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This Lecture

Yesterday. . .

we described a general algebraic framework for (uniform) interpolation
in varieties of algebras and connections with properties such as
amalgamation, coherence, and existence of a model completion.

Today. . .

we will consider some case studies, focussing first on modal logics.
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Modal Logics

Modal logics are used to reason about modal notions such as necessity,
knowledge, obligation, and proof; they correspond to expressive but
computationally tractable fragments of first-order logic.

Description logics are multi-modal logics for reasoning about concept
descriptions built from atomic concepts and roles such as

Man u ∀child.Woman “men having only daughters”.

However, we consider here only the basic language of classical logic
extended with a unary connective �, defining ♦α := ¬�¬α.

Modal logics may be presented syntactically via axiom systems, sequent
calculi, etc., and semantically via Kripke models, modal algebras, etc.
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Frames and Models

A Kripke frame 〈W ,R〉 is an ordered pair consisting of a non-empty set
of worlds W and a binary accessibility relation R ⊆W ×W .

A Kripke model M = 〈W ,R, |=〉 consists of a Kripke frame 〈W ,R〉
together with a binary relation |= between worlds and formulas satisfying

w |= α ∧ β if and only if w |= α and w |= β

w |= α ∨ β if and only if w |= α or w |= β

w |= ¬α if and only if w 6|= α

w |= �α if and only if v |= α for all v ∈W such that Rwv .

A formula α is valid in M, written M |= α, if w |= α for all w ∈W .
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Normal Modal Logics

The basic modal logic K can be defined by extending any axiomatization of
classical propositional logic with the axiom schema

(K) �(α→ β)→ (�α→ �β)

and the necessitation rule: from α, infer �α.

A normal modal logic is any axiomatic extension of K; in particular,

K4 = K + �α→ ��α

KT = K + �α→ α

S4 = K4 + �α→ α

GL = K4 + �(�α→ α)→ �α

S5 = S4 + ♦α→ �♦α.
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Completeness

A normal modal logic L is said to be complete with respect to a class of
frames C

if for any formula α,

L̀ α ⇐⇒ M |= α for every model M based on a frame in C.

The following normal modal logics are complete with respect to the given
class of frames:

Logic Frames

K all frames
K4 transitive frames
KT reflexive frames
S4 preorders
GL transitive and conversely well-founded frames
S5 equivalence relations

Moreover, all these logics have the finite model property.
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Modal Algebras

A modal algebra consists of a Boolean algebra extended with a unary
operation � satisfying

�(x ∧ y) ≈ �x ∧�y and �> ≈ >.

In particular, each Kripke frame 〈W ,R〉 yields a complex modal algebra

〈P(W ),∩,∪, c , ∅,W ,�〉 where �A := {w ∈W | Rwv for all v ∈ A}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 7 / 37



Modal Algebras

A modal algebra consists of a Boolean algebra extended with a unary
operation � satisfying

�(x ∧ y) ≈ �x ∧�y and �> ≈ >.

In particular, each Kripke frame 〈W ,R〉 yields a complex modal algebra

〈P(W ),∩,∪, c , ∅,W ,�〉 where �A := {w ∈W | Rwv for all v ∈ A}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 7 / 37



Equivalence

Let K be the variety of modal algebras,

and for a normal modal logic L, fix

VL := {A ∈ K | L̀ α =⇒ A |= α ≈ >}.

Theorem
VL is an equivalent algebraic semantics for L with transformers

τ(α) = α ≈ > and ρ(α ≈ β) = α↔ β.

That is, for any set of formulas T ∪ {α, β} and set of equations Σ,

(i) T L̀ α ⇐⇒ τ [T ] |=VL
τ(α);

(ii) Σ |=VL
α ≈ β ⇐⇒ ρ[T ] L̀ ρ(α ≈ β);

(iii) α a L̀ ρ(τ(α)) and α ≈ β =||=VL
τ(ρ(α ≈ β)).
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Interpolation in Modal Logic

A normal modal logic L admits deductive interpolation, i.e.,

α(x , y) L̀ β(y , z) =⇒ α L̀ γ and γ L̀ β for some γ(y),

if and only if VL admits the amalgamation property.

For example, K, K4, S4, GL, and somewhere between 43 and 49 axiomatic
extensions of S4 admit deductive interpolation, but not S5.

Note. However, L admits Craig interpolation, i.e.,

L̀ α(x , y)→ β(y , z) =⇒ L̀ α→ γ and L̀ γ → β for some γ(y)

if and only if VL admits the super amalgamation property.
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Uniform Interpolation in Modal Logic

Theorem (Ghilardi 1995, Visser 1996, Bílková 2007)
K has uniform interpolation.

Theorem (Kowalski and Metcalfe 2018)
K does not have .
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Uniform Interpolation in Modal Logic

Theorem (Ghilardi 1995, Visser 1996, Bílková 2007)
K has uniform Craig interpolation; that is, for any formula α(x , y), there
exist formulas αL(y) and αR(y) such that
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Recall. . .

A variety V has deductive interpolation if for any set of equations
Σ(x , y), there exists a set of equations ∆(y) such that

Σ(x , y) |=V ε(y , z) ⇐⇒ ∆(y) |=V ε(y , z).

Equivalently, V has deductive interpolation and for any finite set of
equations Σ(x , y), there exists a finite set of equations ∆(y) such that

Σ(x , y) |=V ε(y) ⇐⇒ ∆(y) |=V ε(y).
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Recall also. . .

Theorem (Kowalski and Metcalfe 2019)
The following are equivalent:

(1) For any finite set of equations Σ(x , y), there is a finite set of
equations ∆(y) such that

Σ(x , y) |=V ε(y) ⇐⇒ ∆(y) |=V ε(y).

(2) For finite x , y , the compact lifting of F(y) ↪→ F(x , y) has a right
adjoint; that is,

Θ ∈ KConF(x , y) =⇒ Θ ∩ F (y)2 ∈ KConF(y).

(3) V is coherent: every finitely generated subalgebra of a finitely
presented member of V is finitely presented.
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A Failure of Coherence

Theorem (Kowalski and Metcalfe 2018)
The variety of modal algebras is not coherent.

Corollary
The variety of modal algebras does not admit right uniform deductive
interpolation and its first-order theory does not have a model completion.

T. Kowalski and G. Metcalfe. Coherence in modal logic.
Proceedings of AiML 2018, College Publications (2018), 236–251.

T. Kowalski and G. Metcalfe. Uniform interpolation and coherence.
Annals of Pure and Applied Logic 170(7) (2019), 825–841.
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Proof

Let �α := �α ∧ α,

and define

Σ = {y ≤ x , x ≤ z , x ≈ �x} and ∆ = {y ≤ �kz | k ∈ N}.

Claim. Σ |=K ε(y , z) ⇐⇒ ∆ |=K ε(y , z).

It follows that if K were coherent, then {y ≤ �nz} |=K ∆ for some n ∈ N,
and from this that |=K �nz ≈ �n+1z , a contradiction.

Proof of claim.

(⇐) Just observe that Σ |=K ∆.

(⇒) Assume ∆ 6|=K ε(y , z). Then there is a complete modal algebra A and
homomorphism e : Tm(y , z)→ A such that ∆ ⊆ ker(e) and ε 6∈ ker(e).
Extend e with

e(x) =
∧
k∈N

�ke(z).

Then also Σ ⊆ ker(e), and hence Σ 6|=K ε(y , z).
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An Obvious Question

Can we generalize this proof to other varieties?
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A General Criterion

Theorem (Kowalski and Metcalfe 2019)
Let V be a coherent variety of algebras with a meet-semilattice reduct

and
let α(x , ū) be a term satisfying

V |= α(x , ū) ≤ x and V |= x ≤ x ′ ⇒ α(x , ū) ≤ α(x ′, ū).

Suppose also that for any finitely generated A ∈ V and a, b̄ ∈ A, there
exists B ∈ V containing A as a subalgebra and satisfying∧

k∈N
αk(a, b̄) = α(

∧
k∈N

αk(a, b̄), b̄).

Then V |= αn(x , ū) ≈ αn+1(x , ū) for some n ∈ N.
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Strong Kripke Completeness

A normal modal logic L is called strongly Kripke complete

if for any set
of formulas T ∪ {α},

T L̀ α ⇐⇒
for any Kripke model M based on a frame for L,

M |= T =⇒ M |= α.

E.g., K, KT, K4, S4, and S5 are strongly Kripke complete, but not GL.
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Coherence and Weak Transitivity

Applying our general criterion with α(x) = �x , using strong Kripke
completeness to establish the fixpoint condition, we obtain:

Theorem
Any coherent strongly Kripke complete variety of modal algebras is
weakly transitive: that is, it satisfies �n+1x ≈ �nx for some n ∈ N
(equivalently, it admits equationally definable principal congruences).

Hence a large family of non-weakly-transitive varieties of modal algebras
are not coherent, do not admit right uniform deductive interpolation, and
their first-order theories do not have a model completion.
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Weakly Transitive Modal Logics

We can also show that weakly transitive varieties of modal algebras for
logics such as K4 and S4 are not coherent

using the ternary term

α(x , y , z) = ♦(y ∧ ♦(z ∧ x)) ∧ x .

For any normal modal logic L,

VL |= α(x , y , z) ≤ x and VL |= x ≤ x ′ ⇒ α(x , y , z) ≤ α(x ′, y , z).

Lemma
Suppose that L admits finite chains: that is, for each n ∈ N there exists a
frame 〈W ,R〉 for L such that |W | = n and the reflexive closure of R is a
total order. Then VL 6|= αn(x , y , z) ≈ αn+1(x , y , z) for all n ∈ N.
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Weakly Transitive Modal Logics

Theorem (Kowalski and Metcalfe 2018)
Let L be a normal modal logic admitting finite chains

such that VL is
canonical: that is, closed under taking canonical extensions. Then
(a) VL is not coherent;
(b) VL does not admit right uniform deductive interpolation;
(c) the first-order theory of VL does not have a model completion.

In particular, this theorem applies to VK4 and VS4.
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Remarks

Note that GL admits finite chains but VGL is not canonical.

In fact, VGL is
coherent and admits uniform deductive interpolation (Shavrukov 1993);
also, its theory has a model completion (Ghilardi and Zawadowski 2002).

Ghilardi and Zawadowski have also proved that no logic extending K4 that
has the finite model property and admits all finite reflexive chains and the
two-element cluster is coherent.

S. Ghilardi and M. Zawadowski.
Sheaves, Games and Model Completions, Kluwer (2002).
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Coherence in Algebra

Any locally finite variety is coherent

— also the varieties of Heyting
algebras, abelian groups, abelian `-groups, and MV-algebras.

The varieties of groups, semigroups, and monoids are not coherent, since
every finitely generated recursively presented member of these varieties
embeds into a finitely presented member.
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Lattices

Theorem (Schmidt 1981)
The variety LAT of lattices is not coherent, does not admit right uniform
deductive interpolation, and its first-order theory does not have a model
completion.

We obtain an easier proof of this result using our criterion with the term

α(x , u1, u2, u3) = (u1 ∧ (u2 ∨ (u3 ∧ x))) ∧ x .

Just observe that

(i) LAT is closed under taking canonical completions;

(ii) LAT |= x ≤ α(x , ū) and LAT |= x ≤ y ⇒ α(x , ū) ≤ α(y , ū);

(iii) LAT 6|= αn(x , ū) ≈ αn+1(x , ū) for each n ∈ N.
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Residuated Lattices

A residuated lattice is an algebraic structure 〈A,∧,∨, ·, \, /, e〉 such that
〈A,∧,∨〉 is a lattice, 〈A, ·, e〉 is a monoid, and for all a, b, c ∈ A,

b ≤ a\c ⇐⇒ a · b ≤ c ⇐⇒ a ≤ c/b.

Applying our criterion with the term α(x) = (x ∧ e)2, we obtain:

Theorem (Kowalski and Metcalfe 2019)
Any coherent variety of residuated lattices that is closed under canonical
extensions satisfies (x ∧ e)n+1 ≈ (x ∧ e)n for some n ∈ N.

It follows that varieties of residuated lattices for the most well-studied
substructural logics are not coherent, do not admit right uniform deductive
interpolation, and their first-order theories do not have a model completion.
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Problem 1: Dealing with Failure

We have seen that the most well-studied modal and substructural logics,
and many important varieties from algebra, are not coherent.

In such cases,
can we determine instead which terms do admit uniform interpolants?

This problem has been considered for certain description logics, using
bisimulations to calculate uniform interpolants when they exist.

C. Lutz and F. Wolter. Foundations for uniform interpolation and forgetting in
expressive description logics. Proc. IJCAI 2011, AAAI Press (2011), 989–996.

Can we develop similar methods for constructing uniform interpolants for
modal logics, lattices, residuated lattices, etc.?
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Problem 2: Understanding Fixpoints

Our general criterion shows that in a coherent variety with a semilattice
reduct, terms satisfying certain conditions admit fixpoints.

Might it be the case that, conversely, admitting such fixpoints guarantees
the coherence of the variety?

Indeed for certain fixpoint modal logics, the fixpoint operators have been
used to construct uniform interpolants.

G. D’Agostino. Uniform interpolation, bisimulation quantifiers, and fixed points.
Proceedings of TbiLLC’05, pages 96–116, 2005.
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Problem 3: Understanding Model Completions

Can we extend the following theorem beyond varieties?

Theorem (van Gool, Metcalfe, and Tsinakis 2017)
Suppose that a variety V has left and right uniform interpolation and for
any finite x and finite set of equations Σ(x),∆(x) with x finite, there exists
a finite set of equations Π(x) such that for any finite set of equations Γ(x),

Γ,Σ |=V ∆ ⇐⇒ Γ |=V Π.

Then the theory of V has a model completion.

Can we understand the extra property in Wheeler’s theorem using logic?

Theorem (Wheeler 1976)
The theory of a variety V has a model completion if and only if V is
coherent, admits the amalgamation property, and has the conservative
congruence extension property for its finitely presented members.
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Problem 4: Tackling Independence

Can we extend the notion of independence to a more general setting?

Theorem (De Jongh and Chagrova 1995)
Independence in intuitionistic logic is decidable; that is, there exists an
algorithm to decide for formulas α1, . . . , αn if for any formula β(y1, . . . , yn),

ÌL β(α1, . . . , αn) =⇒ ÌL β.

D. de Jongh and L.A. Chagrova.
The decidability of dependency in intuitionistic propositional logic.
Journal of Symbolic Logic 60(2) (1995), 498–504.
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Independence in Varieties

Let V be any variety and let us call t1, . . . , tn ∈Tm(x) independent in V
if for all u, v ∈Tm(y1, . . . , yn),

|=V u(t) ≈ v(t) =⇒ |=V u ≈ v .

E.g., x1 ∧ (x2 ∨ x3) and x2 ∨ (x1 ∧ x3) are dependent in the variety of
distributive lattices — just consider the equation y1 ∧ y2 ≈ y1 — but
independent in the variety of lattices.

Note. For vector spaces, independence is just linear independence.
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An Algebraic Characterization

For t1, . . . , tn ∈Tm(x), consider the homomorphism defined by

h : F(y)→ F(x); yi 7→ ti .

Then t1, . . . , tn are independent in V

⇐⇒ h(u) = h(v) implies u = v

⇐⇒ ker(h) = ∆F(y)

⇐⇒ h is injective.

Equivalently, t1, . . . , tn are independent in V if and only if the subalgebra
of F(x) generated by t1, . . . , tn is free for V over t1, . . . , tn.

Note. For free algebras, independence coincides with a more general
notion studied by Marczewski, Narkiewicz, Urbanik, Gould, and others.
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Reducing Independence to Validity

Lemma
Suppose that for any t1, . . . , tn ∈Tm(x), a finite set of equations Πt̄(y)
can be constructed such that for any equation ε(y),

{y1 ≈ t1, . . . , yn ≈ tn} |=V ε ⇐⇒ Πt̄ |=V ε.

Then for any t1, . . . , tn ∈Tm(x),

t1, . . . , tn are independent in V ⇐⇒ |=V ε for all ε ∈ Πt̄ ,

and if the equational theory of V is decidable, so is independence in V.

Hence a constructive proof of coherence for V can be used to prove the
decidability of independence; note, however, that it suffices here to consider
only finitely generated subalgebras of finitely generated free algebras of V.

Problem 4a. Is there an easier proof for the case of intuitionistic logic?
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Examples

Independence is decidable. . .

in every locally finite variety

in the varieties of Heyting algebras, abelian groups, MV-algebras, and
abelian `-groups using (constructive) proofs of coherence

in the variety of modal algebras, since right uniform interpolants can
be computed when they exist (Lutz and Wolter 2011)

in the variety of groups, since the rank of a finitely generated
subgroup of a free group can be computed

in the variety of semigroups, since the problem reduces to the question
of whether a finite set of words is a code.

Problem 4b. Are there varieties where independence is undecidable?

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 32 / 37



Examples

Independence is decidable. . .

in every locally finite variety

in the varieties of Heyting algebras, abelian groups, MV-algebras, and
abelian `-groups using (constructive) proofs of coherence

in the variety of modal algebras, since right uniform interpolants can
be computed when they exist (Lutz and Wolter 2011)

in the variety of groups, since the rank of a finitely generated
subgroup of a free group can be computed

in the variety of semigroups, since the problem reduces to the question
of whether a finite set of words is a code.

Problem 4b. Are there varieties where independence is undecidable?

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 32 / 37



Examples

Independence is decidable. . .

in every locally finite variety

in the varieties of Heyting algebras, abelian groups, MV-algebras, and
abelian `-groups using (constructive) proofs of coherence

in the variety of modal algebras, since right uniform interpolants can
be computed when they exist (Lutz and Wolter 2011)

in the variety of groups, since the rank of a finitely generated
subgroup of a free group can be computed

in the variety of semigroups, since the problem reduces to the question
of whether a finite set of words is a code.

Problem 4b. Are there varieties where independence is undecidable?

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 32 / 37



Examples

Independence is decidable. . .

in every locally finite variety

in the varieties of Heyting algebras, abelian groups, MV-algebras, and
abelian `-groups using (constructive) proofs of coherence

in the variety of modal algebras,

since right uniform interpolants can
be computed when they exist (Lutz and Wolter 2011)

in the variety of groups, since the rank of a finitely generated
subgroup of a free group can be computed

in the variety of semigroups, since the problem reduces to the question
of whether a finite set of words is a code.

Problem 4b. Are there varieties where independence is undecidable?

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 32 / 37



Examples

Independence is decidable. . .

in every locally finite variety

in the varieties of Heyting algebras, abelian groups, MV-algebras, and
abelian `-groups using (constructive) proofs of coherence

in the variety of modal algebras, since right uniform interpolants can
be computed when they exist (Lutz and Wolter 2011)

in the variety of groups, since the rank of a finitely generated
subgroup of a free group can be computed

in the variety of semigroups, since the problem reduces to the question
of whether a finite set of words is a code.

Problem 4b. Are there varieties where independence is undecidable?

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 32 / 37



Examples

Independence is decidable. . .

in every locally finite variety

in the varieties of Heyting algebras, abelian groups, MV-algebras, and
abelian `-groups using (constructive) proofs of coherence

in the variety of modal algebras, since right uniform interpolants can
be computed when they exist (Lutz and Wolter 2011)

in the variety of groups,

since the rank of a finitely generated
subgroup of a free group can be computed

in the variety of semigroups, since the problem reduces to the question
of whether a finite set of words is a code.

Problem 4b. Are there varieties where independence is undecidable?

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 32 / 37



Examples

Independence is decidable. . .

in every locally finite variety

in the varieties of Heyting algebras, abelian groups, MV-algebras, and
abelian `-groups using (constructive) proofs of coherence

in the variety of modal algebras, since right uniform interpolants can
be computed when they exist (Lutz and Wolter 2011)

in the variety of groups, since the rank of a finitely generated
subgroup of a free group can be computed

in the variety of semigroups, since the problem reduces to the question
of whether a finite set of words is a code.

Problem 4b. Are there varieties where independence is undecidable?

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 32 / 37



Examples

Independence is decidable. . .

in every locally finite variety

in the varieties of Heyting algebras, abelian groups, MV-algebras, and
abelian `-groups using (constructive) proofs of coherence

in the variety of modal algebras, since right uniform interpolants can
be computed when they exist (Lutz and Wolter 2011)

in the variety of groups, since the rank of a finitely generated
subgroup of a free group can be computed

in the variety of semigroups,

since the problem reduces to the question
of whether a finite set of words is a code.

Problem 4b. Are there varieties where independence is undecidable?

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 32 / 37



Examples

Independence is decidable. . .

in every locally finite variety

in the varieties of Heyting algebras, abelian groups, MV-algebras, and
abelian `-groups using (constructive) proofs of coherence

in the variety of modal algebras, since right uniform interpolants can
be computed when they exist (Lutz and Wolter 2011)

in the variety of groups, since the rank of a finitely generated
subgroup of a free group can be computed

in the variety of semigroups, since the problem reduces to the question
of whether a finite set of words is a code.

Problem 4b. Are there varieties where independence is undecidable?

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 32 / 37



Examples

Independence is decidable. . .

in every locally finite variety

in the varieties of Heyting algebras, abelian groups, MV-algebras, and
abelian `-groups using (constructive) proofs of coherence

in the variety of modal algebras, since right uniform interpolants can
be computed when they exist (Lutz and Wolter 2011)

in the variety of groups, since the rank of a finitely generated
subgroup of a free group can be computed

in the variety of semigroups, since the problem reduces to the question
of whether a finite set of words is a code.

Problem 4b. Are there varieties where independence is undecidable?

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 32 / 37



Reducing Independence to Non-Validity

Lemma
Suppose that we can find a finite set ∆(y1, . . . , yn) of equations satisfying

(i) 6|=V δ for each δ ∈ ∆

(ii) for every equation ε(y) with 6|=V ε and all t1, . . . , tn ∈Tm(x),

|=V ε(t) =⇒ |=V δ(t) for some δ ∈ ∆.

Then t1, . . . , tn ∈Tm(x) are independent in V if and only if

6|=V ε(t) for all ε ∈ ∆,

and if the equational theory of V is decidable, so is independence in V.
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Distributive Lattices

Theorem
Terms t1, . . . , tn ∈ Tm(x) are independent in the variety DLat of
distributive lattices if and only if for all I ⊆ N := {1, . . . , n},

6|=DLat

∧
i∈I

ti ≤
∨

j∈N\I

tj .

Proof.
We use the previous lemma and distributivity law, observing that, e.g.,

|=DLat s ≤ u ∧ v ⇐⇒ |=DLat s ≤ u and |=DLat s ≤ v .
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A More General Version

Given a finite set of equations Σ(x), we say that t1, . . . , tn ∈Tm(x) are
Σ-independent in V if for all u, v ∈Tm(y1, . . . , yn),

Σ |=V u(t) ≈ v(t) =⇒ |=V u ≈ v .

This holds if and only if the homomorphism from F(y) to the finitely
presented algebra F(x)/Cg

F(x)
(Σ) defined by yi 7→ [ti ] is injective.

Again, a constructive proof of coherence for V can be used to prove the
decidability of Σ-independence.

Problem 4c. Can we decide Σ-independence when coherence fails?
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Tomorrow

Exercises!
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