Bridges between Logic and Algebra
 Part 3: Interpolation and Amalgamation

George Metcalfe

Mathematical Institute University of Bern

TACL 2019 Summer School, île de Porquerolles, June 2019

Equational Consequence Recalled

We consider an algebraic language \mathcal{L} with at least one constant symbol, and any variety \mathcal{V} of \mathcal{L}-algebras.

Equational Consequence Recalled

We consider an algebraic language \mathcal{L} with at least one constant symbol, and any variety \mathcal{V} of \mathcal{L}-algebras.

Lemma

The following are equivalent for any sets of \mathcal{L}-equations $\Sigma(\bar{x}), \Delta(\bar{x})$:

Equational Consequence Recalled

We consider an algebraic language \mathcal{L} with at least one constant symbol, and any variety \mathcal{V} of \mathcal{L}-algebras.

Lemma

The following are equivalent for any sets of \mathcal{L}-equations $\Sigma(\bar{x}), \Delta(\bar{x})$:
(1) $\Sigma \models_{\mathcal{V}} \Delta$

Equational Consequence Recalled

We consider an algebraic language \mathcal{L} with at least one constant symbol, and any variety \mathcal{V} of \mathcal{L}-algebras.

Lemma

The following are equivalent for any sets of \mathcal{L}-equations $\Sigma(\bar{x}), \Delta(\bar{x})$:
(1) $\Sigma \models_{\mathcal{V}} \Delta \quad$ i.e., for any $\mathbf{A} \in \mathcal{V}$ and homomorphism e: $\operatorname{Tm}(\bar{x}) \rightarrow \mathbf{A}$,

$$
\Sigma \subseteq \operatorname{ker}(e) \Longrightarrow \Delta \subseteq \operatorname{ker}(e)
$$

Equational Consequence Recalled

We consider an algebraic language \mathcal{L} with at least one constant symbol, and any variety \mathcal{V} of \mathcal{L}-algebras.

Lemma

The following are equivalent for any sets of \mathcal{L}-equations $\Sigma(\bar{x}), \Delta(\bar{x})$:
(1) $\Sigma \models_{\mathcal{V}} \Delta \quad$ i.e., for any $\mathbf{A} \in \mathcal{V}$ and homomorphism e: $\operatorname{Tm}(\bar{x}) \rightarrow \mathbf{A}$,

$$
\Sigma \subseteq \operatorname{ker}(e) \Longrightarrow \Delta \subseteq \operatorname{ker}(e)
$$

(2) $\Delta \subseteq \mathrm{Cg}_{\mathbf{F}(\overline{\bar{x}})}(\Sigma)$.

Deductive Interpolation

\mathcal{V} admits deductive interpolation

Deductive Interpolation

\mathcal{V} admits deductive interpolation if whenever $\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z})$, there exists a set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \Delta(\bar{y}) \quad \text { and } \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

Deductive Interpolation

\mathcal{V} admits deductive interpolation if whenever $\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z})$, there exists a set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \Delta(\bar{y}) \quad \text { and } \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

Lemma

\mathcal{V} admits deductive interpolation if and only if for any set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \Longleftrightarrow \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

Deductive Interpolation

\mathcal{V} admits deductive interpolation if whenever $\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z})$, there exists a set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \Delta(\bar{y}) \quad \text { and } \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

Lemma

\mathcal{V} admits deductive interpolation if and only if for any set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \Longleftrightarrow \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

Proof hint. Consider $\Delta(\bar{y}):=\left\{\varepsilon(\bar{y})|\Sigma(\bar{x}, \bar{y})|_{\mathcal{V}} \varepsilon(\bar{y})\right\}$.

Lifting Inclusions

The inclusion map $i: \mathbf{F}(\bar{y}) \rightarrow \mathbf{F}(\bar{x}, \bar{y}) ; \alpha \mapsto \alpha$

Lifting Inclusions

The inclusion map $i: \mathbf{F}(\bar{y}) \rightarrow \mathbf{F}(\bar{x}, \bar{y}) ; \alpha \mapsto \alpha$ "lifts" to the maps

$$
i^{*}: \operatorname{Con} \mathbf{F}(\bar{y}) \rightarrow \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}) ; \quad \Theta \mapsto \operatorname{Cg}_{\mathbf{F}(\overline{\bar{x}}, \overline{\bar{y}})}(i[\Theta])
$$

Lifting Inclusions

The inclusion map $i: \mathbf{F}(\bar{y}) \rightarrow \mathbf{F}(\bar{x}, \bar{y}) ; \alpha \mapsto \alpha$ "lifts" to the maps

$$
\begin{aligned}
i^{*}: \operatorname{Con} \mathbf{F}(\bar{y}) \rightarrow \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}) ; & \Theta \mapsto \operatorname{Cg}_{\mathbf{F}(\bar{x}, \bar{y})}(i[\Theta]) \\
i^{-1}: \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \operatorname{Con} \mathbf{F}(\bar{y}) ; & \Psi \mapsto i^{-1}[\Psi]=\Psi \cap F(\bar{y})^{2} .
\end{aligned}
$$

Lifting Inclusions

The inclusion map $i: \mathbf{F}(\bar{y}) \rightarrow \mathbf{F}(\bar{x}, \bar{y}) ; \alpha \mapsto \alpha$ "lifts" to the maps

$$
\begin{aligned}
i^{*}: \operatorname{Con} \mathbf{F}(\bar{y}) \rightarrow \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}) ; & \Theta \mapsto \operatorname{Cg}_{\mathbf{F}(\bar{x}, \bar{y})}(i[\Theta]) \\
i^{-1}: \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \operatorname{Con} \mathbf{F}(\bar{y}) ; & \Psi \mapsto i^{-1}[\Psi]=\Psi \cap F(\bar{y})^{2} .
\end{aligned}
$$

Note that the pair $\left\langle i^{*}, i^{-1}\right\rangle$ is an adjunction, i.e.,

$$
i^{*}(\Theta) \subseteq \Psi \Longleftrightarrow \Theta \subseteq i^{-1}(\Psi)
$$

Deductive Interpolation Again

The following are equivalent:
(1) \mathcal{V} admits deductive interpolation, i.e., for any set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \Longleftrightarrow \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

Deductive Interpolation Again

The following are equivalent:
(1) \mathcal{V} admits deductive interpolation, i.e., for any set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \Longleftrightarrow \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

(2) The following diagram commutes (where i, j, k, l are inclusion maps):

Deductive Interpolation Again

The following are equivalent:
(1) \mathcal{V} admits deductive interpolation, i.e., for any set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \Longleftrightarrow \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

(2) The following diagram commutes (where i, j, k, l are inclusion maps):

$$
\operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}, \bar{z}) \xrightarrow[k^{-1}]{ } \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})
$$

That is, for any $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y})$,

$$
\operatorname{Cg}_{\mathbf{F}(\overline{,}, \bar{y}, \bar{z})}(\Theta) \cap F(\bar{y}, \bar{z})^{2}=\operatorname{Cg}_{\mathbf{F}(\bar{y}, \overline{\bar{z}})}\left(\Theta \cap F(\bar{y})^{2}\right) .
$$

But now. . .

What does deductive interpolation mean algebraically?

The Amalgamation Property

A variety \mathcal{V} has the amalgamation property if for any $\mathbf{A}, \mathrm{B}, \mathrm{C} \in \mathcal{V}$ and embeddings $i: \mathbf{A} \rightarrow \mathbf{B}$ and $j: \mathbf{A} \rightarrow \mathbf{C}$,

The Amalgamation Property

A variety \mathcal{V} has the amalgamation property if for any $\mathbf{A}, \mathrm{B}, \mathrm{C} \in \mathcal{V}$ and embeddings $i: \mathbf{A} \rightarrow \mathbf{B}$ and $j: \mathbf{A} \rightarrow \mathbf{C}$, there exist $\mathbf{D} \in \mathcal{V}$ and embeddings $h: \mathbf{B} \rightarrow \mathbf{D}$ and $k: \mathbf{C} \rightarrow \mathbf{D}$ satisfying $h i=k j$.

The Amalgamation Property

A variety \mathcal{V} has the amalgamation property if for any $A, B, C \in \mathcal{V}$ and embeddings $i: \mathbf{A} \rightarrow \mathbf{B}$ and $j: \mathbf{A} \rightarrow \mathbf{C}$, there exist $\mathbf{D} \in \mathcal{V}$ and embeddings $h: \mathbf{B} \rightarrow \mathbf{D}$ and $k: \mathbf{C} \rightarrow \mathbf{D}$ satisfying $h i=k j$.

A Key Lemma

Lemma (Pigozzi 1972)

\mathcal{V} has the amalgamation property if and only if for any $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y})$, $\Psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ satisfying

$$
\Theta \cap F(\bar{y})^{2}=\psi \cap F(\bar{y})^{2},
$$

A Key Lemma

Lemma (Pigozzi 1972)

\mathcal{V} has the amalgamation property if and only if for any $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y})$, $\Psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ satisfying

$$
\Theta \cap F(\bar{y})^{2}=\psi \cap F(\bar{y})^{2},
$$

there exists $\Phi \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}, \bar{z})$ satisfying

$$
\Theta=\Phi \cap F(\bar{x}, \bar{y})^{2} \quad \text { and } \quad \psi=\Phi \cap F(\bar{y}, \bar{z})^{2} .
$$

A Key Lemma

Lemma (Pigozzi 1972)

\mathcal{V} has the amalgamation property if and only if for any $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y})$, $\Psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ satisfying

$$
\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2},
$$

there exists $\Phi \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}, \bar{z})$ satisfying

$$
\Theta=\Phi \cap F(\bar{x}, \bar{y})^{2} \quad \text { and } \quad \psi=\Phi \cap F(\bar{y}, \bar{z})^{2}
$$

This property of congruences of free algebras can be reformulated in terms of consequence as the so-called Robinson property.

Proof Sketch (\Rightarrow)

Suppose that \mathcal{V} has the amalgamation property and $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y})$, $\psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ satisfy $\Phi_{0}:=\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$.

Proof Sketch (\Rightarrow)

Suppose that \mathcal{V} has the amalgamation property and $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y})$, $\psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ satisfy $\Phi_{0}:=\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$. We define

$$
\mathbf{A}=\mathbf{F}(\bar{y}) / \Phi_{0}, \quad \mathbf{B}=\mathbf{F}(\bar{x}, \bar{y}) / \Theta, \quad \text { and } \quad \mathbf{C}=\mathbf{F}(\bar{y}, \bar{z}) / \Psi
$$

Proof Sketch (\Rightarrow)

Suppose that \mathcal{V} has the amalgamation property and $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y})$, $\psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ satisfy $\Phi_{0}:=\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$. We define

$$
\mathbf{A}=\mathbf{F}(\bar{y}) / \Phi_{0}, \quad \mathbf{B}=\mathbf{F}(\bar{x}, \bar{y}) / \Theta, \quad \text { and } \quad \mathbf{C}=\mathbf{F}(\bar{y}, \bar{z}) / \Psi
$$

yielding an amalgam D

Proof Sketch (\Rightarrow)

Suppose that \mathcal{V} has the amalgamation property and $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y})$, $\Psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ satisfy $\Phi_{0}:=\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$. We define

$$
\mathbf{A}=\mathbf{F}(\bar{y}) / \Phi_{0}, \quad \mathbf{B}=\mathbf{F}(\bar{x}, \bar{y}) / \Theta, \quad \text { and } \quad \mathbf{C}=\mathbf{F}(\bar{y}, \bar{z}) / \Psi
$$

yielding an amalgam \mathbf{D} and a surjective homomorphism $g: \mathbf{F}(\bar{x}, \bar{y}, \bar{z}) \rightarrow \mathbf{D}$

Proof Sketch (\Rightarrow)

Suppose that \mathcal{V} has the amalgamation property and $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y})$, $\psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ satisfy $\Phi_{0}:=\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$. We define

$$
\mathbf{A}=\mathbf{F}(\bar{y}) / \Phi_{0}, \quad \mathbf{B}=\mathbf{F}(\bar{x}, \bar{y}) / \Theta, \quad \text { and } \quad \mathbf{C}=\mathbf{F}(\bar{y}, \bar{z}) / \Psi
$$

yielding an amalgam \mathbf{D} and a surjective homomorphism $g: \mathbf{F}(\bar{x}, \bar{y}, \bar{z}) \rightarrow \mathbf{D}$ with $\Phi:=\operatorname{ker}(g)$ satisfying $\Theta=\Phi \cap F(\bar{x}, \bar{y})^{2}$ and $\psi=\Phi \cap F(\bar{y}, \bar{z})^{2}$.

$$
\mathbf{F}(\bar{x}, \bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y}, \bar{z})
$$

Proof Sketch (\leftarrow)

Let $\mathbf{B}, \mathbf{C} \in \mathcal{V}$ be generated by \bar{x}, \bar{y} and \bar{y}, \bar{z}, respectively, with a common subalgebra \mathbf{A} generated by \bar{y}.

Proof Sketch (\leftarrow)

Let $\mathrm{B}, \mathrm{C} \in \mathcal{V}$ be generated by \bar{x}, \bar{y} and \bar{y}, \bar{z}, respectively, with a common subalgebra A generated by \bar{y}. Consider the surjective homomorphisms

$$
\pi_{A}: \mathbf{F}(\bar{y}) \rightarrow \mathbf{A}, \quad \pi_{B}: \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \mathbf{B}, \quad \text { and } \quad \pi_{C}: \mathbf{F}(\bar{y}, \bar{z}) \rightarrow \mathbf{C}
$$

Proof Sketch (\leftarrow)

Let $\mathbf{B}, \mathbf{C} \in \mathcal{V}$ be generated by \bar{x}, \bar{y} and \bar{y}, \bar{z}, respectively, with a common subalgebra A generated by \bar{y}. Consider the surjective homomorphisms

$$
\pi_{A}: \mathbf{F}(\bar{y}) \rightarrow \mathbf{A}, \quad \pi_{B}: \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \mathbf{B}, \quad \text { and } \quad \pi_{C}: \mathbf{F}(\bar{y}, \bar{z}) \rightarrow \mathbf{C}
$$

Then $\Theta=\operatorname{ker}\left(\pi_{B}\right), \Psi=\operatorname{ker}\left(\pi_{C}\right)$ satisfy $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$

$$
\begin{aligned}
& \mathbf{F}(\bar{x}, \bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y}, \bar{z})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \longrightarrow \mathrm{C}
\end{aligned}
$$

Proof Sketch (\leftarrow)

Let $\mathbf{B}, \mathbf{C} \in \mathcal{V}$ be generated by \bar{x}, \bar{y} and \bar{y}, \bar{z}, respectively, with a common subalgebra A generated by \bar{y}. Consider the surjective homomorphisms

$$
\pi_{A}: \mathbf{F}(\bar{y}) \rightarrow \mathbf{A}, \quad \pi_{B}: \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \mathbf{B}, \quad \text { and } \quad \pi_{C}: \mathbf{F}(\bar{y}, \bar{z}) \rightarrow \mathbf{C}
$$

Then $\Theta=\operatorname{ker}\left(\pi_{B}\right), \Psi=\operatorname{ker}\left(\pi_{C}\right)$ satisfy $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$ so, by assumption, there exists $\Phi \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}, \bar{z})$ such that $\Phi \cap F(\bar{x}, \bar{y})^{2}=\Theta$ and $\Phi \cap F(\bar{y}, \bar{z})^{2}=\Psi$.

$$
\mathbf{F}(\bar{x}, \bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y}, \bar{z})
$$

Proof Sketch (\leftarrow)

Let $\mathbf{B}, \mathbf{C} \in \mathcal{V}$ be generated by \bar{x}, \bar{y} and \bar{y}, \bar{z}, respectively, with a common subalgebra \mathbf{A} generated by \bar{y}. Consider the surjective homomorphisms

$$
\pi_{A}: \mathbf{F}(\bar{y}) \rightarrow \mathbf{A}, \quad \pi_{B}: \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \mathbf{B}, \quad \text { and } \quad \pi_{C}: \mathbf{F}(\bar{y}, \bar{z}) \rightarrow \mathbf{C}
$$

Then $\Theta=\operatorname{ker}\left(\pi_{B}\right), \Psi=\operatorname{ker}\left(\pi_{C}\right)$ satisfy $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$ so, by assumption, there exists $\Phi \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}, \bar{z})$ such that $\Phi \cap F(\bar{x}, \bar{y})^{2}=\Theta$ and $\Phi \cap F(\bar{y}, \bar{z})^{2}=\Psi$. The required amalgam is then $\mathbf{D}=\mathbf{F}(\bar{x}, \bar{y}, \bar{y}) / \Phi$.

$$
\mathbf{F}(\bar{x}, \bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y}, \bar{z})
$$

From Amalgamation to Deductive Interpolation

Abstract

Theorem If \mathcal{V} has the amalgamation property, then \mathcal{V} admits deductive interpolation.

From Amalgamation to Deductive Interpolation

Theorem

If \mathcal{V} has the amalgamation property, then \mathcal{V} admits deductive interpolation.

Proof.

Suppose that \mathcal{V} has the amalgamation property.

From Amalgamation to Deductive Interpolation

Theorem

If \mathcal{V} has the amalgamation property, then \mathcal{V} admits deductive interpolation.

Proof.

Suppose that \mathcal{V} has the amalgamation property. Given $\Sigma(\bar{x}, \bar{y})$, define

$$
\Theta=\operatorname{Cg}_{\mathbf{F}(\bar{x}, \overline{\mathrm{y}})}(\Sigma),
$$

From Amalgamation to Deductive Interpolation

Theorem

If \mathcal{V} has the amalgamation property, then \mathcal{V} admits deductive interpolation.

Proof.

Suppose that \mathcal{V} has the amalgamation property. Given $\Sigma(\bar{x}, \bar{y})$, define

$$
\Theta=\operatorname{Cg}_{F(\bar{x}, \bar{y})}(\Sigma), \quad \Pi=\Theta \cap F(\bar{y})^{2},
$$

From Amalgamation to Deductive Interpolation

Theorem

If \mathcal{V} has the amalgamation property, then \mathcal{V} admits deductive interpolation.

Proof.

Suppose that \mathcal{V} has the amalgamation property. Given $\Sigma(\bar{x}, \bar{y})$, define

$$
\Theta=\operatorname{Cg}_{\mathbf{F (\overline { x } , \overline { y })}}(\Sigma), \quad \Pi=\Theta \cap F(\bar{y})^{2}, \quad \text { and } \quad \psi=\operatorname{Cg}_{\mathbf{F (\overline { y } , \overline { z })}}(\Pi) .
$$

From Amalgamation to Deductive Interpolation

Theorem

If \mathcal{V} has the amalgamation property, then \mathcal{V} admits deductive interpolation.

Proof.

Suppose that \mathcal{V} has the amalgamation property. Given $\Sigma(\bar{x}, \bar{y})$, define

$$
\Theta=\operatorname{Cg}_{\mathbf{F (\overline { x } , \overline { y })}}(\Sigma), \quad \Pi=\Theta \cap F(\bar{y})^{2}, \quad \text { and } \quad \psi=\operatorname{Cg}_{\mathbf{F (\overline { y } , \overline { z })}}(\Pi) .
$$

Since $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$,

From Amalgamation to Deductive Interpolation

Theorem

If \mathcal{V} has the amalgamation property, then \mathcal{V} admits deductive interpolation.

Proof.

Suppose that \mathcal{V} has the amalgamation property. Given $\Sigma(\bar{x}, \bar{y})$, define

$$
\Theta=\operatorname{Cg}_{\mathbf{F (\overline { x } , \overline { y })}}(\Sigma), \quad \Pi=\Theta \cap F(\bar{y})^{2}, \quad \text { and } \quad \psi=\operatorname{Cg}_{\mathbf{F (\overline { y } , \overline { z })}}(\Pi) .
$$

Since $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$, there exists $\Phi \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}, \bar{z})$ satisfying

$$
\Theta=\Phi \cap F(\bar{x}, \bar{y})^{2} \quad \text { and } \quad \psi=\Phi \cap F(\bar{y}, \bar{z})^{2} .
$$

From Amalgamation to Deductive Interpolation

Theorem

If \mathcal{V} has the amalgamation property, then \mathcal{V} admits deductive interpolation.

Proof.

Suppose that \mathcal{V} has the amalgamation property. Given $\Sigma(\bar{x}, \bar{y})$, define

$$
\Theta=\operatorname{Cg}_{\mathbf{F (\overline { x } , \overline { y })}}(\Sigma), \quad \Pi=\Theta \cap F(\bar{y})^{2}, \quad \text { and } \quad \psi=\operatorname{Cg}_{\mathbf{F (\overline { y } , \overline { z })}}(\Pi) .
$$

Since $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$, there exists $\Phi \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}, \bar{z})$ satisfying

$$
\Theta=\Phi \cap F(\bar{x}, \bar{y})^{2} \quad \text { and } \quad \psi=\Phi \cap F(\bar{y}, \bar{z})^{2} .
$$

But $\Sigma \models_{\mathcal{V}} \Pi$

From Amalgamation to Deductive Interpolation

Theorem

If \mathcal{V} has the amalgamation property, then \mathcal{V} admits deductive interpolation.

Proof.

Suppose that \mathcal{V} has the amalgamation property. Given $\Sigma(\bar{x}, \bar{y})$, define

$$
\Theta=\operatorname{Cg}_{\mathbf{F (\overline { x } , \overline { y })}}(\Sigma), \quad \Pi=\Theta \cap F(\bar{y})^{2}, \quad \text { and } \quad \psi=\operatorname{Cg}_{\mathbf{F (\overline { y } , \overline { z })}}(\Pi) .
$$

Since $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$, there exists $\Phi \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}, \bar{z})$ satisfying

$$
\Theta=\Phi \cap F(\bar{x}, \bar{y})^{2} \quad \text { and } \quad \psi=\Phi \cap F(\bar{y}, \bar{z})^{2} .
$$

But $\Sigma \models_{\mathcal{V}} \Pi$ and for any $\varepsilon(\bar{y}, \bar{z})$,

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longrightarrow
$$

From Amalgamation to Deductive Interpolation

Theorem

If \mathcal{V} has the amalgamation property, then \mathcal{V} admits deductive interpolation.

Proof.

Suppose that \mathcal{V} has the amalgamation property. Given $\Sigma(\bar{x}, \bar{y})$, define

$$
\Theta=\operatorname{Cg}_{\mathbf{F (\overline { x } , \overline { y })}}(\Sigma), \quad \Pi=\Theta \cap F(\bar{y})^{2}, \quad \text { and } \quad \psi=\operatorname{Cg}_{\mathbf{F (\overline { y } , \overline { z })}}(\Pi) .
$$

Since $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$, there exists $\Phi \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}, \bar{z})$ satisfying

$$
\Theta=\Phi \cap F(\bar{x}, \bar{y})^{2} \quad \text { and } \quad \psi=\Phi \cap F(\bar{y}, \bar{z})^{2} .
$$

But $\Sigma \models_{\mathcal{V}} \Pi$ and for any $\varepsilon(\bar{y}, \bar{z})$,

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longrightarrow \varepsilon \in \Psi=\Phi \cap F(\bar{y}, \bar{z})^{2}
$$

From Amalgamation to Deductive Interpolation

Theorem

If \mathcal{V} has the amalgamation property, then \mathcal{V} admits deductive interpolation.

Proof.

Suppose that \mathcal{V} has the amalgamation property. Given $\Sigma(\bar{x}, \bar{y})$, define

$$
\Theta=\operatorname{Cg}_{\mathbf{F (\overline { x } , \overline { y })}}(\Sigma), \quad \Pi=\Theta \cap F(\bar{y})^{2}, \quad \text { and } \quad \psi=\operatorname{Cg}_{\mathbf{F (\overline { y } , \overline { z })}}(\Pi) .
$$

Since $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$, there exists $\Phi \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}, \bar{z})$ satisfying

$$
\Theta=\Phi \cap F(\bar{x}, \bar{y})^{2} \quad \text { and } \quad \psi=\Phi \cap F(\bar{y}, \bar{z})^{2} .
$$

But $\Sigma \models_{\mathcal{\nu}} \Pi$ and for any $\varepsilon(\bar{y}, \bar{z})$,

$$
\Sigma \models_{\mathcal{V}} \varepsilon \Longrightarrow \varepsilon \in \Psi=\Phi \cap F(\bar{y}, \bar{z})^{2} \Longrightarrow \Pi \models_{\mathcal{V}} \varepsilon .
$$

The Extension Property

\mathcal{V} has the extension property if whenever $\Sigma(\bar{x}, \bar{y}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z})$,

The Extension Property

\mathcal{V} has the extension property if whenever $\Sigma(\bar{x}, \bar{y}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z})$, there exists a set of equations $\Delta(\bar{y}, \bar{z})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \Delta(\bar{y}, \bar{z}) \quad \text { and } \quad \Delta(\bar{y}, \bar{z}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

The Extension Property

\mathcal{V} has the extension property if whenever $\Sigma(\bar{x}, \bar{y}), \Pi(\bar{y}, \bar{z}) \models_{\nu} \varepsilon(\bar{y}, \bar{z})$, there exists a set of equations $\Delta(\bar{y}, \bar{z})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models{ }_{\mathcal{V}} \Delta(\bar{y}, \bar{z}) \quad \text { and } \quad \Delta(\bar{y}, \bar{z}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \text {. }
$$

Note. The extension property may be viewed as a local deduction theorem where Δ is understood as " $\Pi \rightarrow \varepsilon$ ".

The Extension Property

\mathcal{V} has the extension property if whenever $\Sigma(\bar{x}, \bar{y}), \Pi(\bar{y}, \bar{z}) \models_{\nu} \varepsilon(\bar{y}, \bar{z})$, there exists a set of equations $\Delta(\bar{y}, \bar{z})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \Delta(\bar{y}, \bar{z}) \quad \text { and } \quad \Delta(\bar{y}, \bar{z}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

Note. The extension property may be viewed as a local deduction theorem where Δ is understood as " $\Pi \rightarrow \varepsilon$ ". E.g., for Heyting algebras, if

$$
\Sigma(\bar{x}, \bar{y}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{H} \mathcal{A}} \alpha(\bar{y}, \bar{z}) \approx \beta(\bar{y}, \bar{z})
$$

The Extension Property

\mathcal{V} has the extension property if whenever $\Sigma(\bar{x}, \bar{y}), \Pi(\bar{y}, \bar{z}) \models_{\nu} \varepsilon(\bar{y}, \bar{z})$, there exists a set of equations $\Delta(\bar{y}, \bar{z})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \Delta(\bar{y}, \bar{z}) \quad \text { and } \quad \Delta(\bar{y}, \bar{z}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \text {. }
$$

Note. The extension property may be viewed as a local deduction theorem where Δ is understood as " $\Pi \rightarrow \varepsilon$ ". E.g., for Heyting algebras, if

$$
\Sigma(\bar{x}, \bar{y}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{H} \mathcal{A}} \alpha(\bar{y}, \bar{z}) \approx \beta(\bar{y}, \bar{z})
$$

then we can assume that Π is finite

The Extension Property

\mathcal{V} has the extension property if whenever $\Sigma(\bar{x}, \bar{y}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z})$, there exists a set of equations $\Delta(\bar{y}, \bar{z})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \Delta(\bar{y}, \bar{z}) \quad \text { and } \quad \Delta(\bar{y}, \bar{z}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \text {. }
$$

Note. The extension property may be viewed as a local deduction theorem where Δ is understood as " $\Pi \rightarrow \varepsilon$ ". E.g., for Heyting algebras, if

$$
\Sigma(\bar{x}, \bar{y}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{H A}} \alpha(\bar{y}, \bar{z}) \approx \beta(\bar{y}, \bar{z}),
$$

then we can assume that Π is finite and let Δ consist of the single equation

$$
\top \approx \bigwedge\{\gamma \leftrightarrow \delta \mid \gamma \approx \delta \in \Pi\} \rightarrow(\alpha \leftrightarrow \beta) .
$$

A Bridge Theorem

Theorem (Bacsich, Czelakowski, Pigozzi, Ono, ...)

The following are equivalent:
(1) \mathcal{V} has the extension property: whenever $\sum(\bar{x}, \bar{y}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z})$, there exists a set of equations $\Delta(\bar{y}, \bar{z})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \Delta(\bar{y}, \bar{z}) \quad \text { and } \quad \Delta(\bar{y}, \bar{z}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

A Bridge Theorem

Theorem (Bacsich, Czelakowski, Pigozzi, Ono, ...)

The following are equivalent:
(1) \mathcal{V} has the extension property: whenever $\Sigma(\bar{x}, \bar{y}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z})$, there exists a set of equations $\Delta(\bar{y}, \bar{z})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\nu} \Delta(\bar{y}, \bar{z}) \quad \text { and } \quad \Delta(\bar{y}, \bar{z}), \Pi(\bar{y}, \bar{z}) \models_{\nu} \varepsilon(\bar{y}, \bar{z}) .
$$

(2) For any $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y})$ and $\psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$,

$$
\operatorname{Cg}_{\mathbf{F}(\overline{(x, y, \bar{z})}}(\Theta \cup \Psi) \cap F(\bar{y}, \bar{z})^{2}=\operatorname{Cg}_{\mathbf{F}(\bar{y}, \bar{z})}\left(\left(\operatorname{Cg}_{\mathbf{F}(\bar{x}, \overline{\bar{y}}, \overline{\bar{z}})}(\Theta) \cap F(\bar{y}, \bar{z})^{2}\right) \cup \Psi\right) .
$$

A Bridge Theorem

Theorem (Bacsich, Czelakowski, Pigozzi, Ono, ...)

The following are equivalent:
(1) \mathcal{V} has the extension property: whenever $\Sigma(\bar{x}, \bar{y}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z})$, there exists a set of equations $\Delta(\bar{y}, \bar{z})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \Delta(\bar{y}, \bar{z}) \quad \text { and } \quad \Delta(\bar{y}, \bar{z}), \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \text {. }
$$

(2) For any $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y})$ and $\psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$,

$$
\operatorname{Cg}_{\mathbf{F (\overline { x } , \overline { \overline { y } } , \overline { z })}}(\Theta \cup \Psi) \cap F(\bar{y}, \bar{z})^{2}=\operatorname{Cg}_{\mathbf{F}(\bar{y}, \bar{z})}\left(\left(\operatorname{Cg}_{\mathbf{F}(\bar{x}, \bar{y}, \overline{\mathrm{z}})}(\Theta) \cap F(\bar{y}, \bar{z})^{2}\right) \cup \Psi\right) .
$$

(3) \mathcal{V} has the congruence extension property: for any subalgebra \mathbf{B} of $\mathbf{A} \in \mathcal{V}$ and $\Theta \in \operatorname{Con} \mathbf{B}$, there exists $\Phi \in \operatorname{Con} \mathbf{A}$ with $\Theta=\Phi \cap B^{2}$.

From Deductive Interpolation to Amalgamation

Theorem

If \mathcal{V} admits deductive interpolation and has the extension property, then it has the amalgamation property.

From Deductive Interpolation to Amalgamation

Theorem

If \mathcal{V} admits deductive interpolation and has the extension property, then it has the amalgamation property.

Proof.

Let \mathcal{V} admit deductive interpolation and have the extension property,

From Deductive Interpolation to Amalgamation

Theorem

If \mathcal{V} admits deductive interpolation and has the extension property, then it has the amalgamation property.

Proof.

Let \mathcal{V} admit deductive interpolation and have the extension property, and consider $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}), \Psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ with $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$.

From Deductive Interpolation to Amalgamation

Theorem

If \mathcal{V} admits deductive interpolation and has the extension property, then it has the amalgamation property.

Proof.

Let \mathcal{V} admit deductive interpolation and have the extension property, and consider $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}), \Psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ with $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$. Define $\Phi=\operatorname{Cg}_{F_{(\overline{\bar{x}}, \overline{\bar{y}}, \bar{z})}}(\Theta \cup \Psi)$.

From Deductive Interpolation to Amalgamation

Theorem

If \mathcal{V} admits deductive interpolation and has the extension property, then it has the amalgamation property.

Proof.

Let \mathcal{V} admit deductive interpolation and have the extension property, and consider $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}), \Psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ with $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$. Define $\Phi=\operatorname{Cg}_{F_{(\overline{\bar{x}}, \overline{\bar{y}}, \bar{z})}}(\Theta \cup \Psi)$. Then by the extension property,

$$
\Phi \cap F(\bar{y}, \bar{z})^{2}=\operatorname{Cg}_{\mathbf{F}(\bar{y}, \bar{z})}\left(\left(\operatorname{Cg}_{\mathbf{F (\overline { x } , \overline { \overline { y } } , \overline { z })}}(\Theta) \cap F(\bar{y}, \bar{z})^{2}\right) \cup \Psi\right)
$$

From Deductive Interpolation to Amalgamation

Theorem

If \mathcal{V} admits deductive interpolation and has the extension property, then it has the amalgamation property.

Proof.

Let \mathcal{V} admit deductive interpolation and have the extension property, and consider $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}), \Psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ with $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$. Define $\Phi=\operatorname{Cg}_{F_{(\overline{\bar{x}}, \overline{\bar{y}}, \bar{z})}}(\Theta \cup \Psi)$. Then by the extension property,

$$
\Phi \cap F(\bar{y}, \bar{z})^{2}=\operatorname{Cg}_{\mathbf{F (\overline { y } , \overline { z })}}\left(\left(\operatorname{Cg}_{\mathbf{F (\overline { x } , \overline { \overline { y } } , \overline { z })}}(\Theta) \cap F(\bar{y}, \bar{z})^{2}\right) \cup \psi\right)
$$

But then, using deductive interpolation,

$$
\Phi \cap F(\bar{y}, \bar{z})^{2}=\operatorname{Cg}_{\mathbf{F (\overline { y } , \overline { z })}}\left(\operatorname{Cg}_{F(\bar{y}, \bar{z})}\left(\Theta \cap F(\bar{y})^{2}\right) \cup \psi\right)
$$

From Deductive Interpolation to Amalgamation

Theorem

If \mathcal{V} admits deductive interpolation and has the extension property, then it has the amalgamation property.

Proof.

Let \mathcal{V} admit deductive interpolation and have the extension property, and consider $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}), \Psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ with $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$. Define $\Phi=\operatorname{Cg}_{F_{(\overline{\bar{x}}, \overline{\bar{y}}, \bar{z})}}(\Theta \cup \Psi)$. Then by the extension property,

$$
\Phi \cap F(\bar{y}, \bar{z})^{2}=\operatorname{Cg}_{F(\bar{y}, \bar{z})}\left(\left(\operatorname{Cg}_{\mathbf{F (\overline { x } , \overline { \overline { y } } , \overline { z })}}(\Theta) \cap F(\bar{y}, \bar{z})^{2}\right) \cup \psi\right)
$$

But then, using deductive interpolation,

$$
\Phi \cap F(\bar{y}, \bar{z})^{2}=\operatorname{Cg}_{\mathbf{F}(\bar{y}, \bar{z})}\left(\mathrm{Cg}_{\mathbf{F}(\bar{y}, \bar{z})}\left(\Theta \cap F(\bar{y})^{2}\right) \cup \Psi\right)=\Psi \cap F(\bar{y})^{2},
$$

From Deductive Interpolation to Amalgamation

Theorem

If \mathcal{V} admits deductive interpolation and has the extension property, then it has the amalgamation property.

Proof.

Let \mathcal{V} admit deductive interpolation and have the extension property, and consider $\Theta \in \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}), \Psi \in \operatorname{Con} \mathbf{F}(\bar{y}, \bar{z})$ with $\Theta \cap F(\bar{y})^{2}=\Psi \cap F(\bar{y})^{2}$. Define $\Phi=\operatorname{Cg}_{F_{(\overline{\bar{x}}, \overline{\bar{y}}, \bar{z})}}(\Theta \cup \Psi)$. Then by the extension property,

$$
\Phi \cap F(\bar{y}, \bar{z})^{2}=\operatorname{Cg}_{\mathbf{F (\overline { y } , \overline { z })}}\left(\left(\operatorname{Cg}_{\mathbf{F (\overline { x } , \overline { y } , \overline { z })}}(\Theta) \cap F(\bar{y}, \bar{z})^{2}\right) \cup \psi\right)
$$

But then, using deductive interpolation,

$$
\Phi \cap F(\bar{y}, \bar{z})^{2}=\operatorname{Cg}_{\mathbf{F (\overline { y } , \overline { z })}}\left(\mathrm{Cg}_{\mathbf{F}(\bar{y}, \bar{z})}\left(\Theta \cap F(\bar{y})^{2}\right) \cup \Psi\right)=\Psi \cap F(\bar{y})^{2}
$$

and symmetrically, $\Phi \cap F(\bar{x}, \bar{y})^{2}=\Theta \cap F(\bar{z})^{2}$.

A Bridge Theorem

Theorem (Jónsson, Pigozzi, Bacsich, Czelakowski ...)

A variety with the congruence extension property admits deductive interpolation if and only if it has the amalgamation property.

Remarks

We can cross this bridge in both directions,

Remarks

We can cross this bridge in both directions, e.g.,

- interpolation has been proved for many intermediate and modal logics by establishing the amalgamation property (often using dualities) for corresponding varieties of Heyting and modal algebras;

Remarks

We can cross this bridge in both directions, e.g.,

- interpolation has been proved for many intermediate and modal logics by establishing the amalgamation property (often using dualities) for corresponding varieties of Heyting and modal algebras;
- the amalgamation property has been established for many varieties of residuated lattices by proving interpolation (often using proof theory) for corresponding substructural logics.

Further Relationships. . .

CEP + FAP
 ॥

 $$
\begin{array}{llll} \pi & \Uparrow & \Uparrow \end{array}
$$
 $$
\mathrm{MIP} \Longrightarrow \mathrm{RP} \Longrightarrow \mathrm{CDIP} \Longrightarrow \mathrm{DIP}
$$
 $$
\Uparrow
$$
 DIP + EP

But Now. . .

Can we describe uniform interpolation algebraically?

Deductive Interpolation

\mathcal{V} admits deductive interpolation if for any set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

Right Uniform Deductive Interpolation

\mathcal{V} admits right uniform deductive interpolation if for any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

Right Uniform Deductive Interpolation

\mathcal{V} admits right uniform deductive interpolation if for any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z})
$$

Lemma

\mathcal{V} admits right uniform deductive interpolation if and only if

Right Uniform Deductive Interpolation

\mathcal{V} admits right uniform deductive interpolation if for any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

Lemma

\mathcal{V} admits right uniform deductive interpolation if and only if
(i) \mathcal{V} admits deductive interpolation;

Right Uniform Deductive Interpolation

\mathcal{V} admits right uniform deductive interpolation if for any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z})
$$

Lemma

\mathcal{V} admits right uniform deductive interpolation if and only if
(i) \mathcal{V} admits deductive interpolation;
(ii) for any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y})
$$

Right Uniform Deductive Interpolation

\mathcal{V} admits right uniform deductive interpolation if for any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z})
$$

Lemma

\mathcal{V} admits right uniform deductive interpolation if and only if
(i) \mathcal{V} admits deductive interpolation;
(ii) for any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) .
$$

But what does the extra ingredient in (ii) mean algebraically?

Finitely Generated Congruences

The finitely generated congruences of an algebra \mathbf{A} always form a join-semilattice KCon \mathbf{A}.

Finitely Generated Congruences

The finitely generated congruences of an algebra \mathbf{A} always form a join-semilattice KCon \mathbf{A}.

Recall that the inclusion map $i: \mathbf{F}(\bar{y}) \rightarrow \mathbf{F}(\bar{x}, \bar{y})$ "lifts" to the maps

$$
\begin{aligned}
i^{*}: \operatorname{Con} \mathbf{F}(\bar{y}) \rightarrow \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}) ; & \Theta \mapsto \mathrm{Cg}_{\mathbf{F}(\bar{x}, \bar{y})}(i[\Theta]) \\
i^{-1}: \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \operatorname{Con} \mathbf{F}(\bar{y}) ; & \Psi \mapsto i^{-1}[\Psi]=\Psi \cap F(\bar{y})^{2} .
\end{aligned}
$$

Finitely Generated Congruences

The finitely generated congruences of an algebra \mathbf{A} always form a join-semilattice KCon \mathbf{A}.

Recall that the inclusion map $i: \mathbf{F}(\bar{y}) \rightarrow \mathbf{F}(\bar{x}, \bar{y})$ "lifts" to the maps

$$
\begin{aligned}
i^{*}: \operatorname{Con} \mathbf{F}(\bar{y}) \rightarrow \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}) ; & \Theta \mapsto \operatorname{Cg}_{\mathbf{F (\overline { x } , \overline { y })}}(i[\Theta]) \\
i^{-1}: \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \operatorname{Con} \mathbf{F}(\bar{y}) ; & \Psi \mapsto i^{-1}[\Psi]=\Psi \cap F(\bar{y})^{2} .
\end{aligned}
$$

The compact lifting of i restricts i^{*} to $\mathrm{KCon} \mathbf{F}(\bar{y}) \rightarrow \mathrm{KCon} \mathbf{F}(\bar{x}, \bar{y})$;

Finitely Generated Congruences

The finitely generated congruences of an algebra \mathbf{A} always form a join-semilattice KCon \mathbf{A}.

Recall that the inclusion map $i: \mathbf{F}(\bar{y}) \rightarrow \mathbf{F}(\bar{x}, \bar{y})$ "lifts" to the maps

$$
\begin{aligned}
i^{*}: \operatorname{Con} \mathbf{F}(\bar{y}) \rightarrow \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}) ; & \Theta \mapsto \operatorname{Cg}_{\mathbf{F}(\bar{x}, \bar{y})}(i[\Theta]) \\
i^{-1}: \operatorname{Con} \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \operatorname{Con} \mathbf{F}(\bar{y}) ; & \Psi \mapsto i^{-1}[\Psi]=\Psi \cap F(\bar{y})^{2} .
\end{aligned}
$$

The compact lifting of i restricts i^{*} to $\mathrm{KCon} \mathbf{F}(\bar{y}) \rightarrow \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$; it has a right adjoint if i^{-1} restricts to $\mathrm{KCon} \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \operatorname{KCon} \mathbf{F}(\bar{y})$.

The Missing Ingredient

Lemma

The following are equivalent:
(1) For any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there is a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y})
$$

The Missing Ingredient

Lemma

The following are equivalent:
(1) For any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there is a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) .
$$

(2) For finite \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a right adjoint;

The Missing Ingredient

Lemma

The following are equivalent:
(1) For any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there is a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) .
$$

(2) For finite \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a right adjoint; that is,

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})
$$

Finitely Generated and Finitely Presented Algebras

An algebra $\mathbf{A} \in \mathcal{V}$ is called

- finitely generated if it is generated by a finite subset of A;

Finitely Generated and Finitely Presented Algebras

An algebra $\mathbf{A} \in \mathcal{V}$ is called

- finitely generated if it is generated by a finite subset of A;
- finitely presented if it is isomorphic to $\mathbf{F}(\bar{x}) / \Theta$ for some finite set \bar{x} and finitely generated congruence Θ on $\mathbf{F}(\bar{x})$.

Finitely Generated and Finitely Presented Algebras

An algebra $\mathbf{A} \in \mathcal{V}$ is called

- finitely generated if it is generated by a finite subset of A;
- finitely presented if it is isomorphic to $\mathbf{F}(\bar{x}) / \Theta$ for some finite set \bar{x} and finitely generated congruence Θ on $\mathbf{F}(\bar{x})$.

Useful Lemma

If $\mathbf{A} \in \mathcal{V}$ is finitely presented and isomorphic to $\mathbf{F}(\bar{y}) / \Psi$ for some finite set \bar{y} and congruence ψ on $\mathrm{F}(\bar{y})$, then Ψ is finitely generated.

Coherence

Theorem (Kowalski and Metcalfe 2019)

The following are equivalent:
(1) For finite \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a right adjoint; that is, $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$.

Coherence

Theorem (Kowalski and Metcalfe 2019)

The following are equivalent:
(1) For finite \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a right adjoint; that is, $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$.
(2) \mathcal{V} is coherent:

Coherence

Theorem (Kowalski and Metcalfe 2019)

The following are equivalent:
(1) For finite \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a right adjoint; that is, $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$.
(2) \mathcal{V} is coherent: every finitely generated subalgebra of a finitely presented member of \mathcal{V} is finitely presented.

Coherence

Theorem (Kowalski and Metcalfe 2019)

The following are equivalent:
(1) For finite \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a right adjoint; that is, $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$.
(2) \mathcal{V} is coherent: every finitely generated subalgebra of a finitely presented member of \mathcal{V} is finitely presented.
(3) The compact lifting of any homomorphism between finitely presented algebras in \mathcal{V} has a right adjoint.

Coherence

Theorem (Kowalski and Metcalfe 2019)

The following are equivalent:
(1) For finite \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a right adjoint; that is, $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$.
(2) \mathcal{V} is coherent: every finitely generated subalgebra of a finitely presented member of \mathcal{V} is finitely presented.
(3) The compact lifting of any homomorphism between finitely presented algebras in \mathcal{V} has a right adjoint.

Note. Every locally finite variety is coherent.

Proof of $(1) \Leftrightarrow(2)$

We prove that \mathcal{V} is coherent if and only if for any finite \bar{x}, \bar{y},

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y}) .
$$

Proof of $(1) \Leftrightarrow(2)$

We prove that \mathcal{V} is coherent if and only if for any finite \bar{x}, \bar{y},

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})
$$

(\Rightarrow) Let \mathcal{V} be coherent and consider finite \bar{x}, \bar{y} and $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$.

Proof of $(1) \Leftrightarrow(2)$

We prove that \mathcal{V} is coherent if and only if for any finite \bar{x}, \bar{y},

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})
$$

(\Rightarrow) Let \mathcal{V} be coherent and consider finite \bar{x}, \bar{y} and $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$. Then $\mathbf{F}(\bar{x}, \bar{y}) / \Theta$ is finitely presented

Proof of $(1) \Leftrightarrow(2)$

We prove that \mathcal{V} is coherent if and only if for any finite \bar{x}, \bar{y},

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})
$$

(\Rightarrow) Let \mathcal{V} be coherent and consider finite \bar{x}, \bar{y} and $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$. Then $\mathbf{F}(\bar{x}, \bar{y}) / \Theta$ is finitely presented and, by coherence, $\mathbf{F}(\bar{y}) /\left(\Theta \cap F(\bar{y})^{2}\right)$ is also finitely presented.

Proof of $(1) \Leftrightarrow(2)$

We prove that \mathcal{V} is coherent if and only if for any finite \bar{x}, \bar{y},

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})
$$

(\Rightarrow) Let \mathcal{V} be coherent and consider finite \bar{x}, \bar{y} and $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$. Then $\mathbf{F}(\bar{x}, \bar{y}) / \Theta$ is finitely presented and, by coherence, $\mathbf{F}(\bar{y}) /\left(\Theta \cap F(\bar{y})^{2}\right)$ is also finitely presented. So, by the useful lemma, $\Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$.

Proof of $(1) \Leftrightarrow(2)$

We prove that \mathcal{V} is coherent if and only if for any finite \bar{x}, \bar{y},

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y}) .
$$

(\Rightarrow) Let \mathcal{V} be coherent and consider finite \bar{x}, \bar{y} and $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$. Then $\mathbf{F}(\bar{x}, \bar{y}) / \Theta$ is finitely presented and, by coherence, $\mathbf{F}(\bar{y}) /\left(\Theta \cap F(\bar{y})^{2}\right)$ is also finitely presented. So, by the useful lemma, $\Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$. (\Leftarrow) Let \mathbf{B} be a finitely generated subalgebra of a finitely presented $\mathbf{A} \in \mathcal{V}$.

Proof of $(1) \Leftrightarrow(2)$

We prove that \mathcal{V} is coherent if and only if for any finite \bar{x}, \bar{y},

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y}) .
$$

(\Rightarrow) Let \mathcal{V} be coherent and consider finite \bar{x}, \bar{y} and $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$. Then $\mathbf{F}(\bar{x}, \bar{y}) / \Theta$ is finitely presented and, by coherence, $\mathbf{F}(\bar{y}) /\left(\Theta \cap F(\bar{y})^{2}\right)$ is also finitely presented. So, by the useful lemma, $\Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$. (\Leftarrow) Let \mathbf{B} be a finitely generated subalgebra of a finitely presented $\mathbf{A} \in \mathcal{V}$. Let \bar{x}, \bar{y} and \bar{y} be finite sets generating \mathbf{A} and \mathbf{B}, respectively.

Proof of $(1) \Leftrightarrow(2)$

We prove that \mathcal{V} is coherent if and only if for any finite \bar{x}, \bar{y},

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y}) .
$$

(\Rightarrow) Let \mathcal{V} be coherent and consider finite \bar{x}, \bar{y} and $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$. Then $\mathbf{F}(\bar{x}, \bar{y}) / \Theta$ is finitely presented and, by coherence, $\mathbf{F}(\bar{y}) /\left(\Theta \cap F(\bar{y})^{2}\right)$ is also finitely presented. So, by the useful lemma, $\Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$. (\Leftarrow) Let \mathbf{B} be a finitely generated subalgebra of a finitely presented $\mathbf{A} \in \mathcal{V}$. Let \bar{x}, \bar{y} and \bar{y} be finite sets generating \mathbf{A} and \mathbf{B}, respectively. The natural onto homomorphism $h: \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \mathbf{A}$ restricts to $k: \mathbf{F}(\bar{y}) \rightarrow \mathbf{B}$,

Proof of $(1) \Leftrightarrow(2)$

We prove that \mathcal{V} is coherent if and only if for any finite \bar{x}, \bar{y},

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y}) .
$$

(\Rightarrow) Let \mathcal{V} be coherent and consider finite \bar{x}, \bar{y} and $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$. Then $\mathbf{F}(\bar{x}, \bar{y}) / \Theta$ is finitely presented and, by coherence, $\mathbf{F}(\bar{y}) /\left(\Theta \cap F(\bar{y})^{2}\right)$ is also finitely presented. So, by the useful lemma, $\Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$. (\Leftarrow) Let \mathbf{B} be a finitely generated subalgebra of a finitely presented $\mathbf{A} \in \mathcal{V}$. Let \bar{x}, \bar{y} and \bar{y} be finite sets generating \mathbf{A} and \mathbf{B}, respectively. The natural onto homomorphism $h: \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \mathbf{A}$ restricts to $k: \mathbf{F}(\bar{y}) \rightarrow \mathbf{B}$, which must also be onto.

Proof of $(1) \Leftrightarrow(2)$

We prove that \mathcal{V} is coherent if and only if for any finite \bar{x}, \bar{y},

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y}) .
$$

(\Rightarrow) Let \mathcal{V} be coherent and consider finite \bar{x}, \bar{y} and $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$. Then $\mathbf{F}(\bar{x}, \bar{y}) / \Theta$ is finitely presented and, by coherence, $\mathbf{F}(\bar{y}) /\left(\Theta \cap F(\bar{y})^{2}\right)$ is also finitely presented. So, by the useful lemma, $\Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$. (\Leftarrow) Let \mathbf{B} be a finitely generated subalgebra of a finitely presented $\mathbf{A} \in \mathcal{V}$. Let \bar{x}, \bar{y} and \bar{y} be finite sets generating \mathbf{A} and \mathbf{B}, respectively. The natural onto homomorphism $h: \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \mathbf{A}$ restricts to $k: \mathbf{F}(\bar{y}) \rightarrow \mathbf{B}$, which must also be onto. But ker $h \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$ by the useful lemma,

Proof of $(1) \Leftrightarrow(2)$

We prove that \mathcal{V} is coherent if and only if for any finite \bar{x}, \bar{y},

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y}) .
$$

(\Rightarrow) Let \mathcal{V} be coherent and consider finite \bar{x}, \bar{y} and $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$.
Then $\mathbf{F}(\bar{x}, \bar{y}) / \Theta$ is finitely presented and, by coherence, $\mathbf{F}(\bar{y}) /\left(\Theta \cap F(\bar{y})^{2}\right)$ is also finitely presented. So, by the useful lemma, $\Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$. (\Leftarrow) Let \mathbf{B} be a finitely generated subalgebra of a finitely presented $\mathbf{A} \in \mathcal{V}$. Let \bar{x}, \bar{y} and \bar{y} be finite sets generating \mathbf{A} and \mathbf{B}, respectively. The natural onto homomorphism $h: \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \mathbf{A}$ restricts to $k: \mathbf{F}(\bar{y}) \rightarrow \mathbf{B}$, which must also be onto. But ker $h \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$ by the useful lemma, so, using the assumption, $\operatorname{ker} k=\operatorname{ker} h \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$.

Proof of $(1) \Leftrightarrow(2)$

We prove that \mathcal{V} is coherent if and only if for any finite \bar{x}, \bar{y},

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})
$$

(\Rightarrow) Let \mathcal{V} be coherent and consider finite \bar{x}, \bar{y} and $\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$.
Then $\mathbf{F}(\bar{x}, \bar{y}) / \Theta$ is finitely presented and, by coherence, $\mathbf{F}(\bar{y}) /\left(\Theta \cap F(\bar{y})^{2}\right)$ is also finitely presented. So, by the useful lemma, $\Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$. (\Leftarrow) Let \mathbf{B} be a finitely generated subalgebra of a finitely presented $\mathbf{A} \in \mathcal{V}$. Let \bar{x}, \bar{y} and \bar{y} be finite sets generating \mathbf{A} and \mathbf{B}, respectively. The natural onto homomorphism $h: \mathbf{F}(\bar{x}, \bar{y}) \rightarrow \mathbf{A}$ restricts to $k: \mathbf{F}(\bar{y}) \rightarrow \mathbf{B}$, which must also be onto. But ker $h \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y})$ by the useful lemma, so, using the assumption, $\operatorname{ker} k=\operatorname{ker} h \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y})$. Hence, since \mathbf{B} is isomorphic to $\mathbf{F}(\bar{y}) /$ ker k, it is finitely presented.

Another Bridge Theorem

Theorem (Kowalski and Metcalfe 2019)

A variety with the congruence extension property admits right uniform deductive interpolation if and only if it has the amalgamation property and is coherent.

Left Uniform Deductive Interpolation

\mathcal{V} has left uniform deductive interpolation if for any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a finite set of equations $\Delta(\bar{y})$ such that

$$
\Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \Sigma(\bar{x}, \bar{y}) \quad \Longleftrightarrow \quad \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \Delta(\bar{y})
$$

Left Uniform Deductive Interpolation

\mathcal{V} has left uniform deductive interpolation if for any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a finite set of equations $\Delta(\bar{y})$ such that

$$
\Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \Sigma(\bar{x}, \bar{y}) \quad \Longleftrightarrow \quad \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \Delta(\bar{y}) .
$$

Lemma

The following are equivalent:
(1) \mathcal{V} has left uniform deductive interpolation.
(2) \mathcal{V} has deductive interpolation, and for finite sets \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a left adjoint.

Left Uniform Deductive Interpolation

\mathcal{V} has left uniform deductive interpolation if for any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a finite set of equations $\Delta(\bar{y})$ such that

$$
\Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \Sigma(\bar{x}, \bar{y}) \quad \Longleftrightarrow \quad \Pi(\bar{y}, \bar{z}) \models_{\mathcal{V}} \Delta(\bar{y})
$$

Lemma

The following are equivalent:
(1) \mathcal{V} has left uniform deductive interpolation.
(2) \mathcal{V} has deductive interpolation, and for finite sets \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a left adjoint.
Moreover, if \mathcal{V} is locally finite, these are equivalent to
(3) \mathcal{V} has deductive interpolation, is congruence distributive, and for finite sets \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ preserves meets.

An Example

An implicative semilattice is an algebraic structure $\langle A, \wedge, \rightarrow\rangle$ satisfying (i) $\langle A, \wedge\rangle$ is a semilattice; (ii) $a \wedge b \leq c \Longleftrightarrow a \leq b \rightarrow c$ for all $a, b, c \in A$.

An Example

An implicative semilattice is an algebraic structure $\langle A, \wedge, \rightarrow\rangle$ satisfying (i) $\langle A, \wedge\rangle$ is a semilattice; (ii) $a \wedge b \leq c \Longleftrightarrow a \leq b \rightarrow c$ for all $a, b, c \in A$.

The variety $\mathcal{I S} \mathcal{L}$ of implicative semilattices forms an equivalent algebraic semantics for the implication-conjunction fragment of intuitionistic logic

An Example

An implicative semilattice is an algebraic structure $\langle A, \wedge, \rightarrow\rangle$ satisfying (i) $\langle A, \wedge\rangle$ is a semilattice; (ii) $a \wedge b \leq c \Longleftrightarrow a \leq b \rightarrow c$ for all $a, b, c \in A$.

The variety $\mathcal{I S} \mathcal{L}$ of implicative semilattices forms an equivalent algebraic semantics for the implication-conjunction fragment of intuitionistic logic that admits right but not left uniform deductive interpolation.

An Example

An implicative semilattice is an algebraic structure $\langle A, \wedge, \rightarrow\rangle$ satisfying (i) $\langle A, \wedge\rangle$ is a semilattice; (ii) $a \wedge b \leq c \Longleftrightarrow a \leq b \rightarrow c$ for all $a, b, c \in A$.

The variety $\mathcal{I S} \mathcal{L}$ of implicative semilattices forms an equivalent algebraic semantics for the implication-conjunction fragment of intuitionistic logic that admits right but not left uniform deductive interpolation.

Consider $\Sigma=\left\{\top \approx\left(\left(y_{1} \rightarrow x\right) \wedge\left(y_{2} \rightarrow x\right)\right) \rightarrow x\right\}$

An Example

An implicative semilattice is an algebraic structure $\langle A, \wedge, \rightarrow\rangle$ satisfying (i) $\langle A, \wedge\rangle$ is a semilattice; (ii) $a \wedge b \leq c \Longleftrightarrow a \leq b \rightarrow c$ for all $a, b, c \in A$.

The variety $\mathcal{I S} \mathcal{L}$ of implicative semilattices forms an equivalent algebraic semantics for the implication-conjunction fragment of intuitionistic logic that admits right but not left uniform deductive interpolation.

Consider $\Sigma=\left\{\top \approx\left(\left(y_{1} \rightarrow x\right) \wedge\left(y_{2} \rightarrow x\right)\right) \rightarrow x\right\}$ and observe that

$$
\left\{T \approx y_{1}\right\} \models_{\mathcal{I S L}} \Sigma \quad \text { and } \quad\left\{T \approx y_{2}\right\} \models_{\mathcal{I S L}} \Sigma,
$$

An Example

An implicative semilattice is an algebraic structure $\langle A, \wedge, \rightarrow\rangle$ satisfying (i) $\langle A, \wedge\rangle$ is a semilattice; (ii) $a \wedge b \leq c \Longleftrightarrow a \leq b \rightarrow c$ for all $a, b, c \in A$.

The variety $\mathcal{I S} \mathcal{L}$ of implicative semilattices forms an equivalent algebraic semantics for the implication-conjunction fragment of intuitionistic logic that admits right but not left uniform deductive interpolation.

Consider $\Sigma=\left\{\top \approx\left(\left(y_{1} \rightarrow x\right) \wedge\left(y_{2} \rightarrow x\right)\right) \rightarrow x\right\}$ and observe that

$$
\left\{T \approx y_{1}\right\} \models_{\mathcal{I S L}} \Sigma \quad \text { and } \quad\left\{T \approx y_{2}\right\} \models_{\mathcal{I S L}} \Sigma,
$$

but there is no finite $\Delta\left(y_{1}, y_{2}\right)$ satisfying

$$
\Delta \models_{\mathcal{I S L}} \Sigma, \quad\left\{\top \approx y_{1}\right\} \models_{\mathcal{I S L}} \Delta, \quad \text { and } \quad\left\{T \approx y_{2}\right\} \models_{\mathcal{I S L}} \Delta,
$$

An Example

An implicative semilattice is an algebraic structure $\langle A, \wedge, \rightarrow\rangle$ satisfying (i) $\langle A, \wedge\rangle$ is a semilattice; (ii) $a \wedge b \leq c \Longleftrightarrow a \leq b \rightarrow c$ for all $a, b, c \in A$.

The variety $\mathcal{I S} \mathcal{L}$ of implicative semilattices forms an equivalent algebraic semantics for the implication-conjunction fragment of intuitionistic logic that admits right but not left uniform deductive interpolation.

Consider $\Sigma=\left\{\top \approx\left(\left(y_{1} \rightarrow x\right) \wedge\left(y_{2} \rightarrow x\right)\right) \rightarrow x\right\}$ and observe that

$$
\left\{T \approx y_{1}\right\} \models_{\mathcal{I S L}} \Sigma \quad \text { and } \quad\left\{T \approx y_{2}\right\} \models_{\mathcal{I S L}} \Sigma,
$$

but there is no finite $\Delta\left(y_{1}, y_{2}\right)$ satisfying

$$
\Delta \models_{\mathcal{I S L}} \Sigma, \quad\left\{T \approx y_{1}\right\} \models_{\mathcal{I S L}} \Delta, \quad \text { and } \quad\left\{T \approx y_{2}\right\} \models_{\mathcal{I S L}} \Delta,
$$

since such a Δ would give a definition of $y_{1} \vee y_{2}$ for implicative semilattices.

Left Adjoints for Homomorphisms

Lemma

The following are equivalent:
(1) The compact lifting of any homomorphism between finitely presented algebras in \mathcal{V} has a left adjoint.

Left Adjoints for Homomorphisms

Lemma

The following are equivalent:
(1) The compact lifting of any homomorphism between finitely presented algebras in \mathcal{V} has a left adjoint.
(2) The compact lifting of any inclusion $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a left adjoint, and for any finite $\bar{x}, \operatorname{KCon} \mathbf{F}(\bar{x})$ is a Brouwerian join-semilattice (i.e., \vee is residuated).

Left Adjoints for Homomorphisms

Lemma

The following are equivalent:
(1) The compact lifting of any homomorphism between finitely presented algebras in \mathcal{V} has a left adjoint.
(2) The compact lifting of any inclusion $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a left adjoint, and for any finite $\bar{x}, \operatorname{KCon} \mathbf{F}(\bar{x})$ is a Brouwerian join-semilattice (i.e., \vee is residuated).

Note. The condition that $\mathrm{KCon} \mathbf{F}(\omega)$ is a Brouwerian join-semilattice is equivalent to the property of equationally definable principal congruences.

Model Completions

Theorem (Wheeler 1976)

The theory of \mathcal{V} has a model completion if and only if \mathcal{V} is coherent, admits the amalgamation property, and has the conservative congruence extension property for its finitely presented members.

Model Completions

Theorem (Wheeler 1976)

The theory of \mathcal{V} has a model completion if and only if \mathcal{V} is coherent, admits the amalgamation property, and has the conservative congruence extension property for its finitely presented members.

Theorem (Ghilardi and Zawadowski 2002)

Suppose that
(i) \mathcal{V} is coherent and has the amalgamation property;

Model Completions

Theorem (Wheeler 1976)

The theory of \mathcal{V} has a model completion if and only if \mathcal{V} is coherent, admits the amalgamation property, and has the conservative congruence extension property for its finitely presented members.

Theorem (Ghilardi and Zawadowski 2002)

Suppose that
(i) \mathcal{V} is coherent and has the amalgamation property;
(ii) for finite sets \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a left adjoint, and $\operatorname{KCon} \mathbf{F}(\bar{x})$ is dually Brouwerian.

Model Completions

Theorem (Wheeler 1976)

The theory of \mathcal{V} has a model completion if and only if \mathcal{V} is coherent, admits the amalgamation property, and has the conservative congruence extension property for its finitely presented members.

Theorem (Ghilardi and Zawadowski 2002)

Suppose that
(i) \mathcal{V} is coherent and has the amalgamation property;
(ii) for finite sets \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a left adjoint, and $\operatorname{KCon} \mathbf{F}(\bar{x})$ is dually Brouwerian.
Then the theory of \mathcal{V} has a model completion.

Model Completions

Theorem (van Gool, Metcalfe, and Tsinakis 2017)

Model Completions

Theorem (van Gool, Metcalfe, and Tsinakis 2017)

Suppose that
(i) \mathcal{V} has left and right uniform interpolation;

Model Completions

Theorem (van Gool, Metcalfe, and Tsinakis 2017)

Suppose that
(i) \mathcal{V} has left and right uniform interpolation;
(ii) For any finite \bar{x} and finite set of equations $\Sigma(\bar{x}), \Delta(\bar{x})$ with \bar{x} finite, there exists a finite set of equations $\Pi(\bar{x})$ such that for any finite set of equations $\Gamma(\bar{x})$,

$$
\ulcorner, \Sigma \models \mathcal{v} \Delta \Longleftrightarrow \Gamma \models \mathcal{V} \sqcap .
$$

Model Completions

Theorem (van Gool, Metcalfe, and Tsinakis 2017)

Suppose that
(i) \mathcal{V} has left and right uniform interpolation;
(ii) For any finite \bar{x} and finite set of equations $\Sigma(\bar{x}), \Delta(\bar{x})$ with \bar{x} finite, there exists a finite set of equations $\Pi(\bar{x})$ such that for any finite set of equations $\Gamma(\bar{x})$,

$$
\ulcorner, \Sigma \models \mathcal{v} \Delta \Longleftrightarrow \Gamma \models \mathcal{V} \sqcap
$$

Then the theory of \mathcal{V} has a model completion.

Tomorrow

We will. . .

Tomorrow

We will. . .

- investigate uniform interpolation for some particular case studies

Tomorrow

We will. . .

- investigate uniform interpolation for some particular case studies
- provide a general criterion for establishing the failure of coherence

Tomorrow

We will. . .

- investigate uniform interpolation for some particular case studies
- provide a general criterion for establishing the failure of coherence
- pose some open problems and challenges.

References

S. Ghilardi and M. Zawadowski.

Sheaves, Games and Model Completions, Kluwer (2002).
S. van Gool, G. Metcalfe, and C. Tsinakis.

Uniform interpolation and compact congruences.
Annals of Pure and Applied Logic 168 (2017), 1927-1948.
T. Kowalski and G. Metcalfe. Uniform interpolation and coherence.

Annals of Pure and Applied Logic 170(7) (2019), 825-841.
G. Metcalfe, F. Montagna, and C. Tsinakis.

Amalgamation and interpolation in ordered algebras.
Journal of Algebra, 402:21-82, 2014.
W.H. Wheeler.

Model-companions and definability in existentially complete structures. Israel Journal of Mathematics 25 (1976), 305-330.

