Linear approximation and Taylor expansion of λ-terms

F. Olimpieri

Aix-Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

The pure λ-calculus

λ-terms

We inductively define Λ :

- if $x \in \mathcal{V}$ then $x \in \Lambda$;
- If $M \in \Lambda$, then $\lambda x . M \in \Lambda$;
- if $M, N \in \Lambda$, then $M N \in \Lambda$.
- $\lambda x . M$ stands for $x \mapsto M$.
- We can model functional evaluation:

$$
(\lambda x \cdot M) N \rightarrow M[N / x]
$$

The pure λ-calculus

λ-terms

We inductively define Λ :

- if $x \in \mathcal{V}$ then $x \in \Lambda$;
- If $M \in \Lambda$, then $\lambda x . M \in \Lambda$;
- if $M, N \in \Lambda$, then $M N \in \Lambda$.
- $\lambda x . M$ stands for $x \mapsto M$.
- We can model functional evaluation:

$$
(\lambda x \cdot M) N \rightarrow M[N / x]
$$

The pure λ-calculus

λ-terms

We inductively define Λ :

- if $x \in \mathcal{V}$ then $x \in \Lambda$;
- If $M \in \Lambda$, then $\lambda x . M \in \Lambda$;
- if $M, N \in \Lambda$, then $M N \in \Lambda$.
- $\lambda x . M$ stands for $x \mapsto M$.
- We can model functional evaluation:

$$
(\lambda x \cdot M) N \rightarrow M[N / x]
$$

Linearity

Intuitive Definition

A function f is linear when it uses only once its argument during the computation.

Linearity for functional evaluation:

- The identity function is linear. Let $M \in \Lambda$, then $(\lambda x . x) M \rightarrow M$.
- The copy function is non-linear. Let $M \in \Lambda$, then $(\lambda x . x x) M \rightarrow M M$.

Linearity

Intuitive Definition

A function f is linear when it uses only once its argument during the computation.

Linearity for functional evaluation:

- The identity function is linear. Let $M \in \Lambda$, then $(\lambda x . x) M \rightarrow M$.
- The copy function is non-linear. Let $M \in \Lambda$, then $(\lambda x . x x) M \rightarrow M M$.

Linearity

Intuitive Definition

A function f is linear when it uses only once its argument during the computation.

Linearity for functional evaluation:

- The identity function is linear. Let $M \in \Lambda$, then $(\lambda x . x) M \rightarrow M$.
- The copy function is non-linear. Let $M \in \Lambda$, then $(\lambda x . x x) M \rightarrow M M$.

Linear approximation of λ-terms

Linear logic leads to the introduction of a resource sensitive approximation of programs.
Intuitively, a n-linear approximant of a term M is a version of it
that uses exactly n times the argument under evaluation.
We denote as $T(M)$ the set of linear approximants of M.

Lemma

Let $M \in \Lambda$ and $s \in T(M)$. If $s \rightarrow t$ then there exists $N \in \Lambda$ such that $t \in T(N)$ and $M \rightarrow N$

Linear approximation of λ-terms

Linear logic leads to the introduction of a resource sensitive approximation of programs.
Intuitively, a n-linear approximant of a term M is a version of it that uses exactly n times the argument under evaluation.
We denote as $T(M)$ the set of linear approximants of M.
Lemma
Let $M \in \Lambda$ and $s \in T(M)$. If $s \rightarrow t$ then there exists $N \in \Lambda$ such that $t \in T(N)$ and $M \rightarrow N$

Linear approximation of λ-terms

Linear logic leads to the introduction of a resource sensitive approximation of programs.
Intuitively, a n-linear approximant of a term M is a version of it that uses exactly n times the argument under evaluation.
We denote as $T(M)$ the set of linear approximants of M.

Lemma

Let $M \in \Lambda$ and $s \in T(M)$. If $s \rightarrow t$ then there exists $N \in \Lambda$ such that $t \in T(N)$ and $M \rightarrow N$.

Some results

Theorem

Let $M \in \Lambda . M$ is computationally meaningful iff the computation for some $s \in T(M)$ ends.

We can define a Taylor expansion for λ-terms:

Taylor formula

Some results

Theorem

Let $M \in \Lambda . M$ is computationally meaningful iff the computation for some $s \in T(M)$ ends.

We can define a Taylor expansion for λ-terms:
Taylor formula

$$
\Theta(M)=\sum_{s \in T(M)} \frac{1}{m(s)} s
$$

