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Yesterday

We saw that intuitionistic logic. . .

has the class of Heyting algebras as an equivalent algebraic semantics

can be presented via a sequent calculus that admits cut elimination

is decidable, has the disjunction property, and admits interpolation.
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Today

We will. . .

consider Pitts’ uniform interpolation theorem for intuitionistic logic

explain some of the nuts and bolts of universal algebra

investigate consequence and interpolation in this algebraic setting.
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Interpolation in Classical Logic

Theorem
Classical logic admits interpolation: for any formulas α(x , y), β(y , z)
satisfying α C̀L β,

there exists a formula γ(y) such that α C̀Lγ and γ C̀L β.

For example. . .

α = ¬(x → y)

β = y → ¬z

γ =

¬y

In fact, for any formula δ(y , z),

α C̀L δ ⇐⇒ γ C̀L δ.
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Uniform Interpolation in Classical Logic

Theorem
Classical logic admits uniform interpolation: for any formula α(x , y),
there exist formulas αL(y) and αR(y)

such that for any formula β(y , z),

β(y , z) C̀L α(x , y) ⇐⇒ β(y , z) C̀L α
L(y)

α(x , y) C̀L β(y , z) ⇐⇒ αR(y) C̀L β(y , z).

Proof.
Given any formula α(x , y), we just define

αL(y) =
∧
{α(ā, y) | ā ⊆ {⊥,>}}

αR(y) =
∨
{α(ā, y) | ā ⊆ {⊥,>}}.
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{α(ā, y) | ā ⊆ {⊥,>}}

αR(y) =
∨
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Uniform Interpolation in Intuitionistic Logic

Theorem (Pitts 1992)
Intuitionistic logic admits uniform interpolation: for any formula α(x , y),
there exist formulas αL(y) and αR(y) such that for any formula β(y , z),

α(x , y) ÌL β(y , z) ⇐⇒ αR(y) ÌL β(y , z)

β(y , z) ÌL α(x , y) ⇐⇒ β(y , z) ÌL α
L(y).

Proof idea. We define αL(y) and αR(y) by induction on the “weight” of α,
guided by derivability in a suitable terminating sequent calculus. . .
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The Sequent Calculus GIL◦

Identity Axioms

Γ, x ⇒ x
(id)

Left Operation Rules Right Operation Rules

Γ,⊥ ⇒ δ
(⊥⇒)

Γ⇒ >
(⇒>)

Γ, α, β ⇒ δ

Γ, α ∧ β ⇒ δ
(∧⇒)

Γ⇒ α Γ⇒ β

Γ⇒ α ∧ β
(⇒∧)

Γ, α⇒ δ Γ, β ⇒ δ

Γ, α ∨ β ⇒ δ
(∨⇒)

Γ⇒ α
Γ⇒ α ∨ β

(⇒∨)l
Γ⇒ β

Γ⇒ α ∨ β
(⇒∨)r

Γ, α→ β ⇒ α Γ, β ⇒ δ

Γ, α→ β ⇒ δ
(→⇒)

Γ, α⇒ β

Γ⇒ α→ β
(⇒→)
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The Sequent Calculus GIL∗

We obtain the sequent calculus GIL∗ by replacing in GIL◦ the rule

Γ, α→ β ⇒ α Γ, β ⇒ δ

Γ, α→ β ⇒ δ
(→⇒)

with the decomposition rules

Γ⇒ δ
Γ,⊥ → β ⇒ δ

Γ, x , β ⇒ δ

Γ, x , x → β ⇒ δ

Γ, α1 → (α2 → β)⇒ δ

Γ, (α1 ∧ α2)→ β ⇒ δ

Γ, β ⇒ δ

Γ,> → β ⇒ δ

Γ, α1 → β, α2 → β ⇒ δ

Γ, (α1 ∨ α2)→ β ⇒ δ

Γ, α2 → β ⇒ α1 → α2 Γ, β ⇒ δ

Γ, (α1 → α2)→ β ⇒ δ
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An Example Derivation

y , y → x , x ⇒ y
(id)

x → y , y → x , x ⇒ y
(⇒→)

x → y , y → x ⇒ x → y
(→⇒)

y , x ⇒ y
(id)

x → y , x ⇒ y
(→⇒)

x → y , (x → y)→ x ⇒ y
(→⇒)

(x → y) ∧ ((x → y)→ x)⇒ y
(∧⇒)

⇒ ((x → y) ∧ ((x → y)→ x))→ y
(⇒→)
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Weighing Formulas

The weight wt(α) of a formula α is defined inductively by

wt(x) = wt(⊥) = wt(>) = 1;

wt(α ∨ β) = wt(α→ β) = wt(α) + wt(β) + 1;

wt(α ∧ β) = wt(α) + wt(β) + 2,

yielding a well-ordering ≺ on formulas

α ≺ β :⇐⇒ wt(α) < wt(β).
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Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

Γ ≺ Π :⇐⇒
Γ = Γ′,∆ and Π = Π′,∆ with Π′ 6= ∅ and
each α ∈ Γ′ is ≺-smaller than some β ∈ Π′

and on sequents by defining

Γ⇒ α ≺ Π⇒ β :⇐⇒ Γ, α ≺ Π, β.

The premises of each rule of GIL∗ are all ≺-smaller than its conclusion;
e.g., wt(α1 → (α2 → β)) < wt((α1 ∧ α2)→ β) and

Γ, α1 → (α2 → β)⇒ δ ≺ Γ, (α1 ∧ α2)→ β ⇒ δ.

Hence proof search in GIL∗ is terminating.
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Soundness and Completeness

Theorem

`GIL∗ α1, . . . , αn ⇒ β ⇐⇒ ÌL (α1 ∧ . . . ∧ αn)→ β.

Proof.
(⇒) It suffices to check that the new implication left rules of GIL∗ preserve
derivability in IL; e.g.,

ÌL (γ ∧ (α1 → β) ∧ (α2 → β))→ δ =⇒ ÌL (γ ∧ ((α1 ∨ α2)→ β))→ δ.

(⇐) It suffices to prove that any sequent that is derivable in GIL◦ is also
derivable in GIL∗, proceeding by induction on the weight of the sequent
and considering all possible last steps of the GIL◦-derivation.

Note. GIL∗ can also be used to show that derivability in IL is in PSPACE.
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ÌL (γ ∧ (α1 → β) ∧ (α2 → β))→ δ =⇒ ÌL (γ ∧ ((α1 ∨ α2)→ β))→ δ.
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The Key Lemma for Uniform Interpolation

Lemma
For any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) ÌL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),
β(y , z) ÌL α

L(y); conversely, if β(y , z) ÌL α
L(y), then since, by (ii),

`GIL∗ α
L(y)⇒ α, also β(y , z) ÌL α. The case of αR(y) is similar.
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L(y), then since, by (ii),

`GIL∗ α
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L(y); conversely, if β(y , z) ÌL α
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If β(y , z) ÌL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅),

by (iii),
β(y , z) ÌL α
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L(y);

conversely, if β(y , z) ÌL α
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Proof Sketch

The formulas Ex(Γ) and Ax(Γ;α) are defined simultaneously by induction
over the well-ordering ≺

via finite sets of formulas Ex(Γ) and Ax(Γ;α):

Ex(Γ) :=
∧
Ex(Γ) and Ax(Γ;α) :=

∨
Ax(Γ;α) using the clauses

Γ matches Ex(Γ) contains
Γ′, y Ex(Γ′) ∧ y
Γ′, β1 ∧ β2 Ex(Γ′, β1, β2)
Γ′, β1 ∨ β2 Ex(Γ′, β1) ∨ Ex(Γ′, β2)
Γ′, (β1 → β2)→ β3 (Ex(Γ′, β2 → β3)→ Ax(Γ, β2 → β3;β1 → β2))→ Ex(Γ′, β3)
...

...

Γ;α matches Ax(Γ;α) contains
...

...
Γ′, x ; x >
Γ;β1 → β2 Ex(Γ, β1)→ Ax(Γ, β1;β2)

The calculus GIL∗ is then used to check that conditions (i)-(iii) are satisfied.
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Remarks

Other proofs of Pitts’ theorem have been given using bisimulations
(Ghilardi 1995, Visser 1996) and duality (van Gool and Reggio 2018).

There are exactly eight intermediate logics that admit interpolation
(Maksimova 1977), and all of these also have uniform interpolation
(Ghilardi and Zawadowski 2002).

Iemhoff has shown recently that any intermediate or modal logic
having a certain decomposition calculus admits uniform interpolation.
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An Application to Independence

Theorem (De Jongh and Chagrova 1995)
Independence in intuitionistic logic is decidable; that is, there exists an
algorithm to decide for formulas α1, . . . , αn if for any formula β(y1, . . . , yn),

ÌL β(α1, . . . , αn) =⇒ ÌL β.

Proof.
For formulas α1(x), . . . , αn(x), let γ(x , y) = (y1 ↔ α1) ∧ . . . ∧ (yn ↔ αn)
and observe that for any formula β(y),

ÌL β(α1, . . . , αn) ⇐⇒ γ ÌL β.

By the constructive proof of Pitts’ theorem, we obtain a right uniform
interpolant γR(y) such that for any formula β(y),

γ ÌL β ⇐⇒ γR ÌL β and, in particular, ÌL γR(α1, . . . , αn).

So α1, . . . , αn are independent if and only if ÌL γR , which is decidable.
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Proof.
For formulas α1(x), . . . , αn(x),

let γ(x , y) = (y1 ↔ α1) ∧ . . . ∧ (yn ↔ αn)
and observe that for any formula β(y),
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Proof.
For formulas α1(x), . . . , αn(x), let γ(x , y) = (y1 ↔ α1) ∧ . . . ∧ (yn ↔ αn)
and observe that for any formula β(y),
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Model-Theoretic Consequences

A first-order theory T ∗ is a model completion of a universal theory T if

(a) T and T ∗ entail the same universal sentences;
(b) T ∗ admits quantifier elimination.

Moreover, T ∗ is then the theory of the existentially closed models of T .

Theorem (Ghilardi and Zawadowski 1997)
(a) The opposite of the category of finitely presented Heyting algebras is

an r-Heyting category.
(b) The first-order theory of Heyting algebras has a model completion.
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A General Setting

We make use of basic tools from universal algebra as found in, e.g.

S.N. Burris and H.P. Sankappanavar. A Course in Universal Algebra.
Springer Graduate Texts in Mathematics, 1981.

http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
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Languages, Algebras, Terms

Let us fix an algebraic language L with at least one constant symbol.

An L-algebra A consists of a non-empty set A together with an operation
?A : An → A for each n-ary operation symbol ? of L.

We will use x , y , z to denote disjoint (possibly infinite) sets of variables, and
let Tm(x) denote the term L-algebra over x with members α, β, γ, . . .
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Congruences

A congruence Θ on an L-algebra A is an equivalence relation on A

that is
preserved by each n-ary operation symbol ? of L, i.e.,

〈a1, b1〉, . . . , 〈an, bn〉 ∈ Θ =⇒ 〈?A(a1, . . . , an), ?A(b1, . . . , bn)〉 ∈ Θ.

The congruences of A form a complete lattice 〈ConA,⊆〉 with bottom
element ∆A = {〈a, a〉 | a ∈ A} and top element ∇A = A× A.

We also let Cg
A

(R) denote the congruence on A generated by R ⊆ A× A.
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Quotients

Given any Θ ∈ ConA, the quotient L-algebra A/Θ consists of the set

A/Θ := {[a]Θ | a ∈ A} where [a]Θ := {b ∈ A | 〈a, b〉 ∈ Θ}

equipped for each n-ary operation symbol ? of L with an n-ary operation

?A/Θ([a1]Θ, . . . , [an]Θ) = [?A(a1, . . . , an)]Θ.
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Homomorphisms and Kernels

Lemma
For any homomorphism h : A→ B between L-algebras A and B:

(a) ker h := {〈a, b〉 ∈ A× A | h(a) = h(b)} is a congruence on A.

(b) A/ ker h is isomorphic to the subalgebra h[A] of B.

(c) h is an embedding (i.e., injective) if and only if ker h = ∆A.

For any Θ ∈ ConA, there exists an onto homomorphism with kernel Θ,

h : A→ A/Θ; a 7→ [a]Θ.

So the kernels of homomorphisms from A are exactly the congruences of A.
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Varieties

An L-equation is an ordered pair 〈α, β〉 of L-terms, also written α ≈ β.

An L-variety is a class of L-algebras that is

closed under taking homomorphic images, subalgebras, and products,

or, equivalently, by a famous theorem of Birkhoff,

defined by L-equations.

We let V be any L-variety, e.g., Boolean algebras, Heyting algebras,
MV-algebras, modal algebras, groups, rings, bounded lattices, groups. . .
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Equational Consequence

For any set of L-equations Σ ∪ {ε} containing exactly the variables in x ,

Σ |=V ε :⇐⇒
for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker(e) =⇒ ε ∈ ker(e).

We also write Σ |=V ∆ if Σ |=V ε for all ε ∈ ∆.

Note. If we fix x , then |=V is an equational consequence relation.
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Free Algebras

The free algebra of a variety V over a set of variables x can be defined as

F(x) = Tm(x)/ΘV(x) where 〈α, β〉 ∈ ΘV(x) :⇐⇒ |=V α ≈ β.

We write α to denote both a term α in Tm(x) and [α]ΘV (x) in F (x);
we also deliberately confuse an equation α ≈ β with 〈α, β〉 in F (x)2.

Examples:

1. The free Boolean algebra over {x1, . . . , xn} has 22n elements.

2. The free bounded lattice over {x , y} contains ⊥,>, x , y , x ∧ y , x ∨ y ,
but the free bounded lattice over three variables is already infinite.

3. The free monoid over x consists of all words over x , and the free
group over x consists of all reduced words over x and {x−1

i | xi ∈ x}.
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Properties of Free Algebras

Lemma

(a) Every free algebra of V is a member of V.

(b) For any A ∈ V and map f : x → A, there exists a unique
homomorphism f̂ : F(x)→ A satisfying f̂ (xi ) = f (xi ) for all xi ∈ x̄ .

(c) Each A ∈ V is a homomorphic image of some free algebra of V.

(d) For any equation ε with variables in x ,

|=V ε ⇐⇒ F(x) |= ε.
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Equational Consequence Again

Lemma
For any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ Cg
F(x)

(Σ).

Proof.
Let Ψ := Cg

F(x)
(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ Cg
Tm(x)

(Σ) ∨ΘV(x) ⊆ ker e.
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Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ Cg
Tm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29



Equational Consequence Again

Lemma
For any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ Cg
F(x)

(Σ).

Proof.
Let Ψ := Cg

F(x)
(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ Cg
Tm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29



Equational Consequence Again

Lemma
For any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ Cg
F(x)

(Σ).

Proof.
Let Ψ := Cg

F(x)
(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e,

so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ Cg
Tm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29



Equational Consequence Again

Lemma
For any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ Cg
F(x)

(Σ).

Proof.
Let Ψ := Cg

F(x)
(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e.

Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ Cg
Tm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29



Equational Consequence Again

Lemma
For any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ Cg
F(x)

(Σ).

Proof.
Let Ψ := Cg

F(x)
(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ Cg
Tm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29



Equational Consequence Again

Lemma
For any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ Cg
F(x)

(Σ).

Proof.
Let Ψ := Cg

F(x)
(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ,

then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ Cg
Tm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29



Equational Consequence Again

Lemma
For any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ Cg
F(x)

(Σ).

Proof.
Let Ψ := Cg

F(x)
(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ Cg
Tm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29



Equational Consequence Again

Lemma
For any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ Cg
F(x)

(Σ).

Proof.
Let Ψ := Cg

F(x)
(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒

ε ∈ Cg
Tm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29



Equational Consequence Again

Lemma
For any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ Cg
F(x)

(Σ).

Proof.
Let Ψ := Cg

F(x)
(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ Cg
Tm(x)

(Σ) ∨ΘV(x)

⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29



Equational Consequence Again

Lemma
For any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ Cg
F(x)

(Σ).

Proof.
Let Ψ := Cg

F(x)
(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ Cg
Tm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29



Tomorrow. . .

We will. . .

explore relationships between interpolation and amalgamation

describe uniform interpolation algebraically.
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