Following Lemire, Popov and Reichstein, we call a linear algebraic group \(G \) over a field \(k \) a *Cayley group* if it admits a Cayley map, i.e., a \(G \)-equivariant birational isomorphism over \(k \) between the group variety \(G \) and its Lie algebra \(\text{Lie}(G) \). A prototypical example is the classical “Cayley transform” for the special orthogonal group \(\text{SO}_n \) defined by Arthur Cayley in 1846. A linear algebraic group \(G \) is called *stably Cayley* if \(G \times S \) is Cayley for some split \(k \)-torus \(S \). We classify stably Cayley semisimple groups over an arbitrary field \(k \) of characteristic 0. This is a joint work with Boris Kunyavskiï.