Bridges between Logic and Algebra
 Part 2: Pitts' Theorem \& A General Framework

George Metcalfe

Mathematical Institute
University of Bern

TACL 2019 Summer School, Île de Porquerolles, June 2019

Yesterday

We saw that intuitionistic logic. . .

Yesterday

We saw that intuitionistic logic. . .

- has the class of Heyting algebras as an equivalent algebraic semantics

Yesterday

We saw that intuitionistic logic. . .

- has the class of Heyting algebras as an equivalent algebraic semantics
- can be presented via a sequent calculus that admits cut elimination

Yesterday

We saw that intuitionistic logic...

- has the class of Heyting algebras as an equivalent algebraic semantics
- can be presented via a sequent calculus that admits cut elimination
- is decidable,

Yesterday

We saw that intuitionistic logic. . .

- has the class of Heyting algebras as an equivalent algebraic semantics
- can be presented via a sequent calculus that admits cut elimination
- is decidable, has the disjunction property,

Yesterday

We saw that intuitionistic logic. . .

- has the class of Heyting algebras as an equivalent algebraic semantics
- can be presented via a sequent calculus that admits cut elimination
- is decidable, has the disjunction property, and admits interpolation.

Today

We will...

We will...

- consider Pitts' uniform interpolation theorem for intuitionistic logic
- consider Pitts' uniform interpolation theorem for intuitionistic logic
- explain some of the nuts and bolts of universal algebra

We will. . .

- consider Pitts' uniform interpolation theorem for intuitionistic logic
- explain some of the nuts and bolts of universal algebra
- investigate consequence and interpolation in this algebraic setting.

Interpolation in Classical Logic

Theorem

Classical logic admits interpolation: for any formulas $\alpha(\bar{x}, \bar{y}), \beta(\bar{y}, \bar{z})$ satisfying $\alpha \vdash_{\mathrm{CL}} \beta$,

Interpolation in Classical Logic

Theorem
 Classical logic admits interpolation: for any formulas $\alpha(\bar{x}, \bar{y}), \beta(\bar{y}, \bar{z})$ satisfying $\alpha \vdash_{\mathrm{CL}} \beta$, there exists a formula $\gamma(\bar{y})$ such that $\alpha \vdash_{\mathrm{CL}} \gamma$ and $\gamma \vdash_{\mathrm{CL}} \beta$.

Interpolation in Classical Logic

Theorem

Classical logic admits interpolation: for any formulas $\alpha(\bar{x}, \bar{y}), \beta(\bar{y}, \bar{z})$ satisfying $\alpha \vdash_{\mathrm{CL}} \beta$, there exists a formula $\gamma(\bar{y})$ such that $\alpha \vdash_{\mathrm{CL}} \gamma$ and $\gamma \vdash_{\mathrm{CL}} \beta$.

For example. . .

$$
\begin{aligned}
& \alpha=\neg(x \rightarrow y) \\
& \beta=y \rightarrow \neg z \\
& \gamma=
\end{aligned}
$$

Interpolation in Classical Logic

Theorem

Classical logic admits interpolation: for any formulas $\alpha(\bar{x}, \bar{y}), \beta(\bar{y}, \bar{z})$ satisfying $\alpha \vdash_{\mathrm{CL}} \beta$, there exists a formula $\gamma(\bar{y})$ such that $\alpha \vdash_{\mathrm{CL}} \gamma$ and $\gamma \vdash_{\mathrm{CL}} \beta$.

For example...

$$
\begin{aligned}
& \alpha=\neg(x \rightarrow y) \\
& \beta=y \rightarrow \neg z \\
& \gamma=
\end{aligned}
$$

Interpolation in Classical Logic

Theorem

Classical logic admits interpolation: for any formulas $\alpha(\bar{x}, \bar{y}), \beta(\bar{y}, \bar{z})$ satisfying $\alpha \vdash_{\mathrm{CL}} \beta$, there exists a formula $\gamma(\bar{y})$ such that $\alpha \vdash_{\mathrm{CL}} \gamma$ and $\gamma \vdash_{\mathrm{CL}} \beta$.

For example...

$$
\begin{aligned}
& \alpha=\neg(x \rightarrow y) \\
& \beta=y \rightarrow \neg z \\
& \gamma=
\end{aligned}
$$

Interpolation in Classical Logic

Theorem

Classical logic admits interpolation: for any formulas $\alpha(\bar{x}, \bar{y}), \beta(\bar{y}, \bar{z})$ satisfying $\alpha \vdash_{\mathrm{CL}} \beta$, there exists a formula $\gamma(\bar{y})$ such that $\alpha \vdash_{\mathrm{CL}} \gamma$ and $\gamma \vdash_{\mathrm{CL}} \beta$.

For example...

$$
\begin{aligned}
& \alpha=\neg(x \rightarrow y) \\
& \beta=y \rightarrow \neg z \\
& \gamma=\neg y
\end{aligned}
$$

Interpolation in Classical Logic

Theorem

Classical logic admits interpolation: for any formulas $\alpha(\bar{x}, \bar{y}), \beta(\bar{y}, \bar{z})$ satisfying $\alpha \vdash_{\mathrm{CL}} \beta$, there exists a formula $\gamma(\bar{y})$ such that $\alpha \vdash_{\mathrm{CL}} \gamma$ and $\gamma \vdash_{\mathrm{CL}} \beta$.

For example. . .

$$
\begin{aligned}
& \alpha=\neg(x \rightarrow y) \\
& \beta=y \rightarrow \neg z \\
& \gamma=\neg y
\end{aligned}
$$

In fact, for any formula $\delta(y, \bar{z})$,

$$
\alpha \vdash_{\mathrm{CL}} \delta \Longleftrightarrow \gamma \vdash_{\mathrm{CL}} \delta
$$

Uniform Interpolation in Classical Logic

Theorem

Classical logic admits uniform interpolation: for any formula $\alpha(\bar{x}, \bar{y})$, there exist formulas $\alpha^{L}(\bar{y})$ and $\alpha^{R}(\bar{y})$

Uniform Interpolation in Classical Logic

Theorem

Classical logic admits uniform interpolation: for any formula $\alpha(\bar{x}, \bar{y})$, there exist formulas $\alpha^{L}(\bar{y})$ and $\alpha^{R}(\bar{y})$ such that for any formula $\beta(\bar{y}, \bar{z})$,

$$
\beta(\bar{y}, \bar{z}) \vdash_{\mathrm{CL}} \alpha(\bar{x}, \bar{y}) \Longleftrightarrow \beta(\bar{y}, \bar{z}) \vdash_{\mathrm{CL}} \alpha^{L}(\bar{y})
$$

Uniform Interpolation in Classical Logic

Theorem

Classical logic admits uniform interpolation: for any formula $\alpha(\bar{x}, \bar{y})$, there exist formulas $\alpha^{L}(\bar{y})$ and $\alpha^{R}(\bar{y})$ such that for any formula $\beta(\bar{y}, \bar{z})$,

$$
\begin{aligned}
& \beta(\bar{y}, \bar{z}) \vdash_{\mathrm{cL}} \alpha(\bar{x}, \bar{y}) \Longleftrightarrow \beta(\bar{y}, \bar{z}) \vdash_{\mathrm{cL}} \alpha^{L}(\bar{y}) \\
& \alpha(\bar{x}, \bar{y}) \vdash_{\mathrm{cL}} \beta(\bar{y}, \bar{z}) \Longleftrightarrow \alpha^{R}(\bar{y}) \vdash_{\mathrm{cL}} \beta(\bar{y}, \bar{z}) .
\end{aligned}
$$

Uniform Interpolation in Classical Logic

Theorem

Classical logic admits uniform interpolation: for any formula $\alpha(\bar{x}, \bar{y})$, there exist formulas $\alpha^{L}(\bar{y})$ and $\alpha^{R}(\bar{y})$ such that for any formula $\beta(\bar{y}, \bar{z})$,

$$
\begin{aligned}
& \beta(\bar{y}, \bar{z}) \vdash_{\mathrm{CL}} \alpha(\bar{x}, \bar{y}) \Longleftrightarrow \beta(\bar{y}, \bar{z}) \vdash_{\mathrm{CL}} \alpha^{L}(\bar{y}) \\
& \alpha(\bar{x}, \bar{y}) \vdash_{\mathrm{CL}} \beta(\bar{y}, \bar{z}) \Longleftrightarrow \alpha^{R}(\bar{y}) \vdash_{\mathrm{CL}} \beta(\bar{y}, \bar{z}) .
\end{aligned}
$$

Proof.

Given any formula $\alpha(\bar{x}, \bar{y})$, we just define

$$
\alpha^{L}(\bar{y})=\bigwedge\{\alpha(\bar{a}, \bar{y}) \mid \bar{a} \subseteq\{\perp, \top\}\}
$$

Uniform Interpolation in Classical Logic

Theorem

Classical logic admits uniform interpolation: for any formula $\alpha(\bar{x}, \bar{y})$, there exist formulas $\alpha^{L}(\bar{y})$ and $\alpha^{R}(\bar{y})$ such that for any formula $\beta(\bar{y}, \bar{z})$,

$$
\begin{aligned}
& \beta(\bar{y}, \bar{z}) \vdash_{\mathrm{CL}} \alpha(\bar{x}, \bar{y}) \Longleftrightarrow \beta(\bar{y}, \bar{z}) \vdash_{\mathrm{CL}} \alpha^{L}(\bar{y}) \\
& \alpha(\bar{x}, \bar{y}) \vdash_{\mathrm{CL}} \beta(\bar{y}, \bar{z}) \Longleftrightarrow \alpha^{R}(\bar{y}) \vdash_{\mathrm{CL}} \beta(\bar{y}, \bar{z}) .
\end{aligned}
$$

Proof.

Given any formula $\alpha(\bar{x}, \bar{y})$, we just define

$$
\begin{aligned}
\alpha^{L}(\bar{y}) & =\bigwedge\{\alpha(\bar{a}, \bar{y}) \mid \bar{a} \subseteq\{\perp, \top\}\} \\
\alpha^{R}(\bar{y}) & =\bigvee\{\alpha(\bar{a}, \bar{y}) \mid \bar{a} \subseteq\{\perp, \top\}\}
\end{aligned}
$$

Uniform Interpolation in Intuitionistic Logic

Theorem (Pitts 1992)

Intuitionistic logic admits uniform interpolation: for any formula $\alpha(\bar{x}, \bar{y})$, there exist formulas $\alpha^{L}(\bar{y})$ and $\alpha^{R}(\bar{y})$ such that for any formula $\beta(\bar{y}, \bar{z})$,

$$
\begin{aligned}
\alpha(\bar{x}, \bar{y}) \vdash_{\mathrm{IL}} \beta(\bar{y}, \bar{z}) & \Longleftrightarrow \alpha^{R}(\bar{y}) \vdash_{\mathrm{IL}} \beta(\bar{y}, \bar{z}) \\
\beta(\bar{y}, \bar{z}) \vdash_{\mathrm{IL}} \alpha(\bar{x}, \bar{y}) & \Longleftrightarrow \beta(\bar{y}, \bar{z}) \vdash_{\mathrm{IL}} \alpha^{L}(\bar{y}) .
\end{aligned}
$$

Uniform Interpolation in Intuitionistic Logic

Theorem (Pitts 1992)

Intuitionistic logic admits uniform interpolation: for any formula $\alpha(\bar{x}, \bar{y})$, there exist formulas $\alpha^{L}(\bar{y})$ and $\alpha^{R}(\bar{y})$ such that for any formula $\beta(\bar{y}, \bar{z})$,

$$
\begin{aligned}
\alpha(\bar{x}, \bar{y}) \vdash_{\text {IL }} \beta(\bar{y}, \bar{z}) & \Longleftrightarrow \alpha^{R}(\bar{y}) \vdash_{\text {LI }} \beta(\bar{y}, \bar{z}) \\
\beta(\bar{y}, \bar{z}) \vdash_{\text {LL }} \alpha(\bar{x}, \bar{y}) & \Longleftrightarrow \beta(\bar{y}, \bar{z}) \vdash_{\text {IL }} \alpha^{L}(\bar{y}) .
\end{aligned}
$$

Proof idea. We define $\alpha^{L}(\bar{y})$ and $\alpha^{R}(\bar{y})$ by induction on the "weight" of α, guided by derivability in a suitable terminating sequent calculus...

The Sequent Calculus GIL

Identity Axioms
$\overline{\Gamma, x \Rightarrow x}{ }^{\text {(id) }}$

Left Operation Rules
$\overline{\Gamma, \perp \Rightarrow \delta}(\perp \Rightarrow)$
$\frac{\Gamma, \alpha, \beta \Rightarrow \delta}{\Gamma, \alpha \wedge \beta \Rightarrow \delta}(\wedge \Rightarrow)$
$\frac{\Gamma, \alpha \Rightarrow \delta \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \vee \beta \Rightarrow \delta}(\vee \Rightarrow)$
$\frac{\Gamma \Rightarrow \alpha}{\Gamma \Rightarrow \alpha \vee \beta}(\Rightarrow \vee)_{1} \quad \frac{\Gamma \Rightarrow \beta}{\Gamma \Rightarrow \alpha \vee \beta}(\Rightarrow \vee)_{r}$
$\frac{\Gamma, \alpha \rightarrow \beta \Rightarrow \alpha \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \rightarrow \beta \Rightarrow \delta}(\rightarrow \Rightarrow)$

Right Operation Rules

$$
\begin{aligned}
& \Gamma \Rightarrow \top(\Rightarrow \top) \\
& \frac{\Gamma \Rightarrow \alpha \quad \Gamma \Rightarrow \beta}{\Gamma \Rightarrow \alpha \wedge \beta}(\Rightarrow \wedge)
\end{aligned}
$$

$$
\frac{\Gamma, \alpha \Rightarrow \beta}{\Gamma \Rightarrow \alpha \rightarrow \beta}(\Rightarrow \rightarrow)
$$

The Sequent Calculus GIL*

We obtain the sequent calculus GIL^{*} by replacing in GIL° the rule

$$
\frac{\Gamma, \alpha \rightarrow \beta \Rightarrow \alpha \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \rightarrow \beta \Rightarrow \delta}(\rightarrow \Rightarrow)
$$

The Sequent Calculus GIL*

We obtain the sequent calculus GIL^{*} by replacing in GIL° the rule

$$
\frac{\Gamma, \alpha \rightarrow \beta \Rightarrow \alpha \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \rightarrow \beta \Rightarrow \delta}(\rightarrow \Rightarrow)
$$

with the decomposition rules

$$
\frac{\Gamma \Rightarrow \delta}{\Gamma, \perp \rightarrow \beta \Rightarrow \delta}
$$

The Sequent Calculus GIL*

We obtain the sequent calculus GIL^{*} by replacing in GIL° the rule

$$
\frac{\Gamma, \alpha \rightarrow \beta \Rightarrow \alpha \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \rightarrow \beta \Rightarrow \delta}(\rightarrow \Rightarrow)
$$

with the decomposition rules

$$
\frac{\Gamma \Rightarrow \delta}{\Gamma, \perp \rightarrow \beta \Rightarrow \delta} \quad \frac{\Gamma, x, \beta \Rightarrow \delta}{\Gamma, x, x \rightarrow \beta \Rightarrow \delta}
$$

The Sequent Calculus GIL*

We obtain the sequent calculus GIL^{*} by replacing in GIL° the rule

$$
\frac{\Gamma, \alpha \rightarrow \beta \Rightarrow \alpha \quad \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \rightarrow \beta \Rightarrow \delta}(\rightarrow \Rightarrow)
$$

with the decomposition rules

$$
\frac{\Gamma \Rightarrow \delta}{\Gamma, \perp \rightarrow \beta \Rightarrow \delta} \quad \frac{\Gamma, x, \beta \Rightarrow \delta}{\Gamma, x, x \rightarrow \beta \Rightarrow \delta} \quad \frac{\Gamma, \alpha_{1} \rightarrow\left(\alpha_{2} \rightarrow \beta\right) \Rightarrow \delta}{\Gamma,\left(\alpha_{1} \wedge \alpha_{2}\right) \rightarrow \beta \Rightarrow \delta}
$$

The Sequent Calculus GIL*

We obtain the sequent calculus GIL^{*} by replacing in GIL° the rule

$$
\frac{\ulcorner, \alpha \rightarrow \beta \Rightarrow \alpha \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \rightarrow \beta \Rightarrow \delta}(\rightarrow \Rightarrow)
$$

with the decomposition rules
$\frac{\Gamma \Rightarrow \delta}{\Gamma, \perp \rightarrow \beta \Rightarrow \delta}$
$\frac{\Gamma, x, \beta \Rightarrow \delta}{\Gamma, x, x \rightarrow \beta \Rightarrow \delta}$
$\frac{\Gamma, \alpha_{1} \rightarrow\left(\alpha_{2} \rightarrow \beta\right) \Rightarrow \delta}{\Gamma,\left(\alpha_{1} \wedge \alpha_{2}\right) \rightarrow \beta \Rightarrow \delta}$
$\frac{\Gamma, \beta \Rightarrow \delta}{\Gamma, \top \rightarrow \beta \Rightarrow \delta}$

The Sequent Calculus GIL*

We obtain the sequent calculus GIL^{*} by replacing in GIL° the rule

$$
\frac{\ulcorner, \alpha \rightarrow \beta \Rightarrow \alpha \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \rightarrow \beta \Rightarrow \delta}(\rightarrow \Rightarrow)
$$

with the decomposition rules
$\frac{\Gamma \Rightarrow \delta}{\Gamma, \perp \rightarrow \beta \Rightarrow \delta}$
$\frac{\Gamma, x, \beta \Rightarrow \delta}{\Gamma, x, x \rightarrow \beta \Rightarrow \delta}$
$\frac{\Gamma, \alpha_{1} \rightarrow\left(\alpha_{2} \rightarrow \beta\right) \Rightarrow \delta}{\Gamma,\left(\alpha_{1} \wedge \alpha_{2}\right) \rightarrow \beta \Rightarrow \delta}$
$\frac{\Gamma, \beta \Rightarrow \delta}{\Gamma, \top \rightarrow \beta \Rightarrow \delta}$
$\frac{\Gamma, \alpha_{1} \rightarrow \beta, \alpha_{2} \rightarrow \beta \Rightarrow \delta}{\Gamma,\left(\alpha_{1} \vee \alpha_{2}\right) \rightarrow \beta \Rightarrow \delta}$

The Sequent Calculus GIL*

We obtain the sequent calculus GIL^{*} by replacing in GIL° the rule

$$
\frac{\ulcorner, \alpha \rightarrow \beta \Rightarrow \alpha \Gamma, \beta \Rightarrow \delta}{\Gamma, \alpha \rightarrow \beta \Rightarrow \delta}(\rightarrow \Rightarrow)
$$

with the decomposition rules

$$
\begin{array}{ccc}
\frac{\Gamma \Rightarrow \delta}{\Gamma, \perp \rightarrow \beta \Rightarrow \delta} & \frac{\Gamma, x, \beta \Rightarrow \delta}{\Gamma, x, x \rightarrow \beta \Rightarrow \delta} & \frac{\Gamma, \alpha_{1} \rightarrow\left(\alpha_{2} \rightarrow \beta\right) \Rightarrow \delta}{\Gamma,\left(\alpha_{1} \wedge \alpha_{2}\right) \rightarrow \beta \Rightarrow \delta} \\
\frac{\Gamma, \beta \Rightarrow \delta}{\Gamma, \top \rightarrow \beta \Rightarrow \delta} & \frac{\Gamma, \alpha_{1} \rightarrow \beta, \alpha_{2} \rightarrow \beta \Rightarrow \delta}{\Gamma,\left(\alpha_{1} \vee \alpha_{2}\right) \rightarrow \beta \Rightarrow \delta} & \frac{\Gamma, \alpha_{2} \rightarrow \beta \Rightarrow \alpha_{1} \rightarrow \alpha_{2} \Gamma, \beta \Rightarrow \delta}{\Gamma,\left(\alpha_{1} \rightarrow \alpha_{2}\right) \rightarrow \beta \Rightarrow \delta}
\end{array}
$$

An Example Derivation

$$
\overline{\Rightarrow((x \rightarrow y) \wedge((x \rightarrow y) \rightarrow x)) \rightarrow y}(\Rightarrow \rightarrow)
$$

An Example Derivation

$$
{\frac{\overline{(x \rightarrow y) \wedge}_{\Rightarrow((x \rightarrow y) \wedge((x \rightarrow y) \rightarrow x)) \rightarrow y}}{}(\Rightarrow \rightarrow)}_{(\wedge \Rightarrow)}^{(x)}
$$

An Example Derivation

$$
\begin{aligned}
& \frac{x \rightarrow y,(x \rightarrow y) \rightarrow x \Rightarrow y}{(x \rightarrow y) \wedge((x \rightarrow y) \rightarrow x) \Rightarrow y}(\wedge \Rightarrow) \\
& \left.\frac{\left.\Rightarrow^{(}(x \rightarrow y) \wedge((x \rightarrow y) \rightarrow x)\right) \rightarrow y}{(\Rightarrow \rightarrow)}(\rightarrow \Rightarrow)\right)
\end{aligned}
$$

An Example Derivation

$$
\begin{aligned}
& \frac{x \rightarrow y, y \rightarrow x \Rightarrow x \rightarrow y}{x \rightarrow \Rightarrow)} \\
& \quad \frac{x \rightarrow y,(x \rightarrow y) \rightarrow x \Rightarrow y}{(x \rightarrow y) \wedge((x \rightarrow y) \rightarrow x) \Rightarrow y}(\wedge \Rightarrow) \\
& \frac{\Rightarrow((x \rightarrow y) \wedge((x \rightarrow y) \rightarrow x)) \rightarrow y}{}(\Rightarrow \rightarrow)
\end{aligned}
$$

An Example Derivation

$$
\begin{aligned}
& \frac{\overline{x \rightarrow y, y \rightarrow x, x \Rightarrow y}_{x \rightarrow y, y \rightarrow x \Rightarrow x \rightarrow y}^{x \rightarrow \rightarrow)}(\rightarrow \Rightarrow)}{} \\
& \quad \frac{x \rightarrow y,(x \rightarrow y) \rightarrow x \Rightarrow y}{(x \rightarrow y) \wedge((x \rightarrow y) \rightarrow x) \Rightarrow y}(\wedge \Rightarrow) \\
& \quad \frac{\Rightarrow((x \rightarrow y) \wedge((x \rightarrow y) \rightarrow x)) \rightarrow y}{\Rightarrow(\Rightarrow \rightarrow)}
\end{aligned}
$$

An Example Derivation

$$
\begin{aligned}
& \text { (id) } \\
& \frac{\frac{y_{x, y \rightarrow x, x \rightarrow y}^{x \rightarrow y, y \rightarrow x, x \Rightarrow y}(\Rightarrow \rightarrow)}{x \rightarrow y, y \rightarrow x \Rightarrow x \rightarrow y}(\rightarrow \Rightarrow)}{\frac{x \rightarrow y,(x \rightarrow y) \rightarrow x \Rightarrow y}{(x \rightarrow y) \wedge((x \rightarrow y) \rightarrow x) \rightarrow y}(\wedge \Rightarrow)}(\rightarrow \Rightarrow)
\end{aligned}
$$

An Example Derivation

$$
\begin{aligned}
& \text { (id) } \\
& \frac{\frac{y^{x, y \rightarrow x, x \Rightarrow y}}{x \rightarrow y, y \rightarrow x, x \Rightarrow y}(\Rightarrow \rightarrow)}{x \rightarrow y, y \rightarrow x \Rightarrow x \rightarrow y}(\rightarrow \Rightarrow) \quad \overline{x \rightarrow y, x \Rightarrow y}(\rightarrow \Rightarrow)
\end{aligned}
$$

An Example Derivation

$$
\begin{gathered}
\frac{\frac{y, y \rightarrow x, x \Rightarrow y}{x \rightarrow y, y \rightarrow x, x \Rightarrow y}^{\frac{y, y)}{x \rightarrow y, y \rightarrow x \Rightarrow x \rightarrow y}(\rightarrow \Rightarrow)} \quad \frac{\overline{y, x \rightarrow y}^{x \rightarrow y, x \Rightarrow y}}{}(\rightarrow \Rightarrow)}{(\rightarrow \Rightarrow)}(\rightarrow \Rightarrow) \\
\frac{\frac{x \rightarrow y,(x \rightarrow y) \rightarrow x \Rightarrow y}{(x \rightarrow y) \wedge((x \rightarrow y) \rightarrow x) \Rightarrow y}(\wedge \Rightarrow)}{\Rightarrow((x \rightarrow y) \wedge((x \rightarrow y) \rightarrow x)) \rightarrow y}(\Rightarrow \rightarrow)
\end{gathered}
$$

Weighing Formulas

The weight $\mathrm{wt}(\alpha)$ of a formula α is defined inductively by

Weighing Formulas

The weight $\mathrm{wt}(\alpha)$ of a formula α is defined inductively by

- $\operatorname{wt}(x)=\mathrm{wt}(\perp)=\mathrm{wt}(\top)=1$;

Weighing Formulas

The weight $\mathrm{wt}(\alpha)$ of a formula α is defined inductively by

- $\mathrm{wt}(x)=\mathrm{wt}(\perp)=\mathrm{wt}(\top)=1$;
- $\mathrm{wt}(\alpha \vee \beta)=\mathrm{wt}(\alpha \rightarrow \beta)=\mathrm{wt}(\alpha)+\mathrm{wt}(\beta)+1$;

Weighing Formulas

The weight $\mathrm{wt}(\alpha)$ of a formula α is defined inductively by

- $\operatorname{wt}(x)=\mathrm{wt}(\perp)=\mathrm{wt}(\top)=1$;
- $\mathrm{wt}(\alpha \vee \beta)=\mathrm{wt}(\alpha \rightarrow \beta)=\mathrm{wt}(\alpha)+\mathrm{wt}(\beta)+1$;
- $\mathrm{wt}(\alpha \wedge \beta)=\mathrm{wt}(\alpha)+\mathrm{wt}(\beta)+2$,

Weighing Formulas

The weight $\mathrm{wt}(\alpha)$ of a formula α is defined inductively by

- $\mathrm{wt}(x)=\mathrm{wt}(\perp)=\mathrm{wt}(\top)=1$;
- $\mathrm{wt}(\alpha \vee \beta)=\mathrm{wt}(\alpha \rightarrow \beta)=\mathrm{wt}(\alpha)+\mathrm{wt}(\beta)+1$;
- $\mathrm{wt}(\alpha \wedge \beta)=\mathrm{wt}(\alpha)+\mathrm{wt}(\beta)+2$,
yielding a well-ordering \prec on formulas

$$
\alpha \prec \beta: \Longleftrightarrow \mathrm{wt}(\alpha)<\mathrm{wt}(\beta) .
$$

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

$$
\Gamma \prec \Pi: \Longleftrightarrow \begin{aligned}
& \Gamma=\Gamma^{\prime}, \Delta \text { and } \Pi=\Pi^{\prime}, \Delta \text { with } \Pi^{\prime} \neq \emptyset \text { and } \\
& \text { each } \alpha \in \Gamma^{\prime} \text { is } \prec \text {-smaller than some } \beta \in \Pi^{\prime}
\end{aligned}
$$

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

$$
\Gamma \prec \Pi: \Longleftrightarrow \begin{aligned}
& \Gamma=\Gamma^{\prime}, \Delta \text { and } \Pi=\Pi^{\prime}, \Delta \text { with } \Pi^{\prime} \neq \emptyset \text { and } \\
& \text { each } \alpha \in \Gamma^{\prime} \text { is } \prec \text {-smaller than some } \beta \in \Pi^{\prime}
\end{aligned}
$$

and on sequents by defining

$$
\Gamma \Rightarrow \alpha \prec \Pi \Rightarrow \beta: \Longleftrightarrow \Gamma, \alpha \prec \Pi, \beta .
$$

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

$$
\Gamma \prec \Pi: \Longleftrightarrow \begin{aligned}
& \Gamma=\Gamma^{\prime}, \Delta \text { and } \Pi=\Pi^{\prime}, \Delta \text { with } \Pi^{\prime} \neq \emptyset \text { and } \\
& \text { each } \alpha \in \Gamma^{\prime} \text { is } \prec \text {-smaller than some } \beta \in \Pi^{\prime}
\end{aligned}
$$

and on sequents by defining

$$
\Gamma \Rightarrow \alpha \prec \Pi \Rightarrow \beta: \Longleftrightarrow \Gamma, \alpha \prec \Pi, \beta
$$

The premises of each rule of GIL* are all \prec-smaller than its conclusion;

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

$$
\Gamma \prec \Pi: \Longleftrightarrow \quad \begin{aligned}
& \Gamma=\Gamma^{\prime}, \Delta \text { and } \Pi=\Pi^{\prime}, \Delta \text { with } \Pi^{\prime} \neq \emptyset \text { and } \\
& \text { each } \alpha \in \Gamma^{\prime} \text { is } \prec \text {-smaller than some } \beta \in \Pi^{\prime}
\end{aligned}
$$

and on sequents by defining

$$
\Gamma \Rightarrow \alpha \prec \Pi \Rightarrow \beta: \Longleftrightarrow \Gamma, \alpha \prec \Pi, \beta .
$$

The premises of each rule of GIL* are all \prec-smaller than its conclusion; e.g., $\operatorname{wt}\left(\alpha_{1} \rightarrow\left(\alpha_{2} \rightarrow \beta\right)\right)<\operatorname{wt}\left(\left(\alpha_{1} \wedge \alpha_{2}\right) \rightarrow \beta\right)$

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

$$
\Gamma \prec \Pi: \Longleftrightarrow \begin{aligned}
& \Gamma=\Gamma^{\prime}, \Delta \text { and } \Pi=\Pi^{\prime}, \Delta \text { with } \Pi^{\prime} \neq \emptyset \text { and } \\
& \text { each } \alpha \in \Gamma^{\prime} \text { is } \prec \text {-smaller than some } \beta \in \Pi^{\prime}
\end{aligned}
$$

and on sequents by defining

$$
\Gamma \Rightarrow \alpha \prec \Pi \Rightarrow \beta: \Longleftrightarrow \Gamma, \alpha \prec \Pi, \beta .
$$

The premises of each rule of GIL* are all \prec-smaller than its conclusion; e.g., $\operatorname{wt}\left(\alpha_{1} \rightarrow\left(\alpha_{2} \rightarrow \beta\right)\right)<\operatorname{wt}\left(\left(\alpha_{1} \wedge \alpha_{2}\right) \rightarrow \beta\right)$ and

$$
\left\ulcorner, \alpha_{1} \rightarrow\left(\alpha_{2} \rightarrow \beta\right) \Rightarrow \delta \prec \Gamma,\left(\alpha_{1} \wedge \alpha_{2}\right) \rightarrow \beta \Rightarrow \delta\right.
$$

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

$$
\Gamma \prec \Pi: \Longleftrightarrow \begin{aligned}
& \Gamma=\Gamma^{\prime}, \Delta \text { and } \Pi=\Pi^{\prime}, \Delta \text { with } \Pi^{\prime} \neq \emptyset \text { and } \\
& \text { each } \alpha \in \Gamma^{\prime} \text { is } \prec \text {-smaller than some } \beta \in \Pi^{\prime}
\end{aligned}
$$

and on sequents by defining

$$
\Gamma \Rightarrow \alpha \prec \Pi \Rightarrow \beta: \Longleftrightarrow \Gamma, \alpha \prec \Pi, \beta .
$$

The premises of each rule of GIL* are all \prec-smaller than its conclusion; e.g., $\operatorname{wt}\left(\alpha_{1} \rightarrow\left(\alpha_{2} \rightarrow \beta\right)\right)<\operatorname{wt}\left(\left(\alpha_{1} \wedge \alpha_{2}\right) \rightarrow \beta\right)$ and

$$
\left\ulcorner, \alpha_{1} \rightarrow\left(\alpha_{2} \rightarrow \beta\right) \Rightarrow \delta \prec \Gamma,\left(\alpha_{1} \wedge \alpha_{2}\right) \rightarrow \beta \Rightarrow \delta\right.
$$

Hence proof search in GIL* is terminating.

Soundness and Completeness

Theorem

$$
\vdash_{\text {GIL* }} \alpha_{1}, \ldots, \alpha_{n} \Rightarrow \beta \Longleftrightarrow \vdash_{\mathrm{IL}}\left(\alpha_{1} \wedge \ldots \wedge \alpha_{n}\right) \rightarrow \beta .
$$

Soundness and Completeness

Theorem

$$
\vdash_{\mathrm{GIL} *} \alpha_{1}, \ldots, \alpha_{n} \Rightarrow \beta \Longleftrightarrow \vdash_{\mathrm{IL}}\left(\alpha_{1} \wedge \ldots \wedge \alpha_{n}\right) \rightarrow \beta .
$$

Proof.

(\Rightarrow) It suffices to check that the new implication left rules of GIL* preserve derivability in IL;

Soundness and Completeness

Theorem

$$
\vdash_{\mathrm{GIL} *} \alpha_{1}, \ldots, \alpha_{n} \Rightarrow \beta \Longleftrightarrow \vdash_{\mathrm{IL}}\left(\alpha_{1} \wedge \ldots \wedge \alpha_{n}\right) \rightarrow \beta
$$

Proof.

(\Rightarrow) It suffices to check that the new implication left rules of GIL* preserve derivability in IL; e.g.,
$\vdash_{\mathrm{IL}}\left(\gamma \wedge\left(\alpha_{1} \rightarrow \beta\right) \wedge\left(\alpha_{2} \rightarrow \beta\right)\right) \rightarrow \delta \Longrightarrow \vdash_{\mathrm{IL}}\left(\gamma \wedge\left(\left(\alpha_{1} \vee \alpha_{2}\right) \rightarrow \beta\right)\right) \rightarrow \delta$.

Soundness and Completeness

Theorem

$$
\vdash_{\mathrm{GIL}} \alpha_{1}, \ldots, \alpha_{n} \Rightarrow \beta \Longleftrightarrow \vdash_{\mathrm{IL}}\left(\alpha_{1} \wedge \ldots \wedge \alpha_{n}\right) \rightarrow \beta
$$

Proof.

(\Rightarrow) It suffices to check that the new implication left rules of GIL* preserve derivability in IL; e.g.,
$\vdash_{\mathrm{IL}}\left(\gamma \wedge\left(\alpha_{1} \rightarrow \beta\right) \wedge\left(\alpha_{2} \rightarrow \beta\right)\right) \rightarrow \delta \Longrightarrow \vdash_{\mathrm{IL}}\left(\gamma \wedge\left(\left(\alpha_{1} \vee \alpha_{2}\right) \rightarrow \beta\right)\right) \rightarrow \delta$.
(\Leftarrow) It suffices to prove that any sequent that is derivable in GIL° is also derivable in GIL*,

Soundness and Completeness

Theorem

$$
\vdash_{\mathrm{GIL} *} \alpha_{1}, \ldots, \alpha_{n} \Rightarrow \beta \Longleftrightarrow \vdash_{\mathrm{IL}}\left(\alpha_{1} \wedge \ldots \wedge \alpha_{n}\right) \rightarrow \beta .
$$

Proof.

(\Rightarrow) It suffices to check that the new implication left rules of GIL* preserve derivability in IL; e.g.,
$\vdash_{\mathrm{IL}}\left(\gamma \wedge\left(\alpha_{1} \rightarrow \beta\right) \wedge\left(\alpha_{2} \rightarrow \beta\right)\right) \rightarrow \delta \Longrightarrow \vdash_{\mathrm{IL}}\left(\gamma \wedge\left(\left(\alpha_{1} \vee \alpha_{2}\right) \rightarrow \beta\right)\right) \rightarrow \delta$.
(\Leftarrow) It suffices to prove that any sequent that is derivable in GIL° is also derivable in GIL*, proceeding by induction on the weight of the sequent and considering all possible last steps of the GIL°-derivation.

Soundness and Completeness

Theorem

$$
\vdash_{\mathrm{GIL}} \alpha_{1}, \ldots, \alpha_{n} \Rightarrow \beta \Longleftrightarrow \vdash_{\mathrm{IL}}\left(\alpha_{1} \wedge \ldots \wedge \alpha_{n}\right) \rightarrow \beta
$$

Proof.

(\Rightarrow) It suffices to check that the new implication left rules of GIL* preserve derivability in IL; e.g.,
$\vdash_{\mathrm{IL}}\left(\gamma \wedge\left(\alpha_{1} \rightarrow \beta\right) \wedge\left(\alpha_{2} \rightarrow \beta\right)\right) \rightarrow \delta \Longrightarrow \vdash_{\mathrm{IL}}\left(\gamma \wedge\left(\left(\alpha_{1} \vee \alpha_{2}\right) \rightarrow \beta\right)\right) \rightarrow \delta$.
(\Leftarrow) It suffices to prove that any sequent that is derivable in GIL° is also derivable in GIL*, proceeding by induction on the weight of the sequent and considering all possible last steps of the GIL ${ }^{\circ}$-derivation.

Note. GIL* can also be used to show that derivability in IL is in PSPACE.

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that (i) $\operatorname{Var}\left(E_{x}(\Gamma)\right) \subseteq \operatorname{Var}(\Gamma) \backslash\{x\}$ and $\operatorname{Var}\left(A_{x}(\Gamma ; \alpha)\right) \subseteq \operatorname{Var}(\Gamma, \alpha) \backslash\{x\}$;

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that
(i) $\operatorname{Var}\left(E_{x}(\Gamma)\right) \subseteq \operatorname{Var}(\Gamma) \backslash\{x\}$ and $\operatorname{Var}\left(A_{x}(\Gamma ; \alpha)\right) \subseteq \operatorname{Var}(\Gamma, \alpha) \backslash\{x\}$;
(ii) $\vdash_{\text {GIL* }} \Gamma \Rightarrow E_{x}(\Gamma)$ and $\vdash_{\text {GIL* }} \Gamma, A_{x}(\Gamma ; \alpha) \Rightarrow \alpha$;

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that
(i) $\operatorname{Var}\left(E_{x}(\Gamma)\right) \subseteq \operatorname{Var}(\Gamma) \backslash\{x\}$ and $\operatorname{Var}\left(A_{x}(\Gamma ; \alpha)\right) \subseteq \operatorname{Var}(\Gamma, \alpha) \backslash\{x\}$;
(ii) $\vdash_{\text {GIL* }} \Gamma \Rightarrow E_{x}(\Gamma)$ and $\vdash_{\text {GIL* }} \Gamma, A_{x}(\Gamma ; \alpha) \Rightarrow \alpha$;
(iii) whenever $\vdash_{\text {GIL* }} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$,

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that
(i) $\operatorname{Var}\left(E_{x}(\Gamma)\right) \subseteq \operatorname{Var}(\Gamma) \backslash\{x\}$ and $\operatorname{Var}\left(A_{x}(\Gamma ; \alpha)\right) \subseteq \operatorname{Var}(\Gamma, \alpha) \backslash\{x\}$;
(ii) $\vdash_{\text {GIL* }} \Gamma \Rightarrow E_{x}(\Gamma)$ and $\vdash_{\text {GIL* }} \Gamma, A_{x}(\Gamma ; \alpha) \Rightarrow \alpha$;
(iii) whenever $\vdash_{\text {GIL* }} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$,

$$
\vdash_{\text {GIL* }} \Pi, E_{x}(\Gamma) \Rightarrow \alpha \text { if } x \notin \operatorname{Var}(\alpha)
$$

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that
(i) $\operatorname{Var}\left(E_{x}(\Gamma)\right) \subseteq \operatorname{Var}(\Gamma) \backslash\{x\}$ and $\operatorname{Var}\left(A_{x}(\Gamma ; \alpha)\right) \subseteq \operatorname{Var}(\Gamma, \alpha) \backslash\{x\}$;
(ii) $\vdash_{\text {GIL* }} \Gamma \Rightarrow E_{x}(\Gamma)$ and $\vdash_{\text {GIL* }} \Gamma, A_{x}(\Gamma ; \alpha) \Rightarrow \alpha$;
(iii) whenever $\vdash_{\text {GIL* }} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$,

$$
\vdash_{\mathrm{GIL}^{*}} \Pi, E_{x}(\Gamma) \Rightarrow \alpha \text { if } x \notin \operatorname{Var}(\alpha) \quad \text { and } \quad \vdash_{\mathrm{GIL}^{*}} \Pi, E_{x}(\Gamma) \Rightarrow A_{x}(\Gamma ; \alpha) .
$$

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that
(i) $\operatorname{Var}\left(E_{x}(\Gamma)\right) \subseteq \operatorname{Var}(\Gamma) \backslash\{x\}$ and $\operatorname{Var}\left(A_{x}(\Gamma ; \alpha)\right) \subseteq \operatorname{Var}(\Gamma, \alpha) \backslash\{x\}$;
(ii) $\vdash_{\text {GIL* }} \Gamma \Rightarrow E_{x}(\Gamma)$ and $\vdash_{\text {GIL* }} \Gamma, A_{x}(\Gamma ; \alpha) \Rightarrow \alpha$;
(iii) whenever $\vdash_{\text {GIL* }} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$,

$$
\vdash_{\mathrm{GIL}^{*}} \Pi, E_{x}(\Gamma) \Rightarrow \alpha \text { if } x \notin \operatorname{Var}(\alpha) \quad \text { and } \quad \vdash_{\mathrm{GIL}^{*}} \Pi, E_{x}(\Gamma) \Rightarrow A_{x}(\Gamma ; \alpha) .
$$

Pitts' theorem then follows by defining for any formula $\alpha(x, \bar{y})$,

$$
\alpha_{L}(\bar{y})=A_{x}(\emptyset ; \alpha) \quad \text { and } \quad \alpha_{R}(\bar{y})=E_{x}(\alpha)
$$

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that
(i) $\operatorname{Var}\left(E_{x}(\Gamma)\right) \subseteq \operatorname{Var}(\Gamma) \backslash\{x\}$ and $\operatorname{Var}\left(A_{x}(\Gamma ; \alpha)\right) \subseteq \operatorname{Var}(\Gamma, \alpha) \backslash\{x\}$;
(ii) $\vdash_{\text {GIL* }} \Gamma \Rightarrow E_{x}(\Gamma)$ and $\vdash_{\text {GLL* }} \Gamma, A_{x}(\Gamma ; \alpha) \Rightarrow \alpha$;
(iii) whenever $\vdash_{\text {GIL* }} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$,

$$
\vdash_{\mathrm{GIL}}{ }^{\Pi}, E_{x}(\Gamma) \Rightarrow \alpha \text { if } x \notin \operatorname{Var}(\alpha) \quad \text { and } \quad \vdash_{\text {GIL* }} \Pi, E_{x}(\Gamma) \Rightarrow A_{x}(\Gamma ; \alpha) .
$$

Pitts' theorem then follows by defining for any formula $\alpha(x, \bar{y})$,

$$
\alpha_{L}(\bar{y})=A_{x}(\emptyset ; \alpha) \quad \text { and } \quad \alpha_{R}(\bar{y})=E_{x}(\alpha)
$$

If $\beta(\bar{y}, \bar{z}) \vdash_{\text {IL }} \alpha(\bar{x}, \bar{y})$,

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that
(i) $\operatorname{Var}\left(E_{x}(\Gamma)\right) \subseteq \operatorname{Var}(\Gamma) \backslash\{x\}$ and $\operatorname{Var}\left(A_{x}(\Gamma ; \alpha)\right) \subseteq \operatorname{Var}(\Gamma, \alpha) \backslash\{x\}$;
(ii) $\vdash_{\text {GIL* }} \Gamma \Rightarrow E_{x}(\Gamma)$ and $\vdash_{\text {GLL* }} \Gamma, A_{x}(\Gamma ; \alpha) \Rightarrow \alpha$;
(iii) whenever $\vdash_{\text {GIL* }} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$,

$$
\vdash_{\mathrm{GIL}^{*}} \Pi, E_{x}(\Gamma) \Rightarrow \alpha \text { if } x \notin \operatorname{Var}(\alpha) \quad \text { and } \quad \vdash_{\mathrm{GIL}^{*}} \Pi, E_{x}(\Gamma) \Rightarrow A_{x}(\Gamma ; \alpha) .
$$

Pitts' theorem then follows by defining for any formula $\alpha(x, \bar{y})$,

$$
\alpha_{L}(\bar{y})=A_{x}(\emptyset ; \alpha) \quad \text { and } \quad \alpha_{R}(\bar{y})=E_{x}(\alpha)
$$

If $\beta(\bar{y}, \bar{z}) \vdash_{\mathrm{IL}} \alpha(\bar{x}, \bar{y})$, then since, by (ii), $\vdash_{\text {GIL*}} \Rightarrow E_{x}(\emptyset)$,

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that
(i) $\operatorname{Var}\left(E_{x}(\Gamma)\right) \subseteq \operatorname{Var}(\Gamma) \backslash\{x\}$ and $\operatorname{Var}\left(A_{x}(\Gamma ; \alpha)\right) \subseteq \operatorname{Var}(\Gamma, \alpha) \backslash\{x\}$;
(ii) $\vdash_{\text {GIL* }} \Gamma \Rightarrow E_{x}(\Gamma)$ and $\vdash_{\text {GIL* }} \Gamma, A_{x}(\Gamma ; \alpha) \Rightarrow \alpha$;
(iii) whenever $\vdash_{\text {GIL* }} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$,

$$
\vdash_{\mathrm{GIL}^{*}} \Pi, E_{x}(\Gamma) \Rightarrow \alpha \text { if } x \notin \operatorname{Var}(\alpha) \quad \text { and } \quad \vdash_{\text {GIL* }} \Pi, E_{x}(\Gamma) \Rightarrow A_{x}(\Gamma ; \alpha) .
$$

Pitts' theorem then follows by defining for any formula $\alpha(x, \bar{y})$,

$$
\alpha_{L}(\bar{y})=A_{x}(\emptyset ; \alpha) \quad \text { and } \quad \alpha_{R}(\bar{y})=E_{x}(\alpha)
$$

If $\beta(\bar{y}, \bar{z}) \vdash_{\text {IL }} \alpha(\bar{x}, \bar{y})$, then since, by (ii), $\vdash_{\text {GL** }} \Rightarrow E_{x}(\emptyset)$, by (iii), $\beta(\bar{y}, \bar{z}) \vdash_{\text {IL }} \alpha^{L}(\bar{y})$;

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that
(i) $\operatorname{Var}\left(E_{x}(\Gamma)\right) \subseteq \operatorname{Var}(\Gamma) \backslash\{x\}$ and $\operatorname{Var}\left(A_{x}(\Gamma ; \alpha)\right) \subseteq \operatorname{Var}(\Gamma, \alpha) \backslash\{x\}$;
(ii) $\vdash_{\text {GIL* }} \Gamma \Rightarrow E_{x}(\Gamma)$ and $\vdash_{\text {GIL* }} \Gamma, A_{x}(\Gamma ; \alpha) \Rightarrow \alpha$;
(iii) whenever $\vdash_{\text {GIL* }} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$,

$$
\vdash_{\mathrm{GIL}^{*}} \Pi, E_{x}(\Gamma) \Rightarrow \alpha \text { if } x \notin \operatorname{Var}(\alpha) \quad \text { and } \quad \vdash_{\text {GIL* }} \Pi, E_{x}(\Gamma) \Rightarrow A_{x}(\Gamma ; \alpha) .
$$

Pitts' theorem then follows by defining for any formula $\alpha(x, \bar{y})$,

$$
\alpha_{L}(\bar{y})=A_{x}(\emptyset ; \alpha) \quad \text { and } \quad \alpha_{R}(\bar{y})=E_{x}(\alpha) .
$$

If $\beta(\bar{y}, \bar{z}) \vdash_{\text {IL }} \alpha(\bar{x}, \bar{y})$, then since, by (ii), $\vdash_{\text {GIL*}} \Rightarrow E_{x}(\emptyset)$, by (iii), $\beta(\bar{y}, \bar{z}) \vdash_{\text {IL }} \alpha^{L}(\bar{y})$; conversely, if $\beta(\bar{y}, \bar{z}) \vdash_{\text {IL }} \alpha^{L}(\bar{y})$,

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that
(i) $\operatorname{Var}\left(E_{x}(\Gamma)\right) \subseteq \operatorname{Var}(\Gamma) \backslash\{x\}$ and $\operatorname{Var}\left(A_{x}(\Gamma ; \alpha)\right) \subseteq \operatorname{Var}(\Gamma, \alpha) \backslash\{x\}$;
(ii) $\vdash_{\text {GIL* }} \Gamma \Rightarrow E_{x}(\Gamma)$ and $\vdash_{\text {GLL* }} \Gamma, A_{x}(\Gamma ; \alpha) \Rightarrow \alpha$;
(iii) whenever $\vdash_{\text {GIL* }} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$,
$\vdash_{\text {GIL* }} \Pi, E_{x}(\Gamma) \Rightarrow \alpha$ if $x \notin \operatorname{Var}(\alpha) \quad$ and $\quad \vdash_{\text {GIL* }} \Pi, E_{x}(\Gamma) \Rightarrow A_{x}(\Gamma ; \alpha)$.

Pitts' theorem then follows by defining for any formula $\alpha(x, \bar{y})$,

$$
\alpha_{L}(\bar{y})=A_{x}(\emptyset ; \alpha) \quad \text { and } \quad \alpha_{R}(\bar{y})=E_{x}(\alpha) .
$$

If $\beta(\bar{y}, \bar{z}) \vdash_{\mathrm{IL}} \alpha(\bar{x}, \bar{y})$, then since, by (ii), $\vdash_{\text {GLL*}^{*}} \Rightarrow E_{x}(\emptyset)$, by (iii), $\beta(\bar{y}, \bar{z}) \vdash_{\mathrm{IL}} \alpha^{L}(\bar{y})$; conversely, if $\beta(\bar{y}, \bar{z}) \vdash_{\mathrm{IL}} \alpha^{L}(\bar{y})$, then since, by (ii), $\vdash_{\text {GIL* }} \alpha^{L}(\bar{y}) \Rightarrow \alpha$,

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that
(i) $\operatorname{Var}\left(E_{x}(\Gamma)\right) \subseteq \operatorname{Var}(\Gamma) \backslash\{x\}$ and $\operatorname{Var}\left(A_{x}(\Gamma ; \alpha)\right) \subseteq \operatorname{Var}(\Gamma, \alpha) \backslash\{x\}$;
(ii) $\vdash_{\text {GIL* }} \Gamma \Rightarrow E_{x}(\Gamma)$ and $\vdash_{\text {GLL* }} \Gamma, A_{x}(\Gamma ; \alpha) \Rightarrow \alpha$;
(iii) whenever $\vdash_{\text {GIL* }} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$,
$\vdash_{\text {GIL* }} \Pi, E_{x}(\Gamma) \Rightarrow \alpha$ if $x \notin \operatorname{Var}(\alpha) \quad$ and $\quad \vdash_{\text {GIL* }} \Pi, E_{x}(\Gamma) \Rightarrow A_{x}(\Gamma ; \alpha)$.

Pitts' theorem then follows by defining for any formula $\alpha(x, \bar{y})$,

$$
\alpha_{L}(\bar{y})=A_{x}(\emptyset ; \alpha) \quad \text { and } \quad \alpha_{R}(\bar{y})=E_{x}(\alpha) .
$$

If $\beta(\bar{y}, \bar{z}) \vdash_{\mathrm{IL}} \alpha(\bar{x}, \bar{y})$, then since, by (ii), $\vdash_{\mathrm{GLL}^{*}} \Rightarrow E_{x}(\emptyset)$, by (iii), $\beta(\bar{y}, \bar{z}) \vdash_{\mathrm{IL}} \alpha^{L}(\bar{y})$; conversely, if $\beta(\bar{y}, \bar{z}) \vdash_{\mathrm{IL}} \alpha^{L}(\bar{y})$, then since, by (ii), $\vdash_{\text {GIL* }} \alpha^{L}(\bar{y}) \Rightarrow \alpha$, also $\beta(\bar{y}, \bar{z}) \vdash_{\text {IL }} \alpha$.

The Key Lemma for Uniform Interpolation

Lemma

For any sequent $\Gamma \Rightarrow \alpha$, there exist formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ such that
(i) $\operatorname{Var}\left(E_{x}(\Gamma)\right) \subseteq \operatorname{Var}(\Gamma) \backslash\{x\}$ and $\operatorname{Var}\left(A_{x}(\Gamma ; \alpha)\right) \subseteq \operatorname{Var}(\Gamma, \alpha) \backslash\{x\}$;
(ii) $\vdash_{\text {GIL* }} \Gamma \Rightarrow E_{x}(\Gamma)$ and $\vdash_{\text {GLL* }} \Gamma, A_{x}(\Gamma ; \alpha) \Rightarrow \alpha$;
(iii) whenever $\vdash_{\text {GIL* }} \Pi, \Gamma \Rightarrow \alpha$ and $x \notin \operatorname{Var}(\Pi)$,
$\vdash_{\text {GIL* }} \Pi, E_{x}(\Gamma) \Rightarrow \alpha$ if $x \notin \operatorname{Var}(\alpha) \quad$ and $\quad \vdash_{\text {GIL* }} \Pi, E_{x}(\Gamma) \Rightarrow A_{x}(\Gamma ; \alpha)$.

Pitts' theorem then follows by defining for any formula $\alpha(x, \bar{y})$,

$$
\alpha_{L}(\bar{y})=A_{x}(\emptyset ; \alpha) \quad \text { and } \quad \alpha_{R}(\bar{y})=E_{x}(\alpha) .
$$

If $\beta(\bar{y}, \bar{z}) \vdash_{\mathrm{IL}} \alpha(\bar{x}, \bar{y})$, then since, by (ii), $\vdash_{\mathrm{GLL}^{*}} \Rightarrow E_{x}(\emptyset)$, by (iii), $\beta(\bar{y}, \bar{z}) \vdash_{\text {IL }} \alpha^{L}(\bar{y})$; conversely, if $\beta(\bar{y}, \bar{z}) \vdash_{\text {IL }} \alpha^{L}(\bar{y})$, then since, by (ii), $\vdash_{\text {GIL* }} \alpha^{L}(\bar{y}) \Rightarrow \alpha$, also $\beta(\bar{y}, \bar{z}) \vdash_{\text {IL }} \alpha$. The case of $\alpha_{R}(\bar{y})$ is similar.

Proof Sketch

The formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ are defined simultaneously by induction over the well-ordering \prec

Proof Sketch

The formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ are defined simultaneously by induction over the well-ordering \prec via finite sets of formulas $\mathcal{E}_{x}(\Gamma)$ and $\mathcal{A}_{x}(\Gamma ; \alpha)$:

$$
E_{x}(\Gamma):=\bigwedge \mathcal{E}_{x}(\Gamma) \quad \text { and } \quad A_{x}(\Gamma ; \alpha):=\bigvee \mathcal{A}_{x}(\Gamma ; \alpha)
$$

Proof Sketch

The formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ are defined simultaneously by induction over the well-ordering \prec via finite sets of formulas $\mathcal{E}_{x}(\Gamma)$ and $\mathcal{A}_{x}(\Gamma ; \alpha)$:

$$
E_{x}(\Gamma):=\bigwedge \mathcal{E}_{x}(\Gamma) \quad \text { and } \quad A_{x}(\Gamma ; \alpha):=\bigvee \mathcal{A}_{x}(\Gamma ; \alpha) \quad \text { using the clauses }
$$

Γ matches $\mathcal{E}_{x}(\Gamma)$ contains

Proof Sketch

The formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ are defined simultaneously by induction over the well-ordering \prec via finite sets of formulas $\mathcal{E}_{x}(\Gamma)$ and $\mathcal{A}_{x}(\Gamma ; \alpha)$:

$$
E_{x}(\Gamma):=\bigwedge \mathcal{E}_{x}(\Gamma) \quad \text { and } \quad A_{x}(\Gamma ; \alpha):=\bigvee \mathcal{A}_{x}(\Gamma ; \alpha) \quad \text { using the clauses }
$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ^{\prime}, y	$E_{x}\left(\Gamma^{\prime}\right) \wedge y$

Proof Sketch

The formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ are defined simultaneously by induction over the well-ordering \prec via finite sets of formulas $\mathcal{E}_{x}(\Gamma)$ and $\mathcal{A}_{x}(\Gamma ; \alpha)$:

$$
E_{x}(\Gamma):=\bigwedge \mathcal{E}_{x}(\Gamma) \quad \text { and } \quad A_{x}(\Gamma ; \alpha):=\bigvee \mathcal{A}_{x}(\Gamma ; \alpha) \quad \text { using the clauses }
$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ^{\prime}, y	$E_{x}\left(\Gamma^{\prime}\right) \wedge y$
$\Gamma^{\prime}, \beta_{1} \wedge \beta_{2}$	$E_{x}\left(\Gamma^{\prime}, \beta_{1}, \beta_{2}\right)$

Proof Sketch

The formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ are defined simultaneously by induction over the well-ordering \prec via finite sets of formulas $\mathcal{E}_{x}(\Gamma)$ and $\mathcal{A}_{x}(\Gamma ; \alpha)$:

$$
E_{x}(\Gamma):=\bigwedge \mathcal{E}_{x}(\Gamma) \quad \text { and } \quad A_{x}(\Gamma ; \alpha):=\bigvee \mathcal{A}_{x}(\Gamma ; \alpha) \quad \text { using the clauses }
$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ^{\prime}, y	$E_{x}\left(\Gamma^{\prime}\right) \wedge y$
$\Gamma^{\prime}, \beta_{1} \wedge \beta_{2}$	$E_{x}\left(\Gamma^{\prime}, \beta_{1}, \beta_{2}\right)$
$\Gamma^{\prime}, \beta_{1} \vee \beta_{2}$	$E_{x}\left(\Gamma^{\prime}, \beta_{1}\right) \vee E_{x}\left(\Gamma^{\prime}, \beta_{2}\right)$

Proof Sketch

The formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ are defined simultaneously by induction over the well-ordering \prec via finite sets of formulas $\mathcal{E}_{x}(\Gamma)$ and $\mathcal{A}_{x}(\Gamma ; \alpha)$:

$$
E_{x}(\Gamma):=\bigwedge \mathcal{E}_{x}(\Gamma) \quad \text { and } \quad A_{x}(\Gamma ; \alpha):=\bigvee \mathcal{A}_{x}(\Gamma ; \alpha) \quad \text { using the clauses }
$$

matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ^{\prime}, y	$E_{x}\left(\Gamma^{\prime}\right) \wedge y$
$\Gamma^{\prime}, \beta_{1} \wedge \beta_{2}$	$E_{x}\left(\Gamma^{\prime}, \beta_{1}, \beta_{2}\right)$
$\Gamma^{\prime}, \beta_{1} \vee \beta_{2}$	$E_{x}\left(\Gamma^{\prime}, \beta_{1}\right) \vee E_{x}\left(\Gamma^{\prime}, \beta_{2}\right)$
$\Gamma^{\prime},\left(\beta_{1} \rightarrow \beta_{2}\right) \rightarrow \beta_{3}$	$\left(E_{x}\left(\Gamma^{\prime}, \beta_{2} \rightarrow \beta_{3}\right) \rightarrow A_{x}\left(\Gamma, \beta_{2} \rightarrow \beta_{3} ; \beta_{1} \rightarrow \beta_{2}\right)\right) \rightarrow E_{x}\left(\Gamma^{\prime}, \beta_{3}\right)$

Proof Sketch

The formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ are defined simultaneously by induction over the well-ordering \prec via finite sets of formulas $\mathcal{E}_{x}(\Gamma)$ and $\mathcal{A}_{x}(\Gamma ; \alpha)$:

$$
E_{x}(\Gamma):=\bigwedge \mathcal{E}_{x}(\Gamma) \quad \text { and } \quad A_{x}(\Gamma ; \alpha):=\bigvee \mathcal{A}_{x}(\Gamma ; \alpha) \quad \text { using the clauses }
$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ^{\prime}, y	$E_{x}\left(\Gamma^{\prime}\right) \wedge y$
$\Gamma^{\prime}, \beta_{1} \wedge \beta_{2}$	$E_{x}\left(\Gamma^{\prime}, \beta_{1}, \beta_{2}\right)$
$\Gamma^{\prime}, \beta_{1} \vee \beta_{2}$	$E_{x}\left(\Gamma^{\prime}, \beta_{1}\right) \vee E_{x}\left(\Gamma^{\prime}, \beta_{2}\right)$
$\Gamma^{\prime},\left(\beta_{1} \rightarrow \beta_{2}\right) \rightarrow \beta_{3}$	$\left(E_{x}\left(\Gamma^{\prime}, \beta_{2} \rightarrow \beta_{3}\right) \rightarrow A_{x}\left(\Gamma, \beta_{2} \rightarrow \beta_{3} ; \beta_{1} \rightarrow \beta_{2}\right)\right) \rightarrow E_{x}\left(\Gamma^{\prime}, \beta_{3}\right)$
\vdots	\vdots
$\Gamma ; \alpha$ matches	$\mathcal{A}_{x}(\Gamma ; \alpha)$ contains

Proof Sketch

The formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ are defined simultaneously by induction over the well-ordering \prec via finite sets of formulas $\mathcal{E}_{x}(\Gamma)$ and $\mathcal{A}_{x}(\Gamma ; \alpha)$:

$$
E_{x}(\Gamma):=\bigwedge \mathcal{E}_{x}(\Gamma) \quad \text { and } \quad A_{x}(\Gamma ; \alpha):=\bigvee \mathcal{A}_{x}(\Gamma ; \alpha) \quad \text { using the clauses }
$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ^{\prime}, y	$E_{x}\left(\Gamma^{\prime}\right) \wedge y$
$\Gamma^{\prime}, \beta_{1} \wedge \beta_{2}$	$E_{x}\left(\Gamma^{\prime}, \beta_{1}, \beta_{2}\right)$
$\Gamma^{\prime}, \beta_{1} \vee \beta_{2}$	$E_{x}\left(\Gamma^{\prime}, \beta_{1}\right) \vee E_{x}\left(\Gamma^{\prime}, \beta_{2}\right)$
$\Gamma^{\prime},\left(\beta_{1} \rightarrow \beta_{2}\right) \rightarrow \beta_{3}$	$\left(E_{x}\left(\Gamma^{\prime}, \beta_{2} \rightarrow \beta_{3}\right) \rightarrow A_{x}\left(\Gamma, \beta_{2} \rightarrow \beta_{3} ; \beta_{1} \rightarrow \beta_{2}\right)\right) \rightarrow E_{x}\left(\Gamma^{\prime}, \beta_{3}\right)$
\vdots	\vdots
$\Gamma ; \alpha$ matches	$\mathcal{A}_{x}(\Gamma ; \alpha)$ contains
\vdots	\vdots
$\Gamma^{\prime}, x ; x$	\top

Proof Sketch

The formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ are defined simultaneously by induction over the well-ordering \prec via finite sets of formulas $\mathcal{E}_{x}(\Gamma)$ and $\mathcal{A}_{x}(\Gamma ; \alpha)$:

$$
E_{x}(\Gamma):=\bigwedge \mathcal{E}_{x}(\Gamma) \quad \text { and } \quad A_{x}(\Gamma ; \alpha):=\bigvee \mathcal{A}_{x}(\Gamma ; \alpha) \quad \text { using the clauses }
$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ^{\prime}, y	$E_{x}\left(\Gamma^{\prime}\right) \wedge y$
$\Gamma^{\prime}, \beta_{1} \wedge \beta_{2}$	$E_{x}\left(\Gamma^{\prime}, \beta_{1}, \beta_{2}\right)$
$\Gamma^{\prime}, \beta_{1} \vee \beta_{2}$	$E_{x}\left(\Gamma^{\prime}, \beta_{1}\right) \vee E_{x}\left(\Gamma^{\prime}, \beta_{2}\right)$
$\Gamma^{\prime},\left(\beta_{1} \rightarrow \beta_{2}\right) \rightarrow \beta_{3}$	$\left(E_{x}\left(\Gamma^{\prime}, \beta_{2} \rightarrow \beta_{3}\right) \rightarrow A_{x}\left(\Gamma, \beta_{2} \rightarrow \beta_{3} ; \beta_{1} \rightarrow \beta_{2}\right)\right) \rightarrow E_{x}\left(\Gamma^{\prime}, \beta_{3}\right)$
\vdots	\vdots
$\Gamma ; \alpha$ matches	$\mathcal{A}_{x}(\Gamma ; \alpha)$ contains
\vdots	\vdots
$\Gamma^{\prime}, x ; x$	\top
$\Gamma ; \beta_{1} \rightarrow \beta_{2}$	$E_{x}\left(\Gamma, \beta_{1}\right) \rightarrow A_{x}\left(\Gamma, \beta_{1} ; \beta_{2}\right)$

Proof Sketch

The formulas $E_{x}(\Gamma)$ and $A_{x}(\Gamma ; \alpha)$ are defined simultaneously by induction over the well-ordering \prec via finite sets of formulas $\mathcal{E}_{x}(\Gamma)$ and $\mathcal{A}_{x}(\Gamma ; \alpha)$:

$$
E_{x}(\Gamma):=\bigwedge \mathcal{E}_{x}(\Gamma) \quad \text { and } \quad A_{x}(\Gamma ; \alpha):=\bigvee \mathcal{A}_{x}(\Gamma ; \alpha) \quad \text { using the clauses }
$$

Γ matches	$\mathcal{E}_{x}(\Gamma)$ contains
Γ^{\prime}, y	$E_{x}\left(\Gamma^{\prime}\right) \wedge y$
$\Gamma^{\prime}, \beta_{1} \wedge \beta_{2}$	$E_{x}\left(\Gamma^{\prime}, \beta_{1}, \beta_{2}\right)$
$\Gamma^{\prime}, \beta_{1} \vee \beta_{2}$	$E_{x}\left(\Gamma^{\prime}, \beta_{1}\right) \vee E_{x}\left(\Gamma^{\prime}, \beta_{2}\right)$
$\Gamma^{\prime},\left(\beta_{1} \rightarrow \beta_{2}\right) \rightarrow \beta_{3}$	$\left(E_{x}\left(\Gamma^{\prime}, \beta_{2} \rightarrow \beta_{3}\right) \rightarrow A_{x}\left(\Gamma, \beta_{2} \rightarrow \beta_{3} ; \beta_{1} \rightarrow \beta_{2}\right)\right) \rightarrow E_{x}\left(\Gamma^{\prime}, \beta_{3}\right)$
\vdots	\vdots
$\Gamma ; \alpha$ matches	$\mathcal{A}_{x}(\Gamma ; \alpha)$ contains
\vdots	\vdots
$\Gamma^{\prime}, x ; x$	\top
$\Gamma ; \beta_{1} \rightarrow \beta_{2}$	$E_{x}\left(\Gamma, \beta_{1}\right) \rightarrow A_{x}\left(\Gamma, \beta_{1} ; \beta_{2}\right)$

The calculus GIL* is then used to check that conditions (i)-(iii) are satisfied.

Remarks

- Other proofs of Pitts' theorem have been given using bisimulations (Ghilardi 1995, Visser 1996) and duality (van Gool and Reggio 2018).

Remarks

- Other proofs of Pitts' theorem have been given using bisimulations (Ghilardi 1995, Visser 1996) and duality (van Gool and Reggio 2018).
- There are exactly eight intermediate logics that admit interpolation (Maksimova 1977), and all of these also have uniform interpolation (Ghilardi and Zawadowski 2002).

Remarks

- Other proofs of Pitts' theorem have been given using bisimulations (Ghilardi 1995, Visser 1996) and duality (van Gool and Reggio 2018).
- There are exactly eight intermediate logics that admit interpolation (Maksimova 1977), and all of these also have uniform interpolation (Ghilardi and Zawadowski 2002).
- lemhoff has shown recently that any intermediate or modal logic having a certain decomposition calculus admits uniform interpolation.

An Application to Independence

Theorem (De Jongh and Chagrova 1995)

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_{1}, \ldots, \alpha_{n}$ if for any formula $\beta\left(y_{1}, \ldots, y_{n}\right)$,

$$
\vdash_{\text {IL }} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longrightarrow \vdash_{\text {IL }} \beta .
$$

An Application to Independence

Theorem (De Jongh and Chagrova 1995)

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_{1}, \ldots, \alpha_{n}$ if for any formula $\beta\left(y_{1}, \ldots, y_{n}\right)$,

$$
\vdash_{\text {IL }} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longrightarrow \vdash_{\text {IL }} \beta
$$

Proof.

For formulas $\alpha_{1}(\bar{x}), \ldots, \alpha_{n}(\bar{x})$,

An Application to Independence

Theorem (De Jongh and Chagrova 1995)

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_{1}, \ldots, \alpha_{n}$ if for any formula $\beta\left(y_{1}, \ldots, y_{n}\right)$,

$$
\vdash_{\text {IL }} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longrightarrow \vdash_{\text {IL }} \beta .
$$

Proof.

For formulas $\alpha_{1}(\bar{x}), \ldots, \alpha_{n}(\bar{x})$, let $\gamma(\bar{x}, \bar{y})=\left(y_{1} \leftrightarrow \alpha_{1}\right) \wedge \ldots \wedge\left(y_{n} \leftrightarrow \alpha_{n}\right)$

An Application to Independence

Theorem (De Jongh and Chagrova 1995)

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_{1}, \ldots, \alpha_{n}$ if for any formula $\beta\left(y_{1}, \ldots, y_{n}\right)$,

$$
\vdash_{\text {IL }} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longrightarrow \vdash_{\text {IL }} \beta
$$

Proof.

For formulas $\alpha_{1}(\bar{x}), \ldots, \alpha_{n}(\bar{x})$, let $\gamma(\bar{x}, \bar{y})=\left(y_{1} \leftrightarrow \alpha_{1}\right) \wedge \ldots \wedge\left(y_{n} \leftrightarrow \alpha_{n}\right)$ and observe that for any formula $\beta(\bar{y})$,

$$
\vdash_{\mathrm{IL}} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longleftrightarrow \gamma \vdash_{\mathrm{IL}} \beta .
$$

An Application to Independence

Theorem (De Jongh and Chagrova 1995)

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_{1}, \ldots, \alpha_{n}$ if for any formula $\beta\left(y_{1}, \ldots, y_{n}\right)$,

$$
\vdash_{\text {IL }} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longrightarrow \vdash_{\text {IL }} \beta
$$

Proof.

For formulas $\alpha_{1}(\bar{x}), \ldots, \alpha_{n}(\bar{x})$, let $\gamma(\bar{x}, \bar{y})=\left(y_{1} \leftrightarrow \alpha_{1}\right) \wedge \ldots \wedge\left(y_{n} \leftrightarrow \alpha_{n}\right)$ and observe that for any formula $\beta(\bar{y})$,

$$
\vdash_{\mathrm{IL}} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longleftrightarrow \gamma \vdash_{\mathrm{IL}} \beta .
$$

By the constructive proof of Pitts' theorem, we obtain a right uniform interpolant $\gamma_{R}(\bar{y})$ such that for any formula $\beta(\bar{y})$,

$$
\gamma \vdash_{\mathrm{IL}} \beta \Longleftrightarrow \gamma_{R} \vdash_{\mathrm{IL}} \beta
$$

An Application to Independence

Theorem (De Jongh and Chagrova 1995)

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_{1}, \ldots, \alpha_{n}$ if for any formula $\beta\left(y_{1}, \ldots, y_{n}\right)$,

$$
\vdash_{\text {IL }} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longrightarrow \vdash_{\text {IL }} \beta
$$

Proof.

For formulas $\alpha_{1}(\bar{x}), \ldots, \alpha_{n}(\bar{x})$, let $\gamma(\bar{x}, \bar{y})=\left(y_{1} \leftrightarrow \alpha_{1}\right) \wedge \ldots \wedge\left(y_{n} \leftrightarrow \alpha_{n}\right)$ and observe that for any formula $\beta(\bar{y})$,

$$
\vdash_{\mathrm{IL}} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longleftrightarrow \gamma \vdash_{\mathrm{IL}} \beta .
$$

By the constructive proof of Pitts' theorem, we obtain a right uniform interpolant $\gamma_{R}(\bar{y})$ such that for any formula $\beta(\bar{y})$,
$\gamma \vdash_{\text {IL }} \beta \Longleftrightarrow \gamma_{R} \vdash_{\text {IL }} \beta$ and, in particular, $\vdash_{\text {IL }} \gamma_{R}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

An Application to Independence

Theorem (De Jongh and Chagrova 1995)

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_{1}, \ldots, \alpha_{n}$ if for any formula $\beta\left(y_{1}, \ldots, y_{n}\right)$,

$$
\vdash_{\mathrm{IL}} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longrightarrow \vdash_{\mathrm{IL}} \beta
$$

Proof.

For formulas $\alpha_{1}(\bar{x}), \ldots, \alpha_{n}(\bar{x})$, let $\gamma(\bar{x}, \bar{y})=\left(y_{1} \leftrightarrow \alpha_{1}\right) \wedge \ldots \wedge\left(y_{n} \leftrightarrow \alpha_{n}\right)$ and observe that for any formula $\beta(\bar{y})$,

$$
\vdash_{\mathrm{IL}} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longleftrightarrow \gamma \vdash_{\mathrm{IL}} \beta .
$$

By the constructive proof of Pitts' theorem, we obtain a right uniform interpolant $\gamma_{R}(\bar{y})$ such that for any formula $\beta(\bar{y})$,
$\gamma \vdash_{\mathrm{IL}} \beta \Longleftrightarrow \gamma_{R} \vdash_{\text {IL }} \beta$ and, in particular, $\vdash_{\mathrm{IL}} \gamma_{R}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
So $\alpha_{1}, \ldots, \alpha_{n}$ are independent if and only if $\vdash_{\text {IL }} \gamma_{R}$,

An Application to Independence

Theorem (De Jongh and Chagrova 1995)

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_{1}, \ldots, \alpha_{n}$ if for any formula $\beta\left(y_{1}, \ldots, y_{n}\right)$,

$$
\vdash_{\mathrm{IL}} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longrightarrow \vdash_{\mathrm{IL}} \beta
$$

Proof.

For formulas $\alpha_{1}(\bar{x}), \ldots, \alpha_{n}(\bar{x})$, let $\gamma(\bar{x}, \bar{y})=\left(y_{1} \leftrightarrow \alpha_{1}\right) \wedge \ldots \wedge\left(y_{n} \leftrightarrow \alpha_{n}\right)$ and observe that for any formula $\beta(\bar{y})$,

$$
\vdash_{\mathrm{IL}} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longleftrightarrow \gamma \vdash_{\mathrm{IL}} \beta .
$$

By the constructive proof of Pitts' theorem, we obtain a right uniform interpolant $\gamma_{R}(\bar{y})$ such that for any formula $\beta(\bar{y})$,
$\gamma \vdash_{\mathrm{IL}} \beta \Longleftrightarrow \gamma_{R} \vdash_{\mathrm{IL}} \beta$ and, in particular, $\vdash_{\mathrm{IL}} \gamma_{R}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
So $\alpha_{1}, \ldots, \alpha_{n}$ are independent if and only if $\vdash_{\text {IL }} \gamma_{R}$, which is decidable.

Model-Theoretic Consequences

A first-order theory T^{*} is a model completion of a universal theory T if
(a) T and T^{*} entail the same universal sentences;
(b) T^{*} admits quantifier elimination.

Model-Theoretic Consequences

A first-order theory T^{*} is a model completion of a universal theory T if
(a) T and T^{*} entail the same universal sentences;
(b) T^{*} admits quantifier elimination.

Moreover, T^{*} is then the theory of the existentially closed models of T.

Model-Theoretic Consequences

A first-order theory T^{*} is a model completion of a universal theory T if
(a) T and T^{*} entail the same universal sentences;
(b) T^{*} admits quantifier elimination.

Moreover, T^{*} is then the theory of the existentially closed models of T.

Theorem (Ghilardi and Zawadowski 1997)

(a) The opposite of the category of finitely presented Heyting algebras is an r-Heyting category.

Model-Theoretic Consequences

A first-order theory T^{*} is a model completion of a universal theory T if
(a) T and T^{*} entail the same universal sentences;
(b) T^{*} admits quantifier elimination.

Moreover, T^{*} is then the theory of the existentially closed models of T.

Theorem (Ghilardi and Zawadowski 1997)

(a) The opposite of the category of finitely presented Heyting algebras is an r-Heyting category.
(b) The first-order theory of Heyting algebras has a model completion.

References

A. Day. Varieties of Heyting algebras, II (Amalgamation and injectivity). Unpublished note (1972).
D. de Jongh and L.A. Chagrova. The decidability of dependency in intuitionistic propositional logic. Journal of Symbolic Logic 60 (1995), no. 2, 498-504.
R. Dyckhoff. Intuitionistic decision procedures since Gentzen. Advances in Proof Theory, Birkhäuser (2016), 245-267.
S. Ghilardi and M. Zawadowski.

Sheaves, Games and Model Completions, Kluwer (2002).
A.M. Pitts. On an interpretation of second-order quantification in first-order intuitionistic propositional logic. Journal of Symbolic Logic 57 (1992), 33-52.
K. Schütte. Der Interpolationssatz der intuitionistischen Pradikatenlogik. Mathematische Annalen 148 (1962), 192-200.

A General Setting

We make use of basic tools from universal algebra as found in, e.g.

S.N. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Springer Graduate Texts in Mathematics, 1981.
http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html

Languages, Algebras, Terms

Let us fix an algebraic language \mathcal{L} with at least one constant symbol.

Languages, Algebras, Terms

Let us fix an algebraic language \mathcal{L} with at least one constant symbol.
An \mathcal{L}-algebra \mathbf{A} consists of a non-empty set A together with an operation $\star^{\mathbf{A}}: A^{n} \rightarrow A$ for each n-ary operation symbol \star of \mathcal{L}.

Languages, Algebras, Terms

Let us fix an algebraic language \mathcal{L} with at least one constant symbol.
An \mathcal{L}-algebra \mathbf{A} consists of a non-empty set A together with an operation $\star^{\mathrm{A}}: A^{n} \rightarrow A$ for each n-ary operation symbol \star of \mathcal{L}.

We will use $\bar{x}, \bar{y}, \bar{z}$ to denote disjoint (possibly infinite) sets of variables, and let $\operatorname{Tm}(\bar{x})$ denote the term \mathcal{L}-algebra over \bar{x} with members $\alpha, \beta, \gamma, \ldots$

Congruences

A congruence Θ on an \mathcal{L}-algebra \mathbf{A} is an equivalence relation on A

Congruences

A congruence Θ on an \mathcal{L}-algebra \mathbf{A} is an equivalence relation on A that is preserved by each n-ary operation symbol \star of \mathcal{L}, i.e.,

$$
\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle \in \Theta \Longrightarrow\left\langle\star^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), \star^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in \Theta
$$

Congruences

A congruence Θ on an \mathcal{L}-algebra \mathbf{A} is an equivalence relation on A that is preserved by each n-ary operation symbol \star of \mathcal{L}, i.e.,

$$
\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle \in \Theta \Longrightarrow\left\langle\star^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), \star^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in \Theta
$$

The congruences of \mathbf{A} form a complete lattice $\langle\operatorname{Con} \mathbf{A}, \subseteq\rangle$ with bottom element $\Delta_{A}=\{\langle a, a\rangle \mid a \in A\}$ and top element $\nabla_{A}=A \times A$.

Congruences

A congruence Θ on an \mathcal{L}-algebra \mathbf{A} is an equivalence relation on A that is preserved by each n-ary operation symbol \star of \mathcal{L}, i.e.,

$$
\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle \in \Theta \Longrightarrow\left\langle\star^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right), \star^{\mathbf{A}}\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in \Theta .
$$

The congruences of \mathbf{A} form a complete lattice $\langle\operatorname{Con} \mathbf{A}, \subseteq\rangle$ with bottom element $\Delta_{A}=\{\langle a, a\rangle \mid a \in A\}$ and top element $\nabla_{A}=A \times A$.

We also let $\mathrm{Cg}_{\mathbf{A}}(R)$ denote the congruence on \mathbf{A} generated by $R \subseteq A \times A$.

Quotients

Given any $\Theta \in \operatorname{Con} \mathbf{A}$, the quotient \mathcal{L}-algebra \mathbf{A} / Θ consists of the set

$$
A / \Theta:=\left\{[a]_{\Theta} \mid a \in A\right\} \text { where }[a]_{\Theta}:=\{b \in A \mid\langle a, b\rangle \in \Theta\}
$$

Quotients

Given any $\Theta \in \operatorname{Con} \mathbf{A}$, the quotient \mathcal{L}-algebra \mathbf{A} / Θ consists of the set

$$
A / \Theta:=\left\{[a]_{\Theta} \mid a \in A\right\} \text { where }[a]_{\Theta}:=\{b \in A \mid\langle a, b\rangle \in \Theta\}
$$

equipped for each n-ary operation symbol \star of \mathcal{L} with an n-ary operation

$$
\star^{\mathbf{A} / \Theta}\left(\left[a_{1}\right]_{\Theta}, \ldots,\left[a_{n}\right]_{\Theta}\right)=\left[\star^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right]_{\Theta} .
$$

Homomorphisms and Kernels

Lemma

For any homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$ between \mathcal{L}-algebras A and B :

Homomorphisms and Kernels

Lemma

For any homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$ between \mathcal{L}-algebras A and B :
(a) $\operatorname{ker} h:=\{\langle a, b\rangle \in A \times A \mid h(a)=h(b)\}$ is a congruence on \mathbf{A}.

Homomorphisms and Kernels

Lemma

For any homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$ between \mathcal{L}-algebras \mathbf{A} and B :
(a) $\operatorname{ker} h:=\{\langle a, b\rangle \in A \times A \mid h(a)=h(b)\}$ is a congruence on \mathbf{A}.
(b) $\mathbf{A} /$ ker h is isomorphic to the subalgebra $h[\mathbf{A}]$ of \mathbf{B}.

Homomorphisms and Kernels

Lemma

For any homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$ between \mathcal{L}-algebras A and B :
(a) $\operatorname{ker} h:=\{\langle a, b\rangle \in A \times A \mid h(a)=h(b)\}$ is a congruence on \mathbf{A}.
(b) $\mathbf{A} / \operatorname{ker} h$ is isomorphic to the subalgebra $h[\mathbf{A}]$ of \mathbf{B}.
(c) h is an embedding (i.e., injective) if and only if $\operatorname{ker} h=\Delta_{A}$.

Homomorphisms and Kernels

Lemma

For any homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$ between \mathcal{L}-algebras A and B :
(a) $\operatorname{ker} h:=\{\langle a, b\rangle \in A \times A \mid h(a)=h(b)\}$ is a congruence on \mathbf{A}.
(b) $\mathbf{A} / \operatorname{ker} h$ is isomorphic to the subalgebra $h[\mathbf{A}]$ of \mathbf{B}.
(c) h is an embedding (i.e., injective) if and only if $\operatorname{ker} h=\Delta_{A}$.

For any $\Theta \in \operatorname{Con} \mathbf{A}$, there exists an onto homomorphism with kernel Θ,

$$
h: \mathbf{A} \rightarrow \mathbf{A} / \Theta ; \quad a \mapsto[a]_{\Theta} .
$$

Homomorphisms and Kernels

Lemma

For any homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$ between \mathcal{L}-algebras A and B :
(a) $\operatorname{ker} h:=\{\langle a, b\rangle \in A \times A \mid h(a)=h(b)\}$ is a congruence on \mathbf{A}.
(b) $\mathbf{A} / \operatorname{ker} h$ is isomorphic to the subalgebra $h[\mathbf{A}]$ of \mathbf{B}.
(c) h is an embedding (i.e., injective) if and only if $\operatorname{ker} h=\Delta_{A}$.

For any $\Theta \in \operatorname{Con} \mathbf{A}$, there exists an onto homomorphism with kernel Θ,

$$
h: \mathbf{A} \rightarrow \mathbf{A} / \Theta ; \quad a \mapsto[a]_{\Theta} .
$$

So the kernels of homomorphisms from \mathbf{A} are exactly the congruences of \mathbf{A}.

Varieties

An \mathcal{L}-equation is an ordered pair $\langle\alpha, \beta\rangle$ of \mathcal{L}-terms, also written $\alpha \approx \beta$.

Varieties

An \mathcal{L}-equation is an ordered pair $\langle\alpha, \beta\rangle$ of \mathcal{L}-terms, also written $\alpha \approx \beta$.
An \mathcal{L}-variety is a class of \mathcal{L}-algebras that is

- closed under taking homomorphic images, subalgebras, and products,

Varieties

An \mathcal{L}-equation is an ordered pair $\langle\alpha, \beta\rangle$ of \mathcal{L}-terms, also written $\alpha \approx \beta$.
An \mathcal{L}-variety is a class of \mathcal{L}-algebras that is

- closed under taking homomorphic images, subalgebras, and products, or, equivalently, by a famous theorem of Birkhoff,
- defined by \mathcal{L}-equations.

Varieties

An \mathcal{L}-equation is an ordered pair $\langle\alpha, \beta\rangle$ of \mathcal{L}-terms, also written $\alpha \approx \beta$.
An \mathcal{L}-variety is a class of \mathcal{L}-algebras that is

- closed under taking homomorphic images, subalgebras, and products, or, equivalently, by a famous theorem of Birkhoff,
- defined by \mathcal{L}-equations.

We let \mathcal{V} be any \mathcal{L}-variety, e.g., Boolean algebras, Heyting algebras, MV-algebras, modal algebras, groups, rings, bounded lattices, groups...

Equational Consequence

For any set of \mathcal{L}-equations $\Sigma \cup\{\varepsilon\}$ containing exactly the variables in \bar{x},

Equational Consequence

For any set of \mathcal{L}-equations $\Sigma \cup\{\varepsilon\}$ containing exactly the variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon: \Longleftrightarrow \begin{array}{r}
\text { for any } \mathbf{A} \in \mathcal{V} \text { and homomorphism } e: \text { Tn } \\
\Sigma \subseteq \operatorname{ker}(e) \Longrightarrow \varepsilon \in \operatorname{ker}(e) .
\end{array}
$$

Equational Consequence

For any set of \mathcal{L}-equations $\Sigma \cup\{\varepsilon\}$ containing exactly the variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon: \Longleftrightarrow \begin{array}{r}
\text { for any } \mathbf{A} \in \mathcal{V} \text { and homomorphism } e: \mathbf{T n} \\
\Sigma \subseteq \operatorname{ker}(e) \Longrightarrow \varepsilon \in \operatorname{ker}(e) .
\end{array}
$$

We also write $\Sigma \models_{\mathcal{V}} \Delta$ if $\Sigma \models_{\mathcal{V}} \varepsilon$ for all $\varepsilon \in \Delta$.

Equational Consequence

For any set of \mathcal{L}-equations $\Sigma \cup\{\varepsilon\}$ containing exactly the variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon: \Longleftrightarrow \begin{array}{r}
\text { for any } \mathbf{A} \in \mathcal{V} \text { and homomorphism } e: \operatorname{Tn} \\
\Sigma \subseteq \operatorname{ker}(e) \Longrightarrow \varepsilon \in \operatorname{ker}(e) .
\end{array}
$$

We also write $\Sigma \models_{\mathcal{V}} \Delta$ if $\Sigma \models_{\mathcal{V}} \varepsilon$ for all $\varepsilon \in \Delta$.
Note. If we fix \bar{x}, then $\models_{\mathcal{V}}$ is an equational consequence relation.

Free Algebras

The free algebra of a variety \mathcal{V} over a set of variables \bar{x} can be defined as

$$
\mathbf{F}(\bar{x})=\operatorname{Tm}(\bar{x}) / \Theta_{\mathcal{V}}(\bar{x}) \quad \text { where }\langle\alpha, \beta\rangle \in \Theta_{\mathcal{V}}(\bar{x}): \Longleftrightarrow \models_{\mathcal{V}} \alpha \approx \beta
$$

Free Algebras

The free algebra of a variety \mathcal{V} over a set of variables \bar{x} can be defined as

$$
\mathbf{F}(\bar{x})=\operatorname{Tm}(\bar{x}) / \Theta_{\mathcal{V}}(\bar{x}) \quad \text { where }\langle\alpha, \beta\rangle \in \Theta_{\mathcal{V}}(\bar{x}): \Longleftrightarrow \models_{\mathcal{V}} \alpha \approx \beta
$$

We write α to denote both a term α in $\operatorname{Tm}(\bar{x})$ and $[\alpha]_{\Theta_{\mathcal{V}}(\bar{x})}$ in $F(\bar{x})$;

Free Algebras

The free algebra of a variety \mathcal{V} over a set of variables \bar{x} can be defined as

$$
\mathbf{F}(\bar{x})=\operatorname{Tm}(\bar{x}) / \Theta_{\mathcal{V}}(\bar{x}) \quad \text { where }\langle\alpha, \beta\rangle \in \Theta_{\mathcal{V}}(\bar{x}): \Longleftrightarrow \models_{\mathcal{V}} \alpha \approx \beta
$$

We write α to denote both a term α in $\operatorname{Tm}(\bar{x})$ and $[\alpha]_{\Theta_{\mathcal{V}}(\bar{x})}$ in $F(\bar{x})$; we also deliberately confuse an equation $\alpha \approx \beta$ with $\langle\alpha, \beta\rangle$ in $F(\bar{x})^{2}$.

Free Algebras

The free algebra of a variety \mathcal{V} over a set of variables \bar{x} can be defined as

$$
\mathbf{F}(\bar{x})=\operatorname{Tm}(\bar{x}) / \Theta_{\mathcal{V}}(\bar{x}) \quad \text { where }\langle\alpha, \beta\rangle \in \Theta_{\mathcal{V}}(\bar{x}): \Longleftrightarrow \models_{\mathcal{V}} \alpha \approx \beta
$$

We write α to denote both a term α in $\operatorname{Tm}(\bar{x})$ and $[\alpha]_{\Theta_{\mathcal{V}}(\bar{x})}$ in $F(\bar{x})$; we also deliberately confuse an equation $\alpha \approx \beta$ with $\langle\alpha, \beta\rangle$ in $F(\bar{x})^{2}$.

Examples:

1. The free Boolean algebra over $\left\{x_{1}, \ldots, x_{n}\right\}$ has $2^{2^{n}}$ elements.

Free Algebras

The free algebra of a variety \mathcal{V} over a set of variables \bar{x} can be defined as

$$
\mathbf{F}(\bar{x})=\mathbf{T m}(\bar{x}) / \Theta_{\mathcal{V}}(\bar{x}) \quad \text { where }\langle\alpha, \beta\rangle \in \Theta_{\mathcal{V}}(\bar{x}): \Longleftrightarrow \models_{\mathcal{V}} \alpha \approx \beta
$$

We write α to denote both a term α in $\operatorname{Tm}(\bar{x})$ and $[\alpha]_{\Theta_{\mathcal{V}}(\bar{x})}$ in $F(\bar{x})$; we also deliberately confuse an equation $\alpha \approx \beta$ with $\langle\alpha, \beta\rangle$ in $F(\bar{x})^{2}$.

Examples:

1. The free Boolean algebra over $\left\{x_{1}, \ldots, x_{n}\right\}$ has $2^{2^{n}}$ elements.
2. The free bounded lattice over $\{x, y\}$ contains $\perp, \top, x, y, x \wedge y, x \vee y$,

Free Algebras

The free algebra of a variety \mathcal{V} over a set of variables \bar{x} can be defined as

$$
\mathbf{F}(\bar{x})=\mathbf{T m}(\bar{x}) / \Theta_{\mathcal{V}}(\bar{x}) \quad \text { where }\langle\alpha, \beta\rangle \in \Theta_{\mathcal{V}}(\bar{x}): \Longleftrightarrow \models_{\mathcal{V}} \alpha \approx \beta
$$

We write α to denote both a term α in $\operatorname{Tm}(\bar{x})$ and $[\alpha]_{\Theta_{\mathcal{V}}(\bar{x})}$ in $F(\bar{x})$; we also deliberately confuse an equation $\alpha \approx \beta$ with $\langle\alpha, \beta\rangle$ in $F(\bar{x})^{2}$.

Examples:

1. The free Boolean algebra over $\left\{x_{1}, \ldots, x_{n}\right\}$ has $2^{2^{n}}$ elements.
2. The free bounded lattice over $\{x, y\}$ contains $\perp, \top, x, y, x \wedge y, x \vee y$, but the free bounded lattice over three variables is already infinite.

Free Algebras

The free algebra of a variety \mathcal{V} over a set of variables \bar{x} can be defined as

$$
\mathbf{F}(\bar{x})=\mathbf{T m}(\bar{x}) / \Theta_{\mathcal{V}}(\bar{x}) \quad \text { where }\langle\alpha, \beta\rangle \in \Theta_{\mathcal{V}}(\bar{x}): \Longleftrightarrow \models_{\mathcal{V}} \alpha \approx \beta
$$

We write α to denote both a term α in $\operatorname{Tm}(\bar{x})$ and $[\alpha]_{\Theta_{\mathcal{\nu}}(\bar{x})}$ in $F(\bar{x})$; we also deliberately confuse an equation $\alpha \approx \beta$ with $\langle\alpha, \beta\rangle$ in $F(\bar{x})^{2}$.

Examples:

1. The free Boolean algebra over $\left\{x_{1}, \ldots, x_{n}\right\}$ has $2^{2^{n}}$ elements.
2. The free bounded lattice over $\{x, y\}$ contains $\perp, \top, x, y, x \wedge y, x \vee y$, but the free bounded lattice over three variables is already infinite.
3. The free monoid over \bar{x} consists of all words over \bar{x}, and the free group over \bar{x} consists of all reduced words over \bar{x} and $\left\{x_{i}^{-1} \mid x_{i} \in \bar{x}\right\}$.

Properties of Free Algebras

Lemma

(a) Every free algebra of \mathcal{V} is a member of \mathcal{V}.

Properties of Free Algebras

Lemma

(a) Every free algebra of \mathcal{V} is a member of \mathcal{V}.
(b) For any $\mathbf{A} \in \mathcal{V}$ and map $f: \bar{x} \rightarrow A$, there exists a unique homomorphism $\hat{f}: \mathbf{F}(\bar{x}) \rightarrow \mathbf{A}$ satisfying $\hat{f}\left(x_{i}\right)=f\left(x_{i}\right)$ for all $x_{i} \in \bar{x}$.

Properties of Free Algebras

Lemma

(a) Every free algebra of \mathcal{V} is a member of \mathcal{V}.
(b) For any $\mathbf{A} \in \mathcal{V}$ and map $f: \bar{x} \rightarrow A$, there exists a unique homomorphism $\hat{f}: \mathbf{F}(\bar{x}) \rightarrow \mathbf{A}$ satisfying $\hat{f}\left(x_{i}\right)=f\left(x_{i}\right)$ for all $x_{i} \in \bar{x}$.
(c) Each $\mathbf{A} \in \mathcal{V}$ is a homomorphic image of some free algebra of \mathcal{V}.

Properties of Free Algebras

Lemma

(a) Every free algebra of \mathcal{V} is a member of \mathcal{V}.
(b) For any $\mathbf{A} \in \mathcal{V}$ and map $f: \bar{x} \rightarrow A$, there exists a unique homomorphism $\hat{f}: \mathbf{F}(\bar{x}) \rightarrow \mathbf{A}$ satisfying $\hat{f}\left(x_{i}\right)=f\left(x_{i}\right)$ for all $x_{i} \in \bar{x}$.
(c) Each $\mathbf{A} \in \mathcal{V}$ is a homomorphic image of some free algebra of \mathcal{V}.
(d) For any equation ε with variables in \bar{x},

$$
\models_{\mathcal{V}} \varepsilon \Longleftrightarrow \mathbf{F}(\bar{x}) \models \varepsilon .
$$

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup\{\varepsilon\}$ with variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \varepsilon \in \operatorname{Cg}_{\mathbf{F (\overline { x })}}(\Sigma)
$$

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup\{\varepsilon\}$ with variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \varepsilon \in \operatorname{Cg}_{\mathbf{F (\overline { x })}}(\Sigma) .
$$

Proof.

Let $\Psi:=\operatorname{Cg}_{\mathrm{F}(\overline{\mathrm{x}})}(\Sigma)$.

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup\{\varepsilon\}$ with variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \varepsilon \in \operatorname{Cg}_{\mathbf{F (x)}}(\Sigma)
$$

Proof.

Let $\Psi:=\operatorname{Cg}_{\mathrm{F}(\overline{\mathrm{x}})}(\Sigma)$.
(\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup\{\varepsilon\}$ with variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \varepsilon \in \operatorname{Cg}_{\mathbf{F}(\bar{x})}(\Sigma) .
$$

Proof.

Let $\Psi:=\mathrm{Cg}_{\mathrm{F}(\overline{\mathrm{X}})}(\Sigma)$.
(\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism

$$
e: \operatorname{Tm}(\bar{x}) \rightarrow \mathbf{F}(\bar{x}) / \Psi ; \quad \alpha \mapsto[\alpha]_{\psi} .
$$

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup\{\varepsilon\}$ with variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \varepsilon \in \operatorname{Cg}_{\mathbf{F (x)}}(\Sigma)
$$

Proof.

Let $\Psi:=\mathrm{Cg}_{\mathrm{F}(\overline{\mathrm{X}})}(\Sigma)$.
(\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism

$$
e: \operatorname{Tm}(\bar{x}) \rightarrow \mathbf{F}(\bar{x}) / \Psi ; \quad \alpha \mapsto[\alpha]_{\psi} .
$$

Then clearly $\Sigma \subseteq$ ker e,

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup\{\varepsilon\}$ with variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \varepsilon \in \operatorname{Cg}_{\mathbf{F (\overline { x })}}(\Sigma) .
$$

Proof.

Let $\Psi:=\mathrm{Cg}_{\mathrm{F}(\overline{\mathrm{X}})}(\Sigma)$.
(\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism

$$
e: \operatorname{Tm}(\bar{x}) \rightarrow \mathbf{F}(\bar{x}) / \Psi ; \quad \alpha \mapsto[\alpha]_{\psi} .
$$

Then clearly $\Sigma \subseteq$ ker e, so also $\varepsilon \in \operatorname{ker} e$.

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup\{\varepsilon\}$ with variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \varepsilon \in \operatorname{Cg}_{\mathbf{F (\overline { x })}}(\Sigma) .
$$

Proof.

Let $\Psi:=\operatorname{Cg}_{F_{(\bar{x})}}(\Sigma)$.
(\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism

$$
e: \operatorname{Tm}(\bar{x}) \rightarrow \mathbf{F}(\bar{x}) / \Psi ; \quad \alpha \mapsto[\alpha]_{\psi} .
$$

Then clearly $\Sigma \subseteq \operatorname{ker} e$, so also $\varepsilon \in \operatorname{ker} e$. Hence $\varepsilon \in \Psi$.

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup\{\varepsilon\}$ with variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \varepsilon \in \operatorname{Cg}_{\mathbf{F (\overline { x })}}(\Sigma)
$$

Proof.

Let $\Psi:=\operatorname{Cg}_{F_{(\bar{x})}}(\Sigma)$.
(\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism

$$
e: \operatorname{Tm}(\bar{x}) \rightarrow \mathbf{F}(\bar{x}) / \Psi ; \quad \alpha \mapsto[\alpha]_{\psi} .
$$

Then clearly $\Sigma \subseteq \operatorname{ker} e$, so also $\varepsilon \in \operatorname{ker} e$. Hence $\varepsilon \in \Psi$.
(\Leftarrow) If $\varepsilon \in \Psi$,

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup\{\varepsilon\}$ with variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \varepsilon \in \operatorname{Cg}_{\mathbf{F}(\bar{x})}(\Sigma) .
$$

Proof.

Let $\Psi:=\operatorname{Cg}_{F_{(\bar{x})}}(\Sigma)$.
(\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism

$$
e: \operatorname{Tm}(\bar{x}) \rightarrow \mathbf{F}(\bar{x}) / \Psi ; \quad \alpha \mapsto[\alpha]_{\psi} .
$$

Then clearly $\Sigma \subseteq \operatorname{ker} e$, so also $\varepsilon \in \operatorname{ker} e$. Hence $\varepsilon \in \Psi$.
(\Leftarrow) If $\varepsilon \in \Psi$, then for any $\mathbf{A} \in \mathcal{V}$ and homomorphism $e: \operatorname{Tm}(\bar{x}) \rightarrow \mathbf{A}$,

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup\{\varepsilon\}$ with variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \varepsilon \in \operatorname{Cg}_{\mathbf{F}(\bar{x})}(\Sigma) .
$$

Proof.

Let $\Psi:=\operatorname{Cg}_{\mathrm{F}(\overline{\mathrm{x}})}(\Sigma)$.
(\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism

$$
e: \operatorname{Tm}(\bar{x}) \rightarrow \mathbf{F}(\bar{x}) / \Psi ; \quad \alpha \mapsto[\alpha]_{\psi} .
$$

Then clearly $\Sigma \subseteq \operatorname{ker} e$, so also $\varepsilon \in \operatorname{ker} e$. Hence $\varepsilon \in \Psi$.
(\Leftarrow) If $\varepsilon \in \Psi$, then for any $\mathbf{A} \in \mathcal{V}$ and homomorphism $e: \operatorname{Tm}(\bar{x}) \rightarrow \mathbf{A}$,

$$
\Sigma \subseteq \operatorname{ker} e \quad \Longrightarrow
$$

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup\{\varepsilon\}$ with variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \varepsilon \in \operatorname{Cg}_{\mathbf{F}(\bar{x})}(\Sigma) .
$$

Proof.

Let $\Psi:=\operatorname{Cg}_{F_{(\bar{x})}}(\Sigma)$.
(\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism

$$
e: \operatorname{Tm}(\bar{x}) \rightarrow \mathbf{F}(\bar{x}) / \Psi ; \quad \alpha \mapsto[\alpha]_{\psi} .
$$

Then clearly $\Sigma \subseteq \operatorname{ker} e$, so also $\varepsilon \in \operatorname{ker} e$. Hence $\varepsilon \in \Psi$.
(\Leftarrow) If $\varepsilon \in \Psi$, then for any $\mathbf{A} \in \mathcal{V}$ and homomorphism $e: \operatorname{Tm}(\bar{x}) \rightarrow \mathbf{A}$,

$$
\Sigma \subseteq \operatorname{ker} e \quad \Longrightarrow \quad \varepsilon \in \operatorname{Cg}_{\mathbf{T m}(\bar{x})}(\Sigma) \vee \Theta_{\mathcal{V}}(\bar{x})
$$

Equational Consequence Again

Lemma

For any set of equations $\Sigma \cup\{\varepsilon\}$ with variables in \bar{x},

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \varepsilon \in \operatorname{Cg}_{\mathbf{F}(\bar{x})}(\Sigma) .
$$

Proof.

Let $\Psi:=\operatorname{Cg}_{F_{(\bar{x})}}(\Sigma)$.
(\Rightarrow) Suppose that $\Sigma \models_{\mathcal{V}} \varepsilon$ and consider the homomorphism

$$
e: \operatorname{Tm}(\bar{x}) \rightarrow \mathbf{F}(\bar{x}) / \Psi ; \quad \alpha \mapsto[\alpha]_{\psi} .
$$

Then clearly $\Sigma \subseteq \operatorname{ker} e$, so also $\varepsilon \in \operatorname{ker} e$. Hence $\varepsilon \in \Psi$.
(\Leftarrow) If $\varepsilon \in \Psi$, then for any $\mathbf{A} \in \mathcal{V}$ and homomorphism $e: \operatorname{Tm}(\bar{x}) \rightarrow \mathbf{A}$,

$$
\Sigma \subseteq \operatorname{ker} e \quad \Longrightarrow \quad \varepsilon \in \operatorname{Cg}_{\mathbf{T m}_{\mathbf{m}(\bar{x})}}(\Sigma) \vee \Theta_{\mathcal{V}}(\bar{x}) \subseteq \text { ker } e
$$

Tomorrow. . .

We will...

We will. . .

- explore relationships between interpolation and amalgamation

We will. . .

- explore relationships between interpolation and amalgamation
- describe uniform interpolation algebraically.

