Table des matières

I Conseils de parcours

1 GÉNÉRALITÉS
 1.1 Rôles des portails de sciences et des départements .. 4
 1.2 Parcours à la carte et parcours conseillés ... 4
 1.3 Règles dans le portail ST ... 5

2 CONSEILS POUR UN PARCOURS MATHÉMATIQUES .. 7
 2.1 Semestre 1 - semestre 4 .. 8
 2.2 Semestre 5 - semestre 6 .. 10

3 CONSEILS POUR LE PARCOURS MASS DE LA LICENCE MIASHS 11
 3.1 Licence MIASHS ... 12

4 DOUBLE DIPLÔME MATHÉMATIQUES-INFORMATIQUE ... 13

5 DOUBLE DIPLÔME MATHÉMATIQUES-PHYSIQUE .. 17

6 DOUBLE DIPLÔME MATHÉMATIQUES-SCIENCES DE LA VIE 21

II Règles de progression pour les parcours modèles et pour les U.E. Mathématiques

7 PRÉREQUIS/RÈGLES DE PROGRESSION POUR LES PARCOURS MODÈLES ET POUR LES U.E. MATHÉMATIQUES ... 27
 7.1 Règles de progression Semestres 1-3 ... 28
 7.2 Règles de progression Semestre 4 .. 28
 7.3 Règles de progression parcours disciplinaire ... 28
 7.4 Règles de progression parcours non disciplinaire .. 29
 7.5 Règles obtention Licence Mathématiques ... 30

III Contenu des Unités d’Enseignement de Mathématiques 31
 7.6 UE M.S0.0 : Maths0 .. 34

8 SEMESTRE 1 ... 35
 8.1 UE M.S0.1 : Méthodologie ... 36
 8.2 UE M.S0.2 : Mathématiques de Base ... 37
 8.3 UE M.S1.1 : Fondements Mathématiques 1 ... 38
 8.4 UE M.S1.2 : Compléments Mathématiques 1 .. 39
 8.5 UE MM.S1.1 : Méthodes Mathématiques 1 : Mathématiques continues (Portail A) . 40
TABLE DES MATIÈRES

8.6 UE MM.S1.SV : Méthodes mathématiques 1 : Introduction aux probabilités et à la statistique (Portail B) ... 41

9 **SEMESTRE 2** 43
9.1 UE M.S2.1 : Fondements Mathématiques 2 .. 45
9.2 UE M.S2.2 : Compléments Mathématiques 2 ... 46
9.3 UE MM.S2.1 : Méthodes Mathématiques 2 : Approche discrète (Portail A) 47

10 **SEMESTRE 3** 49
10.1 UE M.S3.1 : Fondements Mathématiques 3 .. 50
10.2 UE M.S3.2 : Compléments d’Analyse .. 51
10.3 UE M.S3.3 : Compléments d’Algèbre ... 52
10.4 UE MM.S3.1 : Méthodes Mathématiques 3-1 : Modélisation géométrique 53
10.5 UE MM.S3.2 : Méthodes Mathématiques 3-2 : Mathématiques et Ingénierie 54

11 **SEMESTRE 4** 55
11.1 UE M.S4.1 : Analyse .. 56
11.2 UE M.S4.2 : Probabilités et introduction à la Statistique 57
11.3 UE M.S4.3 : Algèbre ... 58
11.4 UE M.S4.4 : Résolution numérique des systèmes d’équations linéaires et non-linéaires 59
11.5 UE M.S4.2D : Géométrie ... 60
11.6 UE MM.S4.1 : Méthodes Mathématiques 4 : Modélisation Aléatoire 61
11.7 UE M.S4.2 : Mathématiques pour la Finance .. 62

12 **SEMESTRE 5** 65
12.1 UE M.S5.1 : Calcul Différentiel et Géométrie Différentielle 66
12.2 UE M.S5.2 : Statistique et Modélisation ... 67
12.3 UE M.S5.3 : Intégration et Théorie de la Mesure 68
12.4 UE M.S5.4 : Equations différentielles .. 69
12.5 UE M.S5.5 : Algèbre et Géométrie ... 70
12.6 UE M.S5.2D : Nombres ... 71
12.7 UE MM.S5.1 : Analyse économique ... 72
12.8 UE MM.S5.2 : Systèmes Dynamiques, Calcul Différentiel et Optimisation 74

13 **SEMESTRE 6** 77
13.1 UE M.S6.1 : Probabilités et ses Applications .. 78
13.2 UE M.S6.2 : Algèbre et Algèbre Effective ... 79
13.3 UE M.S6.3 : Introduction à l’Analyse Fonctionnelle 80
13.4 UE M.S6.4 : Approximation numérique des fonctions, des intégrales et des équations différentielles ordinaires 81
13.5 UE M.S6.5 : Analyse Complexes .. 82
13.6 UE M.S6.2D : Analyse, Probabilités et Statistique 83
13.7 UE MM.S6.1 : Probabilités .. 84
13.8 UE MM.S6.2 : Suites de Fonctions, Calcul Intégral et Séries de Fourier 86
Première partie

Conseils de parcours
Chapitre 1

GÉNÉRALITÉS
1.1 Rôles des portails de sciences et des départements

Les diplômes niveau Licence (Bachelor) en Sciences délivrés par l’Université Nice Côte d’Azur sont les Licences de Chimie, de Géologie, d’Informatique, de Mathématiques, de Miashs, de Physique, de Sciences de la Terre, de Sciences de la Vie, le diplôme pluridisciplinaire Sciences et Technologies et les doubles licences Chimie-Sciences de la Vie, Mathématiques-Informatique, Mathématiques-Physique, Mathématiques-Sciences de la Vie, Physique-Sciences de la Terre et Sciences de la Terre-Sciences de la Vie.

Les étudiants entrants sont autorisés à s’inscrire via Parcoursup ou Etudes en France à une de ces doubles licences ou dans le portail SV (Sciences de la Vie) ou dans le portail ST (Sciences et Technologies).

Le portail SV prépare les étudiants qui veulent obtenir une licence monodisciplinaire mention sciences de la vie. Le portail ST offre les formations préparant aux licences monodisciplinaires mention chimie, géologie, informatique, mathématiques, miashs, physique et sciences de la terre, et elle offre la formation préparant à la Licence pluridisciplinaire Sciences et Technologies.

Dans un parcours classique qui n’est pas celui d’une double licence, un étudiant restera dans le portail pendant deux ans. En fonction des U.E. (unités d’enseignement) disciplinaires validées lors de ces deux années, l’étudiant pourra avoir accès à un parcours disciplinaire (semestres 5 et 6), porté par le département correspondant. Après avoir suivi des U.E. pour un total d’au moins 180 ECTS, le département lui délivrera la licence avec la mention de la disciplinaire choisie si le parcours de l’étudiant remplit les conditions de la mention disciplinaire correspondante.

1.2 Parcours à la carte et parcours conseillés

Chaque département propose des parcours modèles - fixant des U.E. tout en respectant des prérequis - qui sont des voies naturelles menant d’abord vers le parcours disciplinaire (semestres 5 et 6). Les départements proposent ensuite des parcours modèles disciplinaires menant vers la mention de diplôme de licence délivré par le département.

Néanmoins, les étudiants peuvent composer leur parcours à la carte, conditionné par un emploi de temps compatible et par les prérequis des U.E. choisies. Les étudiants sont accompagnés dans leurs choix par un directeur d'études avec qui ils établissent leur contrat pédagogique. Ils peuvent facilement se réorienter dans le portail au cours des 3 premiers semestres.

Pour une licence mention mathématiques, au niveau des semestres 5 et 6 l’étudiant peut également opter pour un parcours à la carte au lieu d’un parcours disciplinaire modèle, toujours satisfaisant les prérequis. Dans ce cas, l’étudiant reste sous la responsabilité du portail. Si au bout du semestre 6 l’étudiant satisfait aux conditions de la mention mathématiques, alors l’étudiant peut demander au département de mathématiques de lui délivrer le diplôme de la licence mention mathématiques.

L’étudiant peut également demander à valider un diplôme de Licence mention Sciences et Technologies.
Les départements ont défini des règles de compensation, premièrement au niveau de l’accès dans le parcours disciplinaire, et deuxièmement au niveau de l’obtention du diplôme de la mention de licence.

1.3 Règles dans le portail ST

- Il n’y a pas de jury de semestre ni d’année dans l’étape portail ST. Chaque semestre, un jury valide les notes des UE et les bonus acquis. Il n’y a aucune compensation à ce stade. Pour les étudiants qui ont fait la L1 en 2018-2019, les UE validées par les règles de compensation existantes alors (i.e. compensation sur moyenne semestrielle ou annuelle) seront considérées comme des UE acquises quelque soit la mention visée.

- Les étudiants doivent obtenir leur diplôme de licence en maximum 5 ans (sauf exception approuvée par la commission pédagogique du portail).

- Aux semestres 1 et 2 on peut prendre maximum 2 U.E. d’une même discipline.

- Au semestre 3 on peut suivre maximum 3 U.E. d’une même discipline.

- Le nombre standard d’UE disciplinaires que suit l’étudiant par semestre est 4. Suivant son contrat pédagogique et après discussion avec un directeur d’études, un étudiant pourra s’inscrire à moins de 4UE/sémeatre s’il souhaite obtenir sa licence en plus de 3 ans.

- Les étudiants Oui-si auront l’obligation à la base de faire leur première année en 2 ans et de suivre les dispositifs d’accompagnement pédagogiques.

- Un étudiant Oui-si qui n’est pas assidu aux dispositifs d’accompagnement pourra se voir désinscrit de la Faculté des Sciences.

- Un étudiant ayant validé moins de 4 UE redouble son année de L1.

- Si un étudiant a moins de 2 UE validées, il sera inscrit sur l’étape Oui-si.
1.3. RÈGLES DANS LE PORTAIL ST

1 GÉNÉRALITÈS
Chapitre 2

CONSEILS POUR UN PARCOURS MATHÉMATIQUES
2.1 Semestre 1 - semestre 4

Voici nos conseils pour les étudiants se dirigeant vers une licence de mathématiques ou encore pour les étudiants cherchant à intégrer certaines écoles d’ingénieurs, que ce soit en vue de métiers dans la recherche, le développement, les entreprises, l’enseignement :

Semestre 1 :
• Fondements Mathématiques 1
• Compléments Mathématiques 1
• Choix 1
• Choix 2
• Compétences transversales

Typiquement les U.E. des choix 1 et 2 sont des U.E en Informatique, en Physique ou en Chimie.

Semestre 2 :
• Fondements Mathématiques 2
• Compléments Mathématiques 2
• Choix 1
• Choix 2
• Compétences transversales

Typiquement les U.E. des choix 1 et 2 sont des U.E en Informatique ou en Physique.

Même si l’étudiant n’aït pas suivi ce parcours modèle aux semestres 1 et 2, il pourra encore intégrer le parcours modèle au semestre 3 (voir le chapitre sur les prérequis pour les parcours modèles et pour les U.E. mathématiques pour plus de détails).

Semestre 3 :
• Fondements Mathématiques 3
• Compléments d’Analyse
• Compléments d’Algèbre
• Choix 1
• Compétences transversales

Le choix 1 peut être par exemple une U.E. d’Informatique, en particulier ‘Outils formels de l’informatique’ (comme prérequis il faut avoir suivi l’UE ‘Bases de l’informatique’ en Semestre 1) ou ‘Structures de données et programmation C’ (comme prérequis il faut avoir suivi l’UE ‘Programmation impérative’ en Semestre 2), ou encore une U.E. de Physique, comme ‘Thermodynamique’ ou ‘Électromagnétisme 1’.

Semestre 4 :
Deux parcours modèles sont proposés au semestre 4. Pour que l’étudiant puisse choisir un de ces deux parcours, il faut qu’il ait validé au moins 2 UE de Mathématiques aux semestres 1 et 2, et qu’il ait suivi 2 UE de mathématiques au Semestre 3.

Parcours Mathématiques :
• Analyse
• Probabilités et introduction à la Statistique
2 CONSEILS POUR UN PARCOURS MATHÉMATIQUES

2.1. Semestre 1 - semestre 4

- Algèbre
- Résolution numérique des systèmes d’équations linéaires et non-linéaires

Parcours Majeur Mathématiques :

- Analyse
- Deux cours à choisir parmi les trois cours Probabilités et introduction à la statistique, Algèbre et Résolution numérique des systèmes d’équations linéaires et non-linéaires
- Choix 1

Le quatrième cours au choix n’est pas nécessairement une UE de Mathématique. Comme U.E. Mathématiques sont conseillées : le cours 2D Géométrie (UE conseillée en particulier aux étudiants qui veulent continuer avec un master MEEF après la licence) ou l’UE Mathématiques financières.

Voici quelques suites cohérentes pour les étudiants souhaitant suivre une U.E. de Physique par semestre :

- Semestre 3 : UE Thermodynamique ou UE Electromagnétisme 1 (cette dernière est cependant plutôt prévue pour être suivie en parallèle avec ‘Physique : Outils et méthodes 1’)
- Semestre 4 : UE Ondes
- Semestre 5 : UE Mécanique quantique 1
- Semestre 6 : UE Optique 2

Une autre succession possible plus spécialisée en Mécanique et Physique pourrait être :

- Semestre 3 : UE Thermodynamique
- Semestre 4 : UE Mécanique 3
- Semestre 5 : UE Physique statistique
- Semestre 6 : UE Mécanique des milieux continus

Enfin, une succession possible plus spécialisée en électromagnétisme (avec nécessité en particulier pour Electromagnétisme 2 d’acquérir par ailleurs les connaissances de l’ECUE Outils mathématiques 1) :

- Semestre 3 : UE Électromagnétisme 1
- Semestre 4 : UE Électromagnétisme 2
- Semestre 5 : UE Électromagnétisme 3
- Semestre 6 : UE Optique 2

Voici quelques conseils pour les étudiants souhaitant suivre une U.E. d’Informatique par semestre :

- Les deux UE d’Informatique du Semestre 3 qui peuvent intéresser les étudiants de licence Mathématiques sont :
 - ** Outils formels de l’Informatique : comme prérequis il faut avoir suivi l’UE ‘Bases de l’informatique’ au Semestre 1 ;
 - ** Structures de données et programmation C : comme prérequis il faut avoir suivi l’UE ‘Programmation impérative’ au Semestre 2.
- En Semestre 4, les UE qui pourraient intéresser les étudiants de Licence Mathématiques sont :
 - ** ‘Algorithmique 1’ : c’est un thème fondamental en informatique, c’est la science des calculs, il faut avoir suivi ‘Bases de l’informatique’ au Semestre 1 ET ‘Programmation impérative’ au Semestre 2 ;
2.2 Parcours disciplinaire : Semestre 5 - semestre 6

Pour les étudiants qui veulent continuer en Master Mathématiques Pures et Appliquées après la Licence mention Mathématiques, nous conseillons :

Semestre 5
- Calcul Différentiel et Géométrie Différentielle
- Intégration et Théorie de la Mesure
- Équations Différentielles
- Algèbre et Géométrie
- Choix supplémentaire : Statistiques et Modélisation

Semestre 6
- Probabilités et ses applications
- Introduction à l’Analyse Fonctionnelle
- Approximation numérique des fonctions, des intégrales et des équations différentielles ordinaires
- Analyse Complex
- Algèbre et Algèbre Effective

Pour les étudiants qui veulent continuer en Master Ingénierie Mathématiques après la Licence ou qui visent un parcours préparant plus généralement aux études d’ingénieur, nous conseillons de suivre les UE suivantes :

Semestre 5
- Mathématiques et Ingénierie (UE du Semestre 3)
- Intégration et Théorie de la Mesure
- Équations Différentielles
- Statistiques et Modélisation

Semestre 6
- Probabilités et ses applications
- Introduction à l’Analyse Fonctionnelle
- Approximation numérique des fonctions, des intégrales et des équations différentielles ordinaires
- Analyse Complex ou une UE d’Informatique ou d’Économie-Gestion

Pour les étudiants qui visent un Master Enseignement (MEEF), nous conseillons de suivre le parcours suivant :

Semestre 5
- Calcul Différentiel et Géométrie Différentielle
- 2D Nombres
- Algèbre et Géométrie
- Statistiques et Modélisation

Semestre 6
- 2D Analyse, Probabilités et Statistiques
- Algèbre (UE du Semestre 4)
- Introduction à l’Analyse Fonctionnelle
- Analyse Complex ou UE d’Informatique ou ...
Chapitre 3

CONSEILS POUR LE PARCOURS
MASS DE LA LICENCE MIASHS
3.1 Conseils pour la Licence MIASHS
Chapitre 4

DOUBLE DIPLÔME
MATHÉMATIQUES-INFORMATIQUE
Double Licence Mathématiques et Informatique
Responsables

- **Informatique**
 - Enrico FORMENTI, Enrico.Formenti@univ-cotedazur.fr
 - Sid TOUATI, Sid.Touati@univ-cotedazur.fr
 - Etienne LOZES, Etienne.Lozes@univ-cotedazur.fr

- **Mathématiques**
 - Christophe CAZANAVE, Christophe.Cazanave@univ-cotedazur.fr
<table>
<thead>
<tr>
<th>Année</th>
<th>Informatique</th>
<th>Mathématiques</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Bases de l'informatique</td>
<td>M.S1.1 Mathématiques : Fondements 1</td>
<td>Physique : Mécanique 1 OU Electronique : Electronique numérique – Bases</td>
</tr>
<tr>
<td></td>
<td>Bases de donnée</td>
<td>M.S1.2 Mathématiques : Compléments 1</td>
<td>Electronique : Electronique numérique – Bases</td>
</tr>
<tr>
<td>S2</td>
<td>Système 1 : Unix et progra shell</td>
<td>M.S2.1 Mathématiques : Fondements 2</td>
<td>Programmation impérative : M.S2.2 Mathématiques : Compléments 2</td>
</tr>
<tr>
<td></td>
<td>Programmation fonctionnelle</td>
<td>M.M.S4.1 Méthodes Mathématiques : Modélisation aléatoire</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>Structures de données et programmation C</td>
<td>M.S3.1 Mathématiques : Fondements 3</td>
<td>Programmation fonctionnelle : M.S3.3 Compléments d'Algèbre</td>
</tr>
<tr>
<td></td>
<td>Outils formels de l'informatique</td>
<td>M.S3.2 Compléments d'Analyse</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>Algorithmique 1</td>
<td>M.S4.1 : Analyse</td>
<td>Systèmes 2 : mécanismes internes des systèmes d'exploitation : M.S4.3 Algèbre</td>
</tr>
<tr>
<td></td>
<td>Réseaux et télécommunication</td>
<td>M.S4.4 : Résolution numérique de systèmes d'équations linéaires et non-linéaires</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>Automates et langages</td>
<td>M.S5.3 Intégration et théorie de la mesure</td>
<td>Programmation et conception orientée objet : M.S5.4 Equations différentielles</td>
</tr>
<tr>
<td></td>
<td>Architecture machine OU Cryptographie et calcul symbolique</td>
<td>M.S5.2 Statistique et Modélisation OU M.S5.5 Algèbre et Géométrie</td>
<td>Stage ou projet de math en laboratoire</td>
</tr>
<tr>
<td>S6</td>
<td>Algorithmique 2</td>
<td>M.S6.1 Probabilités et ses applications</td>
<td>Compilation : M.S6.4 Approximation numérique des fonctions, des intégrales et des équations différentielles ordinaires</td>
</tr>
<tr>
<td></td>
<td>Compilation</td>
<td>M.S6.2 Algèbre et algèbre effective OU M.S6.3 Introduction à l'analyse fonctionnelle OU M.S6.5 Analyse complexe</td>
<td>Paradigmes et interprétation OU Grands concepts d'informatique fondamentale</td>
</tr>
<tr>
<td></td>
<td>Stage ou projet d'info en laboratoire</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Double Licence Mathématiques et Informatique
Modalités de Contrôle de Connaissances

- Jurys annuels.
- **Conditions de passage des Semestres 1 et 2 aux Semestres 3 et 4**
 Les conditions minimales pour qu’un étudiant soit autorisé à passer en année supérieure sont les suivantes :
 - 10 de moyenne générale sur l’année hors compétences transverses et 10 de moyenne générale sur l’année aux compétences transverses et
 - 2 UE de Mathématiques et 2 UE d’Informatique validées.
- **Conditions de passage des Semestres 3 et 4 aux Semestres 5 et 6**
 Les conditions minimales pour qu’un étudiant soit autorisé à passer en année supérieure sont les suivantes :
 - 10 de moyenne générale sur toutes les UE de Mathématique de l’année, et
 - 10 de moyenne générale sur toutes les UE d’Informatique de l’année, et
 - 10 de moyenne générale sur l’année aux compétences transverses
- **Conditions de validation des Semestres 5 et 6 et de la double Licence**
 Les conditions minimales pour qu’un étudiant soit autorisé à passer en année supérieure sont les suivantes :
 - 10 de moyenne générale sur toutes les UE d’Informatique, hors projet, et
 - 10 de moyenne générale sur toutes les UE de Mathématiques, hors projet, et
 - valider chacun des deux projets, et
 - 10 de moyenne générale sur l’année aux compétences transverses.
Chapitre 5

DOUBLE DIPLÔME
MATHEMATIQUES-PHYSIQUE
Double Licence Mathématiques et Informatique
Responsables

- Mathématiques
 - Francesca RAPETTI, Francesca.Rapetti@univ-cotedazur.fr

- Physique
 - Bruno MARCOS, Bruno.Marcos@univ-cotedazur.fr
<table>
<thead>
<tr>
<th></th>
<th>Physique</th>
<th>Mathématiques</th>
<th>Autres</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Mécanique 1</td>
<td>M.S1.1 Mathématiques : Fondements 1</td>
<td>INFORMATIQUE : Bases de l'informatique</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.S1.2 Mathématiques : Compléments 1</td>
<td>Chimie : Structure microscopique de la matière</td>
</tr>
<tr>
<td>S2</td>
<td>Mécanique 2</td>
<td>M.S2.1 Mathématiques : Fondements 2</td>
<td>INFORMATIQUE : Programmation impérative</td>
</tr>
<tr>
<td></td>
<td>Optique 1</td>
<td>M.S2.2 Mathématiques : Compléments 2</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>Electromagnétisme 1</td>
<td>M.S3.1 Mathématiques : Fondements 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermodynamique</td>
<td>M.S3.3 Compléments d'Algèbre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outils et Méthodes 1</td>
<td>M.S3.2 Compléments d'Analyse</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>Electromagnétisme 2</td>
<td>M.S4.1 : Analyse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ondes</td>
<td>M.S4.2 Probabilités et introduction à la statistique</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.S4.4 : Résolution numérique des systèmes d'équations linéaires et non-linéaires</td>
<td></td>
</tr>
</tbody>
</table>
Chapitre 6

DOUBLE DIPLÔME
MATHÉMATIQUES-SCIENCES DE LA VIE
Double Licence Mathématiques et Sciences de la Vie
Responsables

• Mathématiques
 •• elisabeth PECOU, Elisabeth.Pecou@univ-cotedazur.fr

• Sciences de la Vie
 •• Franck DELAUNAY, Franck.Delaunay@univ-cotedazur.fr
<table>
<thead>
<tr>
<th>Biologie</th>
<th>Mathématiques</th>
<th>Informatique</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1SV1 Organisation et Mécanismes Moléculaires des Cellules Eucaryotes</td>
<td>M.SS.1 Mathématiques : Fondements 1</td>
<td></td>
</tr>
<tr>
<td>L1SV2 Génétique, Évolution, Origine de la vie et Biodiversité</td>
<td>M.SS.2 Mathématiques : Compléments 1</td>
<td></td>
</tr>
<tr>
<td>L1SVC1 Chimie biochimie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1SV3 Physiologie, Neurologie, Enzymologie, Méthodologie</td>
<td>M.SS.3 Mathématiques : Fondements 2</td>
<td>Programmation impérative (optionnel)</td>
</tr>
<tr>
<td>L1SVC2 Chimie - Thermodynamique et réactivité</td>
<td>M.SS.2 Mathématiques: compléments 2</td>
<td>Système Shell Utilisation d'Unix et programmation shell</td>
</tr>
<tr>
<td>L2SV4 Physiologie Animale</td>
<td>M.SS.1 Mathématiques : Fondements 3</td>
<td>Structures de données et programmation C (optionnel)</td>
</tr>
<tr>
<td>L2SDT3 Informatique et Génétique des Populations</td>
<td>SMA SSS.1 Mathématiques : Approche Géométrique</td>
<td>Bases de données (optionnel)</td>
</tr>
<tr>
<td>L2SVC3 Chimie - Réactivité et Chimie Biologique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2SV7 Biologie et Métabolisme Cellulaire</td>
<td>M.SS.1 Analyse</td>
<td>Technologies du web (optionnel)</td>
</tr>
<tr>
<td>L2SV8 Microbiologie et Génie Génétique</td>
<td>M.SS.2 Probabilités et introduction à la statistique</td>
<td>Algorithmique 1 (optionnel)</td>
</tr>
<tr>
<td></td>
<td>M.SS.4 Réduction numérique des systèmes d'équations linéaires et non-linéaires</td>
<td></td>
</tr>
<tr>
<td>L3SV1 Du gène à la protéine : Structure, Mécanismes, Régulation et</td>
<td>Equations différentielles et optimisation: ECUÉ 1: Equa diff (1/3 de M.SS.4)</td>
<td>Programming et conception orientée objet (optionnel)</td>
</tr>
<tr>
<td></td>
<td>ECUÉ 2: Optimisation (1/3 de SMA SSS.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Programming et conception orientée objet (optionnel)</td>
<td></td>
</tr>
<tr>
<td>L3SV2 Traitement de l'information cellulaire</td>
<td>M.SS.2 : Statistiques et modélisation</td>
<td></td>
</tr>
<tr>
<td>L3SV3B8 Initiation à la programmation, projet bio-informatique</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunologie 1 et Evolution moléculaire</td>
<td>SMA SSS.2 Probabilités</td>
<td>Algorithmique 2 (optionnel)</td>
</tr>
<tr>
<td>L3SV6B2R Algorithmes et structure de données-projet statistique</td>
<td>M.SS.3 Approximation numérique des fonctions, des intégrales et des équations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>différentielles ordinaires</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3SV6B8 Projet pluridisciplinaire</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Double Licence Mathématiques et Sciences de la Vie
Modalités de Contrôle de Connaissances

- Jurys annuels.
- **Conditions de passage des Semestres 1 et 2 aux Semestres 3 et 4**
 Les conditions minimales pour qu’un étudiant soit autorisé à passer en année supérieure sont les suivantes :
 - 8 sur 20 dans chaque UE ;
 - 10 de moyenne générale sur l’année et
 - 1 UE de Mathématiques et 1 UE de Sciences de la Vie acquise chaque semestre.
- **Conditions de passage des Semestres 3 et 4 aux Semestres 5 et 6**
 Les conditions minimales pour qu’un étudiant soit autorisé à passer en année supérieure sont les suivantes :
 - 10 de moyenne générale sur toutes les UE de Mathématiques de l’année ;
 - 10 de moyenne générale sur toutes les UE de Sciences de la Vie de l’année.
- **Conditions de validation des Semestres 5 et 6 et de la double Licence**
 Les conditions minimales pour qu’un étudiant soit autorisé à passer en année supérieure sont les suivantes :
 - UE L3SV63BI Projet Pluridisciplinaire acquise ;
 - 10 de moyenne générale sur toutes les 5 UE de Sciences de la Vie, autre que le Projet Pluridisciplinaire, et
 - 10 de moyenne générale sur toutes les 4 UE de Mathématiques, autre que le Projet Pluri-disciplinaire.
Deuxième partie

Règles de progression pour les parcours modèles et pour les U.E. Mathématiques
Chapitre 7

PRÉREQUIS/RÈGLES DE PROGRESSION POUR LES PARCOURS MODÈLES ET POUR LES U.E. MATHÉMATIQUES
7.1 Conditions de progression (‘prérequis’) pour les cours de Mathématiques du Semestre 1 au Semestre 3

Quand l’étudiant fait l’inscription pédagogique en ligne au début du semestre, les UE seront affichées pour lesquelles l’étudiant a les ‘prérequis’. Ces ‘prérequis’ ne sont pas les prérequis pour le contenu de l’UE. Ce sont des conditions que, si l’étudiant les remplit, alors il paraît raisonnable de le laisser s’inscrire pour cette UE. Il se peut que l’étudiant doive rattraper certains éléments.

- Prérequis pour le M.S3.1 Fondements Mathématiques 3 : avoir validé une UE de Mathématiques des semestres 1 et 2.
- Prérequis pour le M.S3.2 Compléments d’Analyse : avoir validé au moins 2 UE de Mathématiques des semestres 1 et 2 ou avoir validé l’UE Compléments Mathématiques 1 ou avoir validé l’UE Compléments Mathématiques 2.
- Prérequis pour le M.S3.3 Compléments d’Algèbre : avoir validé au moins 2 UE de Mathématiques des semestres 1 et 2 ou avoir validé l’UE Compléments Mathématiques 1 ou avoir validé l’UE Compléments Mathématiques 2.
- Prérequis pour le MM.S3.1 Approche géométrique : avoir validé au moins une UE de Mathématiques des semestres 1 et 2.
- Prérequis pour le MM.S3.2 Mathématiques et ingénierie : avoir validé l’UE MM.S1 ou Fondements Mathématiques 1.

7.2 Conditions de progression (‘prérequis’) pour les cours de Mathématiques du Semestre 4

- Prérequis pour le M.S4.1 Analyse : avoir validé au moins 2 UE de Mathématiques des semestres 1 et 2.
- Prérequis pour le M.S4.2 Probabilités et introduction à la Statistique : avoir validé au moins 2 UE de Mathématiques des semestres 1 et 2.
- Prérequis pour le M.S4.3 Algèbre : avoir validé au moins 2 UE de Mathématiques des semestres 1 et 2.
- Prérequis pour le M.S4.4 Résolution numérique des systèmes d’équations linéaires et non-linéaires : avoir la moyenne sur un ensemble de 2 UE de Mathématiques des semestres 1 et 2.
- Prérequis pour le MM.S4.1 Modélisation aléatoire : aucun.
- Prérequis pour le MM.S4.2 Mathématiques pour la finance : aucun.
- Prérequis pour le M.S4.2D Géométrie : avoir validé au moins 1 UE de math des semestres 1 et 2.

L’étudiant qui remplit les conditions suivantes :
- avoir validé au moins 2 UE de math du L1
- avoir suivi 2 UE de math en S3

pourra cocher un des parcours modèles disciplinaires du Semestre 4 (voir le Chapitre ‘Conseils pour un parcours Mathématiques’).

7.3 Conditions pour pouvoir s’inscrire dans le parcours disciplinaire de la Licence mention Mathématiques

Les conditions pour pouvoir s’inscrire dans le parcours disciplinaire mathématiques (par exemple parcours menant au Master Ingénierie Mathématiques, parcours menant au Master Mathématiques Pures et Appliquées, parcours menant au Master Enseignement MEEF) sont :
7 PRÉREQUIS/RÈGLES DE PROGRESSION POUR LES PARCOURS MODÈLES ET POUR LES U.E. MATHÉMATIQUES

7.4 Règles de progression parcours non disciplinaire

- avoir la moyenne sur un total de 96 ECTS (120 ECTS de 4 semestres – 24 ECTS transversaux) correspondant à des UE disciplinaires, dont au moins 42 ECTS correspondent aux UE attachées au semestre 3 ou semestre 4 ;
- avoir validé 6 UE de Mathématiques du semestre 1 au semestre 4 et avoir la moyenne sur un ensemble d’au moins 3 UE de Mathématiques du semestre 4, dont :
 - seulement un des deux cours MM.S1 et M.S1.1 compte ;
 - seulement un des deux cours MM.S2 et M.S2.1 compte ;
 - seulement un des deux cours M.S4.2 et MM.S4.1 compte ;
 - les UE M.S4.2D et MM.S4.2 ne comptent pas.

7.4 Conditions de progression (‘prérequis’) pour les cours de Mathématiques du semestre 5 au semestre 6 pour les étudiants du portail (non pour le parcours disciplinaire de Mathématiques)

Les étudiants peuvent aussi composer leur parcours à la carte sur toute la Licence. Ainsi, pourront-ils également obtenir la Licence mention Mathématiques, sans être passés par le parcours disciplinaire.
Pour que l’étudiant puisse s’inscrire à une certaine UE attachée au semestre 5 ou semestre 6, il faut qu’il remplisse les ‘prérequis’ suivants :

- prérequis pour le M.S5.1 Calcul Différentiel et Géométrie Différentielle : avoir validé l’UE M.S4.1 ou avoir la moyenne sur un ensemble de 4 UE de Mathématiques des semestres 1 et 2 OU des semestres 3 et 4 dont une UE du semestre 3 ;
- prérequis pour le M.S5.2 Statistiques et modélisation : avoir validé l’UE M.S4.2 ou l’UE MM.S4.1 ou avoir la moyenne sur un ensemble de 4 UE de Mathématiques des Semestres 1 et 2 OU Semestres 3 et 4 dont 1 UE du Semestre 3 ;
- prérequis pour le M.S5.3 Intégration et Théorie de la Mesure : avoir validé l’UE M.S4.1 ou avoir la moyenne sur un ensemble de 4 UE de math des Semestres 1 et 2 ou Semestres 3 et 4 dont 1 UE du Semestre 3 ;
- prérequis pour le M.S5.4 Équations Différentielles : avoir validé au moins 1 UE parmi les UE M.S4.1, M.S4.3 et M.S3.2 ;
- prérequis pour le M.S5.5 Algèbre et Géométrie : avoir validé le M.S3.1 ou le M.S3.3 ;
- prérequis pour le M.S5.6 Équations Différentielles et Optimisation : avoir validé au moins une UE de Mathématiques du Semestre 4 ou avoir la moyenne sur un ensemble de 4 UE de Mathématiques des Semestres 1 et 2 OU des Semestres 3 et 4 dont 1 UE du Semestre 3 ;
- prérequis pour le MM.S5.2 Systèmes Dynamiques, Calcul Différentiel et Optimisation : avoir validé au moins 1 UE de Mathématiques des semestres 3 et 4 ;
- prérequis pour le M.S5.2D Nombres : avoir validé au moins 1 UE de Mathématiques du Semestre 3 ;
- prérequis pour le M.S6.1 Probabilités et Applications : avoir validé l’UE M.S4.2 ou l’UE MM.S4.1 ;
- prérequis pour le M.S6.2 Algèbre et Algèbre Effective : avoir validé l’UE M.S4.3 ;
- prérequis pour le M.S6.3 Introduction à l’Analyse Fonctionnelle : avoir validé l’UE M.S4.1 ;
- prérequis pour le M.S6.4 Approximation numérique des fonctions, des intégrales et des équations différentielles ordinaires : avoir la moyenne sur un ensemble de 5 UE de Mathématiques des semestres 1 et 2 OU des Semestres 3 et 4 dont 2 UE du Semestre 4 ;
- prérequis pour le M.S6.5 Analyse Complex : avoir validé l’UE M.S4.1 ou avoir la moyenne sur un ensemble de 5 UE de Mathématiques des Semestres 1 et 2 OU des Semestres 3 et 4 dont 2 UE du Semestre 4 ;
7.5 Conditions pour obtenir le diplôme de la licence mention Mathématiques

- Avoir validé 36 ECTS transversales.
- Avoir la moyenne sur 144 ECTS (pas d’UE transversales), dont au moins 42 ECTS correspondent aux UE des Semestres 5 et 6 et au moins 84 ECTS correspondent aux UE des Semestres 3 et 4 OU 5 et 6.
- Avoir la moyenne sur un ensemble de 5 UE de Mathématiques parmi les UE de Mathématiques (des semestres 5 et 6 et M.S4.3 Algèbre) et avoir la moyenne sur un ensemble de 10 UE de Mathématiques des semestres 3 et 4 OU Sémesstres 5 et 6 et avoir la moyenne sur un ensemble de 14 UE de Mathématiques des semestres 1, 2, 3, 4, 5 et 6 dont :
 - seulement un des deux cours M.S5.4 et M.S5.6 compte;
 - seulement un des deux cours M.S6.1 et MM.S6.1 compte;
 - seulement un des deux cours MM.S6.2 et M.S5.3 compte;
 - seulement un des deux cours M.S4.2 et MM.S4.1 compte;
 - les cours M.S4.2D, M.S5.2D et M.S6.2D ne comptent pas;
 - seulement un des deux cours MM.S1 et M.S1.1 compte;
 - seulement un des deux cours MM.S2 et M.S2.1 compte;
 - les UE MM.S4.2 et MM.S5.1 ne comptent pas.
Troisième partie

Contenu des Unités d’Enseignement de Mathématiques
SEMESTRE 0
7.6 UE M.S0.0 : Maths0

Responsables du cours : Stéphanie NIVOCHET et Joachim YAMEOGO.

Nombre d’ECTS : 0. La note de l’examen de Maths0 compte pour $\frac{1}{10}$ de la note finale d’une UE de Mathématiques du Semestre 1.

Durée : 8 séances de 2H de Cours/TD et 8 séances de 1H30 de TD WIMS sur les 2 semaines d’enjeux.

Mode d’enseignement : En présentiel.

Prérequis
Niveau Terminale S ou ES requis.

Contenu du cours

Pour le portail SV
- Calculs, fractions, inégalités, valeur absolue, minorants, majorants.
- Somme et produit finis, factorielle, somme arithmétique ou géométrique.
- Identités remarquables, équations et inéquations du second degré.
- Introduction aux statistiques descriptives (Calculatrice).
- Droites du plan.
- Limites de fonctions. Fonctions puissances, exponentielle et logarithme.
- Étude de fonctions et représentation graphique de fonctions.
- Calcul intégral.

Pour le portail ST
- Calculs, fractions, inégalités, valeur absolue, minorants, majorants.
- Somme et produit finis, factorielle, somme arithmétique ou géométrique.
- Calculs dans \mathbb{C} : addition, multiplication, module, inverse, conjugué.
- Trigonométrie, formes trigonométrique et exponentielle d’un nombre complexe.
- Droites du plan.
- Limites de fonctions. Fonctions puissances, exponentielle et logarithme.
- Étude de fonctions et représentation graphique de fonctions.
- Calcul intégral.

Matériel didactique, médiagraphie
Polycopié distribué et en ligne (à la rentrée de septembre 2019).
Chapitre 8

SEMESTRE 1
8.1 UE M.S0.1 : Méthodologie

Responsable du cours : Nicole MESTRANO-SIMPSON.

Nombre d’ECTS : 0.

Mode d’enseignement : Présentiel en petits groupes de 10 étudiants, 20h TD, sur 10 semaines.

Prérequis
Ce cours est réservé aux étudiants du cours Mathématiques de Base.

Présentation du cours
En complément du cours Maths de Base, nous mettrons en pratique les techniques méthodologiques et de raisonnements vues en cours Maths de Base, afin de s’approprier les raisonnements mathématiques utiles au cursus scientifique.

Contenu du cours
- Pourquoi doit-on formaliser nos énoncés ? Qu’est-ce qu’une définition, un exemple ? Comment nos objets sont-ils reliés ? Quelles propriétés vérifient-ils ?
- Qu’est-ce qu’une hypothèse, une conclusion, un théorème, un argument, une démonstration ? Pour vraiment comprendre une démonstration, on examinera si et quand toutes les hypothèses ont été utilisées, on essayera de voir que notre résultat n’est plus vrai lorsqu’on supprime telle ou telle hypothèse.
- Comment apprendre un cours de mathématiques ? Pourquoi connaître les théorèmes par cœur ? Est-il utile d’en comprendre leur démonstration ? On verra que c’est grâce aux cours et à ses démonstrations qu’on sera capable de faire les exercices de la leçon. Inversement, nous verrons que nous ne comprendrons un théorème qu’après l’avoir utilisé dans plusieurs exercices.
- Comment appréhender un problème ? Pour résoudre un exercice, on apprendra à bien lire l’énoncé, en particulier les hypothèses et ce qu’on doit prouver. Tant que l’énoncé n’est pas compris, il sera impossible de répondre aux questions posées. Parfois avant les questions, il y a le but de l’exercice, il ne faut pas croire qu’on perd du temps à essayer de le comprendre. On cherchera ensuite de l’aide et des idées dans son cours. Lorsqu’on a une idée, on n’hésitera pas à l’explorer à fond mais aussi à en changer si elle n’aboutit pas, quitte à revenir dessus après avoir essayé une autre piste. Il faut se lancer, essayer quelque chose, une mauvaise piste vous donnera des idées. Nous verrons que nos erreurs nous font progresser.
- Gestion du stress lors de contrôles. Au plus on aura cherché d’exercices différents au plus on sera en confiance pour résoudre ceux des contrôles. Il est fondamental de prendre l’habitude de chercher les exercices de la feuille avant de venir en TD. On dit que "c’est en forgeant qu’on devient forgeron", se contenter de regarder forger serait moins efficace. Il est important "d’y croire", pourquoi certaines personnes font mieux que d’habitude lors de contrôles et que d’autres au contraire font moins bien ? Nous devons nous entraîner à faire partie de la première catégorie !

Matériel didactique, médiagraphie
Autres ressources : Éléments de méthodologie en mathématiques. INSA Toulouse.
8.2 UE M.S0.2 : Mathématiques de Base

Responsable du cours : Nicole MESTRANO-SIMPSON.

Nombre d'ECTS : 0

Mode d'enseignement : présentiel, 20h CM, 40h TD, sur 10 semaines.

Prérequis
Ce cours est réservé aux "Oui-Si" et à ceux qui auront rencontré des difficultés lors de la période Enjeux. Il est conseillé de suivre parallèlement les TD de Méthodologie (UE M.S0.1).

Présentation du cours
Ce cours s’adresse aux étudiants qui ont besoin de comprendre plus en profondeur les notions de mathématiques vues au lycée indispensables pour réussir des études scientifiques. Tout au long de ce cours nous nous efforcerons d’acquérir des réflexes pour savoir comment résoudre un problème mathématique.

Contenu du cours
- Chapitre 2 : Études et tracer de fonctions usuelles : Polynomiales, Logarithmiques, Exponentielles...
- Chapitre 3 : Calculs et compréhension géométrique de dérivées et d’intégrales, avec encadrement, max, min, sup, inf...
- Chapitre 4 : Nombres complexes : calculs de sommes, produits, quotients, conjugués, modules et arguments, interprétation géométrique...

Matériel didactique, médiagraphie
Autres ressources : Période d’Enjeux Maths0, Portail ST, Université Côte d’Azur.
8.3 UE M.S1.1 : FONDEMENTS MATHEMATIQUES 1

Responsables du cours : Philippe MAISONOBE (partie Algèbre) et Emmanuel MILITON (partie Analyse).

Mode d’enseignement : présentiel, 20h CM, 40h TD, sur 10 semaines.

Prérequis
Les notions mathématiques de base d’une classe de Terminal S ou ES.

Contenu du cours

Partie Analyse :

- Généralités sur les fonctions d’une variable réelle à valeurs réelles : graphe, parité, imparité, périodicité, composée, monotonie, fonctions minorées, majorées, bornées, rappel sur les fonctions \(\cos, \sin, \exp, \ln, \) puissances.
- Limites et continuité des fonctions d’une variable réelle à valeurs réelles. En se bornant à une approche intuitive et sans démonstration, limite d’une fonction en un point ou en \(+\infty\) ou \(-\infty\), opération sur les limites, stabilité des inégalités, croissances comparées, asymptotes verticales et horizontales. Continuité, opérations sur les fonctions continues, valeurs intermédiaires, image continue d’un intervalle, théorème des bornes.
- Dérivabilité, opérations sur les dérivées, extrema, Rolle, accroissements finis, variations ; étude d’une fonction.
- Fonctions injectives, surjectives, bijectives, bijection réciproque. Continuité de la bijection réciproque d’une fonction d’une variable réelle à valeurs réelles (admis), dérivabilité et dérivation de la bijection réciproque. Fonctions \(\arccos, \arcsin, \tan\) et \(\arctan\).

Partie Algèbre :

- Résolution de systèmes d’équations linéaires \((n, p)\) \((n\) équations et \(p\) inconnues, avec \(n = ou \neq p\)), méthode du pivot de Gauss, rang.
- Calcul matriciel : somme, produit, transposée, inverse, déterminant \((2 \times 2\) et \(3 \times 3)\) et interprétation géométrique, effets d’opérations élémentaires sur le déterminant, Cramer.

Matériel dydactique, médiagraphie
Polycopié disponible sur Moodle ou sur
http://https://math.unice.fr/ emiliton/fondement1/Fondements1Resumecours.pdf et

Autres ressources :

Médiagraphie : Tests de positionnement.
8.4 UE M.S1.2 : Compléments Mathématiques 1

Responsables du cours : Christophe CAZANAVE.

Mode d’enseignement : présentiel, 20h CM, 40h TD, sur 10 semaines.

Prérequis
Les notions mathématiques de base d’une classe de Terminale S ou les notions mathématiques d’une classe de Terminale ES et les séances de Maths0. Ce cours est complémentaire à celui de Fondements 1 et ne peut être pris sans lui.

Présentation du cours
Le but de ce cours est de voir (ou revoir) avec une rigueur mathématique plus poussée qu’au lycée certains outils de base des mathématiques. En particulier, on s’attache à donner des définitions précises et formelles des notions et on insiste sur les démonstrations.

Contenu du cours
- Arithmétique des entiers : divisibilité, nombres premiers, pgcd, rationalité et irrationalité, calcul modulaire...
- Polynômes : racines, arithmétique, théorème de D’Alembert-Gauss...
- Nombres réels : axiomatique, borne supérieure, borne inférieure, densité des rationnels...
- Suites : définition rigoureuse de la convergence, théorème de la limite monotone, théorème des suites adjacentes, théorème de Bolzano-Weierstrass...
- Fonctions d’un variable : limites et continuité, théorème des valeurs intermédiaires, image d’un segment par une fonction continue...

Matériel didactique, médiagraphie

Autres ressources : Polycopiés, exercices corrigés et feuilles de TD disponibles sur moodle.

Médiagraphie : Tests de positionnement pour chaque cours magistral.
8.5 UE MM.S1.1 : Méthodes mathématiques 1 : Mathématiques continues (Portail A)

Responsable du cours : Martine SMOLDERS et Ivan MOYANO.

Durée : 10 semaines.

Mode d’enseignement : présentiel, 20h CM, 40h TD, sur 10 semaines.

Prérequis
Les notions mathématiques de base d’une classe de Terminale S ou les notions mathématiques d’une classe de Terminale ES et les séances de Maths0.

Présentation du cours
Le cours abordera des notions de base des mathématiques et des méthodes mathématiques utiles pour tous les enseignements scientifiques du portail Siences et Technologies. Les connaissances étudiées relèvent essentiellement des fonctions définies sur des intervalles de \(\mathbb{R} \). La dérivation et l’étude des fonctions d’une variable réelle, par exemple, seront vues plus en profondeur qu’en Terminale. Il y aura aussi une introduction aux fonctions de deux variables.

Contenu du cours
- Limites et continuité des fonctions d’une variable réelle à valeurs réelles suivant une approche intuitive et sans démonstration, limite d’une fonction en un point ou en \(+\infty \) ou \(-\infty \), opérations sur les limites. Continuité, opérations sur les fonctions continues, théorème des valeurs intermédiaires, image continue d’un intervalle, théorème des bornes.
- Dérivabilité, opérations sur les dérivées et applications : sens de variation d’une fonction, étude d’une fonction, extrema, accroissements finis, approximation affine, fonctions convexes et fonctions concaves.
- Fonctions usuelles : \(\cos \), \(\sin \), \(\tan \), exponentielle et logarithme, fonctions puissances réelles et fonctions exponentielles de base \(a \).
- Fonctions injectives, surjectives, bijectives, fonctions composées, bijection réciproque. Continuité de la bijection réciproque d’une fonction d’une variable réelle à valeurs réelles, dérivabilité et dérivation de la bijection réciproque. Fonctions réciproques des fonctions puissances entières et fonctions arccos, arcsin et arctan.
- Recherche d’une primitive et intégration sur un intervalle borné d’une fonction continue. Méthodes de calcul : intégration par parties, méthode de substitution, changement de variable.
- Équations différentielles linéaires d’ordre 1 homogènes et avec second membre. Introduction à la méthode de la variation de la constante.

Matériel didactique, médiagraphie
Médiagraphie :
Polycopiés et feuilles de TD disponibles sur moodle. Tests de positionnement pour le niveau prérequis.
8.6 UE MM.S1.SV : Méthodes mathématiques 1 : Introduction aux Probabilités et à la Statistique (Portail B)

Responsables du cours : Rémi Catellier.

Nombre d'ECTS : 6.

Mode d'enseignement : présentiel sur 10 semaines.

Partie I : Bases des probabilités continues.

• Représentation graphique d'une fonction d'une variable. Cas d'une densité de probabilité. Quelques lois continues classiques et ce qu'elles modélisent. Interprétation graphique d'une probabilité en terme d'aire. Quelques calculs d'intégrales.

• La fonction de répartition. Calcul de probabilités à l'aide des fonctions de répartition. Définition d'un quantile, d'une médiane, d'un quartile. Représentation graphique à partir de la fonction de répartition. Cas gaussien (table statistique).

• Espérance, variance d'une variable aléatoire. Interprétation. Calculs élémentaires. Loi symétrique et dissymétrique (différence entre médiane et espérance)

Partie II : Statistique Descriptive et lien avec les probabilités.

• Notion de variables aléatoires i.i.d. tirées suivant une loi continue. La moyenne empirique, la variance empirique, la médiane empirique, les quartiles empiriques. Représentation par des boîtes à moustache.

• Lien entre les notions empiriques et les lois de probabilités : loi des grands nombres, convergence de la variance empirique. Notion d'estimateurs. Illustration des résultats à partir de simulations. Prévoir une animation.

• Construction d'un histogramme. Lien avec la densité de probabilité des observations. Prévoir une animation.

• Animation illustrant le théorème de la limite centrale (avec variance estimée). Notion d'intervalle de confiance (asymptotique) sur l'espérance d'un échantillon.
Chapitre 9

SEMESTRE 2
9 SEMESTRE 2

9.1 UE M.S2.1 : Fondements Mathématiques 2

Responsables du cours : Julie DÉSERTI (partie Analyse) et Philippe MAISONOBE (partie Algèbre).

Nombre d'ECTS : 6.

Mode d'enseignement : présentiel, 20h CM, 40h TD, sur 10 semaines.

Prérequis

Contenu du cours

Partie Algèbre :

- Espaces vectoriels (vocabulaire, structure d’espaces vectorielles, combinaisons linéaires, sous-espaces vectoriels.) et applications linéaires (Noyau, Image, rang) (cadre général et dans \(\mathbb{R}^n \) en particulier).

- Familles de vecteurs (génératrices, libres, bases, dimension finie), droites et plans dans \(\mathbb{R}^2 \) et \(\mathbb{R}^3 \).

- Exemples d’espaces vectoriels (polynômes, fonctions, suites). Somme directe de sous espaces vectoriels. Suites récurrences linéaires d’ordre \(n \).

- Applications linéaires en dim finie et matrices (écriture matricielle, composition, matrice de passage, formule de changements de bases).

Partie Analyse :

- Calcul intégral (intégrales par parties, changement de variables), intégration et dérivation, primitives (des fonctions élémentaires), formule de Taylor.

- Équivalents et notations de Landau. Développements limités et application au calcul de limites.

Matériel dydactique, médiagraphie

Notes de cours disponibles sur
http://deserti.perso.math.cnrs.fr/cours/MF2.html

Médiagraphie : Tests de positionnement.
9.2 UE M.S2.2 : Compléments Mathématiques 2

Responsable du cours: Antoine DOUAI.

Nombre d’ECTS: 6.

Mode d’enseignement: Présentiel.

Prérequis
Il faut avoir suivi les cours Fondements mathématiques 1, Compléments mathématiques 1 et suivre au second semestre le cours Fondements mathématiques 2. Nous utiliserons toutes les notions vues dans ces trois cours, même si nous reviendrons dessus s’il le faut. C’est mieux si vous avez suivi la spécialité mathématiques de la terminale S.

Remédiation
Du travail personnel régulier (relire le cours, apprendre les théorèmes, les définitions, etc, …). Faire les exercices de la feuille de TD avant la séance. Les feuilles de TD et des rappels de cours sont disponibles en ligne.

Présentation du cours
Ce cours sera suivi par les étudiants se destinant à la licence Mathématiques, doubles licences Mathématiques-Informatique et Mathématiques-Physique.

Un des objectifs de ce cours est de donner des preuves précises de certains résultats admis par ailleurs. Exemple : vous savez (ou vous avez utilisé sans le savoir déjà quand vous étiez en terminale) que “toute fonction continue admet des primitives “. Nous montrerons ce résultat : il faudra définir au préalable l’intégrale de Riemann (celle qui se calcule avec les primitives !) et donc faire de la théorie. Il n’y aura pas que du calcul et le cours sera axé (aussi) sur les preuves et la compréhension précise des objets que l’on manipule (il faudra entre autre apprendre les définitions et les théorèmes par cœur !). On vous demandera de comprendre des démonstrations et de faire des démonstrations.

Contenu du cours

- Décomposition en éléments simples des fractions rationnelles et intégration des fractions rationnelles.
- Géométrie vectorielle euclidienne dans \mathbb{R}^n : norme, distance, produit scalaire, orthogonalité, base orthonormées.
- Projections et symétries orthogonales, matrice de projection, décomposition de l’espace en sous-espaces vectoriels orthogonaux.
9.3 UE MM.S2.1 : Méthodes Mathématiques 2 : Approche discrète (Portail A)

Responsables du cours : Mohamed ELKADI.

Mode d’enseignement : présentiel, 20h CM, 40h TD, sur 10 semaines.

- Systèmes d’équations linéaires :
- Noyau d’une matrice, image d’une matrice, rang d’une matrice, théorème du rang.
- Vecteurs de \mathbb{R}^n, combinaison linéaire de vecteurs, dépendance linéaire, famille libre, famille génératrice, sous-espaces vectoriels, sous-espaces vectoriels engendrés par des vecteurs, bases d’un sous-espace vectoriel, dimension.
- Opérations algébriques sur les matrices, matrices inversibles, systèmes inversibles, déterminants de matrices de taille 2, 3.
- Diagonalisation de matrices et applications :
 Vecteur propre, valeur propre, espace propre, polynôme caractéristique. Diagonalisation. Systèmes différentiels et systèmes de suites.
- Suites et séries numériques :
9.3. UE MM.S2.1 : MÉTHODES MATHÉMATIQUES 2 : APPROCHE DISCRÈTE (SPOMESTILEA)
Chapitre 10

SEMESTRE 3
10.1 UE M.S3.1 : Fondements Mathématiques 3

Responsables du cours : Ann LEMAHIEU (partie Algèbre) et Antoine DOUAI (partie Analyse).

Prérequis
Il est conseillé d’avoir suivi l’UE Fondements Mathématiques 2.

Remédiation

Mode d’enseignement : présentiel sur 12 semaines.

Présentation du cours
Dans la partie Algèbre de ce cours, nous abordons un problème classique en Algèbre linéaire : étant donné une application linéaire, nous nous proposons de chercher des bases dans lesquelles la forme de la matrice de l’application linéaire est la plus simple possible, en particulier diagonale. Les techniques et les structures liées à ce problème ont des applications dans de nombreux domaines et nous en rencontrerons plusieurs dans ce cours. En plus des applications, nous apprendrons à comprendre et à faire des raisonnements en Algèbre linéaire. Ce cours est destiné aux étudiants se dirigeant vers une licence mention Mathématiques, Informatique, Physique, Miashs, etc. Certains aspects plus conceptuels ne seront pas approfondis dans ce cours. Les étudiants intéressés pourront les étudier en même temps dans l’UE Compléments d’Algèbre.

Dans la partie Analyse de ce cours, sont abordées les notions d’intégrale généralisée et de séries numériques, concepts de base en Analyse.

Contenu du cours
Partie Algèbre :
- Déterminant d’une matrice (développement ligne/colonne) et d’un endomorphisme. Matrice inversible.
- Valeurs propres, vecteurs propres, espaces propres, polynôme caractéristique.
- (Calcul matriciel par blocs (en TD)).
- Espaces Euclidiens (en particulier \mathbb{R}^n avec le produit scalaire canonique) : matrices orthogonales et lien avec les bases orthonormées.
- Classification des matrices orthogonales réelles en dimension 2 et 3 (en TD).
- Diagonalisation, applications (puissance d’une matrice diagonalisable, application aux suites récurrentes linéaires, systèmes dynamiques linéaires discrets, systèmes différentiels.
- Diagonalisation des matrices symétriques réelles.

Partie Analyse :
- Intégrale généralisée (théorème de comparaison dans le cas des fonctions positives, absolue convergence, critères de convergence).
- Fonctions convexes d’une variable réelle.

Matériel dydactique, médiagraphie
Notes de cours disponibles à la rentrée 2019.
Médiagraphie : Tests de positionnement.
10.2 UE M.S3.2 : Compléments d’Analyse

Responsables du cours : Stéphanie NIVOQUE.

Mode d’enseignement : présentiel, 24h CM, 36h TD, sur 12 semaines.

Prérequis
Les notions mathématiques abordées dans les cours "M.S1.1 et M.S2.1" ou "MM.S1.1 et MM.S2.1".

Contenu du cours

Espaces vectoriels normés

• Espaces vectoriels normés, espaces métriques (normes, espaces métriques, limites de suites dans un espace métrique, parties ouvertes, parties fermées, applications continues, applications uniformément continues, applications linéaires ou multilinéaires continues, normes équivalentes).
• Espaces métriques complets (suites de Cauchy, espaces complets, théorème du point fixe, séries dans un espace vectoriel normé).
• Espaces métriques compacts (définition et premières propriétés, fonctions continues sur un compact, théorème de Heine).
• Espaces vectoriels normés de dimension finie (théorèmes fondamentaux, normes matricielles).
• Connexité, convexité (parties convexes, espaces connexes, fonctions convexes, inégalités de convexité).

Courbes paramétrées

• Courbes planes (notion de courbe paramétrée, étude locale, exemples).
• Courbes en coordonnées polaires (définition, tangente, branches infinies).

Matériel dydactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
10.3 UE M.S3.3 : Compléments d’Algèbre

Responsible du cours : Christian PAULY.

Durée : 12 semaines, 22 heures de cours + 1 examen partiel de 2 heures.

Mode d’enseignement : CM, TD, Colles.

Prérequis

Cours d’Algèbre des UE "M.S1.1 et M.S2.1" ou "MM.S1.1 et MM.S2.1".

Présentation du cours

Ce cours présente les notions fondamentales de l’Algèbre (groupe, anneau, corps, espaces vectoriels, morphismes). Ces notions sont illustrées par de multiples applications en Arithmétique et en Géométrie.

Contenu du cours

I. Introduction aux structures algébriques et applications à l’Arithmétique :

- Groupes : définition, exemples de groupes abéliens et de groupes non abéliens (comme le groupe des permutations), sous-groupes, (iso)morphismes de groupes, sous-groupes engendrés par un ensemble, ordre d’un élément, théorème de Lagrange, groupes cycliques.
- Anneaux et corps : définitions, exemples d’anneaux, sous-anneaux, multiple, diviseur, élément inversible, corps, anneaux intègres, idéal, (iso)morphismes d’anneaux, rappels sur les congruences (vu en M.S1.2), définition de l’anneau \(\mathbb{Z}/n\mathbb{Z} \) (via classes résiduelles), le corps \(\mathbb{F}_p \), théorème des restes chinois.
- Applications à l’Arithmétique : Théorème de Fermat, fonction d’Euler, théorème d’Euler, systèmes de congruences, cryptographie et équations diophantiennes (méthode réduction modulo \(p \), méthode de la descente infinie de Fermat).

II. Formes multilinéaires et Algèbre bilinéaire :

- Groupe symétrique, formes multilinéaires, déterminant.
- Formes bilinéaires symétriques, formes quadratiques réelles (méthode d’élaboration de variables de Gauss, écriture matricielle, signature, théorème de Sylvester). Espaces euclidiens, Espaces hermitiens (\(\mathbb{C}^n \) avec produit hermitien standard), classification des formes hermitiennes.
- Orthogonalisation simultanée, application aux coniques et quadriques.

Matériel didactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.
10 SEMESTRE 3 10.4. UE MM.S3.1 : Méthodes Mathématiques 3-1 : Modélisation géométrique

10.4 UE MM.S3.1 : Méthodes Mathématiques 3-1 : Modélisation géométrique

Responsables du cours : Mohamed ELKADI.

Nombre d’ECTS : 6

Mode d’enseignement : présentiel, 24h CM, 36h TD, sur 12 semaines.

Prérequis

Contenu du cours

- Espaces vectoriels, applications linéaires.
- Formes quadratiques, Lagrange, définies positive et négative.
- Normes, distance, produit scalaire.
- Méthode des moindres carrés, projection orthogonale, matrice de projection.
- Orthogonalisation Gramm-Schmidt, décomposition QR.
- Décomposition de l’espace en sous-espaces vectoriels orthogonaux.
- Décomposition en valeurs singulières.
- Régession (Méthode des moindres Carrés Ordinaires, Analyse en Composantes Principales), clustering, covariance empirique.

Matériel didactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.
10.5 UE MM.S3.2 : Méthodes Mathématiques 3-2 : Mathématiques et Ingénierie

Responsable du cours : Didier CLAMOND.

Nombre d'ECTS : 6.

Durée : 12 semaines.

Mode d'enseignement : En présentiel.

Prérequis
Cours des UE M.S1.1, M.S2.1, MM.S1.1, MM.S2.1.

Remédiation
Cours d'Analyse et d’Algèbre linéaire des UE "M.S1.1 et M.S2.1" ou "MM.S1.1 et MM.S2.1".

Présentation du cours
Calculus des semestres 3 et 4.

Contenu du cours
- Fonctions d’une et de plusieurs variables, continuité, dérivées partielles, gradient, formule de Taylor, différentielle, opérateurs différentiels.
- Intégrales multiples, intégrales curvilignes.
- Courbes planes et gauches, surfaces.
- Méthodes de résolutions des Équations Différentielles Ordinaires, initiation aux Équations aux Dérivées Partielles.

Matériel didactique, médiagraphie
Chapitre 11

SEMESTRE 4
11.1 UE M.S4.1 : Analyse

Responsables du cours : Florent BERTHELIN.

Mode d’enseignement : présentiel sur 12 semaines.

Prérequis

Présentation du cours

Contenu du cours

- Suites et séries de fonctions.
- Séries entières (rayon de convergence, dérivation et intégration terme à terme d’une série entière).
- Séries de Fourier (théorème d’unicité, théorème de convergence de Dirichlet, éventuellement théorème de Cesaro, éventuellement approximation uniforme par des polynômes trigonométriques).
- Calcul différentiel : fonctions de plusieurs (2 ou 3) variables et à valeurs réelles (continuité, dérivées partielles, différentiabilité, gradient, Hessienne, formule de Taylor, matrice jacobienne, fonctions composées, extrema, éventuellement théorème des extrema liés).
11.2 UE M.S4.2 : Probabilités et introduction à la Statistique

Responsables du cours : Maxime INGREMEAU (maxime.ingremeau@univ-cotedazur.fr).

Nombre d'ECTS : 6.

Mode d'enseignement : présentiel, 20h CM, 40h TD, sur 12 semaines.

Prérequis
Calcul intégral, séries.

Remédiation
Des rappels seront faits en cours (ou dans le polycopié) concernant les séries.

Présentation du cours
Ce cours présentera les bases des probabilités discrètes et continues, et des statistiques. Nous partons de problèmes de la vie courante (jets de dés, jeux de cartes, jeux de hasard, sondages...) pour formaliser de manière rigoureuse les définitions, les modèles et les théorèmes fondamentaux en probabilité et en statistiques.

Contenu du cours
Introduction aux Probabilités
• Notion d'événements aléatoires. Dénombrement. Lien entre probabilité et fréquence d'un événement.
• Notion de variables aléatoires discrètes et de lois discrètes. Exemples des lois de Bernoulli, binomiale, géométrique, Poisson et ce que ces lois modélisent : du jeu pile ou face (truqué et non truqué), jeu de dé (truqué et non truqué), événements rares. Formules (admises) de calcul (simple) de probabilités et d’espérance (formule de transfert), d’espérances et de variances, pour des variables aléatoires discrètes.
• Notion de densité de probabilité. Exemple de la loi uniforme, exponentielle, gaussienne et ce que ces lois modélisent : tirage aléatoire uniforme, durée de vie, erreurs de mesures. Formule (admise) de calcul de probabilité, d’espérance (formule de transfert), de variance, avec des lois à densité.
• Inégalités de Bienaymé-Tchebycheff et Markov.

Introduction aux Statistiques
• Notion de fonction de répartition et de fonction quantile. Interprétation et calculs.
• Indicateurs statistiques : paramètres de tendance centrale, de dispersion et de position (moyenne médiane, variance, mode...)
• Statistiques descriptives : diagramme en bâtons, histogramme et courbe des fréquences cumulées.
• Introduction à l’indépendance d’événements et de variables aléatoires. Formule de Bayes sur deux événements et son interprétation. Notion de covariance entre variables aléatoires.
• Théorème limites (sans preuve) : loi des grands nombres, théorème central limite. Intervalles de confiance.

Matériel didactique, médiagraphie
11.3 UE M.S4.3 : Algèbre

Responsables du cours : Ann LEMAHIEU et Adam PARUSINSKI.

Mode d’enseignement : présentiel sur 12 semaines.

Prérequis

Présentation du cours

Contenu du cours

I. Théorie des groupes :

- Relation d’équivalence et ensemble-quotient, classes modulo un sous-groupe, sous-groupes distingués, groupes quotients, sous-groupes de groupes cycliques et leurs quotients, théorème d’isomorphisme pour les groupes, énoncé de la structure des groupes abéliens finis.

II. Algèbre commutative :

- Généralités sur les anneaux commutatifs : idéaux, anneaux quotients, idéal engendré par un ensemble, idéaux principaux, idéaux maximaux, idéaux premiers.
- Divisibilité dans les anneaux (pgcd, éléments associés), anneaux principaux (pgcd, Bezout, Gauss).
- Anneaux de polynômes : division euclidienne, idéaux de $\mathbb{K}[x]$, l’anneau quotient $\mathbb{K}[x]/(f(x))$.
- Eléments algébriques, éléments transcendants, polynôme minimal.

III. Réduction des endomorphismes :

- (Si le temps le permet, faire une introduction aux actions de groupes et donner plusieurs exemples en lien avec la réduction des endomorphismes.)
11.4 UE M.S4.4 : Résolution numérique des systèmes d’équations linéaires et non-linéaires

Responsable du cours : Roland MASSON.

Mode d’enseignement : présentiel, 24h CM, 36h TD, 20h TP sur 12 semaines.

Prérequis
Algèbre linéaire : espaces vectoriels, applications linéaires, calcul matriciel, valeurs propres et vecteurs propres d’une matrice, diagonalisation - triangularisation d’une matrice, produits scalaires et normes. Calcul différentiel : fonctions de plusieurs variables, continuité, différentielle, dérivées partielles, formule de Taylor.

Présentation du cours
Le but de cette unité d’enseignement est d’étudier théoriquement et de savoir programmer quelques méthodes de base du calcul et de la simulation numérique omniprésentes dans les applications. Ce cours aborde les algorithmes de résolution des systèmes linéaires et non linéaires ainsi que le calcul numérique des valeurs propres d’une matrice. Leurs propriétés de convergence seront rigoureusement établies, leur complexité ou coût sera étudié et les algorithmes seront mis en pratique sur ordinateur à l’aide du logiciel libre Scilab (https://www.scilab.org) en abordant dès que possible des exemples d’applications concrètes.

Contenu du cours
• Rappels et compléments d’Algèbre Linéaire : normes vectorielles et normes matricielles ; relation entre rayon spectral et normes matricielles ; suites de vecteurs et de matrices ; conditionnement d’un système linéaire.
• Résolution numérique des systèmes linéaires par méthodes itératives : méthodes de Richardson à pas fixe et à pas variable, étude de leur propriétés de convergence ; notion de préconditionnement des méthodes itératives, exemples des préconditionnements de Jacobi, Gauss-Seidel, SOR et SSOR ; notion de matrice creuse et étude de la complexité des méthodes itératives.
• Résolution numérique des systèmes linéaires par méthodes directes : factorisation LU sans et avec pivotage, algorithmes de descente et de remontée, étude des algorithmes et de leur complexité ;
• Rappels et compléments de Calcul Différentiel. Approximation de solutions d’équations et de systèmes d’équations non linéaires : algorithme du point fixe et méthode de Newton en dimensions 1, puis en dimension \(n > 1 \); estimation de l’erreur d’approximation, ordre de convergence.
• Calcul approché de valeurs propres et vecteurs propres d’une matrice : localisation des valeurs propres, méthodes de la puissance itérée et de la puissance inverse, présentation succincte de la méthode QR pour le calcul approché simultané de toutes les valeurs propres.

Matériel didactique, médiagraphie
Autres ressources : Seront disponibles sur le site web du cours, le cours rédigé sous forme succincte ainsi que les feuilles d’exercices de TDs et de TPs avec leurs corrigés.
11.5 UE M.S4.2D : Géométrie

En construction.

Responsable à l’ESPE :
Responsable au LJAD :
11 SEMESTRE 4 11.6. UE MM.S4.1 : Méthodes Mathématiques 4 : Modélisation Aléatoire

11.6 UE MM.S4.1 : Méthodes Mathématiques 4 : Modélisation Aléatoire

Responsables du cours : Christine MALOT.

Nombre d'ECTS : 6.

Mode d'enseignement : présentiel sur 12 semaines.

Prérequis

Présentation du cours

Ce module sera une introduction aux Probabilités et aux Statistiques avec des exemples pour illustrer les différentes notions abordées.

Contenu du cours

- Introduction aux Probabilités
 - Dénombrement.
 - Définition des probabilités finies, probabilités conditionnelles finies, indépendance. Notion d'événements aléatoires. Lien entre probabilité et fréquence d'un événement.
 - Introduction à l'indépendance d'événements. Formule de Bayes sur deux événements A et B : $P(A|B) = P(A \cap B)/P(A)$ et son interprétation.
 - Illustration de l'intérêt de l'indépendance dans certains calculs.
 - Rappels sur les séries.
 - Probabilités sur des espaces dénombrables (généralités).
 - Variables aléatoires discrètes (définition, lois classiques, espérance, formule de transfert, variance)
 - Notion de variables aléatoires discrètes et de lois discrètes. Exemples des lois de Bernoulli, binomiale, géométrique, Poisson et ce que ces lois modélisent : du jeu pile ou face (truqué et non truqué), jeu de dé (truqué et non truqué), événements rares. Formules (admises) de calcul (simple) de probabilités et d'espérance (formule de transfert), d'espérances et de variances, pour des variables aléatoires discrètes.
 - Variables aléatoires à densité (définition, lois classiques, fonction de répartition, espérance, variance)
 - Notion de densité de probabilité. Exemple de la loi uniforme, exponentielle, gaussienne et ce que ces lois modélisent : tirage aléatoire uniforme, durée de vie, erreurs de mesures.
 - Notion de fonction de répartition et de fonction quantile. Notion de médiane, quartile, décile.
 - Formule (admise) de calcul de probabilité, d'espérance (formule de transfert), de variance, avec des lois à densité. Interprétation.

- Introduction aux Statistiques
 - Statistiques descriptives : diagramme en bâtons et histogramme et courbe des fréquences cumulées.
 - Indicateurs statistiques : paramètres de tendance centrale, de dispersion et de position (moyenne médiane, variance, mode). Interprétation et représentation.
 - Introduction à la fluctuation d'échantillonnage et ouverture vers l'intérêt d'un intervalle de confiance.
 - Introduction à l'indépendance pour les variables aléatoires et théorème limites (sans preuve) : loi des grands nombres, théorème central limite.
11.7 UE MM.S4.2 : Mathématiques pour la Finance

ECUE MM.S4.2.1 : Mathématiques Financières

Responsables du cours : Amina AMASSAD.

Nombre d’ECTS : 3.

Mode d’enseignement : présentiel, 12h CM, 18h TD.

Prérequis

Les notions mathématiques de base d’une classe de Terminale S ou ES et UE Méthodes mathématiques 1 (MMS1).

Présentation du cours

Ce cours offre une introduction et sert de prérequis aux cours avancés des mathématiques financières. Il vise à fournir les bases des outils mathématiques utilisés en finance et à initier et familiariser l’étudiant à quelques produits financiers.

Tout d’abord nous commencerons par étudier la différence entre les différents types d’intérêts, les taux d’intérêts composés et les taux d’intérêts continus. Nous traiterons ensuite les notions d’actualisation et de capitalisation et les méthodes de calcul d’une suite d’annuités. Nous terminerons avec quelques applications financières comme l’amortissement des emprunts indivis et obligataires et par donner une introduction sur les produits dérivés financiers.

Contenu du cours

• Outils mathématiques : fonctions exponentielles de base a, compléments sur les suites numériques, suites arithmétiques, suites géométriques, suites arithmético-géométriques.
• Intérêts : intérêt simple, intérêt composé, taux équivalent, taux effectif, taux proportionnel, taux continu, capitalisation, actualisation.
• Annuités : valeur acquise et valeur actuelle d’une suite d’annuités, annuités constantes, annuités variables.
• Emprunts indivis : tableau d’amortissement, échéances constantes, échéances variables, taux effectif global.
• Emprunts obligataires : amortissement à taux fixe, analyse du risque.
• Introduction aux produits dérivés : les options.

ECUE MM.S4.2.2 : Analyse de la Décision

Responsables du cours : Jean-Baptiste CAILLAU.

Nombre d’ECTS : 3.

Mode d’enseignement : présentiel sur 12 semaines.

Prérequis

Présentation du cours

Contenu du cours

• Outils mathématiques préliminaires : théorie naïve des ensembles, éléments de logique et méthodes de preuve.
Les fondamentaux de la théorie du choix : le statut du choix en sciences économiques, les relations binaires, les relations de préférences.

La théorie des préférences révélées : relations de préférences et choix ; choix et préférences révélées (axiomes alpha et beta de Sen, axiome d’Houthaker).

L’utilité ordinaire : homomorphismes et isomorphismes d’ordre ; représentation des relations de préférences par une fonction d’utilité ; non-unicité des fonctions d’utilité ; fonction d’utilité et courbe d’indifférence ; propriétés structurelles des relations de préférences (continuité, monotonie, non-satiabilité, convexité, homothétie).
Chapitre 12

SEMESTRE 5
12.1 UE M.S5.1 : Calcul différentiel et Géométrie Différentielle

Responsables du cours :

Mode d’enseignement : présentiel, 24h CM, 36h TD, sur 12 semaines.

Prérequis

Présentation du cours

Contenu du cours

• Calcul Différentiel sur un espace vectoriel normé de dimension finie.
• Courbes, surfaces et volumes paramétrés. Vecteurs et plans tangents.
• Fonctions C^k, inversion locale, fonctions implicites.
• Graphes, courbes de niveau.
• Introduction à la géométrie différentielle : courbes et surfaces, multiplicateurs de Lagrange.
• Courbes et surfaces (courbure, torsion), éventuellement théorème de Gauss sur la courbure totale.

Matériel dydactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
12.2 UE M.S5.2 : Statistique et Modélisation

Responsables du cours :

Mode d’enseignement : présentiel, 24h CM, 36h TD, 20h TP, sur 12 semaines.

Prérequis

Présentation du cours

Ce module a pour objectif d’introduire les notions d’estimation et de tests avec la mise en œuvre sur les problèmes de régression linéaire.

Contenu du cours

- Indépendance et la notion de vecteurs aléatoires.
- Estimation :
 - estimation ponctuelle avec la méthode des moments et du maximum de vraisemblance ;
 - les propriétés d’un estimateur : sans biais, convergent, erreur quadratique ;
 - intervalle de confiance dans le cadre gaussien et non gaussien quand cela est possible (illustration de la notion de niveau de confiance à l’aide de l’outil informatique).
- Régression :
 - rappel de ce qu’est le problème de régression avec des exemples concrets ;
 - estimation des paramètres ;
 - intervalle de confiance pour les paramètres, pour la droite de régression et pour les prédictions (illustration informatique dans le cadre de la régression linéaire simple).
- Tests :
 - définition du principe d’un test ;
 - test classique sur un paramètre et sur un couple de paramètres (l’idée est de montrer la forme elliptique de la région de confiance) ;
 - test d’adéquation (χ^2 et Kolmogorov) ;
 - test d’indépendance (χ^2) ;
- Retour sur la régression. Cette partie comportera une interprétation des résultats de sortie du logiciel R :
 - test individuel sur un paramètre avec le côté interprétation ;
 - test global de Fisher ;
 - test de modèles gaussiens emboités avec l’utilisation pour un aspect sélection de variables ;
 - validation des hypothèses classiques du modèle de régression linéaire.

Matériel dydactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
12.3 UE M.S5.3 : Intégration et Théorie de la Mesure

Responsables du cours :

Mode d’enseignement : présentiel, 24h CM, 36h TD, sur 12 semaines.

Prérequis

Présentation du cours

Contenu du cours

• Rappels sur l’intégrale de Riemann et calculs d’intégrales.
• Dénombrabilité.
• Théorie de la mesure - mesures de Lebesgue et de comptage.
• Fonctions mesurables et intégration.
• Théorèmes limites.
• Intégrales multiples.
• Intégrales à paramètres, transformée de Fourier (introduction).
• Éventuellement espace L^1.

Matériel didactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
12.4 UE M.S5.4 : Équations Différentielles

ECUE M.S5.4.1 : Équations Différentielles I

Responsables du cours : Emmanuel MILITON.

Nombre d'ECTS : 4.

Mode d'enseignement : présentiel, 16h CM, 24h TD, sur 8 semaines.

Prérequis

Présentation du cours

Contenu du cours

- Rappels sur les équations différentielles d’ordre 1.
- Systèmes différentiels / équations différentielles linéaires à coefficients constants / exponentielle des matrices.
- Portraits de phase des systèmes linéaires dans le plan.
- Équations différentielles non-linéaires, théorème de Cauchy-Lipschitz et solutions maximales, variables séparables.

Matériel dydactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.

ECUE M.S5.4.2 : Équations Différentielles II

Responsables du cours : Emmanuel MILITON.

Nombre d'ECTS : 2.

Mode d’enseignement : présentiel, 8h CM, 12h TD, sur 4 semaines.

Prérequis

Présentation du cours

Contenu du cours

- Systèmes différentiels linéaires à coefficients variables, wronskien, variation de la constante, etc.
- Lien avec les séries entières.
- Théorème des bouts, lemme de Gronwall.

Matériel dydactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
12.5 UE M.S5.5 : Algèbre et Géométrie

Responsables du cours :

Mode d’enseignement : présentiel, 24h CM, 36h TD, sur 12 semaines.

Prérequis

Présentation du cours

Contenu du cours

I. Dualité linéaire :
 • formes linéaires, hyperplans, espace dual, base dual, bidual, orthogonal linéaire.

II. Réduction des endomorphismes autoadjoints :
 • espaces hermitiens : formes hermitiennes, produit scalaire hermitien, réduction de Gauss, matrices hermitiennes, changement de base, bases orthonormées, orthogonal;
 • endomorphismes autoadjoints sur un espace Euclidien/Hermitien et diagonalisation, réduction des endomorphismes normaux;
 • groupes orthogonaux et unitaires, relations entre $U(2, \mathbb{C})$, $SO(3, \mathbb{R})$ et les quaternions, décomposition d’une transformation orthogonale en produit de réflexions.

III. Applications :
 • application : décomposition polaire;
 • applications en TP : décomposition LU, factorisation de Cholesky, factorisation QR, moindres carrés discrets, décomposition en valeurs singulières avec application ACP.

IV. Géométrie affine :
 • espace affine et sa direction, applications affines, repères affines, coordonnées barycentriques, convexité;
 • similitudes affines, Classification des isométries affines en dimension 2 et 3;
 • Géométrie plane : théorèmes de Thalès, Pappus, Desargues.

Matériel dydactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
12.6 UE M.S5.2D : Nombres

En construction.

Responsable à l’ESPE :
Responsable au LJAD :

Matériel dydactique, médiagraphie
Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
12.7 UE MM.S5.1 : Analyse Économétrique

ECUE MM.S5.1.1 : Économétrie Appliquée

Responsables du cours :

Nombre d'ECTS : 3.

Mode d'enseignement : présentiel, 12h CM, 18h TD, sur 6 semaines.

Prérequis

Présentation du cours

Contenu du cours

- Ajustement par la méthode des Moindres Carrés Ordinaires (MCO) : le modèle linéaire simple ; approche analytique : le système des équations normales, les propriétés des MCO, Interprétation géométrique ; mesure explicative du modèle : équation d'analyse de la variance, le coefficient de détermination (R2 et R2 ajusté ; leur interprétation géométrique) et le coefficient de corrélation ; le modèle linéaire général (multiple) : écriture matricielle ; estimation des paramètres par les MCO (système des équations normales, interprétation géométrique de la méthode : le passage en variables centrées) ; note sur la multicollinéarité : notions de corrélations simple, partielle et multiple.
- Introduction des probabilités dans le modèle : l'interprétation probabiliste des MCO : les sept hypothèses ; étude des propriétés des estimateurs (sans biais, convergents et efficaces) ; détermination de l'expression de la variance des estimateurs.
- Application de la théorie des Tests au modèle linéaire ; tests sur la valeur d'un coefficient : le test de Student : test de significativité d'un coefficient, test sur la valeur d'un coefficient par rapport à une valeur particulière, test d'une restriction linéaire sur les coefficients (Student) ; test de signification globale du modèle par l'équation d'analyse de la variance (justification et construction de la statistique de Fisher).

ECUE MM.S5.1.2 : Introduction aux Séries Temporelles

Responsables du cours : Anna TYKHONENKO.

Nombre d'ECTS : 3.

Mode d'enseignement : présentiel, 12h CM, 18h TD, sur 6 semaines.

Prérequis

Présentation du cours

Contenu du cours

- Définition d'une série chronologique univariée et les problèmes spécifiques posés par les séries temporelles (identification, prévision, stationnarité, tendance et saisonnalité, séparation du court et du long terme) ; analyses temporelle et spectrale ; la 'galerie de portraits' : processus stationnaires AR, MA et ARMA ; processus non-stationnaires ARIMA et SARIMA ; méthode (itérative) de Box et Jenkins.
- Concepts, notations et notions de base : processus aléatoire/stochastique ; stationnarité 'forte' (au sens strict), stationnarité à l'ordre 2 et bruit blanc ; non-Stationnarité (TS et DS) et marche aléatoire ; opérateur retard et ses propriétés ; FAC/FAP ; fonction d'autocovariance.
d’un processus, corrélogramme (théorique et empirique); tests de significativité des coefficients d’autocorrélation.

- Typologie des modèles stationnaires : MA, AR et ARMA (formulation et caractéristiques FAC/FAP) : synthèse des propriétés (les outils permettant d’identifier le modèle générateur).

- Modèles non-stationnaires : conditions de stationnarité et d’inversibilité; description des processus TS et DS; différenciation et conséquences d’une ‘mauvaise’ stationnarisation du processus.

- Exemples : exemple d’analyse : application à l’indice boursier CAC40 ; analyse des corrélogrammes : MA, AR, ARMA, SARMA et ARIMA (stationnarité vs non-stationnarité).

Matériel dydactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
12.8 UE MM.S5.2 : Systèmes Dynamiques, Calcul Différentiel et Optimisation

ECUE MM.S5.2.1 : Systèmes Dynamiques et Calcul Différentiel

Responsables du cours :

Nombre d'ECTS : 4.

Mode d'enseignement : présentiel, 16h CM, 24h TD, sur 8 semaines.

Prérequis

Présentation du cours

Contenu du cours

- Calcul différentiel : fonctions de plusieurs variables (continuité, dérivées partielles, gradient, Hessienne, formule de Taylor, matrice jacobienne, fonctions composées, extréma). La notion de différentielle ne sera pas introduite.
- Théorie des équations différentielles ordinaires.
 - Équations scalaires linéaires d’ordre 1 (méthode de la variation de la constante).
 - Équations différentielles scalaires linéaires d’ordre n à coefficients constants.
 - Cas général. Exemples d’équations différentielles non-linéaires; mise sous forme ordre 1 dans le cas général. On évoquera le théorème de Cauchy-Lipschitz (sans preuve).
 - Cas des équations différentielles à variables séparables.
- Approximation numérique des équations différentielles ordinaires :
 - mise en forme des schémas numériques d’Euler explicite et implicite, Crank Nicolson, Runge-Kutta d’ordre 4, notion de schémas explicite/implicite et problématique de résolution associée dans le cas implicite, schéma à un pas ;
 - notion de convergence de schémas numériques et ordre de convergence, étude sur un exemple : convergence du schéma d’Euler explicite ;
 - cadre général : notion de consistance, stabilité et ordre, théorème de convergence des schémas à un pas (sans preuve) ;
 - discussion sur la stabilité, exemples sur les systèmes linéaires, notion de raideur.

ECUE MM.S5.2.2 : Optimisation

Responsables du cours :

Nombre d'ECTS : 2.

Mode d’enseignement : présentiel, 8h CM, 12h TD, sur 4 semaines.

Prérequis

Présentation du cours

Contenu du cours

- Optimisation des fonctions différentiables sans contrainte.
- Optimisation sous contrainte : Lagrangien, multiplicateurs de Lagrange, optimisation avec contrainte d’égalité, avec contrainte d’inégalité.
- Optimisation des fonctions convexes.
Matériel dydactique, médiagraphie
Notes de cours disponibles à la rentrée 2019.
Médiagraphie : Tests de positionnement.
Chapitre 13

SEMESTRE 6
13.1 UE M.S6.1 : Probabilités et ses Applications

Responsables du cours :

Mode d’enseignement : présentiel, 24h CM, 36h TD, sur 12 semaines.

Prérequis

Présentation du cours

Contenu du cours

• Espace de probabilité, définition des variables aléatoires. Lien avec la théorie de la mesure. Loi d’une variable aléatoire en tant que mesure image. Théorème de transfert.

• Notion de densité de probabilité par rapport à une mesure dominante. Rappels de lois classiques et de leur densité.

• Espérance, variance. Inégalités de Bienaymé-Tchebychev et Markov. Espaces L^1 et L^2. Inégalités de Jensen et de Hölder.

• Notion de fonction de répartition, fonction quantile, fonction génératrice, caractéristique.

• Simulation de variables aléatoires par inversion de la fonction de répartition.

• Indépendance d’événements, de tribus et de variables aléatoires.

• Calculs de loi (couple, marginale, somme de variables aléatoire...).

• Convergence de variables aléatoires (presque sûrement, en probabilité, en loi). Liens entre ces convergences.

• Les grands théorèmes limites (loi des grands nombres, théorème central limite).

• Applications à l’approximation d’une intégrale par la méthode de Monte-Carlo.

• Introduction à la Statistique.

Matériel dydactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
13.2 UE M.S6.2 : Algèbre et Algèbre Effective

Responsables du cours :

Nombre d’ECTS : 6.

Mode d’enseignement : présentiel, 24h CM, 36h TD, 20h TP sur 12 semaines.

Prérequis

Présentation du cours

Contenu du cours

- Groupes \((\mathbb{Z}/n\mathbb{Z})^*\) (notamment \((\mathbb{Z}/p\mathbb{Z})^*\) cyclique). Carrés de \(\mathbb{Z}/n\mathbb{Z}\); symbole de Legendre ; de Jacobi. Énoncé de la loi de réciprocité quadratique. Tests de primalité (Fermat, Rabin-Miller, Solovay-Strassen...). Algorithmes de factorisation (Gauss, Pollard...). Application à RSA.
- Polynômes : critères d’irréductibilité d’Eisenstein et de réduction modulo \(p\). Polynômes cyclotomiques. Irréductibilité sur \(\mathbb{Q}\).
- Démonstration de la loi de réciprocité quadratique (avec sommes de Gauss dans \(\mathbb{F}_p\)).
- Codes correcteurs d’erreur : distance de Hamming, distance minimale d’un code linéaire. Codes de répétition, codes de Hamming binaires.

Matériel didactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement
13.3 UE M.S6.3 : Introduction à l’Analyse Fonctionnelle

Responsables du cours :
Mode d’enseignement : présentiel, 24h CM, 36h TD, sur 12 semaines.

Prérequis

Présentation du cours

Contenu du cours

- Espaces de Banach, convergence absolue, application : exponentielle de matrice, théorème du point fixe de Banach, application : théorème de Cauchy-Lipschitz.
- Inégalités (Jensen, Hölder, Minkowski), espaces ℓ^p et L^p. Continuité des translations. Convolution dans les espaces $L^p(R^d)$: cas $L^1 \ast L^p$ et $L^p \ast L^q$ avec p, q conjugués. Densité des fonctions continues à support compact (mesure de Lebesgue). Théorème de Riesz-Fischer.
- Transformée de Fourier sur L^1.
- Approximation uniforme (théorème de Weierstrass et de Weierstrass trigonométrique).

Matériel didactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
13.4 UE M.S6.4 : Approximation numérique des fonctions, des intégrales et des équations différentielles ordinaires

Responsables du cours :

Mode d’enseignement : présentiel, 24h CM, 36h TD, 20h TP, sur 12 semaines.

Prérequis

Présentation du cours

Le but de cette unité d’enseignement est de consolider et d’élargir les acquis des étudiants sur les méthodes de base du calcul numérique et de la simulation numérique. Chaque concept abordé sera motivé par un exemple concret tiré de la vie courante. Cette Unité d’Enseignement sera également l’occasion de faire le point sur le lien des Mathématiques et leurs applications. Des illustrations numériques en Python sont proposées pour mettre en œuvre les algorithmes étudiés.

Contenu du cours

- Calcul approché des intégrales : exemple de problème concret d’illustration de la situation. Formules d’intégrations simples et composées ; erreur d’intégration : notion d’ordre, représentation de Peano ; quadratures de Gauss composées ; introduction à la méthode de Monte-Carlo.

Matériel dydactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
13.5 UE M.S6.5 : Analyse Complexe

Responsable du cours : Sorin DUMITRESCU.
Mode d’enseignement : présentiel, 24h CM, 36h TD, sur 12 semaines.

Prérequis
Notions de Calcul Différentiel, Topologie du plan.

Présentation du cours

Contenu du cours

• Séries entières et fonctions analytiques.
• Fonctions holomorphes, conditions de Cauchy-Riemann, théorème d’holomorphie sous le signe intégral.
• Intégrales curvilignes, primitives. Formules intégrales de Cauchy et conséquences.
• Points singuliers, fonctions méromorphes.
• Calcul des résidus.
• Théorème de l’application conforme.

Matériel dydactique, médiagraphie
Cours Michèle AUDIN http://irma.math.unistra.fr/~maudin/analysecomp.pdf

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
13.6 UE M.S6.2D : Analyse, Probabilités et Statistique

En construction.

Responsable à l’ESPE :
Responsable au LJAD :

Matériel dydactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
13.7 UE MM.S6.1 : Probabilités

Responsables du cours :
Nombre d'ECTS : 6.
Mode d'enseignement : présentiel, 24h CM, 36h TD, sur 12 semaines.

Prérequis

Présentation du cours

Contenu du cours

Chaque notion introduite doit être motivée par une fin applicable en économie, assurance, finance, biologie, physique...

- **Mesures** : mesures discrètes (somme de masses de Dirac) et mesures à densité par rapport à la mesure de Lebesgue. Exemples issus de la modélisation. Notion de tribu d'événements aléatoires comme modélisation de l'information (l'objectif final du cours est uniquement de faire comprendre la notion de tribu engendrée par des variables aléatoires ; on supposera que tout sous-ensemble de \(\mathbb{R}^n \) est un Borélien de \(\mathbb{R}^n \) et on ne fera pas d'exercices théoriques sur les tribus). Ensembles négligeables. Espace de probabilité. Notion de densité de probabilité par rapport à la mesure de Lebesgue.

- **Intégrale** par rapport à une mesure (discrète ou à densité). Fonctions intégrables. On s'attachera à montrer comment un calcul d'intégrale par rapport à une mesure (discrète ou à densité) se ramène systématiquement à calculer soit une série, soit une intégrale.

- **Variables aléatoires.** Tribu engendrée par une variable aléatoire ("la tribu engendrée part la v.a. \(X \) est la classe des événements qui ne dépendent que de \(X \) comme \(\{ X = 2 \} \), \(\{ 2 \leq X \leq 3 \} \)... "). Loi d'une variable aléatoire. Rappel rapide des lois classiques (Uniforme, Bernoulli, Binomiale, Géométrique, Poisson, Exponentielle, Normale). Expliquer pour quel genre de modélisation elles interviennent.

- **Théorème de transfert.** Espérance, variance. Caractérisation de la loi par la formule de transfert. Calculs motivés par des exemples en assurance, biologie, économie ... Définition de l'espace vectoriel \(L^p \) (sans complétude), moments. Mentionner que \(\| \cdot \|_p \) est une norme (Inégalité de Minkowski). Mentionner par exemple que si \(X \) (distribution des richesses, connectivité dans les réseaux sociaux ...) suit une loi de Pareto alors les moments élevés sont infinis : expliquer ce que cela signifie concrètement qu'une v.a. \(X \) a une variance infinie par exemple.

- **Inégalités de Bienaymé-Tchebychev et Markov, Inégalité de Jensen, Hölder (Cauchy-Schwarz).** On motivera l'utilisation de telles inégalités par le fait que beaucoup de probabilités ou d'espérances ne sont pas calculables et doivent donc être estimées (exemples). Extension des théorèmes limites (convergences dominée et monotone) au cadre probabiliste.

- **Notion de fonction de répartition, fonction quantile, fonction génératrice, caractéristique.** Application en dynamique des populations (calculs). Simulation de v.a. par inversion de la fonction de répartition. Caractérisation de la loi par fonction de répartition ou fonction caractéristique.

- **Indépendance d'événements, de tribus et de variables aléatoires.** Pour les tribus, on se contentera de tribus engendrées par des variables aléatoires. Caractérisation de l'indépendance via la densité, poids, fonctions caractéristiques ... Exercices d'applications en assurance, files d'attentes, finance, biologie, réseaux sociaux ...

- **Calculs de loi (couple, marginale, somme de variables aléatoire,...)

- **Convergence de variables aléatoires (p.s., en probabilité, en loi).** Liens entre ces convergences.
• Les grands théorèmes limites (loi des grands nombres, théorème central limite). Intervalles de confiance (estimation). Applications à l’approximation d’une intégrale par la méthode de Monte-Carlo.

Matériel dydactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.
13.8 UE MM.S6.2 : Suites de Fonctions, Calcul Intégral et Séries de Fourier

Responsables du cours :

Mode d’enseignement : présentiel, 24h CM, 36h TD, sur 12 semaines.

Prérequis

Présentation du cours

Contenu du cours

• Polynômes (fonction polynôme associée à un polynôme, racines, factorisations sur \mathbb{R} et \mathbb{C}) - Interpolation polynomiale (existence, unicité, représentation de Lagrange, erreur d’interpolation polynomiale).
• Rappels sur les calculs d’intégrales en dimension 1 (intégration par parties, formule de changement de variables). Fonctions intégrables.
• Intégrales multiples : théorème de Fubini, formule du changement de variables (sans preuves). Fonctions intégrables.
• Méthodes déterministes de calcul approché (rectangle, trapèze) pour le calcul approché d’intégrales.
• Espaces L^p : définition (on ne parlera pas de la complétude). On admettra que $\|\cdot\|_p$ est une norme. Définition de la convergence en norme L^p.
• Suites de fonctions : convergence uniforme et convergence simple.
• Théorèmes limites : théorème de convergence monotone et théorème de convergence dominée (sans preuve). Exemples.
• Intégrales à paramètres, transformée de Fourier: Continuité et dérivabilité des intégrales à paramètres (sans preuves). Définition de la transformée de Fourier pour une fonction L^1. Exemples de calculs de la transformée de Fourier (exponentielle, gaussienne, indicatrice d’intervalle...). Lemme de Riemann-Lebesgue. Relation de Parseval pour les fonctions dans $L^1 \cap L^2$.
• Séries de Fourier : définition, calculs, relation de Parseval.

Matériel dydactique, médiagraphie

Notes de cours disponibles à la rentrée 2019.

Médiagraphie : Tests de positionnement.