Goodwillie calculus for Gamma-spaces

Clemens Berger¹

University of Nice

Fourth Arolla Conference on Algebraic Topology August 20-26, 2012

¹joint work in progress with Georg Biedermann, University of Osnabrück 📱 🗠 🤉

3 *n*-speciality

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Γ-spaces

Definition (Γ-spaces)

$$\begin{split} &\operatorname{Ob}(\Gamma) = \{\underline{n} = \{*, 1, \dots, n\}, n \geq 0\} \\ &\Gamma^{\operatorname{op}}(\underline{m}, \underline{n}) = \operatorname{Sets}_*(\underline{m}, \underline{n}) \\ &\mathsf{A} \ \Gamma\text{-space} \text{ is a functor } A : \Gamma^{\operatorname{op}} \to (\operatorname{spaces})_* \text{ sth. } A(\underline{0}) = *. \end{split}$$

space=simplicial set !

Each based space (X, *) defines a functor $X^- : \Gamma \to (spaces)_*$ Each Γ -space defines an endofunctor $\underline{A} : (spaces)_* \to (spaces)_*$

$$\underline{A}(X) = A \otimes_{\mathsf{\Gamma}} X^{-}$$



Γ-spaces

Lemma (properties of the endofunctor \underline{A})

- \underline{A} preserves weak equivalences i.e. \underline{A} is a homotopy functor
- <u>A</u> preserves connectivity
- $X \wedge \underline{A}(Y) \longrightarrow \underline{A}(X \wedge Y)$
- <u>A</u> takes (symmetric) spectra to (symmetric) spectra

Definition (Segal spectrification functor)

$$\Phi: (\Gamma\text{-spaces}) \to (\text{spectra}): A \mapsto \underline{A}(\text{sphere spectrum})$$

Theorem (Segal '74)

 Φ induces an equivalence of categories

 $Ho(very \text{ special } \Gamma\text{-spaces}) \simeq Ho(connective \text{ spectra})$

くしゃ (中)・(中)・(中)・(日)

Γ-spaces

Theorem (Bousfield-Friedlander '78)

There is a "stable" model structure on Γ -spaces such that

- the cofibrations are the Reedy cofibrations of Γ-spaces
- the weak equivalences are the stable equivalences of Γ-spaces
- the fibrant objects are the very special Γ-spaces

Moreover, Φ : (Γ -spaces) \rightarrow (*spectra*) is a left Quillen functor inducing the aforementioned equivalence of homotopy categories.

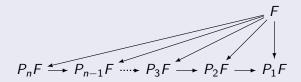
Remark

There is also a Reedy model structure on Γ -spaces with *pointwise* weak equivalences as weak equivalences and Reedy fibrations as fibrations because $\Gamma^{\rm op}$ is a generalised Reedy category (B-M '10).

The "stable" model structure is a left Bousfield localisation of the Reedy model structure.

Theorem (Goodwillie)

Each endofunctor $F : (spaces)_* \to (spaces)_*$ defines a tower of *n*-excisive endofunctors $P_nF : (spaces)_* \to (spaces)_*$ together with universal natural transformations $p_n : F \to P_nF$



such that, if F is a connectivity-preserving homotopy functor, the homotopy fiber of $p_n : F \to P_n F$ multiplies connectivity by n + 1.

Example (Freudenthal Suspension Theorem)

$$\pi_*(X) \cong \pi_*((P_1 \operatorname{id})(X)) = \pi_*(\Omega^{\infty} \Sigma^{\infty} X) \text{ for } * < 2 \cdot \operatorname{conn}(X)$$

Definition (*n*-excisive)

An endofunctor is *n*-excisive if it takes *strongly h-cocartesian* (n + 1)-cubes to *h*-cartesian (n + 1)-cubes. A homotopy functor is *n*-excisive iff it takes *cofibration* (n + 1)-cubes to *h*-cartesian (n + 1)-cubes.

Example (Linear endofunctor)

A homotopy functor F is 1-excisive (or *linear*) iff F takes any cone cofibration square to an h-cartesian square

i.e. iff the canonical map $F(X) \rightarrow \Omega F \Sigma(X)$ is a weak equivalence.

For based spaces $(X_i)_{1 \le i \le n+1}$, the wedge (n + 1)-cube $\Xi_{X_1,...,X_{n+1}}$ takes on $S \subset \{1, \ldots, n+1\}$ the value $\bigvee_{i \notin S} X_i$ with obvious arrows.

Example (Ξ_{X_1,X_2})

F takes wedge squares to *h*-cartesian squares iff F takes (up to homotopy) coproducts to products. For $F = \underline{A}$ and $X_1 = \underline{m}$ and $X_2 = \underline{n}$ this is what Segal calls a special Γ -space A.

Definition (*n*-special)

An endofunctor F is *n*-special if $F(\Xi_{X_1,...,X_{n+1}})$ is *h*-cartesian $\forall X_i$. A Γ -space A is *n*-special if $\underline{A}(\Xi_{\underline{m}_1,...,\underline{m}_{n+1}})$ is *h*-cartesian $\forall \underline{m}_i$. A Γ -space A is very *n*-special if A is *n*-special and fully fibrant.

Fully fibrant = Reedy fibrant + horn matching maps are surjective. In particular, the bisimplicial set $\underline{A}(X)$ fulfills π_* -Kan condition for every based simplicial set (X, *).

Remark (very 1-special=very special)

A Γ -space A is 1-special iff $A(\underline{m+n}) \xrightarrow{\sim} A(\underline{m}) \times A(\underline{n}) \ \forall m, n$. A Γ -space A is very 1-special iff A is 1-special and "group-like".

Remark

A Γ -space is *n*-special iff it has the RLP with respect to a certain finite set of cofibrations into representable Γ -sets.

Lemma

An *n*-excisive homotopy functor is *n*-special.

Consider the cofibration (n + 1)-cube generated by $X_1 \lor \cdots \lor X_i \lor \cdots \lor X_{n+1} \rightarrow X_1 \lor \cdots \lor CX_i \lor \cdots \lor X_{n+1}$

Lemma $(A \text{ vs } \underline{A})$

For a fully fibrant Γ -space A, A is n-special iff \underline{A} is n-special.

Use π_* -Kan and <u>A</u>(wedge-cube) degree-wise *h*-cartesian.

Proposition (*n*-special vs *n*-excisive)

For a fully fibrant Γ -space A, \underline{A} is *n*-special iff \underline{A} is *n*-excisive.

Use relationship between homotopy total fibers of retraction cube and associated section cube.

Definition (*n*-equivalence)

A map of Γ -spaces $A \to B$ is an *n*-equivalence if $(P_n\underline{A})(X) \to (P_n\underline{B})(X)$ is a weak equivalence for any (X, *).

A pointwise weak equivalence is an *n*-equivalence for all $n \ge 1$. Stable equivalences of Γ -spaces are precisely 1-equivalences.

Theorem (n-excisive model structure, B-B '12)

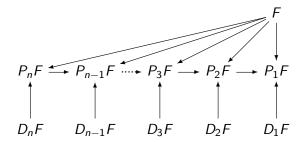
For each $n \ge 1$, there is a model structure on Γ -spaces such that

- the cofibrations are the Reedy cofibrations of Γ-spaces
- the weak equivalences are the *n*-equivalences of Γ-spaces
- the fibrant objects are the very *n*-special Γ -spaces

For n = 1 this is precisely the stable model structure of Bousfield-Friedlander.

Corollary

For each Γ -space A, the *n*-th approximation $p_n : \underline{A} \to P_n \underline{A}$ is induced by a fibrant replacement in the *n*-excisive model structure.



 $D_n F$ is *n*-excisive and its (n-1)-th approximation is trivial.

Theorem (Goodwillie)

$$(D_n F)(X) \simeq \Omega^{\infty} (\partial_n F \wedge X^{\wedge n})_{h \Sigma_n}$$
 for a Σ_n -spectrum $\partial_n F$.

Conjecture (*n*-homogeneous model structure)

For each $n \ge 1$, there is a model structure on (n-1)-reduced Γ -spaces transferred from the *n*-excisive model structure such that

$$Ho((n-1)$$
-reduced Γ -spaces) $\simeq Ho((-n)$ -connected Σ_n -spectra)

Corollary

For each Γ -space A, the derivatives $\partial_n \underline{A}$ can be deduced from this Quillen equivalence.

 Γ and Δ share many formal properties. In particular, there is the notion of *representable* Γ -set $\Gamma^n = \Gamma(-, \underline{n})$, of its *boundary* $\partial \Gamma^n$, and hence of the *quotients* $\Gamma^n / \partial \Gamma^n$, the Γ -spheres.

Problem

What are the endofunctors associated to the Γ -spheres ?

•
$$\underline{\Gamma^n}(X) = X^n$$

• \exists outer boundary $\partial_{out}\Gamma^n \subset \partial\Gamma^n$ such that $\underline{\partial_{out}\Gamma^n}(X) = \{x \in X^n | x_i = * \text{ for at least one } i\}$

•
$$\Gamma^n/\partial_{out}\Gamma^n(X) = X^{\wedge n}$$

• $\partial \Gamma^n / \partial_{out} \Gamma^n \hookrightarrow \Gamma^n / \partial_{out} \Gamma^n$ has as quotient the Γ -sphere

Proposition

There is a functor $\phi_n : \Pi_n \to (\Gamma$ -sets) whose value at a partition with k blocks is $\Gamma^k / \partial_{out} \Gamma^k$ such that

$$\varinjlim_{n_n \setminus \{\text{finest partition}\}} \phi_n = \partial \Gamma^n / \partial_{out} \Gamma^n.$$

Conjecture

The derivatives of the identity can be deduced from this decomposition of the Γ -spheres. More precisely, $\operatorname{Hom}_{\Gamma}(\Gamma^n/\partial\Gamma^n, A)$ is stably equivalent to the *n*-th derivative of <u>A</u>.

Thank you !