$

Proof.

 (\Rightarrow) It suffices to check that the new implication left rules of GIL* preserve derivability in IL; e.g.,

 $\vdash_{\mathsf{IL}} (\gamma \land (\alpha_1 \to \beta) \land (\alpha_2 \to \beta)) \to \delta \implies \vdash_{\mathsf{IL}} (\gamma \land ((\alpha_1 \lor \alpha_2) \to \beta)) \to \delta.$

(\Leftarrow) It suffices to prove that any sequent that is derivable in GIL° is also derivable in GIL*, proceeding by induction on the weight of the sequent and considering all possible last steps of the GIL°-derivation.

Note. GIL* can also be used to show that derivability in IL is in PSPACE.

< ロ > (一 > 、 一 一 > 、 (三 > 、 4

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that

(i) $\operatorname{Var}(E_x(\Gamma)) \subseteq \operatorname{Var}(\Gamma) \setminus \{x\}$ and $\operatorname{Var}(A_x(\Gamma; \alpha)) \subseteq \operatorname{Var}(\Gamma, \alpha) \setminus \{x\};$

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that

(i) $\operatorname{Var}(E_x(\Gamma)) \subseteq \operatorname{Var}(\Gamma) \setminus \{x\}$ and $\operatorname{Var}(A_x(\Gamma; \alpha)) \subseteq \operatorname{Var}(\Gamma, \alpha) \setminus \{x\};$

(ii)
$$\vdash_{\mathsf{GIL}^*} \Gamma \Rightarrow E_x(\Gamma)$$
 and $\vdash_{\mathsf{GIL}^*} \Gamma, A_x(\Gamma; \alpha) \Rightarrow \alpha;$

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that

(i) $\operatorname{Var}(E_x(\Gamma)) \subseteq \operatorname{Var}(\Gamma) \setminus \{x\}$ and $\operatorname{Var}(A_x(\Gamma; \alpha)) \subseteq \operatorname{Var}(\Gamma, \alpha) \setminus \{x\};$

(ii)
$$\vdash_{\mathsf{GIL}^*} \Gamma \Rightarrow E_x(\Gamma)$$
 and $\vdash_{\mathsf{GIL}^*} \Gamma, A_x(\Gamma; \alpha) \Rightarrow \alpha;$

(iii) whenever $\vdash_{\mathsf{GIL}^*} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$,

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that (i) $\operatorname{Var}(E_x(\Gamma)) \subseteq \operatorname{Var}(\Gamma) \setminus \{x\}$ and $\operatorname{Var}(A_x(\Gamma; \alpha)) \subseteq \operatorname{Var}(\Gamma, \alpha) \setminus \{x\}$; (ii) $\vdash_{\mathsf{GIL}^*} \Gamma \Rightarrow E_x(\Gamma)$ and $\vdash_{\mathsf{GIL}^*} \Gamma, A_x(\Gamma; \alpha) \Rightarrow \alpha$; (iii) whenever $\vdash_{\mathsf{GIL}^*} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$, $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow \alpha$ if $x \notin \operatorname{Var}(\alpha)$

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that (i) $\operatorname{Var}(E_x(\Gamma)) \subseteq \operatorname{Var}(\Gamma) \setminus \{x\}$ and $\operatorname{Var}(A_x(\Gamma; \alpha)) \subseteq \operatorname{Var}(\Gamma, \alpha) \setminus \{x\};$ (ii) $\vdash_{\mathsf{GIL}^*} \Gamma \Rightarrow E_x(\Gamma)$ and $\vdash_{\mathsf{GIL}^*} \Gamma, A_x(\Gamma; \alpha) \Rightarrow \alpha;$ (iii) whenever $\vdash_{\mathsf{GIL}^*} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi),$ $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow \alpha \text{ if } x \notin \operatorname{Var}(\alpha)$ and $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow A_x(\Gamma; \alpha).$

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that (i) $\operatorname{Var}(E_x(\Gamma)) \subseteq \operatorname{Var}(\Gamma) \setminus \{x\}$ and $\operatorname{Var}(A_x(\Gamma; \alpha)) \subseteq \operatorname{Var}(\Gamma, \alpha) \setminus \{x\};$ (ii) $\vdash_{\mathsf{GIL}^*} \Gamma \Rightarrow E_x(\Gamma)$ and $\vdash_{\mathsf{GIL}^*} \Gamma, A_x(\Gamma; \alpha) \Rightarrow \alpha;$ (iii) whenever $\vdash_{\mathsf{GIL}^*} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi),$ $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow \alpha \text{ if } x \notin \operatorname{Var}(\alpha)$ and $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow A_x(\Gamma; \alpha).$

Pitts' theorem then follows by defining for any formula $\alpha(\mathbf{x}, \overline{\mathbf{y}})$,

$$\alpha_L(\overline{\mathbf{y}}) = A_{\mathbf{x}}(\emptyset; \alpha) \text{ and } \alpha_R(\overline{\mathbf{y}}) = E_{\mathbf{x}}(\alpha).$$

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that (i) $\operatorname{Var}(E_x(\Gamma)) \subseteq \operatorname{Var}(\Gamma) \setminus \{x\}$ and $\operatorname{Var}(A_x(\Gamma; \alpha)) \subseteq \operatorname{Var}(\Gamma, \alpha) \setminus \{x\}$; (ii) $\vdash_{\mathsf{GIL}^*} \Gamma \Rightarrow E_x(\Gamma)$ and $\vdash_{\mathsf{GIL}^*} \Gamma, A_x(\Gamma; \alpha) \Rightarrow \alpha$; (iii) whenever $\vdash_{\mathsf{GIL}^*} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$, $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow \alpha$ if $x \notin \operatorname{Var}(\alpha)$ and $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow A_x(\Gamma; \alpha)$.

Pitts' theorem then follows by defining for any formula $\alpha(\mathbf{x}, \overline{\mathbf{y}})$,

$$\alpha_{L}(\overline{y}) = A_{x}(\emptyset; \alpha) \quad \text{and} \quad \alpha_{R}(\overline{y}) = E_{x}(\alpha).$$

If $\beta(\overline{y}, \overline{z}) \vdash_{\mathsf{IL}} \alpha(\overline{x}, \overline{y}),$

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that (i) $\operatorname{Var}(E_x(\Gamma)) \subseteq \operatorname{Var}(\Gamma) \setminus \{x\}$ and $\operatorname{Var}(A_x(\Gamma; \alpha)) \subseteq \operatorname{Var}(\Gamma, \alpha) \setminus \{x\}$; (ii) $\vdash_{\mathsf{GIL}^*} \Gamma \Rightarrow E_x(\Gamma)$ and $\vdash_{\mathsf{GIL}^*} \Gamma, A_x(\Gamma; \alpha) \Rightarrow \alpha$; (iii) whenever $\vdash_{\mathsf{GIL}^*} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$, $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow \alpha$ if $x \notin \operatorname{Var}(\alpha)$ and $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow A_x(\Gamma; \alpha)$.

Pitts' theorem then follows by defining for any formula $\alpha(\mathbf{x}, \overline{\mathbf{y}})$,

$$\alpha_L(\overline{\mathbf{y}}) = A_x(\emptyset; \alpha) \text{ and } \alpha_R(\overline{\mathbf{y}}) = E_x(\alpha).$$

If $\beta(\overline{y},\overline{z}) \vdash_{\mathsf{IL}} \alpha(\overline{x},\overline{y})$, then since, by (ii), $\vdash_{\mathsf{GIL}^*} \Rightarrow E_x(\emptyset)$,

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that (i) $\operatorname{Var}(E_x(\Gamma)) \subseteq \operatorname{Var}(\Gamma) \setminus \{x\}$ and $\operatorname{Var}(A_x(\Gamma; \alpha)) \subseteq \operatorname{Var}(\Gamma, \alpha) \setminus \{x\};$ (ii) $\vdash_{\mathsf{GIL}^*} \Gamma \Rightarrow E_x(\Gamma)$ and $\vdash_{\mathsf{GIL}^*} \Gamma, A_x(\Gamma; \alpha) \Rightarrow \alpha;$ (iii) whenever $\vdash_{\mathsf{GIL}^*} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi),$ $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow \alpha \text{ if } x \notin \operatorname{Var}(\alpha)$ and $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow A_x(\Gamma; \alpha).$

Pitts' theorem then follows by defining for any formula $\alpha(\mathbf{x}, \overline{\mathbf{y}})$,

$$\alpha_L(\overline{\mathbf{y}}) = A_x(\emptyset; \alpha) \text{ and } \alpha_R(\overline{\mathbf{y}}) = E_x(\alpha).$$

If $\beta(\overline{y},\overline{z}) \vdash_{_{\mathsf{IL}}} \alpha(\overline{x},\overline{y})$, then since, by (ii), $\vdash_{_{\mathsf{GIL}^*}} \Rightarrow E_x(\emptyset)$, by (iii), $\beta(\overline{y},\overline{z}) \vdash_{_{\mathsf{IL}}} \alpha^L(\overline{y})$;

* 四 ト * ヨ ト * ヨ ト

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that (i) $\operatorname{Var}(E_x(\Gamma)) \subseteq \operatorname{Var}(\Gamma) \setminus \{x\}$ and $\operatorname{Var}(A_x(\Gamma; \alpha)) \subseteq \operatorname{Var}(\Gamma, \alpha) \setminus \{x\}$; (ii) $\vdash_{\mathsf{GIL}^*} \Gamma \Rightarrow E_x(\Gamma)$ and $\vdash_{\mathsf{GIL}^*} \Gamma, A_x(\Gamma; \alpha) \Rightarrow \alpha$; (iii) whenever $\vdash_{\mathsf{GIL}^*} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$, $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow \alpha$ if $x \notin \operatorname{Var}(\alpha)$ and $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow A_x(\Gamma; \alpha)$.

Pitts' theorem then follows by defining for any formula $\alpha(\mathbf{x}, \overline{\mathbf{y}})$,

$$\alpha_L(\overline{\mathbf{y}}) = A_x(\emptyset; \alpha) \text{ and } \alpha_R(\overline{\mathbf{y}}) = E_x(\alpha).$$

If $\beta(\overline{y},\overline{z}) \vdash_{\mathsf{IL}} \alpha(\overline{x},\overline{y})$, then since, by (ii), $\vdash_{\mathsf{GIL}^*} \Rightarrow E_x(\emptyset)$, by (iii), $\beta(\overline{y},\overline{z}) \vdash_{\mathsf{IL}} \alpha^L(\overline{y})$; conversely, if $\beta(\overline{y},\overline{z}) \vdash_{\mathsf{IL}} \alpha^L(\overline{y})$,

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that (i) $\operatorname{Var}(E_x(\Gamma)) \subseteq \operatorname{Var}(\Gamma) \setminus \{x\}$ and $\operatorname{Var}(A_x(\Gamma; \alpha)) \subseteq \operatorname{Var}(\Gamma, \alpha) \setminus \{x\}$; (ii) $\vdash_{\mathsf{GIL}^*} \Gamma \Rightarrow E_x(\Gamma)$ and $\vdash_{\mathsf{GIL}^*} \Gamma, A_x(\Gamma; \alpha) \Rightarrow \alpha$; (iii) whenever $\vdash_{\mathsf{GIL}^*} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$, $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow \alpha$ if $x \notin \operatorname{Var}(\alpha)$ and $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow A_x(\Gamma; \alpha)$.

Pitts' theorem then follows by defining for any formula $\alpha(\mathbf{x}, \overline{\mathbf{y}})$,

$$\alpha_L(\overline{\mathbf{y}}) = A_x(\emptyset; \alpha) \quad \text{and} \quad \alpha_R(\overline{\mathbf{y}}) = E_x(\alpha).$$

If $\beta(\overline{y}, \overline{z}) \vdash_{\mathsf{IL}} \alpha(\overline{x}, \overline{y})$, then since, by (ii), $\vdash_{\mathsf{GIL}^*} \Rightarrow E_x(\emptyset)$, by (iii), $\beta(\overline{y}, \overline{z}) \vdash_{\mathsf{IL}} \alpha^L(\overline{y})$; conversely, if $\beta(\overline{y}, \overline{z}) \vdash_{\mathsf{IL}} \alpha^L(\overline{y})$, then since, by (ii), $\vdash_{\mathsf{GIL}^*} \alpha^L(\overline{y}) \Rightarrow \alpha$,

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that (i) $\operatorname{Var}(E_x(\Gamma)) \subseteq \operatorname{Var}(\Gamma) \setminus \{x\}$ and $\operatorname{Var}(A_x(\Gamma; \alpha)) \subseteq \operatorname{Var}(\Gamma, \alpha) \setminus \{x\}$; (ii) $\vdash_{\mathsf{GIL}^*} \Gamma \Rightarrow E_x(\Gamma)$ and $\vdash_{\mathsf{GIL}^*} \Gamma, A_x(\Gamma; \alpha) \Rightarrow \alpha$; (iii) whenever $\vdash_{\mathsf{GIL}^*} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$, $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow \alpha$ if $x \notin \operatorname{Var}(\alpha)$ and $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow A_x(\Gamma; \alpha)$.

Pitts' theorem then follows by defining for any formula $\alpha(\mathbf{x}, \overline{\mathbf{y}})$,

$$\alpha_L(\overline{\mathbf{y}}) = A_x(\emptyset; \alpha) \quad \text{and} \quad \alpha_R(\overline{\mathbf{y}}) = E_x(\alpha).$$

If $\beta(\overline{y}, \overline{z}) \vdash_{_{\mathsf{IL}}} \alpha(\overline{\mathbf{x}}, \overline{y})$, then since, by (ii), $\vdash_{_{\mathsf{GIL}^*}} \Rightarrow E_x(\emptyset)$, by (iii), $\beta(\overline{y}, \overline{z}) \vdash_{_{\mathsf{IL}}} \alpha^L(\overline{y})$; conversely, if $\beta(\overline{y}, \overline{z}) \vdash_{_{\mathsf{IL}}} \alpha^L(\overline{y})$, then since, by (ii), $\vdash_{_{\mathsf{GIL}^*}} \alpha^L(\overline{y}) \Rightarrow \alpha$, also $\beta(\overline{y}, \overline{z}) \vdash_{_{\mathsf{IL}}} \alpha$.
The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ such that (i) $\operatorname{Var}(E_x(\Gamma)) \subseteq \operatorname{Var}(\Gamma) \setminus \{x\}$ and $\operatorname{Var}(A_x(\Gamma; \alpha)) \subseteq \operatorname{Var}(\Gamma, \alpha) \setminus \{x\}$; (ii) $\vdash_{\mathsf{GIL}^*} \Gamma \Rightarrow E_x(\Gamma)$ and $\vdash_{\mathsf{GIL}^*} \Gamma, A_x(\Gamma; \alpha) \Rightarrow \alpha$; (iii) whenever $\vdash_{\mathsf{GIL}^*} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$, $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow \alpha$ if $x \notin \operatorname{Var}(\alpha)$ and $\vdash_{\mathsf{GIL}^*} \Pi, E_x(\Gamma) \Rightarrow A_x(\Gamma; \alpha)$.

Pitts' theorem then follows by defining for any formula $\alpha(\mathbf{x}, \overline{\mathbf{y}})$,

$$lpha_L(\overline{\mathbf{y}}) = A_x(\emptyset; lpha) \quad ext{and} \quad lpha_R(\overline{\mathbf{y}}) = E_x(lpha).$$

If $\beta(\overline{y}, \overline{z}) \vdash_{\mathsf{IL}} \alpha(\overline{x}, \overline{y})$, then since, by (ii), $\vdash_{\mathsf{GIL}^*} \Rightarrow E_x(\emptyset)$, by (iii), $\beta(\overline{y}, \overline{z}) \vdash_{\mathsf{IL}} \alpha^L(\overline{y})$; conversely, if $\beta(\overline{y}, \overline{z}) \vdash_{\mathsf{IL}} \alpha^L(\overline{y})$, then since, by (ii), $\vdash_{\mathsf{GIL}^*} \alpha^L(\overline{y}) \Rightarrow \alpha$, also $\beta(\overline{y}, \overline{z}) \vdash_{\mathsf{IL}} \alpha$. The case of $\alpha_R(\overline{y})$ is similar.

The formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ are defined simultaneously by induction over the well-ordering \prec

$$E_x(\Gamma) := \bigwedge \mathcal{E}_x(\Gamma)$$
 and $A_x(\Gamma; \alpha) := \bigvee \mathcal{A}_x(\Gamma; \alpha)$

The formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ are defined simultaneously by induction over the well-ordering \prec via finite sets of formulas $\mathcal{E}_x(\Gamma)$ and $\mathcal{A}_x(\Gamma; \alpha)$:

 $E_x(\Gamma) := \bigwedge \mathcal{E}_x(\Gamma) \quad \text{and} \quad A_x(\Gamma; \alpha) := \bigvee \mathcal{A}_x(\Gamma; \alpha) \quad \text{using the clauses}$

Γ matches

 $\mathcal{E}_{x}(\Gamma)$ contains

$$E_x(\Gamma) := \bigwedge \mathcal{E}_x(\Gamma) \quad \text{and} \quad A_x(\Gamma; \alpha) := \bigvee \mathcal{A}_x(\Gamma; \alpha) \quad \text{using the clauses}$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Г′, у	$E_x(\Gamma') \wedge y$

$$E_x(\Gamma) := \bigwedge \mathcal{E}_x(\Gamma) \quad \text{and} \quad A_x(\Gamma; \alpha) := \bigvee \mathcal{A}_x(\Gamma; \alpha) \quad \text{using the clauses}$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Г′, у	$E_x(\Gamma') \wedge y$
$\Gamma', \beta_1 \wedge \beta_2$	$E_x(\Gamma', \beta_1, \beta_2)$

$$E_x(\Gamma) := \bigwedge \mathcal{E}_x(\Gamma) \quad \text{and} \quad A_x(\Gamma; \alpha) := \bigvee \mathcal{A}_x(\Gamma; \alpha) \quad \text{using the clauses}$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ', y	$E_x(\Gamma') \wedge y$
$\Gamma', \beta_1 \wedge \beta_2$	$E_x(\Gamma', \beta_1, \beta_2)$
$\Gamma', \beta_1 \lor \beta_2$	$E_x(\Gamma', \beta_1) \vee E_x(\Gamma', \beta_2)$

$$E_x(\Gamma) := \bigwedge \mathcal{E}_x(\Gamma) \quad \text{and} \quad A_x(\Gamma; \alpha) := \bigvee \mathcal{A}_x(\Gamma; \alpha) \quad \text{using the clauses}$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ', y	$E_x(\Gamma') \wedge y$
$\Gamma', \beta_1 \wedge \beta_2$	$E_x(\Gamma', \beta_1, \beta_2)$
$\Gamma', \beta_1 \lor \beta_2$	$E_x(\Gamma', \beta_1) \lor E_x(\Gamma', \beta_2)$
$\Gamma', (\beta_1 \rightarrow \beta_2) \rightarrow \beta_3$	$(E_x(\Gamma',\beta_2\to\beta_3)\to A_x(\Gamma,\beta_2\to\beta_3;\beta_1\to\beta_2))\to E_x(\Gamma',\beta_3)$
:	

$$E_x(\Gamma) := \bigwedge \mathcal{E}_x(\Gamma) \quad \text{and} \quad A_x(\Gamma; \alpha) := \bigvee \mathcal{A}_x(\Gamma; \alpha) \quad \text{using the clauses}$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ', y	$E_x(\Gamma') \wedge y$
$\Gamma', \beta_1 \wedge \beta_2$	$E_x(\Gamma', \beta_1, \beta_2)$
$\Gamma', \beta_1 \lor \beta_2$	$E_x(\Gamma', \beta_1) \lor E_x(\Gamma', \beta_2)$
$\Gamma', (\beta_1 \rightarrow \beta_2) \rightarrow \beta_3$	$(E_x(\Gamma', \beta_2 \to \beta_3) \to A_x(\Gamma, \beta_2 \to \beta_3; \beta_1 \to \beta_2)) \to E_x(\Gamma', \beta_3)$
$\Gamma; \alpha$ matches	$\mathcal{A}_{x}(\Gamma; \alpha)$ contains

$$E_x(\Gamma) := \bigwedge \mathcal{E}_x(\Gamma) \quad \text{and} \quad A_x(\Gamma; \alpha) := \bigvee \mathcal{A}_x(\Gamma; \alpha) \quad \text{using the clauses}$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ', y	$E_x(\Gamma') \wedge y$
$\Gamma', \beta_1 \wedge \beta_2$	$E_x(\Gamma', \beta_1, \beta_2)$
$\Gamma', \beta_1 \lor \beta_2$	$E_x(\Gamma', \beta_1) \lor E_x(\Gamma', \beta_2)$
$\Gamma', (\beta_1 \to \beta_2) \to \beta_3$	$(E_x(\Gamma',\beta_2\to\beta_3)\to A_x(\Gamma,\beta_2\to\beta_3;\beta_1\to\beta_2))\to E_x(\Gamma',\beta_3)$
:	
$\Gamma; \alpha$ matches	$\mathcal{A}_{x}(\Gamma; \alpha)$ contains
:	
Γ' ν: ν	т
г, х, х	I

$$E_x(\Gamma) := \bigwedge \mathcal{E}_x(\Gamma) \quad \text{and} \quad A_x(\Gamma; \alpha) := \bigvee \mathcal{A}_x(\Gamma; \alpha) \quad \text{using the clauses}$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ', y	$E_x(\Gamma') \wedge y$
$\Gamma', \beta_1 \wedge \beta_2$	$E_x(\Gamma', \beta_1, \beta_2)$
$\Gamma', \beta_1 \lor \beta_2$	$E_x(\Gamma', \beta_1) \lor E_x(\Gamma', \beta_2)$
$\Gamma', (\beta_1 \to \beta_2) \to \beta_3$	$(E_{x}(\Gamma',\beta_2\to\beta_3)\to A_{x}(\Gamma,\beta_2\to\beta_3;\beta_1\to\beta_2))\to E_{x}(\Gamma',\beta_3)$
:	
$\Gamma; \alpha$ matches	$\mathcal{A}_{x}(\Gamma; \alpha)$ contains
:	:
Γ'. χ: χ	т Т
$\Gamma; \beta_1 \rightarrow \beta_2$	$E_x(\Gamma,eta_1) o A_x(\Gamma,eta_1;eta_2)$

The formulas $E_x(\Gamma)$ and $A_x(\Gamma; \alpha)$ are defined simultaneously by induction over the well-ordering \prec via finite sets of formulas $\mathcal{E}_x(\Gamma)$ and $\mathcal{A}_x(\Gamma; \alpha)$:

$$E_x(\Gamma) := \bigwedge \mathcal{E}_x(\Gamma) \quad \text{and} \quad A_x(\Gamma; \alpha) := \bigvee \mathcal{A}_x(\Gamma; \alpha) \quad \text{using the clauses}$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ', y	$E_x(\Gamma') \wedge y$
$\Gamma', \beta_1 \wedge \beta_2$	$E_x(\Gamma', \beta_1, \beta_2)$
$\Gamma', \beta_1 \lor \beta_2$	$E_x(\Gamma', \beta_1) \lor E_x(\Gamma', \beta_2)$
$\Gamma', (\beta_1 \to \beta_2) \to \beta_3$	$(E_{x}(\Gamma',\beta_{2}\rightarrow\beta_{3})\rightarrow A_{x}(\Gamma,\beta_{2}\rightarrow\beta_{3};\beta_{1}\rightarrow\beta_{2}))\rightarrow E_{x}(\Gamma',\beta_{3})$
:	
$\Gamma; \alpha$ matches	$\mathcal{A}_{x}(\Gamma; \alpha)$ contains
:	:
F/	т
$\mathbf{I}, \mathbf{X}; \mathbf{X}$	
$\Gamma; \beta_1 \rightarrow \beta_2$	$E_{x}(\Gamma, \beta_{1}) ightarrow A_{x}(\Gamma, \beta_{1}; \beta_{2})$

The calculus GIL* is then used to check that conditions (i)-(iii) are satisfied.

• Other proofs of Pitts' theorem have been given using **bisimulations** (Ghilardi 1995, Visser 1996) and **duality** (van Gool and Reggio 2018).

- Other proofs of Pitts' theorem have been given using **bisimulations** (Ghilardi 1995, Visser 1996) and **duality** (van Gool and Reggio 2018).
- There are exactly eight **intermediate logics** that admit interpolation (Maksimova 1977), and all of these also have uniform interpolation (Ghilardi and Zawadowski 2002).

- Other proofs of Pitts' theorem have been given using **bisimulations** (Ghilardi 1995, Visser 1996) and **duality** (van Gool and Reggio 2018).
- There are exactly eight **intermediate logics** that admit interpolation (Maksimova 1977), and all of these also have uniform interpolation (Ghilardi and Zawadowski 2002).
- lemhoff has shown recently that any intermediate or modal logic having a certain decomposition calculus admits uniform interpolation.

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_1, \ldots, \alpha_n$ if for any formula $\beta(y_1, \ldots, y_n)$,

$$\vdash_{\mathsf{IL}} \beta(\alpha_1,\ldots,\alpha_n) \implies \vdash_{\mathsf{IL}} \beta.$$

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_1, \ldots, \alpha_n$ if for any formula $\beta(y_1, \ldots, y_n)$,

$$\vdash_{\mathsf{IL}} \beta(\alpha_1,\ldots,\alpha_n) \implies \vdash_{\mathsf{IL}} \beta.$$

Proof.

For formulas $\alpha_1(\overline{\mathbf{x}}), \ldots, \alpha_n(\overline{\mathbf{x}}), \ldots$

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_1, \ldots, \alpha_n$ if for any formula $\beta(y_1, \ldots, y_n)$,

$$\vdash_{\mathsf{IL}} \beta(\alpha_1,\ldots,\alpha_n) \implies \vdash_{\mathsf{IL}} \beta.$$

Proof.

For formulas $\alpha_1(\overline{\mathbf{x}}), \ldots, \alpha_n(\overline{\mathbf{x}})$, let $\gamma(\overline{\mathbf{x}}, \overline{\mathbf{y}}) = (y_1 \leftrightarrow \alpha_1) \land \ldots \land (y_n \leftrightarrow \alpha_n)$

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_1, \ldots, \alpha_n$ if for any formula $\beta(y_1, \ldots, y_n)$,

$$\vdash_{\mathsf{IL}} \beta(\alpha_1,\ldots,\alpha_n) \implies \vdash_{\mathsf{IL}} \beta.$$

Proof.

For formulas $\alpha_1(\overline{\mathbf{x}}), \ldots, \alpha_n(\overline{\mathbf{x}})$, let $\gamma(\overline{\mathbf{x}}, \overline{\mathbf{y}}) = (y_1 \leftrightarrow \alpha_1) \land \ldots \land (y_n \leftrightarrow \alpha_n)$ and observe that for any formula $\beta(\overline{\mathbf{y}})$,

$$\vdash_{\mathsf{IL}} \beta(\alpha_1,\ldots,\alpha_n) \iff \gamma \vdash_{\mathsf{IL}} \beta.$$

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_1, \ldots, \alpha_n$ if for any formula $\beta(y_1, \ldots, y_n)$,

$$\vdash_{\mathsf{IL}} \beta(\alpha_1,\ldots,\alpha_n) \implies \vdash_{\mathsf{IL}} \beta.$$

Proof.

For formulas $\alpha_1(\overline{\mathbf{x}}), \ldots, \alpha_n(\overline{\mathbf{x}})$, let $\gamma(\overline{\mathbf{x}}, \overline{\mathbf{y}}) = (y_1 \leftrightarrow \alpha_1) \land \ldots \land (y_n \leftrightarrow \alpha_n)$ and observe that for any formula $\beta(\overline{\mathbf{y}})$,

$$\vdash_{\mathsf{IL}} \beta(\alpha_1,\ldots,\alpha_n) \iff \gamma \vdash_{\mathsf{IL}} \beta.$$

By the constructive proof of Pitts' theorem, we obtain a right uniform interpolant $\gamma_R(\overline{y})$ such that for any formula $\beta(\overline{y})$,

$$\gamma \vdash_{\mathsf{IL}} \beta \iff \gamma_{\mathsf{R}} \vdash_{\mathsf{IL}} \beta$$

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_1, \ldots, \alpha_n$ if for any formula $\beta(y_1, \ldots, y_n)$,

$$\vdash_{\mathsf{IL}} \beta(\alpha_1,\ldots,\alpha_n) \implies \vdash_{\mathsf{IL}} \beta.$$

Proof.

For formulas $\alpha_1(\overline{\mathbf{x}}), \ldots, \alpha_n(\overline{\mathbf{x}})$, let $\gamma(\overline{\mathbf{x}}, \overline{\mathbf{y}}) = (y_1 \leftrightarrow \alpha_1) \land \ldots \land (y_n \leftrightarrow \alpha_n)$ and observe that for any formula $\beta(\overline{\mathbf{y}})$,

$$\vdash_{\mathsf{IL}} \beta(\alpha_1,\ldots,\alpha_n) \iff \gamma \vdash_{\mathsf{IL}} \beta.$$

By the constructive proof of Pitts' theorem, we obtain a right uniform interpolant $\gamma_R(\overline{y})$ such that for any formula $\beta(\overline{y})$,

$$\gamma \vdash_{\mathsf{IL}} \beta \iff \gamma_{\mathsf{R}} \vdash_{\mathsf{IL}} \beta$$
 and, in particular, $\vdash_{\mathsf{IL}} \gamma_{\mathsf{R}}(\alpha_1, \dots, \alpha_n)$.

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_1, \ldots, \alpha_n$ if for any formula $\beta(y_1, \ldots, y_n)$,

$$\vdash_{\mathsf{IL}} \beta(\alpha_1,\ldots,\alpha_n) \implies \vdash_{\mathsf{IL}} \beta.$$

Proof.

For formulas $\alpha_1(\overline{\mathbf{x}}), \ldots, \alpha_n(\overline{\mathbf{x}})$, let $\gamma(\overline{\mathbf{x}}, \overline{\mathbf{y}}) = (y_1 \leftrightarrow \alpha_1) \land \ldots \land (y_n \leftrightarrow \alpha_n)$ and observe that for any formula $\beta(\overline{\mathbf{y}})$,

$$\vdash_{\mathsf{IL}} \beta(\alpha_1,\ldots,\alpha_n) \iff \gamma \vdash_{\mathsf{IL}} \beta.$$

By the constructive proof of Pitts' theorem, we obtain a right uniform interpolant $\gamma_R(\overline{y})$ such that for any formula $\beta(\overline{y})$,

 $\gamma \vdash_{\mathsf{IL}} \beta \iff \gamma_R \vdash_{\mathsf{IL}} \beta$ and, in particular, $\vdash_{\mathsf{IL}} \gamma_R(\alpha_1, \dots, \alpha_n)$. So $\alpha_1, \dots, \alpha_n$ are independent if and only if $\vdash_{\mathsf{IL}} \gamma_R$,

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_1, \ldots, \alpha_n$ if for any formula $\beta(y_1, \ldots, y_n)$,

$$\vdash_{\mathsf{IL}} \beta(\alpha_1,\ldots,\alpha_n) \implies \vdash_{\mathsf{IL}} \beta.$$

Proof.

For formulas $\alpha_1(\overline{\mathbf{x}}), \ldots, \alpha_n(\overline{\mathbf{x}})$, let $\gamma(\overline{\mathbf{x}}, \overline{\mathbf{y}}) = (y_1 \leftrightarrow \alpha_1) \land \ldots \land (y_n \leftrightarrow \alpha_n)$ and observe that for any formula $\beta(\overline{\mathbf{y}})$,

$$\vdash_{\mathsf{IL}} \beta(\alpha_1,\ldots,\alpha_n) \iff \gamma \vdash_{\mathsf{IL}} \beta.$$

By the constructive proof of Pitts' theorem, we obtain a right uniform interpolant $\gamma_R(\overline{y})$ such that for any formula $\beta(\overline{y})$,

 $\gamma \vdash_{\mathsf{IL}} \beta \iff \gamma_R \vdash_{\mathsf{IL}} \beta$ and, in particular, $\vdash_{\mathsf{IL}} \gamma_R(\alpha_1, \dots, \alpha_n)$. So $\alpha_1, \dots, \alpha_n$ are independent if and only if $\vdash_{\mathsf{IL}} \gamma_R$, which is decidable.

- (a) T and T^* entail the same universal sentences;
- (b) T^* admits quantifier elimination.

- (a) T and T^* entail the same universal sentences;
- (b) T^* admits quantifier elimination.

Moreover, T^* is then the theory of the existentially closed models of T.

- (a) T and T^* entail the same universal sentences;
- (b) T^* admits quantifier elimination.

Moreover, T^* is then the theory of the existentially closed models of T.

Theorem (Ghilardi and Zawadowski 1997)

(a) The opposite of the category of finitely presented Heyting algebras is an *r*-Heyting category.

- (a) T and T^* entail the same universal sentences;
- (b) T^* admits quantifier elimination.

Moreover, T^* is then the theory of the existentially closed models of T.

Theorem (Ghilardi and Zawadowski 1997)

(a) The opposite of the category of finitely presented Heyting algebras is an r-Heyting category.

(b) The first-order theory of Heyting algebras has a model completion.

A. Day. Varieties of Heyting algebras, II (Amalgamation and injectivity). Unpublished note (1972).

D. de Jongh and L.A. Chagrova. The decidability of dependency in intuitionistic propositional logic. *Journal of Symbolic Logic* 60 (1995), no. 2, 498–504.

R. Dyckhoff. Intuitionistic decision procedures since Gentzen. *Advances in Proof Theory*, Birkhäuser (2016), 245–267.

S. Ghilardi and M. Zawadowski. Sheaves, Games and Model Completions, Kluwer (2002).

A.M. Pitts. On an interpretation of second-order quantification in first-order intuitionistic propositional logic. *Journal of Symbolic Logic* 57 (1992), 33–52.

K. Schütte. Der Interpolationssatz der intuitionistischen Pradikatenlogik. *Mathematische Annalen* 148 (1962), 192–200.

A General Setting

We make use of basic tools from universal algebra as found in, e.g.

S.N. Burris and H.P. Sankappanavar. *A Course in Universal Algebra*. Springer Graduate Texts in Mathematics, 1981.

http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html

Let us fix an algebraic language ${\mathcal L}$ with at least one constant symbol.

Let us fix an algebraic language ${\mathcal L}$ with at least one constant symbol.

An \mathcal{L} -algebra A consists of a non-empty set A together with an operation $\star^{\mathbf{A}}: A^n \to A$ for each *n*-ary operation symbol \star of \mathcal{L} .

Let us fix an algebraic language ${\mathcal L}$ with at least one constant symbol.

An \mathcal{L} -algebra A consists of a non-empty set A together with an operation $\star^{\mathbf{A}} \colon A^n \to A$ for each *n*-ary operation symbol \star of \mathcal{L} .

We will use $\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}}$ to denote disjoint (possibly infinite) sets of variables, and let $\mathbf{Tm}(\overline{\mathbf{x}})$ denote the **term** \mathcal{L} -algebra over $\overline{\mathbf{x}}$ with members $\alpha, \beta, \gamma, \ldots$

A congruence Θ on an $\mathcal L\text{-algebra}\ \mathbf A$ is an equivalence relation on $\mathcal A$

A congruence Θ on an \mathcal{L} -algebra **A** is an equivalence relation on A that is preserved by each *n*-ary operation symbol \star of \mathcal{L} , i.e.,

$$\langle a_1, b_1 \rangle, \ldots, \langle a_n, b_n \rangle \in \Theta \implies \langle \star^{\mathbf{A}}(a_1, \ldots, a_n), \star^{\mathbf{A}}(b_1, \ldots, b_n) \rangle \in \Theta.$$

A congruence Θ on an \mathcal{L} -algebra **A** is an equivalence relation on A that is preserved by each *n*-ary operation symbol \star of \mathcal{L} , i.e.,

$$\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle \in \Theta \implies \langle \star^{\mathbf{A}}(a_1, \dots, a_n), \star^{\mathbf{A}}(b_1, \dots, b_n) \rangle \in \Theta.$$

The congruences of **A** form a complete lattice $\langle \operatorname{Con} \mathbf{A}, \subseteq \rangle$ with bottom element $\Delta_A = \{ \langle a, a \rangle \mid a \in A \}$ and top element $\nabla_A = A \times A$.

A congruence Θ on an \mathcal{L} -algebra **A** is an equivalence relation on A that is preserved by each *n*-ary operation symbol \star of \mathcal{L} , i.e.,

$$\langle a_1, b_1 \rangle, \dots, \langle a_n, b_n \rangle \in \Theta \implies \langle \star^{\mathbf{A}}(a_1, \dots, a_n), \star^{\mathbf{A}}(b_1, \dots, b_n) \rangle \in \Theta.$$

The congruences of **A** form a complete lattice $\langle \operatorname{Con} \mathbf{A}, \subseteq \rangle$ with bottom element $\Delta_A = \{ \langle a, a \rangle \mid a \in A \}$ and top element $\nabla_A = A \times A$.

We also let $\operatorname{Cg}_{a}(R)$ denote the congruence on A generated by $R \subseteq A \times A$.
Given any $\Theta \in \text{Con } \mathbf{A}$, the **quotient** \mathcal{L} -algebra \mathbf{A}/Θ consists of the set $A/\Theta := \{ [a]_{\Theta} \mid a \in A \} \text{ where } [a]_{\Theta} := \{ b \in A \mid \langle a, b \rangle \in \Theta \}$

Given any $\Theta\in {\rm Con}\, \textbf{A},$ the quotient $\mathcal{L}\text{-algebra}\, \textbf{A}/\Theta$ consists of the set

 $A/\Theta := \{[a]_\Theta \mid a \in A\} \text{ where } [a]_\Theta := \{b \in A \mid \langle a, b \rangle \in \Theta\}$

equipped for each *n*-ary operation symbol \star of \mathcal{L} with an *n*-ary operation

$$\star^{\mathbf{A}/\Theta}([a_1]_{\Theta},\ldots,[a_n]_{\Theta})=[\star^{\mathbf{A}}(a_1,\ldots,a_n)]_{\Theta}.$$

For any homomorphism $h: A \rightarrow B$ between \mathcal{L} -algebras A and B:

For any homomorphism $h: A \rightarrow B$ between \mathcal{L} -algebras A and B:

(a) ker $h := \{ \langle a, b \rangle \in A \times A \mid h(a) = h(b) \}$ is a congruence on **A**.

For any homomorphism $h: A \rightarrow B$ between \mathcal{L} -algebras A and B:

(a) ker $h := \{ \langle a, b \rangle \in A \times A \mid h(a) = h(b) \}$ is a congruence on **A**.

(b) $A/\ker h$ is isomorphic to the subalgebra h[A] of B.

For any homomorphism $h: A \rightarrow B$ between \mathcal{L} -algebras A and B:

- (a) ker $h := \{ \langle a, b \rangle \in A \times A \mid h(a) = h(b) \}$ is a congruence on **A**.
- (b) $A/\ker h$ is isomorphic to the subalgebra h[A] of B.
- (c) h is an embedding (i.e., injective) if and only if ker $h = \Delta_A$.

For any homomorphism $h: A \rightarrow B$ between \mathcal{L} -algebras A and B:

- (a) ker $h := \{ \langle a, b \rangle \in A \times A \mid h(a) = h(b) \}$ is a congruence on **A**.
- (b) $A/\ker h$ is isomorphic to the subalgebra h[A] of B.
- (c) h is an embedding (i.e., injective) if and only if ker $h = \Delta_A$.

For any $\Theta \in \operatorname{Con} A$, there exists an onto homomorphism with kernel Θ ,

$$h: \mathbf{A} \to \mathbf{A}/\Theta; \quad a \mapsto [a]_{\Theta}.$$

For any homomorphism $h: A \rightarrow B$ between \mathcal{L} -algebras A and B:

- (a) ker $h := \{ \langle a, b \rangle \in A \times A \mid h(a) = h(b) \}$ is a congruence on **A**.
- (b) $A/\ker h$ is isomorphic to the subalgebra h[A] of B.
- (c) h is an embedding (i.e., injective) if and only if ker $h = \Delta_A$.

For any $\Theta \in \operatorname{Con} A$, there exists an onto homomorphism with kernel Θ ,

$$h: \mathbf{A} \to \mathbf{A} / \Theta; \quad a \mapsto [a]_{\Theta}.$$

So the kernels of homomorphisms from A are exactly the congruences of A.

An \mathcal{L} -variety is a class of \mathcal{L} -algebras that is

• closed under taking homomorphic images, subalgebras, and products,

An \mathcal{L} -variety is a class of \mathcal{L} -algebras that is

 ${\ensuremath{\, \circ }}$ closed under taking homomorphic images, subalgebras, and products,

or, equivalently, by a famous theorem of Birkhoff,

• defined by \mathcal{L} -equations.

An \mathcal{L} -variety is a class of \mathcal{L} -algebras that is

• closed under taking homomorphic images, subalgebras, and products, or, equivalently, by a famous theorem of Birkhoff,

• defined by *L*-equations.

We let \mathcal{V} be any \mathcal{L} -variety, e.g., Boolean algebras, Heyting algebras, MV-algebras, modal algebras, groups, rings, bounded lattices, groups...

 $\begin{array}{ll} \Sigma \models_{\mathcal{V}} \varepsilon & :\Longleftrightarrow \end{array} \begin{array}{ll} \text{for any } \mathsf{A} \in \mathcal{V} \text{ and homomorphism } e \colon \mathsf{Tm}(\overline{x}) \to \mathsf{A}, \\ & \Sigma \subseteq \ker(e) \implies \varepsilon \in \ker(e). \end{array}$

 $\begin{array}{ll} \Sigma \models_{\mathcal{V}} \varepsilon & :\Longleftrightarrow \end{array} \begin{array}{ll} \text{for any } \mathsf{A} \in \mathcal{V} \text{ and homomorphism } e \colon \mathsf{Tm}(\overline{x}) \to \mathsf{A}, \\ & \Sigma \subseteq \ker(e) \implies \varepsilon \in \ker(e). \end{array}$

We also write $\Sigma \models_{\mathcal{V}} \Delta$ if $\Sigma \models_{\mathcal{V}} \varepsilon$ for all $\varepsilon \in \Delta$.

 $\begin{array}{ll} \Sigma \models_{\mathcal{V}} \varepsilon & :\Longleftrightarrow \end{array} \begin{array}{ll} \text{for any } \mathsf{A} \in \mathcal{V} \text{ and homomorphism } e \colon \mathsf{Tm}(\overline{x}) \to \mathsf{A}, \\ & \Sigma \subseteq \ker(e) \implies \varepsilon \in \ker(e). \end{array}$

We also write $\Sigma \models_{\mathcal{V}} \Delta$ if $\Sigma \models_{\mathcal{V}} \varepsilon$ for all $\varepsilon \in \Delta$.

Note. If we fix \overline{x} , then $\models_{\mathcal{V}}$ is an equational consequence relation.

$$\mathsf{F}(\overline{x}) \,=\, \mathsf{Tm}(\overline{x})/\Theta_{\mathcal{V}}(\overline{x}) \quad \text{where } \, \langle \alpha,\beta\rangle \in \Theta_{\mathcal{V}}(\overline{x}) \,: \Longleftrightarrow \, \models_{\mathcal{V}} \alpha \approx \beta.$$

$$\mathsf{F}(\overline{x}) \,=\, \mathsf{Tm}(\overline{x})/\Theta_{\mathcal{V}}(\overline{x}) \quad \text{where} \ \left<\alpha,\beta\right> \in \Theta_{\mathcal{V}}(\overline{x}) \,: \Longleftrightarrow \,\models_{_{\mathcal{V}}} \alpha \approx \beta.$$

We write α to denote both a term α in $Tm(\overline{x})$ and $[\alpha]_{\Theta_{\mathcal{V}}(\overline{x})}$ in $F(\overline{x})$;

$$\mathsf{F}(\overline{x}) \,=\, \mathsf{Tm}(\overline{x}) / \Theta_{\mathcal{V}}(\overline{x}) \quad \text{where} \ \langle \alpha, \beta \rangle \in \Theta_{\mathcal{V}}(\overline{x}) \,: \Longleftrightarrow \,\models_{_{\mathcal{V}}} \alpha \approx \beta.$$

We write α to denote both a term α in $Tm(\overline{x})$ and $[\alpha]_{\Theta_{\mathcal{V}}(\overline{x})}$ in $F(\overline{x})$; we also deliberately confuse an equation $\alpha \approx \beta$ with $\langle \alpha, \beta \rangle$ in $F(\overline{x})^2$.

$$\mathsf{F}(\overline{x}) \,=\, \mathsf{Tm}(\overline{x}) / \Theta_{\mathcal{V}}(\overline{x}) \quad \text{where} \ \left< \alpha, \beta \right> \in \Theta_{\mathcal{V}}(\overline{x}) \,: \Longleftrightarrow \, \models_{\mathcal{V}} \, \alpha \approx \beta.$$

We write α to denote both a term α in $Tm(\overline{x})$ and $[\alpha]_{\Theta_{\mathcal{V}}(\overline{x})}$ in $F(\overline{x})$; we also deliberately confuse an equation $\alpha \approx \beta$ with $\langle \alpha, \beta \rangle$ in $F(\overline{x})^2$.

Examples:

1. The free Boolean algebra over $\{x_1, \ldots, x_n\}$ has 2^{2^n} elements.

$$\mathsf{F}(\overline{x}) \,=\, \mathsf{Tm}(\overline{x}) / \Theta_{\mathcal{V}}(\overline{x}) \quad \text{where} \ \left< \alpha, \beta \right> \in \Theta_{\mathcal{V}}(\overline{x}) \,: \Longleftrightarrow \, \models_{\mathcal{V}} \, \alpha \approx \beta.$$

We write α to denote both a term α in $Tm(\overline{x})$ and $[\alpha]_{\Theta_{\mathcal{V}}(\overline{x})}$ in $F(\overline{x})$; we also deliberately confuse an equation $\alpha \approx \beta$ with $\langle \alpha, \beta \rangle$ in $F(\overline{x})^2$.

Examples:

- 1. The free Boolean algebra over $\{x_1, \ldots, x_n\}$ has 2^{2^n} elements.
- 2. The free bounded lattice over $\{x, y\}$ contains $\bot, \top, x, y, x \land y, x \lor y$,

$$\mathsf{F}(\overline{x}) \,=\, \mathsf{Tm}(\overline{x}) / \Theta_{\mathcal{V}}(\overline{x}) \quad \text{where} \ \left< \alpha, \beta \right> \in \Theta_{\mathcal{V}}(\overline{x}) \,: \Longleftrightarrow \, \models_{\mathcal{V}} \, \alpha \approx \beta.$$

We write α to denote both a term α in $Tm(\overline{x})$ and $[\alpha]_{\Theta_{\mathcal{V}}(\overline{x})}$ in $F(\overline{x})$; we also deliberately confuse an equation $\alpha \approx \beta$ with $\langle \alpha, \beta \rangle$ in $F(\overline{x})^2$.

Examples:

- 1. The free Boolean algebra over $\{x_1, \ldots, x_n\}$ has 2^{2^n} elements.
- 2. The free bounded lattice over $\{x, y\}$ contains $\bot, \top, x, y, x \land y, x \lor y$, but the free bounded lattice over three variables is already infinite.

$$\mathsf{F}(\overline{x}) \,=\, \mathsf{Tm}(\overline{x}) / \Theta_{\mathcal{V}}(\overline{x}) \quad \text{where} \ \left< \alpha, \beta \right> \in \Theta_{\mathcal{V}}(\overline{x}) \,: \Longleftrightarrow \, \models_{_{\mathcal{V}}} \alpha \approx \beta.$$

We write α to denote both a term α in $Tm(\overline{x})$ and $[\alpha]_{\Theta_{\mathcal{V}}(\overline{x})}$ in $F(\overline{x})$; we also deliberately confuse an equation $\alpha \approx \beta$ with $\langle \alpha, \beta \rangle$ in $F(\overline{x})^2$.

Examples:

- 1. The free Boolean algebra over $\{x_1, \ldots, x_n\}$ has 2^{2^n} elements.
- 2. The free bounded lattice over $\{x, y\}$ contains $\bot, \top, x, y, x \land y, x \lor y$, but the free bounded lattice over three variables is already infinite.
- 3. The free monoid over \overline{x} consists of all words over \overline{x} , and the free group over \overline{x} consists of all reduced words over \overline{x} and $\{x_i^{-1} \mid x_i \in \overline{x}\}$.

(a) Every free algebra of \mathcal{V} is a member of \mathcal{V} .

- (a) Every free algebra of \mathcal{V} is a member of \mathcal{V} .
- (b) For any A ∈ V and map f : x̄ → A, there exists a unique homomorphism f̂ : F(x̄) → A satisfying f̂(x_i) = f(x_i) for all x_i ∈ x̄.

- (a) Every free algebra of \mathcal{V} is a member of \mathcal{V} .
- (b) For any A ∈ V and map f : x̄ → A, there exists a unique homomorphism f̂ : F(x̄) → A satisfying f̂(x_i) = f(x_i) for all x_i ∈ x̄.

June 2019

27 / 29

(c) Each $\mathbf{A} \in \mathcal{V}$ is a homomorphic image of some free algebra of \mathcal{V} .

- (a) Every free algebra of \mathcal{V} is a member of \mathcal{V} .
- (b) For any $\mathbf{A} \in \mathcal{V}$ and map $f : \overline{\mathbf{x}} \to A$, there exists a unique homomorphism $\hat{f} : \mathbf{F}(\overline{\mathbf{x}}) \to \mathbf{A}$ satisfying $\hat{f}(x_i) = f(x_i)$ for all $x_i \in \overline{\mathbf{x}}$.
- (c) Each $A \in \mathcal{V}$ is a homomorphic image of some free algebra of \mathcal{V} .
- (d) For any equation ε with variables in \overline{x} ,

$$\models_{\mathcal{V}} \varepsilon \iff \mathbf{F}(\overline{x}) \models \varepsilon.$$

Lemma

For any set of equations $\Sigma \cup \{\varepsilon\}$ with variables in \overline{x} ,

$$\Sigma \models_{\mathcal{V}} \varepsilon \iff \varepsilon \in \mathrm{Cg}_{_{\mathbf{F}(\overline{x})}}(\Sigma).$$

June 2019 28 / 29

Lemma

For any set of equations $\Sigma \cup \{\varepsilon\}$ with variables in \overline{x} ,

$$\Sigma \models_{\mathcal{V}} \varepsilon \iff \varepsilon \in \mathrm{Cg}_{_{\mathbf{F}(\overline{x})}}(\Sigma).$$

Proof.

Let
$$\Psi := \operatorname{Cg}_{_{F(\overline{x})}}(\Sigma).$$

Lemma

For any set of equations $\Sigma \cup \{\varepsilon\}$ with variables in \overline{x} ,

$$\Sigma\models_{\mathcal{V}} \varepsilon \iff \varepsilon\in \mathrm{Cg}_{_{\mathbf{F}(\overline{x})}}(\Sigma).$$

Proof.

$$\begin{array}{l} \text{Let } \Psi := \mathrm{Cg}_{_{\mathsf{F}(\overline{x})}}(\Sigma). \\ (\Rightarrow) \text{ Suppose that } \Sigma \models_{_{\mathcal{V}}} \varepsilon \end{array}$$

Lemma

For any set of equations $\Sigma \cup \{\varepsilon\}$ with variables in \overline{x} ,

$$\Sigma\models_{\mathcal{V}} \varepsilon \iff \varepsilon\in \mathrm{Cg}_{_{\mathbf{F}(\overline{x})}}(\Sigma).$$

Proof.

Let $\Psi := \operatorname{Cg}_{F(\overline{x})}(\Sigma)$. (\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism $e \colon \operatorname{Tm}(\overline{x}) \to F(\overline{x})/\Psi; \quad \alpha \mapsto [\alpha]_{\Psi}.$

Lemma

For any set of equations $\Sigma \cup \{\varepsilon\}$ with variables in \overline{x} ,

$$\Sigma\models_{\mathcal{V}} \varepsilon \iff \varepsilon\in \mathrm{Cg}_{_{\mathbf{F}(\overline{x})}}(\Sigma).$$

Proof.

Let $\Psi := \operatorname{Cg}_{F(\overline{x})}(\Sigma)$. (\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism $e \colon \operatorname{Tm}(\overline{x}) \to F(\overline{x})/\Psi; \quad \alpha \mapsto [\alpha]_{\Psi}.$

Then clearly $\Sigma \subseteq \ker e$,

Lemma

For any set of equations $\Sigma \cup \{\varepsilon\}$ with variables in \overline{x} ,

$$\Sigma\models_{\mathcal{V}} \varepsilon \iff \varepsilon\in \mathrm{Cg}_{_{\mathbf{F}(\overline{x})}}(\Sigma).$$

Proof.

Let $\Psi := \operatorname{Cg}_{F(\overline{x})}(\Sigma)$. (\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism $e \colon \operatorname{Tm}(\overline{x}) \to F(\overline{x})/\Psi; \quad \alpha \mapsto [\alpha]_{\Psi}.$

Then clearly $\Sigma \subseteq \ker e$, so also $\varepsilon \in \ker e$.

Lemma

For any set of equations $\Sigma \cup \{\varepsilon\}$ with variables in \overline{x} ,

$$\Sigma\models_{\mathcal{V}} \varepsilon \iff \varepsilon\in \mathrm{Cg}_{_{\mathbf{F}(\overline{x})}}(\Sigma).$$

Proof.

Let $\Psi := \operatorname{Cg}_{F(\overline{x})}(\Sigma)$. (\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism $e \colon \operatorname{Tm}(\overline{x}) \to F(\overline{x})/\Psi; \quad \alpha \mapsto [\alpha]_{\Psi}.$

Then clearly $\Sigma \subseteq \ker e$, so also $\varepsilon \in \ker e$. Hence $\varepsilon \in \Psi$.

Lemma

For any set of equations $\Sigma \cup \{\varepsilon\}$ with variables in \overline{x} ,

$$\Sigma\models_{\mathcal{V}} \varepsilon \iff \varepsilon\in \mathrm{Cg}_{_{\mathbf{F}(\overline{x})}}(\Sigma).$$

Proof.

Let $\Psi := \operatorname{Cg}_{F(\overline{x})}(\Sigma)$. (\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism $e : \operatorname{Tm}(\overline{x}) \to F(\overline{x})/\Psi; \quad \alpha \mapsto [\alpha]_{\Psi}.$ Then clearly $\Sigma \subseteq \ker e$, so also $\varepsilon \in \ker e$. Hence $\varepsilon \in \Psi$. (\Leftarrow) If $\varepsilon \in \Psi$,

Lemma

For any set of equations $\Sigma \cup \{\varepsilon\}$ with variables in \overline{x} ,

$$\Sigma\models_{_{\mathcal{V}}}\varepsilon \ \iff \ \varepsilon\in \mathrm{Cg}_{_{\mathbf{F}(\bar{x})}}(\Sigma).$$

Proof.

Let $\Psi := \operatorname{Cg}_{F(\overline{x})}(\Sigma)$. (\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism $e : \operatorname{Tm}(\overline{x}) \to F(\overline{x})/\Psi; \quad \alpha \mapsto [\alpha]_{\Psi}.$ Then clearly $\Sigma \subseteq \ker e$, so also $\varepsilon \in \ker e$. Hence $\varepsilon \in \Psi$. (\downarrow) If $\alpha \in W$, the form $\Phi \in \mathcal{V}$, and the second form T. (\overline{a})

(\Leftarrow) If $\varepsilon \in \Psi$, then for any $\mathbf{A} \in \mathcal{V}$ and homomorphism $e \colon \mathbf{Tm}(\overline{x}) \to \mathbf{A}$,
Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup \{\varepsilon\}$ with variables in \overline{x} ,

$$\Sigma\models_{_{\mathcal{V}}}\varepsilon \ \iff \ \varepsilon\in \mathrm{Cg}_{_{\mathbf{F}(\bar{x})}}(\Sigma).$$

Proof.

Let $\Psi := \operatorname{Cg}_{F(\overline{x})}(\Sigma)$. (\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism $e : \operatorname{Tm}(\overline{x}) \to F(\overline{x})/\Psi; \quad \alpha \mapsto [\alpha]_{\Psi}.$ Then clearly $\Sigma \subseteq \ker e$, so also $\varepsilon \in \ker e$. Hence $\varepsilon \in \Psi$. (\Leftarrow) If $\varepsilon \in \Psi$, then for any $\mathbf{A} \in \mathcal{V}$ and homomorphism $e : \operatorname{Tm}(\overline{x}) \to \mathbf{A}$,

$$\Sigma \subseteq \ker e \implies$$

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup \{\varepsilon\}$ with variables in \overline{x} ,

$$\Sigma\models_{_{\mathcal{V}}}\varepsilon \iff \varepsilon\in \mathrm{Cg}_{_{\mathbf{F}(\overline{x})}}(\Sigma).$$

Proof.

Let $\Psi := \operatorname{Cg}_{F(\overline{x})}(\Sigma)$. (\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism $e : \operatorname{Tm}(\overline{x}) \to F(\overline{x})/\Psi; \quad \alpha \mapsto [\alpha]_{\Psi}.$ Then clearly $\Sigma \subseteq \ker e$, so also $\varepsilon \in \ker e$. Hence $\varepsilon \in \Psi$. (\Leftarrow) If $\varepsilon \in \Psi$, then for any $\mathbf{A} \in \mathcal{V}$ and homomorphism $e : \operatorname{Tm}(\overline{x}) \to \mathbf{A}$, $\Sigma \subseteq \ker e \implies \varepsilon \in \operatorname{Cg}_{\operatorname{Tm}(\overline{x})}(\Sigma) \lor \Theta_{\mathcal{V}}(\overline{x})$

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup \{\varepsilon\}$ with variables in \overline{x} ,

$$\Sigma\models_{\mathcal{V}} \varepsilon \iff \varepsilon\in \mathrm{Cg}_{_{\mathbf{F}(\overline{x})}}(\Sigma).$$

Proof.

Let $\Psi := \operatorname{Cg}_{F(\overline{x})}(\Sigma)$. (\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism $e : \operatorname{Tm}(\overline{x}) \to F(\overline{x})/\Psi; \quad \alpha \mapsto [\alpha]_{\Psi}.$ Then clearly $\Sigma \subseteq \ker e$, so also $\varepsilon \in \ker e$. Hence $\varepsilon \in \Psi$. (\Leftarrow) If $\varepsilon \in \Psi$, then for any $\mathbf{A} \in \mathcal{V}$ and homomorphism $e : \operatorname{Tm}(\overline{x}) \to \mathbf{A}$, $\Sigma \subseteq \ker e \implies \varepsilon \in \operatorname{Cg}_{\operatorname{Tm}(\overline{x})}(\Sigma) \lor \Theta_{\mathcal{V}}(\overline{x}) \subseteq \ker e.$ We will...

・ロト ・ 日 ト ・ 目 ト ・

We will...

• explore relationships between interpolation and amalgamation

We will...

- explore relationships between interpolation and amalgamation
- describe uniform interpolation algebraically.