Bridges between Logic and Algebra

Part 4: Case Studies

George Metcalfe

Mathematical Institute
University of Bern

TACL 2019 Summer School, Île de Porquerolles, June 2019

This Lecture

Yesterday...

- we described a general algebraic framework for (uniform) interpolation in varieties of algebras and connections with properties such as amalgamation, coherence, and existence of a model completion.

This Lecture

Yesterday...

- we described a general algebraic framework for (uniform) interpolation in varieties of algebras and connections with properties such as amalgamation, coherence, and existence of a model completion.

Today...

- we will consider some case studies, focussing first on modal logics.

Modal Logics

Modal logics are used to reason about modal notions such as necessity, knowledge, obligation, and proof; they correspond to expressive but computationally tractable fragments of first-order logic.

Modal Logics

Modal logics are used to reason about modal notions such as necessity, knowledge, obligation, and proof; they correspond to expressive but computationally tractable fragments of first-order logic.

Description logics are multi-modal logics for reasoning about concept descriptions built from atomic concepts and roles such as

Man $\sqcap \forall$ child.Woman "men having only daughters".

Modal Logics

Modal logics are used to reason about modal notions such as necessity, knowledge, obligation, and proof; they correspond to expressive but computationally tractable fragments of first-order logic.

Description logics are multi-modal logics for reasoning about concept descriptions built from atomic concepts and roles such as

$$
\text { Man } \sqcap \forall \text { child.Woman "men having only daughters". }
$$

However, we consider here only the basic language of classical logic extended with a unary connective \square, defining $\diamond \alpha:=\neg \square \neg \alpha$.

Modal Logics

Modal logics are used to reason about modal notions such as necessity, knowledge, obligation, and proof; they correspond to expressive but computationally tractable fragments of first-order logic.

Description logics are multi-modal logics for reasoning about concept descriptions built from atomic concepts and roles such as

Man $\sqcap \forall$ child.Woman "men having only daughters".

However, we consider here only the basic language of classical logic extended with a unary connective \square, defining $\diamond \alpha:=\neg \square \neg \alpha$.

Modal logics may be presented syntactically via axiom systems, sequent calculi, etc., and semantically via Kripke models, modal algebras, etc.

Frames and Models

A Kripke frame $\langle W, R\rangle$ is an ordered pair consisting of a non-empty set of worlds W and a binary accessibility relation $R \subseteq W \times W$.

Frames and Models

A Kripke frame $\langle W, R\rangle$ is an ordered pair consisting of a non-empty set of worlds W and a binary accessibility relation $R \subseteq W \times W$.

A Kripke model $\mathfrak{M}=\langle W, R, \models\rangle$ consists of a Kripke frame $\langle W, R\rangle$ together with a binary relation \models between worlds and formulas satisfying

Frames and Models

A Kripke frame $\langle W, R\rangle$ is an ordered pair consisting of a non-empty set of worlds W and a binary accessibility relation $R \subseteq W \times W$.

A Kripke model $\mathfrak{M}=\langle W, R, \models\rangle$ consists of a Kripke frame $\langle W, R\rangle$ together with a binary relation \models between worlds and formulas satisfying

- $w \models \alpha \wedge \beta$ if and only if $w \models \alpha$ and $w \models \beta$

Frames and Models

A Kripke frame $\langle W, R\rangle$ is an ordered pair consisting of a non-empty set of worlds W and a binary accessibility relation $R \subseteq W \times W$.

A Kripke model $\mathfrak{M}=\langle W, R, \models\rangle$ consists of a Kripke frame $\langle W, R\rangle$ together with a binary relation \models between worlds and formulas satisfying

- $w \models \alpha \wedge \beta$ if and only if $w \models \alpha$ and $w \models \beta$
- $w \models \alpha \vee \beta$ if and only if $w \models \alpha$ or $w \models \beta$

Frames and Models

A Kripke frame $\langle W, R\rangle$ is an ordered pair consisting of a non-empty set of worlds W and a binary accessibility relation $R \subseteq W \times W$.

A Kripke model $\mathfrak{M}=\langle W, R, \models\rangle$ consists of a Kripke frame $\langle W, R\rangle$ together with a binary relation \models between worlds and formulas satisfying

- $w \models \alpha \wedge \beta$ if and only if $w \models \alpha$ and $w \models \beta$
- $w \models \alpha \vee \beta$ if and only if $w \models \alpha$ or $w \models \beta$
- $w \models \neg \alpha$ if and only if $w \not \vDash \alpha$

Frames and Models

A Kripke frame $\langle W, R\rangle$ is an ordered pair consisting of a non-empty set of worlds W and a binary accessibility relation $R \subseteq W \times W$.

A Kripke model $\mathfrak{M}=\langle W, R, \models\rangle$ consists of a Kripke frame $\langle W, R\rangle$ together with a binary relation \models between worlds and formulas satisfying

- $w \models \alpha \wedge \beta$ if and only if $w \models \alpha$ and $w \models \beta$
- $w \models \alpha \vee \beta$ if and only if $w \models \alpha$ or $w \models \beta$
- $w \models \neg \alpha$ if and only if $w \not \vDash \alpha$
- $w \models \square \alpha$ if and only if $v \models \alpha$ for all $v \in W$ such that $R w v$.

Frames and Models

A Kripke frame $\langle W, R\rangle$ is an ordered pair consisting of a non-empty set of worlds W and a binary accessibility relation $R \subseteq W \times W$.

A Kripke model $\mathfrak{M}=\langle W, R, \models\rangle$ consists of a Kripke frame $\langle W, R\rangle$ together with a binary relation \models between worlds and formulas satisfying

- $w \models \alpha \wedge \beta$ if and only if $w \models \alpha$ and $w \models \beta$
- $w \models \alpha \vee \beta$ if and only if $w \models \alpha$ or $w \models \beta$
- $w \models \neg \alpha$ if and only if $w \not \vDash \alpha$
- $w \models \square \alpha$ if and only if $v \models \alpha$ for all $v \in W$ such that $R w v$.

A formula α is valid in \mathfrak{M}, written $\mathfrak{M} \vDash \alpha$, if $w \vDash \alpha$ for all $w \in \mathcal{W}$.

Normal Modal Logics

The basic modal logic K can be defined by extending any axiomatization of classical propositional logic with the axiom schema

$$
\text { (K) } \square(\alpha \rightarrow \beta) \rightarrow(\square \alpha \rightarrow \square \beta)
$$

and the necessitation rule: from α, infer $\square \alpha$.

Normal Modal Logics

The basic modal logic K can be defined by extending any axiomatization of classical propositional logic with the axiom schema

$$
\text { (K) } \square(\alpha \rightarrow \beta) \rightarrow(\square \alpha \rightarrow \square \beta)
$$

and the necessitation rule: from α, infer $\square \alpha$.
A normal modal logic is any axiomatic extension of K ;

Normal Modal Logics

The basic modal logic K can be defined by extending any axiomatization of classical propositional logic with the axiom schema

$$
\text { (K) } \square(\alpha \rightarrow \beta) \rightarrow(\square \alpha \rightarrow \square \beta)
$$

and the necessitation rule: from α, infer $\square \alpha$.
A normal modal logic is any axiomatic extension of K ; in particular,

$$
\mathrm{K} 4=\mathrm{K}+\square \alpha \rightarrow \square \square \alpha
$$

Normal Modal Logics

The basic modal logic K can be defined by extending any axiomatization of classical propositional logic with the axiom schema

$$
\text { (K) } \square(\alpha \rightarrow \beta) \rightarrow(\square \alpha \rightarrow \square \beta)
$$

and the necessitation rule: from α, infer $\square \alpha$.
A normal modal logic is any axiomatic extension of K ; in particular,

$$
\begin{aligned}
\mathrm{K} 4 & =\mathrm{K}+\square \alpha \rightarrow \square \square \alpha \\
\mathrm{KT} & =\mathrm{K}+\square \alpha \rightarrow \alpha
\end{aligned}
$$

Normal Modal Logics

The basic modal logic K can be defined by extending any axiomatization of classical propositional logic with the axiom schema

$$
\text { (K) } \square(\alpha \rightarrow \beta) \rightarrow(\square \alpha \rightarrow \square \beta)
$$

and the necessitation rule: from α, infer $\square \alpha$.
A normal modal logic is any axiomatic extension of K ; in particular,

$$
\begin{aligned}
\mathrm{K} 4 & =\mathrm{K}+\square \alpha \rightarrow \square \square \alpha \\
\mathrm{KT} & =\mathrm{K}+\square \alpha \rightarrow \alpha \\
\mathrm{S} 4 & =\mathrm{K} 4+\square \alpha \rightarrow \alpha
\end{aligned}
$$

Normal Modal Logics

The basic modal logic K can be defined by extending any axiomatization of classical propositional logic with the axiom schema

$$
\text { (K) } \square(\alpha \rightarrow \beta) \rightarrow(\square \alpha \rightarrow \square \beta)
$$

and the necessitation rule: from α, infer $\square \alpha$.
A normal modal logic is any axiomatic extension of K ; in particular,

$$
\begin{aligned}
\mathrm{K} 4 & =\mathrm{K}+\square \alpha \rightarrow \square \square \alpha \\
\mathrm{KT} & =\mathrm{K}+\square \alpha \rightarrow \alpha \\
\mathrm{S} 4 & =\mathrm{K} 4+\square \alpha \rightarrow \alpha \\
\mathrm{GL} & =\mathrm{K} 4+\square(\square \alpha \rightarrow \alpha) \rightarrow \square \alpha
\end{aligned}
$$

Normal Modal Logics

The basic modal logic K can be defined by extending any axiomatization of classical propositional logic with the axiom schema

$$
\text { (K) } \square(\alpha \rightarrow \beta) \rightarrow(\square \alpha \rightarrow \square \beta)
$$

and the necessitation rule: from α, infer $\square \alpha$.
A normal modal logic is any axiomatic extension of K ; in particular,

$$
\begin{aligned}
\mathrm{K} 4 & =\mathrm{K}+\square \alpha \rightarrow \square \square \alpha \\
\mathrm{KT} & =\mathrm{K}+\square \alpha \rightarrow \alpha \\
\mathrm{S} 4 & =\mathrm{K} 4+\square \alpha \rightarrow \alpha \\
\mathrm{GL} & =\mathrm{K} 4+\square(\square \alpha \rightarrow \alpha) \rightarrow \square \alpha \\
\mathrm{S} 5 & =\mathrm{S} 4+\diamond \alpha \rightarrow \square \diamond \alpha .
\end{aligned}
$$

Completeness

A normal modal logic L is said to be complete with respect to a class of frames \mathcal{C}

Completeness

A normal modal logic L is said to be complete with respect to a class of frames \mathcal{C} if for any formula α,
$\vdash_{\mathrm{L}} \alpha \Longleftrightarrow \mathfrak{M} \models \alpha$ for every model \mathfrak{M} based on a frame in \mathcal{C}.

Completeness

A normal modal logic L is said to be complete with respect to a class of frames \mathcal{C} if for any formula α,
$\vdash_{\mathrm{L}} \alpha \Longleftrightarrow \mathfrak{M} \models \alpha$ for every model \mathfrak{M} based on a frame in \mathcal{C}.
The following normal modal logics are complete with respect to the given class of frames:

Logic	Frames
K	all frames

Completeness

A normal modal logic L is said to be complete with respect to a class of frames \mathcal{C} if for any formula α,
$\vdash_{\mathrm{L}} \alpha \Longleftrightarrow \mathfrak{M} \models \alpha$ for every model \mathfrak{M} based on a frame in \mathcal{C}.
The following normal modal logics are complete with respect to the given class of frames:

Logic	Frames
K	all frames
K 4	transitive frames

Completeness

A normal modal logic L is said to be complete with respect to a class of frames \mathcal{C} if for any formula α,
$\vdash_{\mathrm{L}} \alpha \Longleftrightarrow \mathfrak{M} \models \alpha$ for every model \mathfrak{M} based on a frame in \mathcal{C}.
The following normal modal logics are complete with respect to the given class of frames:

Logic	Frames
K	all frames
K4	transitive frames
KT	reflexive frames

Completeness

A normal modal logic L is said to be complete with respect to a class of frames \mathcal{C} if for any formula α,
$\vdash_{\mathrm{L}} \alpha \Longleftrightarrow \mathfrak{M} \models \alpha$ for every model \mathfrak{M} based on a frame in \mathcal{C}.
The following normal modal logics are complete with respect to the given class of frames:

Logic	Frames
K	all frames
K4	transitive frames
KT	reflexive frames
S4	preorders

Completeness

A normal modal logic L is said to be complete with respect to a class of frames \mathcal{C} if for any formula α,
$\vdash_{\mathrm{L}} \alpha \Longleftrightarrow \mathfrak{M} \models \alpha$ for every model \mathfrak{M} based on a frame in \mathcal{C}.
The following normal modal logics are complete with respect to the given class of frames:

Logic	Frames
K	all frames
K4	transitive frames
KT	reflexive frames
S4	preorders
GL	transitive and conversely well-founded frames

Completeness

A normal modal logic L is said to be complete with respect to a class of frames \mathcal{C} if for any formula α,
$\vdash_{\mathrm{L}} \alpha \Longleftrightarrow \mathfrak{M} \models \alpha$ for every model \mathfrak{M} based on a frame in \mathcal{C}.
The following normal modal logics are complete with respect to the given class of frames:

Logic	Frames
K	all frames
K4	transitive frames
KT	reflexive frames
S4	preorders
GL	transitive and conversely well-founded frames
S5	equivalence relations

Completeness

A normal modal logic L is said to be complete with respect to a class of frames \mathcal{C} if for any formula α,

$$
\vdash_{\mathrm{L}} \alpha \Longleftrightarrow \mathfrak{M} \models \alpha \text { for every model } \mathfrak{M} \text { based on a frame in } \mathcal{C} .
$$

The following normal modal logics are complete with respect to the given class of frames:

Logic	Frames
K	all frames
K4	transitive frames
KT	reflexive frames
S4	preorders
GL	transitive and conversely well-founded frames
S5	equivalence relations

Moreover, all these logics have the finite model property.

Modal Algebras

A modal algebra consists of a Boolean algebra extended with a unary operation \square satisfying

$$
\square(x \wedge y) \approx \square x \wedge \square y \quad \text { and } \quad \square \top \approx \top
$$

Modal Algebras

A modal algebra consists of a Boolean algebra extended with a unary operation \square satisfying

$$
\square(x \wedge y) \approx \square x \wedge \square y \quad \text { and } \quad \square \top \approx \top
$$

In particular, each Kripke frame $\langle W, R\rangle$ yields a complex modal algebra

$$
\left\langle\mathcal{P}(W), \cap, \cup,{ }^{c}, \emptyset, W, \square\right\rangle \quad \text { where } \square A:=\{w \in W \mid R w v \text { for all } v \in A\}
$$

Equivalence

Let \mathcal{K} be the variety of modal algebras,

Equivalence

Let \mathcal{K} be the variety of modal algebras, and for a normal modal logic L, fix

$$
\mathcal{V}_{\mathrm{L}}:=\left\{\mathbf{A} \in \mathcal{K}\left|\vdash_{\mathrm{L}} \alpha \Longrightarrow \mathbf{A}\right|=\alpha \approx \top\right\} .
$$

Equivalence

Let \mathcal{K} be the variety of modal algebras, and for a normal modal logic L, fix

$$
\mathcal{V}_{\mathrm{L}}:=\left\{\mathbf{A} \in \mathcal{K} \mid \vdash_{\mathrm{L}} \alpha \Longrightarrow \mathbf{A} \models \alpha \approx \top\right\} .
$$

Theorem

\mathcal{V}_{L} is an equivalent algebraic semantics for L with transformers

$$
\tau(\alpha)=\alpha \approx \top \quad \text { and } \quad \rho(\alpha \approx \beta)=\alpha \leftrightarrow \beta .
$$

Equivalence

Let \mathcal{K} be the variety of modal algebras, and for a normal modal logic L, fix

$$
\mathcal{V}_{\mathrm{L}}:=\left\{\mathbf{A} \in \mathcal{K} \mid \vdash_{\mathrm{L}} \alpha \Longrightarrow \mathbf{A} \models \alpha \approx \top\right\}
$$

Theorem

\mathcal{V}_{L} is an equivalent algebraic semantics for L with transformers

$$
\tau(\alpha)=\alpha \approx \top \quad \text { and } \quad \rho(\alpha \approx \beta)=\alpha \leftrightarrow \beta
$$

That is, for any set of formulas $T \cup\{\alpha, \beta\}$ and set of equations Σ,
(i) $T \vdash_{\mathrm{L}} \alpha \Longleftrightarrow \tau[T] \models_{\mathcal{V}_{\mathrm{L}}} \tau(\alpha)$;
(ii) $\Sigma \models_{\mathcal{V}_{\mathrm{L}}} \alpha \approx \beta \Longleftrightarrow \rho[T] \vdash_{\mathrm{L}} \rho(\alpha \approx \beta)$;
(iii) $\alpha \vdash_{\llcorner } \rho(\tau(\alpha))$ and $\alpha \approx \beta=\models_{\mathcal{\nu}_{\mathrm{L}}} \tau(\rho(\alpha \approx \beta))$.

Interpolation in Modal Logic

A normal modal logic L admits deductive interpolation, i.e.,

Interpolation in Modal Logic

A normal modal logic L admits deductive interpolation, i.e.,

$$
\alpha(\bar{x}, \bar{y}) \vdash_{\mathrm{L}} \beta(\bar{y}, \bar{z}) \quad \Longrightarrow \quad \alpha \vdash_{\mathrm{L}} \gamma \text { and } \gamma \vdash_{\mathrm{L}} \beta \text { for some } \gamma(\bar{y}),
$$

Interpolation in Modal Logic

A normal modal logic L admits deductive interpolation, i.e.,

$$
\alpha(\bar{x}, \bar{y}) \vdash_{\mathrm{L}} \beta(\bar{y}, \bar{z}) \quad \Longrightarrow \quad \alpha \vdash_{\mathrm{L}} \gamma \text { and } \gamma \vdash_{\mathrm{L}} \beta \text { for some } \gamma(\bar{y}),
$$

if and only if \mathcal{V}_{L} admits the amalgamation property.

Interpolation in Modal Logic

A normal modal logic L admits deductive interpolation, i.e.,

$$
\alpha(\bar{x}, \bar{y}) \vdash_{\mathrm{L}} \beta(\bar{y}, \bar{z}) \quad \Longrightarrow \quad \alpha \vdash_{\mathrm{L}} \gamma \text { and } \gamma \vdash_{\mathrm{L}} \beta \text { for some } \gamma(\bar{y}),
$$

if and only if \mathcal{V}_{L} admits the amalgamation property.
For example, K, K4, S4, GL, and somewhere between 43 and 49 axiomatic extensions of S4 admit deductive interpolation, but not S5.

Interpolation in Modal Logic

A normal modal logic L admits deductive interpolation, i.e.,

$$
\alpha(\bar{x}, \bar{y}) \vdash_{\mathrm{L}} \beta(\bar{y}, \bar{z}) \quad \Longrightarrow \quad \alpha \vdash_{\mathrm{L}} \gamma \text { and } \gamma \vdash_{\mathrm{L}} \beta \text { for some } \gamma(\bar{y}),
$$

if and only if \mathcal{V}_{L} admits the amalgamation property.
For example, K, K4, S4, GL, and somewhere between 43 and 49 axiomatic extensions of S4 admit deductive interpolation, but not S5.

Note. However, L admits Craig interpolation, i.e.,

$$
\vdash_{\mathrm{L}} \alpha(\bar{x}, \bar{y}) \rightarrow \beta(\bar{y}, \bar{z}) \quad \Longrightarrow \quad \vdash_{\mathrm{L}} \alpha \rightarrow \gamma \text { and } \vdash_{\mathrm{L}} \gamma \rightarrow \beta \text { for some } \gamma(\bar{y})
$$

Interpolation in Modal Logic

A normal modal logic L admits deductive interpolation, i.e.,

$$
\alpha(\bar{x}, \bar{y}) \vdash_{\mathrm{L}} \beta(\bar{y}, \bar{z}) \quad \Longrightarrow \quad \alpha \vdash_{\mathrm{L}} \gamma \text { and } \gamma \vdash_{\mathrm{L}} \beta \text { for some } \gamma(\bar{y}),
$$

if and only if \mathcal{V}_{L} admits the amalgamation property.
For example, K, K4, S4, GL, and somewhere between 43 and 49 axiomatic extensions of S4 admit deductive interpolation, but not S5.

Note. However, L admits Craig interpolation, i.e.,

$$
\vdash_{\mathrm{L}} \alpha(\bar{x}, \bar{y}) \rightarrow \beta(\bar{y}, \bar{z}) \quad \Longrightarrow \quad \vdash_{\mathrm{L}} \alpha \rightarrow \gamma \text { and } \vdash_{\mathrm{L}} \gamma \rightarrow \beta \text { for some } \gamma(\bar{y})
$$

if and only if \mathcal{V}_{L} admits the super amalgamation property.

Uniform Interpolation in Modal Logic

Theorem (Ghilardi 1995, Visser 1996, Bílková 2007)

K has uniform interpolation.

Uniform Interpolation in Modal Logic

Theorem (Ghilardi 1995, Visser 1996, Bílková 2007)

K has uniform interpolation.

Theorem (Kowalski and Metcalfe 2018)
K does not have uniform interpolation.

Uniform Interpolation in Modal Logic

Theorem (Ghilardi 1995, Visser 1996, Bílková 2007)
 K has uniform Craig interpolation

Theorem (Kowalski and Metcalfe 2018)
K does not have uniform deductive interpolation.

Uniform Interpolation in Modal Logic

Theorem (Ghilardi 1995, Visser 1996, Bilková 2007)

K has uniform Craig interpolation; that is, for any formula $\alpha(\bar{x}, \bar{y})$, there exist formulas $\alpha^{L}(\bar{y})$ and $\alpha^{R}(\bar{y})$ such that

$$
\begin{aligned}
\vdash_{\mathrm{K}} \alpha(\bar{x}, \bar{y}) \rightarrow \beta(\bar{y}, \bar{z}) & \Longleftrightarrow \vdash_{\mathrm{K}} \alpha^{R}(\bar{y}) \rightarrow \beta(\bar{y}, \bar{z}) \\
\vdash_{\mathrm{K}} \beta(\bar{y}, \bar{z}) \rightarrow \alpha(\bar{x}, \bar{y}) & \Longleftrightarrow \vdash_{\mathrm{K}} \beta(\bar{y}, \bar{z}) \rightarrow \alpha^{L}(\bar{y}) .
\end{aligned}
$$

Theorem (Kowalski and Metcalfe 2018)

K does not have uniform deductive interpolation.

Recall. . .

A variety \mathcal{V} has deductive interpolation if for any set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \Longleftrightarrow \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

Recall. . .

A variety \mathcal{V} has right uniform deductive interpolation if for any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \Longleftrightarrow \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

Recall. . .

A variety \mathcal{V} has right uniform deductive interpolation if for any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) \Longleftrightarrow \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}, \bar{z}) .
$$

Equivalently, \mathcal{V} has deductive interpolation and for any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there exists a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) \Longleftrightarrow \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) .
$$

Recall also. . .

Theorem (Kowalski and Metcalfe 2019)

The following are equivalent:
(1) For any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there is a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) .
$$

Recall also. . .

Theorem (Kowalski and Metcalfe 2019)

The following are equivalent:
(1) For any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there is a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) .
$$

(2) For finite \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a right adjoint; that is,

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y}) .
$$

Recall also. . .

Theorem (Kowalski and Metcalfe 2019)

The following are equivalent:
(1) For any finite set of equations $\Sigma(\bar{x}, \bar{y})$, there is a finite set of equations $\Delta(\bar{y})$ such that

$$
\Sigma(\bar{x}, \bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) \quad \Longleftrightarrow \quad \Delta(\bar{y}) \models_{\mathcal{V}} \varepsilon(\bar{y}) .
$$

(2) For finite \bar{x}, \bar{y}, the compact lifting of $\mathbf{F}(\bar{y}) \hookrightarrow \mathbf{F}(\bar{x}, \bar{y})$ has a right adjoint; that is,

$$
\Theta \in \operatorname{KCon} \mathbf{F}(\bar{x}, \bar{y}) \Longrightarrow \Theta \cap F(\bar{y})^{2} \in \operatorname{KCon} \mathbf{F}(\bar{y}) .
$$

(3) \mathcal{V} is coherent: every finitely generated subalgebra of a finitely presented member of \mathcal{V} is finitely presented.

A Failure of Coherence

Theorem (Kowalski and Metcalfe 2018)

The variety of modal algebras is not coherent.

A Failure of Coherence

Theorem (Kowalski and Metcalfe 2018)

The variety of modal algebras is not coherent.

Corollary

The variety of modal algebras does not admit right uniform deductive interpolation and its first-order theory does not have a model completion.
T. Kowalski and G. Metcalfe. Coherence in modal logic.

Proceedings of AiML 2018, College Publications (2018), 236-251.
T. Kowalski and G. Metcalfe. Uniform interpolation and coherence. Annals of Pure and Applied Logic 170(7) (2019), 825-841.

Proof

Let $\square \alpha:=\square \alpha \wedge \alpha$,

Proof

Let $\square \alpha:=\square \alpha \wedge \alpha$, and define

$$
\Sigma=\{y \leq x, x \leq z, x \approx \square x\}
$$

Proof

Let $\square \alpha:=\square \alpha \wedge \alpha$, and define

$$
\Sigma=\{y \leq x, x \leq z, x \approx \square x\} \quad \text { and } \quad \Delta=\left\{y \leq \square^{k} z \mid k \in \mathbb{N}\right\}
$$

Proof

Let $\square \alpha:=\square \alpha \wedge \alpha$, and define

$$
\Sigma=\{y \leq x, x \leq z, x \approx \square x\} \quad \text { and } \quad \Delta=\left\{y \leq \square^{k} z \mid k \in \mathbb{N}\right\}
$$

Claim. $\Sigma \models_{\mathcal{K}} \varepsilon(y, z) \Longleftrightarrow \Delta \models_{\mathcal{K}} \varepsilon(y, z)$.

Proof

Let $\square \alpha:=\square \alpha \wedge \alpha$, and define

$$
\Sigma=\{y \leq x, x \leq z, x \approx \square x\} \quad \text { and } \quad \Delta=\left\{y \leq \square^{k} z \mid k \in \mathbb{N}\right\}
$$

Claim. $\Sigma \models_{\mathcal{K}} \varepsilon(y, z) \Longleftrightarrow \Delta \models_{\mathcal{K}} \varepsilon(y, z)$.
It follows that if \mathcal{K} were coherent, then $\left\{y \leq \square^{n} z\right\} \neq_{\mathcal{K}} \Delta$ for some $n \in \mathbb{N}$,

Proof

Let $\square \alpha:=\square \alpha \wedge \alpha$, and define

$$
\Sigma=\{y \leq x, x \leq z, x \approx \square x\} \quad \text { and } \quad \Delta=\left\{y \leq \square^{k} z \mid k \in \mathbb{N}\right\}
$$

Claim. $\Sigma \models_{\mathcal{K}} \varepsilon(y, z) \Longleftrightarrow \Delta \models_{\mathcal{K}} \varepsilon(y, z)$.
It follows that if \mathcal{K} were coherent, then $\left\{y \leq \square^{n} z\right\} \mid=_{\mathcal{K}} \Delta$ for some $n \in \mathbb{N}$, and from this that $\models_{\mathcal{K}} \square^{n} z \approx \square^{n+1} z$, a contradiction.

Proof

Let $\square \alpha:=\square \alpha \wedge \alpha$, and define

$$
\Sigma=\{y \leq x, x \leq z, x \approx \square x\} \quad \text { and } \quad \Delta=\left\{y \leq \square^{k} z \mid k \in \mathbb{N}\right\}
$$

Claim. $\Sigma \models_{\mathcal{K}} \varepsilon(y, z) \Longleftrightarrow \Delta \models_{\mathcal{K}} \varepsilon(y, z)$.
It follows that if \mathcal{K} were coherent, then $\left\{y \leq \square^{n} z\right\} \neq_{\mathcal{K}} \Delta$ for some $n \in \mathbb{N}$, and from this that $\models_{\mathcal{K}} \square^{n} z \approx \square^{n+1} z$, a contradiction.
Proof of claim.
(\Leftarrow) Just observe that $\Sigma \models_{\mathcal{K}} \Delta$.

Proof

Let $\square \alpha:=\square \alpha \wedge \alpha$, and define

$$
\Sigma=\{y \leq x, x \leq z, x \approx \square x\} \quad \text { and } \quad \Delta=\left\{y \leq \square^{k} z \mid k \in \mathbb{N}\right\}
$$

Claim. $\Sigma \models_{\mathcal{K}} \varepsilon(y, z) \Longleftrightarrow \Delta \models_{\mathcal{K}} \varepsilon(y, z)$.
It follows that if \mathcal{K} were coherent, then $\left\{y \leq \square^{n} z\right\} \neq_{\mathcal{K}} \Delta$ for some $n \in \mathbb{N}$, and from this that $\models_{\mathcal{K}} \boxtimes^{n} z \approx \square^{n+1} z$, a contradiction.
Proof of claim.
(\Leftarrow) Just observe that $\Sigma \models_{\mathcal{K}} \Delta$.
(\Rightarrow) Assume $\Delta \not \models_{\mathcal{K}} \varepsilon(y, z)$.

Proof

Let $\square \alpha:=\square \alpha \wedge \alpha$, and define

$$
\Sigma=\{y \leq x, x \leq z, x \approx \square x\} \quad \text { and } \quad \Delta=\left\{y \leq \square^{k} z \mid k \in \mathbb{N}\right\}
$$

Claim. $\Sigma \models_{\mathcal{K}} \varepsilon(y, z) \Longleftrightarrow \Delta \models_{\mathcal{K}} \varepsilon(y, z)$.
It follows that if \mathcal{K} were coherent, then $\left\{y \leq \square^{n} z\right\} \neq_{\mathcal{K}} \Delta$ for some $n \in \mathbb{N}$, and from this that $\models_{\mathcal{K}} \boxtimes^{n} z \approx \square^{n+1} z$, a contradiction.
Proof of claim.
(\Leftarrow) Just observe that $\Sigma \models_{\mathcal{K}} \Delta$.
(\Rightarrow) Assume $\Delta \forall_{\mathcal{K}} \varepsilon(y, z)$. Then there is a complete modal algebra \mathbf{A} and homomorphism $e: \operatorname{Tm}(y, z) \rightarrow \mathbf{A}$ such that $\Delta \subseteq \operatorname{ker}(e)$ and $\varepsilon \notin \operatorname{ker}(e)$.

Proof

Let $\square \alpha:=\square \alpha \wedge \alpha$, and define

$$
\Sigma=\{y \leq x, x \leq z, x \approx \square x\} \quad \text { and } \quad \Delta=\left\{y \leq \square^{k} z \mid k \in \mathbb{N}\right\}
$$

Claim. $\Sigma \models_{\mathcal{K}} \varepsilon(y, z) \Longleftrightarrow \Delta \models_{\mathcal{K}} \varepsilon(y, z)$.
It follows that if \mathcal{K} were coherent, then $\left\{y \leq \square^{n} z\right\} \neq_{\mathcal{K}} \Delta$ for some $n \in \mathbb{N}$, and from this that $\models_{\mathcal{K}} \boxtimes^{n} z \approx \square^{n+1} z$, a contradiction.
Proof of claim.
(\Leftarrow) Just observe that $\Sigma \models_{\mathcal{K}} \Delta$.
(\Rightarrow) Assume $\Delta \forall_{\mathcal{K}} \varepsilon(y, z)$. Then there is a complete modal algebra \mathbf{A} and homomorphism $e: \operatorname{Tm}(y, z) \rightarrow \mathbf{A}$ such that $\Delta \subseteq \operatorname{ker}(e)$ and $\varepsilon \notin \operatorname{ker}(e)$.
Extend e with

$$
e(x)=\bigwedge_{k \in \mathbb{N}} \square^{k} e(z)
$$

Proof

Let $\square \alpha:=\square \alpha \wedge \alpha$, and define

$$
\Sigma=\{y \leq x, x \leq z, x \approx \square x\} \quad \text { and } \quad \Delta=\left\{y \leq \square^{k} z \mid k \in \mathbb{N}\right\}
$$

Claim. $\Sigma \models_{\mathcal{K}} \varepsilon(y, z) \Longleftrightarrow \Delta \models_{\mathcal{K}} \varepsilon(y, z)$.
It follows that if \mathcal{K} were coherent, then $\left\{y \leq \square^{n} z\right\} \neq_{\mathcal{K}} \Delta$ for some $n \in \mathbb{N}$, and from this that $\models_{\mathcal{K}} \boxtimes^{n} z \approx \square^{n+1} z$, a contradiction.
Proof of claim.
(\Leftarrow) Just observe that $\Sigma \models_{\mathcal{K}} \Delta$.
(\Rightarrow) Assume $\Delta \forall_{\mathcal{K}} \varepsilon(y, z)$. Then there is a complete modal algebra \mathbf{A} and homomorphism $e: \operatorname{Tm}(y, z) \rightarrow \mathbf{A}$ such that $\Delta \subseteq \operatorname{ker}(e)$ and $\varepsilon \notin \operatorname{ker}(e)$.
Extend e with

$$
e(x)=\bigwedge_{k \in \mathbb{N}} \square^{k} e(z)
$$

Then also $\Sigma \subseteq \operatorname{ker}(e)$,

Proof

Let $\square \alpha:=\square \alpha \wedge \alpha$, and define

$$
\Sigma=\{y \leq x, x \leq z, x \approx \square x\} \quad \text { and } \quad \Delta=\left\{y \leq \square^{k} z \mid k \in \mathbb{N}\right\}
$$

Claim. $\Sigma \models_{\mathcal{K}} \varepsilon(y, z) \Longleftrightarrow \Delta \models_{\mathcal{K}} \varepsilon(y, z)$.
It follows that if \mathcal{K} were coherent, then $\left\{y \leq \square^{n} z\right\} \neq_{\mathcal{K}} \Delta$ for some $n \in \mathbb{N}$, and from this that $\models_{\mathcal{K}} \boxtimes^{n} z \approx \square^{n+1} z$, a contradiction.
Proof of claim.
(\Leftarrow) Just observe that $\Sigma \models_{\mathcal{K}} \Delta$.
(\Rightarrow) Assume $\Delta \forall_{\mathcal{K}} \varepsilon(y, z)$. Then there is a complete modal algebra \mathbf{A} and homomorphism $e: \operatorname{Tm}(y, z) \rightarrow \mathbf{A}$ such that $\Delta \subseteq \operatorname{ker}(e)$ and $\varepsilon \notin \operatorname{ker}(e)$.
Extend e with

$$
e(x)=\bigwedge_{k \in \mathbb{N}} \square^{k} e(z)
$$

Then also $\Sigma \subseteq \operatorname{ker}(e)$, and hence $\Sigma \not \models_{\mathcal{K}} \varepsilon(y, z)$.

An Obvious Question

Can we generalize this proof to other varieties?

A General Criterion

Theorem (Kowalski and Metcalfe 2019)
Let \mathcal{V} be a coherent variety of algebras with a meet-semilattice reduct

A General Criterion

Theorem (Kowalski and Metcalfe 2019)
Let \mathcal{V} be a coherent variety of algebras with a meet-semilattice reduct and let $\alpha(x, \bar{u})$ be a term satisfying

$$
\mathcal{V} \models \alpha(x, \bar{u}) \leq x \quad \text { and } \quad \mathcal{V} \models x \leq x^{\prime} \Rightarrow \alpha(x, \bar{u}) \leq \alpha\left(x^{\prime}, \bar{u}\right) .
$$

A General Criterion

Theorem (Kowalski and Metcalfe 2019)

Let \mathcal{V} be a coherent variety of algebras with a meet-semilattice reduct and let $\alpha(x, \bar{u})$ be a term satisfying

$$
\mathcal{V} \models \alpha(x, \bar{u}) \leq x \quad \text { and } \quad \mathcal{V} \models x \leq x^{\prime} \Rightarrow \alpha(x, \bar{u}) \leq \alpha\left(x^{\prime}, \bar{u}\right) .
$$

Suppose also that for any finitely generated $\mathbf{A} \in \mathcal{V}$ and $a, \bar{b} \in A$, there exists $\mathbf{B} \in \mathcal{V}$ containing \mathbf{A} as a subalgebra

A General Criterion

Theorem (Kowalski and Metcalfe 2019)

Let \mathcal{V} be a coherent variety of algebras with a meet-semilattice reduct and let $\alpha(x, \bar{u})$ be a term satisfying

$$
\mathcal{V} \models \alpha(x, \bar{u}) \leq x \quad \text { and } \quad \mathcal{V} \models x \leq x^{\prime} \Rightarrow \alpha(x, \bar{u}) \leq \alpha\left(x^{\prime}, \bar{u}\right) .
$$

Suppose also that for any finitely generated $\mathbf{A} \in \mathcal{V}$ and $a, \bar{b} \in A$, there exists $\mathbf{B} \in \mathcal{V}$ containing \mathbf{A} as a subalgebra and satisfying

$$
\bigwedge_{k \in \mathbb{N}} \alpha^{k}(a, \bar{b})=\alpha\left(\bigwedge_{k \in \mathbb{N}} \alpha^{k}(a, \bar{b}), \bar{b}\right)
$$

A General Criterion

Theorem (Kowalski and Metcalfe 2019)

Let \mathcal{V} be a coherent variety of algebras with a meet-semilattice reduct and let $\alpha(x, \bar{u})$ be a term satisfying

$$
\mathcal{V} \models \alpha(x, \bar{u}) \leq x \quad \text { and } \quad \mathcal{V} \models x \leq x^{\prime} \Rightarrow \alpha(x, \bar{u}) \leq \alpha\left(x^{\prime}, \bar{u}\right) .
$$

Suppose also that for any finitely generated $\mathbf{A} \in \mathcal{V}$ and $a, \bar{b} \in A$, there exists $\mathbf{B} \in \mathcal{V}$ containing \mathbf{A} as a subalgebra and satisfying

$$
\bigwedge_{k \in \mathbb{N}} \alpha^{k}(a, \bar{b})=\alpha\left(\bigwedge_{k \in \mathbb{N}} \alpha^{k}(a, \bar{b}), \bar{b}\right)
$$

Then $\mathcal{V} \models \alpha^{n}(x, \bar{u}) \approx \alpha^{n+1}(x, \bar{u})$ for some $n \in \mathbb{N}$.

Strong Kripke Completeness

A normal modal logic L is called strongly Kripke complete

Strong Kripke Completeness

A normal modal logic L is called strongly Kripke complete if for any set of formulas $T \cup\{\alpha\}$,

$$
T \vdash_{\llcorner } \alpha \Longleftrightarrow
$$

$$
\begin{aligned}
& \text { for any Kripke model } \mathfrak{M} \text { based on a frame for } L \text {, } \\
& \qquad \mathfrak{M} \neq T \Longrightarrow \mathfrak{M}=\alpha
\end{aligned}
$$

Strong Kripke Completeness

A normal modal logic L is called strongly Kripke complete if for any set of formulas $T \cup\{\alpha\}$,

$$
\begin{aligned}
& \text { for any Kripke model } \mathfrak{M} \text { based on a frame for } \mathrm{L} \text {, } \\
& \qquad \mathfrak{M} \models T \Longrightarrow \mathfrak{M} \models \alpha .
\end{aligned}
$$

E.g., K, KT, K4, S4, and S5 are strongly Kripke complete, but not GL.

Coherence and Weak Transitivity

Applying our general criterion with $\alpha(x)=\boxtimes x$, using strong Kripke completeness to establish the fixpoint condition, we obtain:

Coherence and Weak Transitivity

Applying our general criterion with $\alpha(x)=\square x$, using strong Kripke completeness to establish the fixpoint condition, we obtain:

Theorem

Any coherent strongly Kripke complete variety of modal algebras is weakly transitive:

Coherence and Weak Transitivity

Applying our general criterion with $\alpha(x)=\square x$, using strong Kripke completeness to establish the fixpoint condition, we obtain:

Theorem

Any coherent strongly Kripke complete variety of modal algebras is weakly transitive: that is, it satisfies $\square^{n+1} x \approx \square^{n} x$ for some $n \in \mathbb{N}$

Coherence and Weak Transitivity

Applying our general criterion with $\alpha(x)=\square x$, using strong Kripke completeness to establish the fixpoint condition, we obtain:

Theorem

Any coherent strongly Kripke complete variety of modal algebras is weakly transitive: that is, it satisfies $\square^{n+1} x \approx \square^{n} x$ for some $n \in \mathbb{N}$ (equivalently, it admits equationally definable principal congruences).

Coherence and Weak Transitivity

Applying our general criterion with $\alpha(x)=\square x$, using strong Kripke completeness to establish the fixpoint condition, we obtain:

Theorem

Any coherent strongly Kripke complete variety of modal algebras is weakly transitive: that is, it satisfies $\square^{n+1} x \approx \square^{n} x$ for some $n \in \mathbb{N}$ (equivalently, it admits equationally definable principal congruences).

Hence a large family of non-weakly-transitive varieties of modal algebras are not coherent, do not admit right uniform deductive interpolation, and their first-order theories do not have a model completion.

Weakly Transitive Modal Logics

We can also show that weakly transitive varieties of modal algebras for logics such as K4 and S4 are not coherent

Weakly Transitive Modal Logics

We can also show that weakly transitive varieties of modal algebras for logics such as K4 and S4 are not coherent using the ternary term

$$
\alpha(x, y, z)=\diamond(y \wedge \diamond(z \wedge x)) \wedge x
$$

Weakly Transitive Modal Logics

We can also show that weakly transitive varieties of modal algebras for logics such as K4 and S4 are not coherent using the ternary term

$$
\alpha(x, y, z)=\diamond(y \wedge \diamond(z \wedge x)) \wedge x
$$

For any normal modal logic L,

$$
\mathcal{V}_{\mathrm{L}} \equiv \alpha(x, y, z) \leq x \quad \text { and } \quad \mathcal{V}_{\mathrm{L}} \equiv x \leq x^{\prime} \Rightarrow \alpha(x, y, z) \leq \alpha\left(x^{\prime}, y, z\right)
$$

Weakly Transitive Modal Logics

We can also show that weakly transitive varieties of modal algebras for logics such as K4 and S4 are not coherent using the ternary term

$$
\alpha(x, y, z)=\diamond(y \wedge \diamond(z \wedge x)) \wedge x
$$

For any normal modal logic L,

$$
\mathcal{V}_{\mathrm{L}} \equiv \alpha(x, y, z) \leq x \quad \text { and } \quad \mathcal{V}_{\mathrm{L}} \equiv x \leq x^{\prime} \Rightarrow \alpha(x, y, z) \leq \alpha\left(x^{\prime}, y, z\right)
$$

Lemma

Suppose that L admits finite chains:

Weakly Transitive Modal Logics

We can also show that weakly transitive varieties of modal algebras for logics such as K4 and S4 are not coherent using the ternary term

$$
\alpha(x, y, z)=\diamond(y \wedge \diamond(z \wedge x)) \wedge x
$$

For any normal modal logic L,

$$
\mathcal{V}_{\mathrm{L}} \equiv \alpha(x, y, z) \leq x \quad \text { and } \quad \mathcal{V}_{\mathrm{L}} \models x \leq x^{\prime} \Rightarrow \alpha(x, y, z) \leq \alpha\left(x^{\prime}, y, z\right)
$$

Lemma

Suppose that L admits finite chains: that is, for each $n \in \mathbb{N}$ there exists a frame $\langle W, R\rangle$ for L such that $|W|=n$ and the reflexive closure of R is a total order.

Weakly Transitive Modal Logics

We can also show that weakly transitive varieties of modal algebras for logics such as K4 and S4 are not coherent using the ternary term

$$
\alpha(x, y, z)=\diamond(y \wedge \diamond(z \wedge x)) \wedge x
$$

For any normal modal logic L,

$$
\mathcal{V}_{\mathrm{L}} \equiv \alpha(x, y, z) \leq x \quad \text { and } \quad \mathcal{V}_{\mathrm{L}} \models x \leq x^{\prime} \Rightarrow \alpha(x, y, z) \leq \alpha\left(x^{\prime}, y, z\right)
$$

Lemma

Suppose that L admits finite chains: that is, for each $n \in \mathbb{N}$ there exists a frame $\langle W, R\rangle$ for L such that $|W|=n$ and the reflexive closure of R is a total order. Then $\mathcal{V}_{\mathrm{L}} \not \vDash \alpha^{n}(x, y, z) \approx \alpha^{n+1}(x, y, z)$ for all $n \in \mathbb{N}$.

Weakly Transitive Modal Logics

Theorem (Kowalski and Metcalfe 2018)
Let L be a normal modal logic admitting finite chains

Weakly Transitive Modal Logics

Theorem (Kowalski and Metcalfe 2018)

Let L be a normal modal logic admitting finite chains such that \mathcal{V}_{L} is canonical: that is, closed under taking canonical extensions.

Weakly Transitive Modal Logics

Theorem (Kowalski and Metcalfe 2018)

Let L be a normal modal logic admitting finite chains such that \mathcal{V}_{L} is canonical: that is, closed under taking canonical extensions. Then
(a) \mathcal{V}_{L} is not coherent;
(b) \mathcal{V}_{L} does not admit right uniform deductive interpolation;
(c) the first-order theory of \mathcal{V}_{L} does not have a model completion.

Weakly Transitive Modal Logics

Theorem (Kowalski and Metcalfe 2018)

Let L be a normal modal logic admitting finite chains such that \mathcal{V}_{L} is canonical: that is, closed under taking canonical extensions. Then
(a) \mathcal{V}_{L} is not coherent;
(b) \mathcal{V}_{L} does not admit right uniform deductive interpolation;
(c) the first-order theory of \mathcal{V}_{L} does not have a model completion.

In particular, this theorem applies to $\mathcal{V}_{\mathrm{K} 4}$ and $\mathcal{V}_{\mathrm{S} 4}$.

Remarks

Note that GL admits finite chains but $\mathcal{V}_{\mathrm{GL}}$ is not canonical.

Remarks

Note that GL admits finite chains but $\mathcal{V}_{\mathrm{GL}}$ is not canonical. In fact, $\mathcal{V}_{\mathrm{GL}}$ is coherent and admits uniform deductive interpolation (Shavrukov 1993);

Remarks

Note that GL admits finite chains but $\mathcal{V}_{\mathrm{GL}}$ is not canonical. In fact, $\mathcal{V}_{\mathrm{GL}}$ is coherent and admits uniform deductive interpolation (Shavrukov 1993); also, its theory has a model completion (Ghilardi and Zawadowski 2002).

Remarks

Note that GL admits finite chains but $\mathcal{V}_{\mathrm{GL}}$ is not canonical. In fact, $\mathcal{V}_{\mathrm{GL}}$ is coherent and admits uniform deductive interpolation (Shavrukov 1993); also, its theory has a model completion (Ghilardi and Zawadowski 2002).

Ghilardi and Zawadowski have also proved that no logic extending K4 that has the finite model property and admits all finite reflexive chains and the two-element cluster is coherent.
S. Ghilardi and M. Zawadowski. Sheaves, Games and Model Completions, Kluwer (2002).

Coherence in Algebra

Any locally finite variety is coherent

Coherence in Algebra

Any locally finite variety is coherent - also the varieties of Heyting algebras, abelian groups, abelian ℓ-groups, and MV-algebras.

Coherence in Algebra

Any locally finite variety is coherent - also the varieties of Heyting algebras, abelian groups, abelian ℓ-groups, and MV-algebras.

The varieties of groups, semigroups, and monoids are not coherent,

Coherence in Algebra

Any locally finite variety is coherent - also the varieties of Heyting algebras, abelian groups, abelian ℓ-groups, and MV-algebras.

The varieties of groups, semigroups, and monoids are not coherent, since every finitely generated recursively presented member of these varieties embeds into a finitely presented member.

Lattices

Theorem (Schmidt 1981)

The variety $\mathcal{L A \mathcal { T }}$ of lattices is not coherent, does not admit right uniform deductive interpolation, and its first-order theory does not have a model completion.

Lattices

Theorem (Schmidt 1981)

The variety $\mathcal{L A \mathcal { T }}$ of lattices is not coherent, does not admit right uniform deductive interpolation, and its first-order theory does not have a model completion.

We obtain an easier proof of this result using our criterion with the term

$$
\alpha\left(x, u_{1}, u_{2}, u_{3}\right)=\left(u_{1} \wedge\left(u_{2} \vee\left(u_{3} \wedge x\right)\right)\right) \wedge x .
$$

Lattices

Theorem (Schmidt 1981)

The variety $\mathcal{L A \mathcal { T }}$ of lattices is not coherent, does not admit right uniform deductive interpolation, and its first-order theory does not have a model completion.

We obtain an easier proof of this result using our criterion with the term

$$
\alpha\left(x, u_{1}, u_{2}, u_{3}\right)=\left(u_{1} \wedge\left(u_{2} \vee\left(u_{3} \wedge x\right)\right)\right) \wedge x .
$$

Just observe that
(i) $\mathcal{L A} \mathcal{T}$ is closed under taking canonical completions;

Lattices

Theorem (Schmidt 1981)

The variety $\mathcal{L A \mathcal { T }}$ of lattices is not coherent, does not admit right uniform deductive interpolation, and its first-order theory does not have a model completion.

We obtain an easier proof of this result using our criterion with the term

$$
\alpha\left(x, u_{1}, u_{2}, u_{3}\right)=\left(u_{1} \wedge\left(u_{2} \vee\left(u_{3} \wedge x\right)\right)\right) \wedge x .
$$

Just observe that
(i) $\mathcal{L A} \mathcal{T}$ is closed under taking canonical completions;
(ii) $\mathcal{L A} \mathcal{T} \models x \leq \alpha(x, \bar{u})$ and $\mathcal{L A T} \models x \leq y \Rightarrow \alpha(x, \bar{u}) \leq \alpha(y, \bar{u})$;

Lattices

Theorem (Schmidt 1981)

The variety $\mathcal{L A \mathcal { T }}$ of lattices is not coherent, does not admit right uniform deductive interpolation, and its first-order theory does not have a model completion.

We obtain an easier proof of this result using our criterion with the term

$$
\alpha\left(x, u_{1}, u_{2}, u_{3}\right)=\left(u_{1} \wedge\left(u_{2} \vee\left(u_{3} \wedge x\right)\right)\right) \wedge x .
$$

Just observe that
(i) $\mathcal{L A} \mathcal{T}$ is closed under taking canonical completions;
(ii) $\mathcal{L A} \mathcal{T} \models x \leq \alpha(x, \bar{u})$ and $\mathcal{L A T} \models x \leq y \Rightarrow \alpha(x, \bar{u}) \leq \alpha(y, \bar{u})$;
(iii) $\mathcal{L A} \mathcal{T} \not \vDash \alpha^{n}(x, \bar{u}) \approx \alpha^{n+1}(x, \bar{u})$ for each $n \in \mathbb{N}$.

Residuated Lattices

A residuated lattice is an algebraic structure $\langle A, \wedge, \vee, \cdot, \backslash, /$, e \rangle such that $\langle A, \wedge, \vee\rangle$ is a lattice, $\langle A, \cdot, \mathrm{e}\rangle$ is a monoid, and for all $a, b, c \in A$,

$$
b \leq a \backslash c \Longleftrightarrow a \cdot b \leq c \Longleftrightarrow a \leq c / b .
$$

Residuated Lattices

A residuated lattice is an algebraic structure $\langle A, \wedge, \vee, \cdot, \backslash, /, \mathrm{e}\rangle$ such that $\langle A, \wedge, \vee\rangle$ is a lattice, $\langle A, \cdot, \mathrm{e}\rangle$ is a monoid, and for all $a, b, c \in A$,

$$
b \leq a \backslash c \Longleftrightarrow a \cdot b \leq c \Longleftrightarrow a \leq c / b
$$

Applying our criterion with the term $\alpha(x)=(x \wedge e)^{2}$, we obtain:

Theorem (Kowalski and Metcalfe 2019)

Any coherent variety of residuated lattices that is closed under canonical extensions satisfies $(x \wedge e)^{n+1} \approx(x \wedge e)^{n}$ for some $n \in \mathbb{N}$.

Residuated Lattices

A residuated lattice is an algebraic structure $\langle A, \wedge, \vee, \cdot, \backslash, /, \mathrm{e}\rangle$ such that $\langle A, \wedge, \vee\rangle$ is a lattice, $\langle A, \cdot, \mathrm{e}\rangle$ is a monoid, and for all $a, b, c \in A$,

$$
b \leq a \backslash c \Longleftrightarrow a \cdot b \leq c \Longleftrightarrow a \leq c / b
$$

Applying our criterion with the term $\alpha(x)=(x \wedge e)^{2}$, we obtain:

Theorem (Kowalski and Metcalfe 2019)

Any coherent variety of residuated lattices that is closed under canonical extensions satisfies $(x \wedge e)^{n+1} \approx(x \wedge e)^{n}$ for some $n \in \mathbb{N}$.

It follows that varieties of residuated lattices for the most well-studied substructural logics are not coherent, do not admit right uniform deductive interpolation, and their first-order theories do not have a model completion.

Problem 1: Dealing with Failure

We have seen that the most well-studied modal and substructural logics, and many important varieties from algebra, are not coherent.

Problem 1: Dealing with Failure

We have seen that the most well-studied modal and substructural logics, and many important varieties from algebra, are not coherent. In such cases, can we determine instead which terms do admit uniform interpolants?

Problem 1: Dealing with Failure

We have seen that the most well-studied modal and substructural logics, and many important varieties from algebra, are not coherent. In such cases, can we determine instead which terms do admit uniform interpolants?

This problem has been considered for certain description logics, using bisimulations to calculate uniform interpolants when they exist.
C. Lutz and F. Wolter. Foundations for uniform interpolation and forgetting in expressive description logics. Proc. IJCAI 2011, AAAI Press (2011), 989-996.

Problem 1: Dealing with Failure

We have seen that the most well-studied modal and substructural logics, and many important varieties from algebra, are not coherent. In such cases, can we determine instead which terms do admit uniform interpolants?

This problem has been considered for certain description logics, using bisimulations to calculate uniform interpolants when they exist.
C. Lutz and F. Wolter. Foundations for uniform interpolation and forgetting in expressive description logics. Proc. IJCAI 2011, AAAI Press (2011), 989-996.

Can we develop similar methods for constructing uniform interpolants for modal logics, lattices, residuated lattices, etc.?

Problem 2: Understanding Fixpoints

Our general criterion shows that in a coherent variety with a semilattice reduct, terms satisfying certain conditions admit fixpoints.

Problem 2: Understanding Fixpoints

Our general criterion shows that in a coherent variety with a semilattice reduct, terms satisfying certain conditions admit fixpoints.

Might it be the case that, conversely, admitting such fixpoints guarantees the coherence of the variety?

Problem 2: Understanding Fixpoints

Our general criterion shows that in a coherent variety with a semilattice reduct, terms satisfying certain conditions admit fixpoints.

Might it be the case that, conversely, admitting such fixpoints guarantees the coherence of the variety?

Indeed for certain fixpoint modal logics, the fixpoint operators have been used to construct uniform interpolants.
G. D'Agostino. Uniform interpolation, bisimulation quantifiers, and fixed points. Proceedings of TbiLLC'05, pages 96-116, 2005.

Problem 3: Understanding Model Completions

Problem 3: Understanding Model Completions

Can we extend the following theorem beyond varieties?

Theorem (van Gool, Metcalfe, and Tsinakis 2017)

Suppose that a variety \mathcal{V} has left and right uniform interpolation and for any finite \bar{x} and finite set of equations $\Sigma(\bar{x}), \Delta(\bar{x})$ with \bar{x} finite, there exists a finite set of equations $\Pi(\bar{x})$ such that for any finite set of equations $\Gamma(\bar{x})$,

$$
\Gamma, \Sigma \models \mathcal{v} \Delta \Longleftrightarrow \Gamma \not \models \mathcal{V} \sqcap .
$$

Then the theory of \mathcal{V} has a model completion.

Problem 3: Understanding Model Completions

Can we extend the following theorem beyond varieties?

Theorem (van Gool, Metcalfe, and Tsinakis 2017)

Suppose that a variety \mathcal{V} has left and right uniform interpolation and for any finite \bar{x} and finite set of equations $\Sigma(\bar{x}), \Delta(\bar{x})$ with \bar{x} finite, there exists a finite set of equations $\Pi(\bar{x})$ such that for any finite set of equations $\Gamma(\bar{x})$,

$$
\ulcorner, \Sigma \models \mathcal{V} \Delta \Longleftrightarrow \Gamma \models \mathcal{V} \Pi .
$$

Then the theory of \mathcal{V} has a model completion.
Can we understand the extra property in Wheeler's theorem using logic?

Theorem (Wheeler 1976)

The theory of a variety \mathcal{V} has a model completion if and only if \mathcal{V} is coherent, admits the amalgamation property, and has the conservative congruence extension property for its finitely presented members.

Problem 4: Tackling Independence

Can we extend the notion of independence to a more general setting?

Theorem (De Jongh and Chagrova 1995)

Independence in intuitionistic logic is decidable; that is, there exists an algorithm to decide for formulas $\alpha_{1}, \ldots, \alpha_{n}$ if for any formula $\beta\left(y_{1}, \ldots, y_{n}\right)$,

$$
\vdash_{\mathrm{IL}} \beta\left(\alpha_{1}, \ldots, \alpha_{n}\right) \Longrightarrow \vdash_{\mathrm{IL}} \beta .
$$

D. de Jongh and L.A. Chagrova.

The decidability of dependency in intuitionistic propositional logic. Journal of Symbolic Logic 60(2) (1995), 498-504.

Independence in Varieties

Let \mathcal{V} be any variety and let us call $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ independent in \mathcal{V} if for all $u, v \in \operatorname{Tm}\left(y_{1}, \ldots, y_{n}\right)$,

$$
\models_{\mathcal{V}} u(\bar{t}) \approx v(\bar{t}) \quad \Longrightarrow \quad \models_{\mathcal{V}} u \approx v
$$

Independence in Varieties

Let \mathcal{V} be any variety and let us call $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ independent in \mathcal{V} if for all $u, v \in \operatorname{Tm}\left(y_{1}, \ldots, y_{n}\right)$,

$$
\models_{\nu} u(\bar{t}) \approx v(\bar{t}) \quad \Longrightarrow \quad \models_{v} u \approx v
$$

E.g., $x_{1} \wedge\left(x_{2} \vee x_{3}\right)$ and $x_{2} \vee\left(x_{1} \wedge x_{3}\right)$ are dependent in the variety of distributive lattices - just consider the equation $y_{1} \wedge y_{2} \approx y_{1}$

Independence in Varieties

Let \mathcal{V} be any variety and let us call $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ independent in \mathcal{V} if for all $u, v \in \operatorname{Tm}\left(y_{1}, \ldots, y_{n}\right)$,

$$
\models_{\nu} u(\bar{t}) \approx v(\bar{t}) \quad \Longrightarrow \quad \models_{v} u \approx v
$$

E.g., $x_{1} \wedge\left(x_{2} \vee x_{3}\right)$ and $x_{2} \vee\left(x_{1} \wedge x_{3}\right)$ are dependent in the variety of distributive lattices - just consider the equation $y_{1} \wedge y_{2} \approx y_{1}$ - but independent in the variety of lattices.

Independence in Varieties

Let \mathcal{V} be any variety and let us call $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ independent in \mathcal{V} if for all $u, v \in \operatorname{Tm}\left(y_{1}, \ldots, y_{n}\right)$,

$$
\models_{\nu} u(\bar{t}) \approx v(\bar{t}) \quad \Longrightarrow \quad \models_{v} u \approx v
$$

E.g., $x_{1} \wedge\left(x_{2} \vee x_{3}\right)$ and $x_{2} \vee\left(x_{1} \wedge x_{3}\right)$ are dependent in the variety of distributive lattices - just consider the equation $y_{1} \wedge y_{2} \approx y_{1}$ - but independent in the variety of lattices.

Note. For vector spaces, independence is just linear independence.

An Algebraic Characterization

For $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$, consider the homomorphism defined by

$$
h: \mathbf{F}(\bar{y}) \rightarrow \mathbf{F}(\bar{x}) ; \quad y_{i} \mapsto t_{i} .
$$

An Algebraic Characterization

For $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$, consider the homomorphism defined by

$$
h: \mathbf{F}(\bar{y}) \rightarrow \mathbf{F}(\bar{x}) ; \quad y_{i} \mapsto t_{i} .
$$

Then t_{1}, \ldots, t_{n} are independent in \mathcal{V}

$$
\Longleftrightarrow \quad h(u)=h(v) \text { implies } u=v
$$

An Algebraic Characterization

For $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$, consider the homomorphism defined by

$$
h: \mathbf{F}(\bar{y}) \rightarrow \mathbf{F}(\bar{x}) ; \quad y_{i} \mapsto t_{i} .
$$

Then t_{1}, \ldots, t_{n} are independent in \mathcal{V}

$$
\begin{aligned}
& \Longleftrightarrow \quad h(u)=h(v) \text { implies } u=v \\
& \Longleftrightarrow \quad \operatorname{ker}(h)=\Delta_{\mathbf{F}(\bar{y})}
\end{aligned}
$$

An Algebraic Characterization

For $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$, consider the homomorphism defined by

$$
h: \mathbf{F}(\bar{y}) \rightarrow \mathbf{F}(\bar{x}) ; \quad y_{i} \mapsto t_{i} .
$$

Then t_{1}, \ldots, t_{n} are independent in \mathcal{V}

$$
\begin{aligned}
& \Longleftrightarrow \quad h(u)=h(v) \text { implies } u=v \\
& \Longleftrightarrow \quad \operatorname{ker}(h)=\Delta_{\mathbf{F}(\bar{y})} \\
& \Longleftrightarrow \quad h \text { is injective. }
\end{aligned}
$$

An Algebraic Characterization

For $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$, consider the homomorphism defined by

$$
h: \mathbf{F}(\bar{y}) \rightarrow \mathbf{F}(\bar{x}) ; \quad y_{i} \mapsto t_{i}
$$

Then t_{1}, \ldots, t_{n} are independent in \mathcal{V}

$$
\begin{aligned}
& \Longleftrightarrow \quad h(u)=h(v) \text { implies } u=v \\
& \Longleftrightarrow \quad \operatorname{ker}(h)=\Delta_{\mathbf{F}(\bar{y})} \\
& \Longleftrightarrow \quad h \text { is injective. }
\end{aligned}
$$

Equivalently, t_{1}, \ldots, t_{n} are independent in \mathcal{V} if and only if the subalgebra of $\mathbf{F}(\bar{x})$ generated by t_{1}, \ldots, t_{n} is free for \mathcal{V} over t_{1}, \ldots, t_{n}.

An Algebraic Characterization

For $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$, consider the homomorphism defined by

$$
h: \mathbf{F}(\bar{y}) \rightarrow \mathbf{F}(\bar{x}) ; \quad y_{i} \mapsto t_{i} .
$$

Then t_{1}, \ldots, t_{n} are independent in \mathcal{V}

$$
\begin{aligned}
& \Longleftrightarrow \quad h(u)=h(v) \text { implies } u=v \\
& \Longleftrightarrow \quad \operatorname{ker}(h)=\Delta_{\mathbf{F}(\bar{y})} \\
& \Longleftrightarrow \quad h \text { is injective. }
\end{aligned}
$$

Equivalently, t_{1}, \ldots, t_{n} are independent in \mathcal{V} if and only if the subalgebra of $\mathbf{F}(\bar{x})$ generated by t_{1}, \ldots, t_{n} is free for \mathcal{V} over t_{1}, \ldots, t_{n}.

Note. For free algebras, independence coincides with a more general notion studied by Marczewski, Narkiewicz, Urbanik, Gould, and others.

Reducing Independence to Validity

Lemma

Suppose that for any $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$, a finite set of equations $\Pi_{\bar{t}}(\bar{y})$ can be constructed such that for any equation $\varepsilon(\bar{y})$,

$$
\left\{y_{1} \approx t_{1}, \ldots, y_{n} \approx t_{n}\right\} \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \Pi_{\bar{t}} \models_{\mathcal{V}} \varepsilon .
$$

Reducing Independence to Validity

Lemma

Suppose that for any $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$, a finite set of equations $\Pi_{\bar{t}}(\bar{y})$ can be constructed such that for any equation $\varepsilon(\bar{y})$,

$$
\left\{y_{1} \approx t_{1}, \ldots, y_{n} \approx t_{n}\right\} \models_{\nu} \varepsilon \Longleftrightarrow \Pi_{\bar{t}} \models_{\mathcal{V}} \varepsilon .
$$

Then for any $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$,
t_{1}, \ldots, t_{n} are independent in $\mathcal{V} \Longleftrightarrow \models_{\mathcal{V}} \varepsilon$ for all $\varepsilon \in \Pi_{\bar{t}}$,

Reducing Independence to Validity

Lemma

Suppose that for any $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$, a finite set of equations $\Pi_{\bar{t}}(\bar{y})$ can be constructed such that for any equation $\varepsilon(\bar{y})$,

$$
\left\{y_{1} \approx t_{1}, \ldots, y_{n} \approx t_{n}\right\} \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \Pi_{\bar{t}} \models_{\mathcal{V}} \varepsilon
$$

Then for any $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$,
t_{1}, \ldots, t_{n} are independent in $\mathcal{V} \Longleftrightarrow \models_{\mathcal{V}} \varepsilon$ for all $\varepsilon \in \Pi_{\bar{t}}$, and if the equational theory of \mathcal{V} is decidable, so is independence in \mathcal{V}.

Reducing Independence to Validity

Lemma

Suppose that for any $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$, a finite set of equations $\Pi_{\bar{t}}(\bar{y})$ can be constructed such that for any equation $\varepsilon(\bar{y})$,

$$
\left\{y_{1} \approx t_{1}, \ldots, y_{n} \approx t_{n}\right\} \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \Pi_{\bar{t}} \models_{\mathcal{V}} \varepsilon
$$

Then for any $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$,

$$
t_{1}, \ldots, t_{n} \text { are independent in } \mathcal{V} \Longleftrightarrow \models_{\mathcal{V}} \varepsilon \text { for all } \varepsilon \in \Pi_{\bar{t}}
$$ and if the equational theory of \mathcal{V} is decidable, so is independence in \mathcal{V}.

Hence a constructive proof of coherence for \mathcal{V} can be used to prove the decidability of independence;

Reducing Independence to Validity

Lemma

Suppose that for any $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$, a finite set of equations $\Pi_{\bar{t}}(\bar{y})$ can be constructed such that for any equation $\varepsilon(\bar{y})$,

$$
\left\{y_{1} \approx t_{1}, \ldots, y_{n} \approx t_{n}\right\} \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \Pi_{\bar{t}} \models_{\mathcal{V}} \varepsilon
$$

Then for any $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$,

$$
t_{1}, \ldots, t_{n} \text { are independent in } \mathcal{V} \Longleftrightarrow \models_{\mathcal{V}} \varepsilon \text { for all } \varepsilon \in \Pi_{\bar{t}}
$$ and if the equational theory of \mathcal{V} is decidable, so is independence in \mathcal{V}.

Hence a constructive proof of coherence for \mathcal{V} can be used to prove the decidability of independence; note, however, that it suffices here to consider only finitely generated subalgebras of finitely generated free algebras of \mathcal{V}.

Reducing Independence to Validity

Lemma

Suppose that for any $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$, a finite set of equations $\Pi_{\bar{t}}(\bar{y})$ can be constructed such that for any equation $\varepsilon(\bar{y})$,

$$
\left\{y_{1} \approx t_{1}, \ldots, y_{n} \approx t_{n}\right\} \models_{\mathcal{V}} \varepsilon \Longleftrightarrow \Pi_{\bar{t}} \models_{\mathcal{V}} \varepsilon
$$

Then for any $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$,

$$
t_{1}, \ldots, t_{n} \text { are independent in } \mathcal{V} \Longleftrightarrow \models_{\mathcal{V}} \varepsilon \text { for all } \varepsilon \in \Pi_{\bar{t}}
$$

and if the equational theory of \mathcal{V} is decidable, so is independence in \mathcal{V}.

Hence a constructive proof of coherence for \mathcal{V} can be used to prove the decidability of independence; note, however, that it suffices here to consider only finitely generated subalgebras of finitely generated free algebras of \mathcal{V}.

Problem 4a. Is there an easier proof for the case of intuitionistic logic?

Examples

Independence is decidable...

Examples

Independence is decidable...

- in every locally finite variety

Examples

Independence is decidable...

- in every locally finite variety
- in the varieties of Heyting algebras, abelian groups, MV-algebras, and abelian ℓ-groups using (constructive) proofs of coherence

Examples

Independence is decidable...

- in every locally finite variety
- in the varieties of Heyting algebras, abelian groups, MV-algebras, and abelian ℓ-groups using (constructive) proofs of coherence
- in the variety of modal algebras,

Examples

Independence is decidable...

- in every locally finite variety
- in the varieties of Heyting algebras, abelian groups, MV-algebras, and abelian ℓ-groups using (constructive) proofs of coherence
- in the variety of modal algebras, since right uniform interpolants can be computed when they exist (Lutz and Wolter 2011)

Examples

Independence is decidable...

- in every locally finite variety
- in the varieties of Heyting algebras, abelian groups, MV-algebras, and abelian ℓ-groups using (constructive) proofs of coherence
- in the variety of modal algebras, since right uniform interpolants can be computed when they exist (Lutz and Wolter 2011)
- in the variety of groups,

Examples

Independence is decidable...

- in every locally finite variety
- in the varieties of Heyting algebras, abelian groups, MV-algebras, and abelian ℓ-groups using (constructive) proofs of coherence
- in the variety of modal algebras, since right uniform interpolants can be computed when they exist (Lutz and Wolter 2011)
- in the variety of groups, since the rank of a finitely generated subgroup of a free group can be computed

Examples

Independence is decidable...

- in every locally finite variety
- in the varieties of Heyting algebras, abelian groups, MV-algebras, and abelian ℓ-groups using (constructive) proofs of coherence
- in the variety of modal algebras, since right uniform interpolants can be computed when they exist (Lutz and Wolter 2011)
- in the variety of groups, since the rank of a finitely generated subgroup of a free group can be computed
- in the variety of semigroups,

Examples

Independence is decidable...

- in every locally finite variety
- in the varieties of Heyting algebras, abelian groups, MV-algebras, and abelian ℓ-groups using (constructive) proofs of coherence
- in the variety of modal algebras, since right uniform interpolants can be computed when they exist (Lutz and Wolter 2011)
- in the variety of groups, since the rank of a finitely generated subgroup of a free group can be computed
- in the variety of semigroups, since the problem reduces to the question of whether a finite set of words is a code.

Examples

Independence is decidable...

- in every locally finite variety
- in the varieties of Heyting algebras, abelian groups, MV-algebras, and abelian ℓ-groups using (constructive) proofs of coherence
- in the variety of modal algebras, since right uniform interpolants can be computed when they exist (Lutz and Wolter 2011)
- in the variety of groups, since the rank of a finitely generated subgroup of a free group can be computed
- in the variety of semigroups, since the problem reduces to the question of whether a finite set of words is a code.

Problem 4b. Are there varieties where independence is undecidable?

Reducing Independence to Non-Validity

Lemma

Suppose that we can find a finite set $\Delta\left(y_{1}, \ldots, y_{n}\right)$ of equations satisfying

Reducing Independence to Non-Validity

Lemma

Suppose that we can find a finite set $\Delta\left(y_{1}, \ldots, y_{n}\right)$ of equations satisfying
(i) $\vDash_{\mathcal{V}} \delta$ for each $\delta \in \Delta$

Reducing Independence to Non-Validity

Lemma

Suppose that we can find a finite set $\Delta\left(y_{1}, \ldots, y_{n}\right)$ of equations satisfying
(i) $\vDash_{\mathcal{V}} \delta$ for each $\delta \in \Delta$
(ii) for every equation $\varepsilon(\bar{y})$ with $\forall_{\mathcal{V}} \varepsilon$ and all $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$,

$$
\models_{\mathcal{V}} \varepsilon(\bar{t}) \Longrightarrow \models_{\mathcal{V}} \delta(\bar{t}) \text { for some } \delta \in \Delta .
$$

Reducing Independence to Non-Validity

Lemma

Suppose that we can find a finite set $\Delta\left(y_{1}, \ldots, y_{n}\right)$ of equations satisfying
(i) $\vDash_{\mathcal{V}} \delta$ for each $\delta \in \Delta$
(ii) for every equation $\varepsilon(\bar{y})$ with $\forall_{\mathcal{V}} \varepsilon$ and all $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$,

$$
\models_{\mathcal{V}} \varepsilon(\bar{t}) \Longrightarrow \models_{\mathcal{V}} \delta(\bar{t}) \text { for some } \delta \in \Delta .
$$

Then $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ are independent in \mathcal{V} if and only if

$$
\not \vDash_{\mathcal{V}} \varepsilon(\bar{t}) \text { for all } \varepsilon \in \Delta \text {, }
$$

Reducing Independence to Non-Validity

Lemma

Suppose that we can find a finite set $\Delta\left(y_{1}, \ldots, y_{n}\right)$ of equations satisfying
(i) $\not \vDash_{\mathcal{V}} \delta$ for each $\delta \in \Delta$
(ii) for every equation $\varepsilon(\bar{y})$ with $\not \vDash_{\mathcal{V}} \varepsilon$ and all $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$,

$$
\models_{\mathcal{V}} \varepsilon(\bar{t}) \Longrightarrow \models_{\mathcal{V}} \delta(\bar{t}) \text { for some } \delta \in \Delta .
$$

Then $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ are independent in \mathcal{V} if and only if

$$
\not \vDash_{\mathcal{V}} \varepsilon(\bar{t}) \text { for all } \varepsilon \in \Delta \text {, }
$$

and if the equational theory of \mathcal{V} is decidable, so is independence in \mathcal{V}.

Distributive Lattices

Theorem

Terms $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ are independent in the variety $\mathcal{D} \mathcal{L}$ at of distributive lattices if and only if for all $I \subseteq N:=\{1, \ldots, n\}$,

$$
\not \vDash_{\mathcal{D L} \mathrm{Lat}} \bigwedge_{i \in I} t_{i} \leq \bigvee_{j \in N \backslash I} t_{j}
$$

Distributive Lattices

Theorem

Terms $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ are independent in the variety $\mathcal{D} \mathcal{L}$ at of distributive lattices if and only if for all $I \subseteq N:=\{1, \ldots, n\}$,

$$
\not \forall_{\mathcal{D L a t}} \bigwedge_{i \in I} t_{i} \leq \bigvee_{j \in N \backslash I} t_{j}
$$

Proof.

We use the previous lemma and distributivity law, observing that, e.g.,

Distributive Lattices

Theorem

Terms $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ are independent in the variety $\mathcal{D} \mathcal{L}$ at of distributive lattices if and only if for all $I \subseteq N:=\{1, \ldots, n\}$,

$$
\not \forall_{\mathcal{D L a t}} \bigwedge_{i \in I} t_{i} \leq \bigvee_{j \in N \backslash I} t_{j}
$$

Proof.

We use the previous lemma and distributivity law, observing that, e.g.,

$$
\models_{\mathcal{D C a t}} s \leq u \wedge v \Longleftrightarrow \models_{\mathcal{D L} a t} s \leq u \quad \text { and } \quad \models_{\mathcal{D \mathcal { L } a t}} s \leq v
$$

Lattices

Theorem

Terms $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ are independent in the variety \mathcal{L} at of lattices if and only if for every $i \in\{1, \ldots, n\}$ with $N_{i}:=\{1, \ldots, n\} \backslash\{i\}$,

$$
\not \models_{\text {cat }} t_{i} \leq \bigvee_{j \in N_{i}} t_{j} \quad \text { and } \quad \not \models_{\text {cat }} \bigwedge_{j \in N_{i}} t_{j} \leq t_{i}
$$

Lattices

Theorem

Terms $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ are independent in the variety \mathcal{L} at of lattices if and only if for every $i \in\{1, \ldots, n\}$ with $N_{i}:=\{1, \ldots, n\} \backslash\{i\}$,

$$
\not \models_{\mathcal{L a t}} t_{i} \leq \bigvee_{j \in N_{i}} t_{j} \quad \text { and } \quad \not \models_{\mathcal{C a t}} \bigwedge_{j \in N_{i}} t_{j} \leq t_{i}
$$

Proof.

We again use the previous lemma, observing that, e.g.,

Lattices

Theorem

Terms $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ are independent in the variety \mathcal{L} at of lattices if and only if for every $i \in\{1, \ldots, n\}$ with $N_{i}:=\{1, \ldots, n\} \backslash\{i\}$,

$$
\not \vDash_{\text {Cat }} t_{i} \leq \bigvee_{j \in N_{i}} t_{j} \quad \text { and } \quad \not \forall_{\text {Cat }} \bigwedge_{j \in N_{i}} t_{j} \leq t_{i}
$$

Proof.

We again use the previous lemma, observing that, e.g.,

$$
\begin{aligned}
& \models_{\mathcal{C a t}} s \wedge t \leq u \text { or } \models_{\mathcal{C} a t} s \wedge t \leq v \text { or } \\
& \models_{\mathcal{C} a t} s \leq u \vee v \text { or } \models_{\mathcal{C} a t} t \leq u \vee v .
\end{aligned}
$$

A More General Version

Given a finite set of equations $\Sigma(\bar{x})$, we say that $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ are Σ-independent in \mathcal{V} if for all $u, v \in \operatorname{Tm}\left(y_{1}, \ldots, y_{n}\right)$,

$$
\Sigma \models_{v} u(\bar{t}) \approx v(\bar{t}) \quad \Longrightarrow \quad \models_{v} u \approx v
$$

A More General Version

Given a finite set of equations $\Sigma(\bar{x})$, we say that $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ are Σ-independent in \mathcal{V} if for all $u, v \in \operatorname{Tm}\left(y_{1}, \ldots, y_{n}\right)$,

$$
\Sigma \models_{\nu} u(\bar{t}) \approx v(\bar{t}) \quad \Longrightarrow \quad \models_{\nu} u \approx v
$$

This holds if and only if the homomorphism from $\mathbf{F}(\bar{y})$ to the finitely presented algebra $\mathbf{F}(\bar{x}) / \mathrm{Cg}_{\mathbf{F}(\bar{x})}(\Sigma)$ defined by $y_{i} \mapsto\left[t_{i}\right]$ is injective.

A More General Version

Given a finite set of equations $\Sigma(\bar{x})$, we say that $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ are Σ-independent in \mathcal{V} if for all $u, v \in \operatorname{Tm}\left(y_{1}, \ldots, y_{n}\right)$,

$$
\Sigma \models_{v} u(\bar{t}) \approx v(\bar{t}) \quad \Longrightarrow \quad \models_{v} u \approx v
$$

This holds if and only if the homomorphism from $\mathbf{F}(\bar{y})$ to the finitely presented algebra $\mathbf{F}(\bar{x}) / \mathrm{Cg}_{\mathbf{F}(\bar{x})}(\Sigma)$ defined by $y_{i} \mapsto\left[t_{i}\right]$ is injective.

Again, a constructive proof of coherence for \mathcal{V} can be used to prove the decidability of Σ-independence.

A More General Version

Given a finite set of equations $\Sigma(\bar{x})$, we say that $t_{1}, \ldots, t_{n} \in \operatorname{Tm}(\bar{x})$ are Σ-independent in \mathcal{V} if for all $u, v \in \operatorname{Tm}\left(y_{1}, \ldots, y_{n}\right)$,

$$
\Sigma \models_{\nu} u(\bar{t}) \approx v(\bar{t}) \quad \Longrightarrow \quad \models_{\nu} u \approx v
$$

This holds if and only if the homomorphism from $\mathbf{F}(\bar{y})$ to the finitely presented algebra $\mathbf{F}(\bar{x}) / \mathrm{Cg}_{\mathbf{F}(\bar{x})}(\Sigma)$ defined by $y_{i} \mapsto\left[t_{i}\right]$ is injective.

Again, a constructive proof of coherence for \mathcal{V} can be used to prove the decidability of Σ-independence.

Problem 4c. Can we decide Σ-independence when coherence fails?

Tomorrow

Exercises!

