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Preface

This volume contains the papers presented at TACL 2019: Topology, Algebra, and Categories
in Logic held June 17–21, 2019 in Nice.

The volume includes the abstracts of 91 accepted contributed talks and of 10 invited talks
(a few contributions were rejected after a light refereeing process and a couple of papers were
withdrawn by the authors themselves due to the impossibility of their attendance at the con-
ference). We thank all Program Committee members for their precious work in reading the
submitted abstracts and giving useful suggestions to the authors.

TACL 2019 is the ninth conference in the series Topology, Algebra, and Categories in Logic
(TACL, formerly TANCL). Earlier instalments of the series have been held in Tbilisi (2003),
Barcelona (2015), Oxford (2007), Amsterdam (2009), Marseille (2011), Nashville (2013), Ischia
(2015), and Prague (2017).

The program of the conference TACL 2019 focuses on three interconnecting mathematical
themes central to the semantic study of logic and its applications: topological, algebraic, and
categorical methods.

Our main sponsors are the European Research Council, the CNRS, and the Université Côte
d’Azur. In particular, the conference has received funding from the European Research Council
under the European Union’s Horizon 2020 research and innovation program through the DuaLL
project (grant agreement No. 670624); from the CNRS, which is supporting the TACL 2019
school as one of its Écoles Thématiques; from the Université Côte d’Azur through its Inter-
national Conferences program, its International Schools program, through support from the
interdisciplinary academies Réseaux, Information, et Société Numérique and Systèmes Com-
plexes, respectively, and finally through the Laboratoire J. A. Dieudonné and the Laboratoire
I3S, both of the Université Côte d’Azur.

We thank the EasyChair development team for providing their conference management
platform.

May 6, 2019
Nice

Silvio Ghilardi
Ramon Jansana

Mai Gehrke
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Simulations of quantum resources and the degrees

of contextuality

Samson Abramsky, Rui Soares Barbosa, Martti Karvonen, and Shane Mansfield

A key objective in the field of quantum information and computation is to
understand the advantage which can be gained in information processing tasks
by the use of quantum resources. While a range of examples have been studied,
to date a systematic understanding of quantum advantage is lacking.

Our focus here is on quantum resources which take the form of non-local,
or more generally contextual, correlations. Contextuality is one of the key sig-
natures of non-classicality in quantum mechanics [7, 4], and has been shown
to be a necessary ingredient for quantum advantage in a range of information
processing tasks [8, 6, 5, 2]. In previous work [1], we introduced a notion of
simulation between quantum resources, and more generally between resources
described in terms of contextual correlations, in the “sheaf-theoretic” frame-
work for contextuality introduced in [3]. The notion of simulation is expressed
as a morphism of empirical models, in a form which allows the behaviour of one
set of correlations to be simulated in terms of another using classical processing
and shared randomization. Mathematically, this is expressed as coKleisli maps
for a comonad of “measurement protocols” on the category of empirical models.
This setting is expressive, and allows for a number of variations, e.g. grading
the simulation by the number of copies of the simulating resource or by the
depth of measurement adaptivity in the protocol, and also allows for a natural
relaxation to a notion of approximate simulation.

As with classical notions of reducibility in computability and complexity the-
ory, the existence of simulation maps allows us to compare different contextual
behaviours in a fine-grained, mathematically robust way. We can define a de-
gree of contextuality as an equivalence class of empirical models under two-way
simulability. These degrees are then partially ordered by the existence of simu-
lations between representatives. Existing results from the study of non-locality
can be interpreted as showing the richness of this order, and there are many
natural further questions which arise.

The property of (non)contextuality itself can be equivalently formulated as
the existence of a simulation by an empirical model over the empty scenario
[1]. This suggests that much of contextuality theory can be generalized to a
“relativized” form, i.e. essentially working in slice categories.

As an example, consider the classic theorem of Vorob'ev [9]. It characterizes
those scenarios over which all empirical models are noncontextual, in terms
of an acyclicity condition on the underlying simplicial complex. This can be
formulated as characterizing those scenarios such that every model over them
can be simulated by a model over the empty scenario. More generally, we can
ask for conditions on scenarios (X,Σ, O) and (Y,∆, P ) such that every empirical
model over (Y,∆, P ) can be simulated by some empirical model over (X,Σ, O).



2

References

[1] Samson Abramsky, Rui Soares Barbosa, Martti Karvonen, and Shane Mans-
field. A comonadic view of simulation and quantum resources. In Proceedings
of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science
(LiCS 2019), 2019. To appear, available at https://www.cs.ox.ac.uk/

people/rui.soaresbarbosa/lics2019.pdf.

[2] Samson Abramsky, Rui Soares Barbosa, and Shane Mansfield. Contex-
tual fraction as a measure of contextuality. Physical Review Letters,
119(5):050504, 2017.

[3] Samson Abramsky and Adam Brandenburger. The sheaf-theoretic structure
of non-locality and contextuality. New Journal of Physics, 13(11):113036,
2011.

[4] John S Bell. On the problem of hidden variables in quantum mechanics. Re-
views of Modern Physics, 38(3):447–452, 1966. doi:10.1103/RevModPhys.

38.447.

[5] Juan Bermejo-Vega, Nicolas Delfosse, Dan E Browne, Cihan Okay, and
Robert Raussendorf. Contextuality as a resource for models of quantum
computation with qubits. Physical Review Letters, 119(12):120505, 2017.

[6] Mark Howard, Joel Wallman, Victor Veitch, and Joseph Emerson. Contextu-
ality supplies the ‘magic’ for quantum computation. Nature, 510(7505):351,
2014.

[7] Simon Kochen and Ernst P Specker. The problem of hidden variables in
quantum mechanics. Journal of Mathematics and Mechanics, 17(1):59–87,
1967.

[8] Robert Raussendorf. Contextuality in measurement-based quantum compu-
tation. Physical Review A, 88(2):022322, 2013.

[9] Nikolai Nikolaevich Vorob'ev. Consistent families of measures and their
extensions. Theory of Probability & Its Applications, 7(2):147–163, 1962.

https://www.cs.ox.ac.uk/people/rui.soaresbarbosa/lics2019.pdf
https://www.cs.ox.ac.uk/people/rui.soaresbarbosa/lics2019.pdf
https://www.cs.ox.ac.uk/people/rui.soaresbarbosa/lics2019.pdf
https://www.cs.ox.ac.uk/people/rui.soaresbarbosa/lics2019.pdf
http://dx.doi.org/10.1103/RevModPhys.38.447
http://dx.doi.org/10.1103/RevModPhys.38.447


3

GENERALIZED CONTINUOUS CLOSURE SPACES:

A TOPOLOGICAL APPROACH TO DOMAIN THEORY

MARCEL ERNÉ

Domain theory in the narrow sense is concerned with continuous lattices and
domains, and was developed in the comprehensive monograph by Gierz et al. [7].
In a wider sense, it may be regarded as the theory of

Topological Treatment of Transitive Terms and relations [1, 3, 5]
Algebraic Aspects of Approximating Auxiliary relations [1, 7]
Categories of Core generated Closure and Convergence spaces [1, 4]
Lattices in the Logic of Languages and Lambda calculus [8].

An auxiliary relation on a poset (X,≤) is a relation≺ onX such that w ≤ x ≺ y ≤ z
implies w ≺ z, and the latter implies w ≤ z. If each of the sets ≺y = {x : x ≺ y} is
an ideal (a directed lower set) or an ω-ideal (an ideal in the sense of Frink [6]), we
speak of an ideal relation or ω-ideal relation, respectively. Further, ≺ is separating
iff for x 6≤ y there is a z such that ≺z ⊆ ≤x but not ≺z ⊆ ≤y, and approximating
iff each y ∈ X is the supremum of ≺y; we say ≺ has the weak interpolation property
if for x ≺ z there is a finite F ⊆ ≺z so that y ≤ u for all y ∈ F implies x ≺ u ; for
ideal relations, this is the usual interpolation property.

Two useful relations are the following: for a preclosure operator p (an extensive
and inclusion-preserving map on PX), the specialization order ≤p on X is defined
by x ≤p y ⇔ p{x} ⊆ p{y}, and the interior relation�p by x�p y ⇔ y 6∈ p(X \ ↑x);
and (X, p) is a called a precore space if p ↓ = ↓p = p and y ∈ p(�p y) for all y ∈ X
(the upset and downset operators, ↑ and ↓, refer to ≤p). A core space [1] is then
a precore space with idempotent (closure operator) p. A fundamental observation
is that the category of T0 precore spaces is concretely isomorphic to that of posets
with separating auxiliary relations, by sending (X, p) to (X,≤p,�p). The classical
continuous domains and their way-below relations are obtained by taking for p the
Scott preclosure operator, assigning to each subset Y of a dcpo (directed complete
poset) the lower set generated by all suprema of directed subsets of ↓Y .

But also two classes of convergence spaces play a crucial role in the present con-
text: a convergence space is core based resp. core generated iff each filter converging
to a point contains another one that has a base resp. subbase of cores, where a core
is the intersection of all neighborhoods of some point in the associated topological
space. Hence, the topological core spaces are the C-spaces [1] or worldwide web
spaces [3, 5], which are characterized by complete distributivity of their topology.

As demonstrated in [2], the theory of continuous lattices and domains admits
flexible extensions to so-called M-precontinuous posets X; here, M is a subset of
PX, and each y ∈ X is the supremum of the set�M y =

⋂
{↓Z : Z ∈M, y ∈ ∆Z},

where ∆Z is the cut generated by Z. If the M-below relation �M has the weak
interpolation property, we speak of M-continuous posets, and if moreover the sets
�M y are directed, of M-d-precontinuous resp. M-d-continuous posets.
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The Scott convergence [7], alias (lower) lim-inf convergence, is generalized in the
present setting to the notion ofM-convergence: a netM-converges to a point x iff
there is a set Z ∈ M of eventual lower bounds of the net such that x belongs to
∆Z (which means x ≤

∨
Z if Z has a supremum). Passing from nets to filters, a

filter M-converges to x iff there is a Z ∈ M such that x ∈ ∆Z and ↑z lies in the
filter for all z ∈ Z. The convergence-theoretical relevance ofM-precontinuity resp.
M-continuity for arbitrary setsM of ω-ideals is then manifested by the equivalence
to the condition that M-convergence is pretopological resp. topological.

The aforementioned connections between relational and topological structures
in domain theory are made precise by concrete equivalences between the following
four triples of categories (where M runs through all collections of ω-ideals):

M-d-continuous
posets

�
�

�	

@
@
@R

M-continuous
posets

@
@
@R

M-d-precon-
tinuous posets

�
�
�	

M-precontinuous
posets

approximating
interpolating
ideal relations

�
�

�	

@
@
@R

approximating
ideal relations

@
@
@R

approximating
weakly interpol.
ω-ideal relations

�
�
�	

approximating
ω-ideal relations

topological
T0 core spaces
(C-spaces)

�
�

�	

@
@
@R

core based
pretopological
T0 spaces

@
@
@R

core generated
topological
T0 spaces

�
�
�	

core generated
pretopological
T0 spaces

Replacing posets and their cut operators with arbitrary closure spaces, equipped with
their specialization order, one finally arrives at the definition of generalized continuous
closure spaces, which provide a purely topological environment for domain theory, as
demanded by leading workers in the field.
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Possibility Semantics

Wesley H. Holliday

University of California, Berkeley
wesholliday@berkeley.edu

I will survey a recent research program of investigating “possibility semantics”, a generaliza-
tion of possible world semantics, for modal, superintuitionistic, and inquisitive logics. Relevant
references include the following:

G. Bezhanishvili and W. H. Holliday, “A semantic hierarchy for intuitionistic logic,” Indaga-
tiones Mathematicae, 2019 (https://escholarship.org/uc/item/2vp2x4rx).

G. Bezhanishvili and W. H. Holliday, “Locales, nuclei, and Dragalin frames,” Advances in Modal
Logic, 2016 (https://escholarship.org/uc/item/2s0134zx).

N. Bezhanishvili and W. H. Holliday, “Choice-free Stone duality,” The Journal of Symbolic
Logic, forthcoming (https://escholarship.org/uc/item/00p6t2v4).

N. Bezhanishvili, G. Grilletti, and W. H. Holliday, “Algebraic and topological semantics for
inquisitive logic via choice-free duality,” Proceedings of WoLLIC 2019
(https:/escholarship.org/uc/item/69f4t1wg).

W. H. Holliday, “Algebraic semantics for S5 with propositional quantifiers,” Notre Dame Jour-
nal of Formal Logic, forthcoming (https://escholarship.org/uc/item/303338xr).

W. H. Holliday, “Partiality and adjointness in modal logic,” Advances in Modal Logic, 2014
(https://escholarship.org/uc/item/9pm9t4vp).

W. H. Holliday, “Possibility frames and forcing for modal logic,” UC Berkeley Working Paper,
2015 (https://escholarship.org/uc/item/0tm6b30q).

W. H. Holliday and T. Litak, “Complete additivity and modal incompleteness,” The Review of
Symbolic Logic, forthcoming (https://escholarship.org/uc/item/01p9x1hv).
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Non-finitely axiomatisable canonical varieties of BAOs

with infinite canonical axiomatisations

Agi Kurucz
Department of Informatics

King’s College London

The abstract can be found on the TACL web page.
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THE POSET OF ALL LOGICS

T. MORASCHINI

Universal algebra and abstract algebraic logic are two disciplines that
study, respectively, general algebraic structures and propositional logics.
One of their main achievements is the development of two parallel tax-
onomies, one of varieties (a.k.a. equational classes) of algebras, and the
other one of propositional logics.

More precisely, the Maltsev hierarchy of universal algebra is a classifica-
tion of varieties in terms of syntactic principles (called Maltsev conditions)
intended to describe the structure of the congruence lattices of algebras.
The first, and perhaps most celebrated, example of a Maltsev condition is
the requirement that a variety K is congruence permutable, equivalent to
the syntactic requirement of the existence of a minority term for K, i.e. a
ternary term ϕ(x, y, z) such that

K � ϕ(x, x, y) ≈ y ≈ ϕ(y, x, x).

Similarly, in abstract algebraic logic, the Leibniz hierarchy is a taxonomy
of propositional logics in terms of rule schemata (called Leibniz conditions)
whose aim is to govern the interplay between lattices of deductive filters
(a.k.a. theories) of logics and lattices of congruences of algebras. One of
the most fundamental examples of a Leibniz condition is the requirement
that a logic ` possesses a set ∆(x, y) of binary formulas satisfying the rules

∅ � ∆(x, x) and x, ∆(x, y)� y,

which generalize the behavior of most implication connectives. This re-
quirement is equivalent to the property that the Leibniz operator of the
logic ` is monotone.

From this point of view, it is natural to wonder whether the Maltsev
and Leibniz hierarchies are two faces of the same coin. In this talk we
investigate this and some related questions.

Part of the work I will report on is joint with R. Jansana.
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Some Applications of Stone Duality to Automata Theory
Daniela Petrişan1

Université de Paris, IRIF, CNRS, F-75013 Paris, France
petrisan@irif.fr

In this talk I will give an overview of several instances where Stone duality is underpinning
important constructions in automata theory.

A first such example is a proof of correctness of Brzozowski’s minimization algorithm. Sev-
eral constructions featured in this algorithm can be understood as liftings of well known adjunc-
tions to categories of automata: determinization of automata can be understood via a lifting
of the Kleisli adjunction between the category Rel of sets and relations and the category Set of
sets and functions; while reversing nondeterministic automata can be understood via a lifting
of the self-duality of Rel.

A second application is a methodology for extending notions of algebraic recognition to
their topological counterparts. I will discuss a notion of syntactic Boolean space associated to
a language and extensions of well-known constructions on regular languages to a non-regular
setting.

The talk is based on the papers [1] and [2, 3].
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9

Snapshots of duality theory, from 2019 and fifty years earlier

Hilary Priestley

Sugihara monoids and Sugihara algebras provide complete algebraic seman-
tics for the relevance logics R-mingle, with or without Ackermann’s truth con-
stant. The variety SA of Sugihara algebras is generated by Z = (Z,∧,∨,¬,→)
having the chain of integers as lattice reduct, ¬a = −a and a → b = (−a) ∨ b
if a 6 b and (−a) ∧ b otherwise. For SM , Sugihara monoids, the constant
0 is added to the language. Both varieties are locally finite, with their finite
subdirectly irreducibles having size k, for k = 2, 3, . . ..

The 2019 snapshot will showcase joint work with Leonardo Cabrer [1]–[4].
This work demonstrates the power of a range of duality techniques. We exploit
dual equivalences with strong properties and capitalise on what the theory de-
livers at the finite level: ‘logarithmic’ behaviour, pictorial representations, and
transparent access to finitely generated free algebras. Our aim is salesmanship:
the underlying natural duality theory will be locked away in a black box.

Stone duality and Priestley duality have very special features. They are
strong dualities: dual equivalences set up by hom-functors into a generating
algebra and an alter ego, with both functors converting embeddings (surjec-
tions) to surjections (embeddings); moreover, duals of free algebras are given by
concrete products. A duality of this type has been developed for any finitely gen-
erated quasivariety of Sugihara algebras [3]. By moving to a framework allowing
multisorted dual structures, one can embrace any finitely generated quasivari-
ety or variety, and likewise for Sugihara monoids. Additionally, the multisorted
approach facilitates transition to the Priestley duality for the lattice reducts.
The relational structure on the dual side is supplied by homomorphisms and
partial endomorphisms. The varieties SA and SM can be treated together.
[To the initiated: no restriction to the odd case.]

Free algebras [4]

Sugihara algebras and monoids have the property that any finitely generated
free algebra F can be calculated within some finitely generated (quasi)variety
and so can be accessed easily using a multisorted natural duality for that (quasi)-
variety. From the natural dual of F one can pass by a quotienting process to
the Birkhoff dual Y of F ’s lattice reduct. This provides a picture of Y which
lends itself to combinatorial analysis. Moreover, the pictures display evidence
of finite level Esakia duality in play. (Affinities between odd Sugihara monoids
and Heyting algebras are known to exist in general.)

Admissibility algebras: a route to admissible rules for R-mingle

An algebraic method due to Metcalfe and Röthlisberger for testing a rule for
admissibility is only computationally feasible for varieties whose free algebras
are small—a rare occurrence. Cabrer et al. [1] proved that, when a strong
duality is available, the problem translates into dual form and this leads to an
algorithm to find, for any n, a minimal ‘admissibility algebra’ on which to test
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rules (qua quasi-equations) in n variables. Cabrer and Priestley [2] applied the
algorithm to each finitely generated Sugihara algebra quasivariety, so providing
a solution for any k to a problem which is insoluble algebraically by computer
when k = 5 (3 variables).

We contrast our methods and results with those obtainable from dual equiv-
alences between a category of expansions of distributive lattices and some cat-
egory of structured Priestley spaces, of which there is a bewildering array in
the literature. Equivalences of this type may yield valuable concrete represen-
tations and, by forgetting the topology, discrete dualities providing Kripke-style
semantics for associated propositional logics. But there is no guarantee that
algebraic, or logical, problems can be recast so that they become easier to solve
in the dual setting.

This year marks the 50th anniversary of the submission to the Bulletin of
the London Mathematical Society of Representation of distributive lattices by
means of ordered Stone spaces, introducing what has become known as Priest-
ley duality. The second, brief, snapshot will acknowledge a number of other
contributions from long ago which have not received due recognition. (Here,
the publication in 2019 of an edited English translation of Leo Esakia’s classic
monograph on duality for Heyting algebras is most welcome.) The opportunity
will also be taken to highlight what, with hindsight, have proved to be major
landmarks in the evolution of duality theory in a TACL context.

References
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free algebras (manuscript)
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MODAL	LOGICS	OF	DEPENDENCE	
	
Johan	van	Benthem,	Amsterdam,	Stanford	&	Tsinghua	–	joint	work	with	Alexandru	Baltag	
	
1	 Dependence	The	 notion	 of	 dependence	 is	 important	 in	 such	 diverse	 areas	 as	
probability,	natural	language,	databases,	causality,	or	interactive	games.	Of	course,	
senses	may	differ.	 In	 a	database,	 dependence	means	we	 can	predict	 the	value	of	
one	variable	from	that	of	others,	in	statistics,	dependence	is	correlation	of	values,	
in	logic,	dependence	arises	from	quantifier	scoping	(to	see	that	∀x	∃y	Rxy,	we	pick	
y	dependent	on	x),	in	causal	models,	dependence	is	about	real	determination,	and	
so	on.	A	useful	distinction:	ontic	dependence	in	the	world	vs.	epistemic	dependen-
ce:	 having	 information	 about	 x	 implies	 having	 information	 about	 y.	 The	 former	
notion	is	central,	for	instance,	in	Situation	Theory,	the	latter	in	Epistemic	Logic.	
	
2	Dependence	 logic	Dependence	has	caught	 the	attention	of	 logicians,	and	vari-
ous	systems	have	been	proposed	in	recent	decades,	from	simple	to	quite	complex.	
Our	framework:	Models	M	=	(W,	{=x}x∈VAR,	V)	with	W	a	set	of	assignments	of	values	
to	variables,	s	=x	t	iff	s(x)	=	s(t),	and	V	a	valuation	function	from	atomic	formulas	Px	
and	s∈W	 to	truth	values.	(For	sequences	x,	=x	means	equality	for	all	x∈x.)	 If	W	 is	
the	space	of	all	maps	from	VAR	to	a	value	domain	D,	all	variables	are	independent,	
while	 ‘gaps’	 encode	dependencies.	These	models,	 proposed	 in	 the	1990s	 (cf.	 van	
Benthem	1996),	cover	both	ontic	and	epistemic	dependence	(van	Benthem	2001).	
	
3	CRS	and	decidable	predicate	logic	Technical	background:	CRS	style	relativized	
cylindric	algebra	from	the	1980s,	supporting	decidable	systems	of	predicate	logic	
(cf.	 Andréka,	 van	 Benthem	&	Németi	 1998).	 But	 the	 above	models	 also	 support	
richer	first-order	languages	with	irreducible	polyadic	quantifiers	∃x.ϕ	and	substi-
tution	modalities.	The	modal	perspective	even	suggests	abstract	‘state	models’	that	
still	allow	for	compositional	semantics	without	buying	into	undue	set	theory.	
	
4	From	implicit	to	explicit	CRS	predicate	logic	is	 ‘implicit’	(van	Benthem	2018):	
dependence	is	not	made	explicit	in	the	language,	the	logic	is	non-classical.	Instead,	
we	now	define	an	‘explicit’	classical	modal	language	with	two	key	operators:	
	

M,	s	|=		Dxϕ			iff				for	all	t	with	t	=x	s,	M,	t	|=	ϕ	
M,	s	|=		Dxy				iff				for	all	t	with	t	=x	s,	t(y)	=	s	(y)	

	
This	language	can	express	a	variety	of	notions	of	local	and	global	dependence.	Key	
semantic	feature:	invariance	of	truth	values	for	formulas	ϕ	under	shifts	to	assign-
ments	agreeing	on	the	‘fixing	variables’	of	ϕ	(this	is	dual	to	first-order	quantifiers).	
	
5	 Epistemic	 view	 Dependence	 models	 induce	 epistemic	 models,	Dxϕ	 expresses	
‘distributed	knowledge’	 in	 group	x,	 and	Dxy	 informational	 dependence	of	 agents.	
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Vice	 versa,	 epistemic	models	 can	 be	 represented	 as	 assignment	models	 (cf.	 van	
Benthem	1996),	suggesting	generalized	dependence	models	in	more	abstract	style.	
The	epistemic	connection	makes	sense	of	an	interrogative	intuition	of	dependence:	
Dxy	if	answers	to	questions	about	all	of	the	x	imply	an	answer	to	a	question	about	y.	
	
6		Proof	system	The	axioms	and	rules	of	modal	dependence	logic	LFD	consist	of	
S5	for	the	modalities	Dxϕ,	analogues	of	the	Armstrong	Axioms	for	dependence	Dxy,	
and	a	transfer	axiom	(Dxy	∧	Dyϕ)	→	Dxϕ.	This	is	the	core	calculus	of	dependence.	
The	axiom	system	is	sound.	There	is	also	an	illuminating	sequent	calculus	version.	
	
7	 Completeness	Theorem:	 A	modal	 formula	 is	 derivable	 in	LFD	 iff	 it	 is	 valid	 in	
dependence	models.	The	proof	goes	from	a	standard	modal	Henkin	model	to	quasi-
models	which	are	then	represented	eventually	as	the	above	assignment	models.	
	
8	Decidability	Theorem:	Validity	in	LFD	is	decidable.	The	proof	uses	a	quasi-model	
construction	similar	to	that	known	for	the	Guarded	Fragment,	but	with	additional	
twists	in	the	representation	technique	in	order	to	deal	with	dependence	atoms.	
	
9	Correspondence	Additional	axioms	express	constraints	on	dependence	models.	
First-order	axioms	∃x∀yϕ	→	∀y∃xϕ	express	confluence,	axiom	Dxzy	→		(Dzy	∨	Dzyx)	
(van	Lambalgen	1994)	imposes	extra	structure	as	in	linear	vector	spaces.	
	
10	Richer	expressive	power	*	Decidability	remains	with	added	function	symbols.	
*	Equality	s=t	leaves	axiomatizability	but	endangers	decidability.	*	Theorem:	Moda-
lities	for	independence	make	LFD	undecidable.	*	Updating	models	with	new	infor-
mation:	Dynamic	logic	of	learning	value	of	variables	[x]ϕ	is	decidable,	via	recursion	
axioms.	 Public	 announcements	 [!α]ϕ	 change	 global	 dependence	 structure,	 requi-
ring	conditional	dependence	modalities,	and	this	system	may	well	be	undecidable.	
	
11	Extended	similarity	types	Structure	beyond	our	models	needed	with	games,	
causal	 graphs,	 topological	 spaces	 for	 approximating	 values,	 and	 for	 probabilistic	
dependence.	No	results	to	report	yet,	but	the	modal	perspective	offers	new	angles.	
	
12	Related	work	There	are	dependence	 logics	of	various	 sorts	 in	 the	 literature.	
Time	 permitting,	 we	will	 make	 a	 brief	 comparison	with	 the	 extended	 epistemic	
logics	of	Wang	2016	and	the	dependence	logic	of	Väänänen	2003.	
	
References	H.	Andréka,	J.	van	Benthem	&	I.	Németi,	JPL	1998,	‘Modal	Logics	and	Bounded	
Fragments	of	Predicate	Logic’.	A.	Baltag,	AIML	2016,	 ‘To	Know	is	to	Know	the	Value	of	a	
Variable’.	J.	van	Benthem:	CSLI	Pub’s	1996,	Exploring	Logical	Dynamics,	ILLC	2001,	‘Infor-
mation	as	Range	or	as	Correlation’,	JPL	2018,	‘Implicit	vs.	Explicit	Stances	in	Logic’.	B.	ten	
Cate	&	Ph.	Kolaitis,	2015,	 ‘Schema	Mappings	 in	Database	Theory’.	M.	van	Lambalgen,	 JSL	
1994,	‘Independence,	Randomness	&	the	Axiom	of	Choice’.	J.	Väänänen,	CUP	2003,	Depen-
dence	Logic.	Y.	Wang,	2016,	‘Beyond	Knowing	That:	New	Generation	of	Epistemic	Logics’.	
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Logic, Automata, and Model Companions

Sam van Gool, Utrecht University

The aim of this talk is to show a connection between temporal logics and monadic second
order (MSO) logics on discrete structures, mediated by model theory.
In formal language theory, logic can be used as a descriptive formalism which measures the
complexity of a computational problem. For example, the MSO-definable sets of finite words
are exactly the regular languages from automata theory. Büchi and Rabin established such
translations between MSO logic and automata on many more structures, including omega-
indexed words and various types of trees.
In model theory, logic can be used to give a general account of a mathematical construction;
particularly relevant to this talk is the construction of the algebraic closure of a field. A
fundamental insight due to Robinson is that the notion of algebraically closed field can be
generalized to a purely logical notion of “existentially closed model”. The “model companion”
of a first order theory, if it exists, gives a first order description of the class of existentially
closed models.
This talk’s main thesis will be that MSO logic ‘is’ the model companion of temporal logic.
That is, monadic second order logic is to temporal logic as algebraically closed fields are to
fields. Indeed, in joint work with Ghilardi, we proved such a model companion result both for
words [1] and for trees up to bisimulation [2]. Extending these results to full MSO on trees is
the subject of ongoing work. In the remainder of this abstract, I will make the statement of
the result for words [1] more precise.

Monadic second order logic on ω, also known as S1S (second order logic of one successor), is
defined by adding to the first-order logic of the successor function quantification over unary
predicates, i.e., subsets of ω. S1S can be used to define sets of streams over a finite alphabet
Σ, i.e., functions S : ω → Σ. Let ϕ be a formula of S1S, all of whose free second-order variables
are in a finite set V . Then valuations v : V → P(ω) are in one-to-one correspondence with
P(V )-streams Sv : ω → P(V ), and the formula ϕ thus defines a set of P(V )-streams:

Lϕ := {Sv : ω, v |= ϕ}.

A different way of arriving at languages of Σ-streams, where now Σ is any finite alphabet,
is by using non-deterministic finite automata (NFA). A language of Σ-streams is ω-regular
if it is recognized by some NFA. Here, the definitions of automata are the same as for finite
words, except that the acceptance condition now says that there is a run which visits a final
state infinitely often. Büchi proved that the stream languages of the form Lϕ are exactly the
ω-regular languages. In fact, he gave an effective procedure which transforms an S1S formula
into an automaton, and vice versa. The S1S formula which is associated to an automaton in
this procedure has a special form: all the second-order quantifications are existential. From
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Büchi’s result, one may thus obtain a ‘normal form’ for S1S, by translating into an automaton
and back.
This normal form result is what allows us to prove that a certain first-order theory, T ∗, closely
related to S1S, is model complete. Here, a first-order theory T ∗ is called model complete if
for every formula ϕ, there is an existential formula ϕ′ such that T ∗ ` ϕ↔ ϕ′. Thus, a model
complete theory ‘almost’ has quantifier elimination, up to the last layer of quantifiers. The
model companion of a universal first-order theory T is the model complete theory T ∗ which
has the same universal consequences as T . The model companion of T is unique if it exists,
in which case it is the first order theory of the class of existentially closed models for T .
Finally, what is the temporal logic that S1S is a model companion of? Denote by L the
one-way, discrete, linear temporal logic with unary operators ‘next’ and ‘future’, and a con-
stant ‘initial moment’. That is, the syntax of L is the propositional language is enriched with
unary symbols X and F, and a nullary symbol I. The algebraic models for L are Boolean
algebras with operators in this signature, subject to axioms expressing that (i) X is a Boolean
endomorphism; (ii) Fa is the least fixpoint of the function x 7→ a ∨ Xx; (iii) I is an atom
such that XI = ⊥, and I ≤ Fa whenever a 6= ⊥. Write TA for the universal first order theory
axiomatizing this class of temporal algebras. The prototypical example of a temporal algebra
is the Boolean algebra P(ω), equipped with temporal operators Xa := {x ∈ ω | x+ 1 ∈ a},
Fa := {x ∈ ω | ∃y ≥ x, y ∈ a} and I := {0}. Write TA∗ for the first order theory of this
particular temporal algebra. Clearly, looking at first order formulas in the algebra P(ω) is
almost the same thing as looking at monadic second order formulas interpreted in ω, thus,
TA∗ ≈ S1S. Our main result in [1] is:

Theorem. The theory TA∗ is the model companion of the theory TA.

The proof of this result involves two parts: the first is the normal form procedure mentioned
above, the second is a completeness result for the logic L with respect to the intended model
ω, for which we give a short proof based on a Stone-Jónsson-Tarski style duality for temporal
algebras.
The above theorem establishes that S1S, when viewed as the first-order theory of the temporal
algebra P(ω), ‘is’ the model companion of the linear temporal logic L described above. In [2],
we extend this result to monadic second order logic S2S of two successors, which is interpreted
on binary trees, and we also treat arbitrarily branching trees, but there we restrict MSO to
its bisimulation-invariant fragment. The temporal logics involved in [2] are more involved: we
had to design an extension of computation tree logic (CTL) with binary ‘fairness’ operators,
and prove a completeness result for that. This led us into a complex but interesting study of
the completeness of certain fragments of the µ-calculus. In current work in progress, we plan
to extend this work to a graded temporal logic, towards obtaining a model companion result
for full MSO on trees.
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Anabelian geometry in model theory setting
B.Zilber

University of Oxford

Anabelian geometry is a relatively new branch of algebraic / arithmetic geom-
etry introduced by A.Grothendieck. Its standard language is the language of
category theory. The first part of the project reported here is the reformula-
tion of main notions and conjectures of anabelian geometry in the formalism
of model theory. Translations between model theory and category theory have
proved useful in some other contexts, in particular allowing application of deep
results of model theoretic classification theory (categoricity and stability in a
broad sense).

The first step (jointly with R.Abdolahzadi) is the introduction of a canonical
language and a construction of (a) structures X̃et in this language that corre-
spond to pro-étale covers of a smooth algebraic variety (reduced scheme) X over
a number field k and (b) structures X̃an that correspond to the universal cover
of the complex variety X(C). Both are multisorted structures with sorts corre-
sponding to étale covers (unramified covers) and the language allows to express
the algebraic geometry on the sorts along with étale morphisms between the
sorts.

We prove that, given X over k,

X̃et ≡ X̃an,

that is the two structures have the same first-order theory, which we call TX.
are indistinguishable in the first-order setting.

Moreover, one can give quite a good description of the first-order theory of
the structures.

Further on we establish that

πet
1 (X) ∼= Aut(X̃et),

that is the étale fundamental group of X is the automorphism group of the
structure X̃et.

This allows to reformulate main conjectures of anabelian geometry in model
theory setting. In particular, Grothendiek’s section conjecture for hyperbolic
curves is proved to be equivalent to the statement on elimination of imaginaries
of certain type.

The second part of the project concentrates on model theoretic analysis of
structure X̃an, the universal cover of X(C) in analytic category. An essential step
here is the extending the first order axioms TX to an Lω1,ω-axiomatisation ΣX
(allowing countable conjunctions and disjunctions) which conjecturally may
characterise X̃an as the only model of cardinality continuum.

The formulation and study of ΣX, for X smooth algebraic variety, generalises
the similar work for X a semi-abelian variety carried out by a number of authors
in 2002-2015, see a survey in the first part of [1]. Model-theoretic techniques
used in these studies is an adaptation of Shelah’s theory of abstract elementary
classes (AEC). The main innovation is the introduction of the language (see
above) adequate to the cases of the X with non-abelian topological fundamental
group π1(X). Another novelty is the understanding of the crucial role played by

1
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special sets (a generalisation of special subvarieties of mixed Shimura varieties,
see also [1]) in formulating axioms ΣX.

The above mentioned studies resulted in two important type of statements
for X a non-CM elliptic curve or the algebraic torus Gm (M.Bays, M.Gavrilovich
and the author) :

1. The abstract elementary class defined by ΣX has unique model (is cate-
gorical) in all uncountable cardinalities;

2. The above statement of categoricity for a broader class of semi-abelian
varieties X is equivalent to the conjunction of the following two arithmetic
statements:

(a) Gal(k̄ : k) acts on the torsion subgroup T of X as a finite index
subgroup of the full automorphism group Aut(T) (known as Serre’s
theorem for elliptic curves);

(b) an appropriate re-statement of the main theorem of Kummer theory
(known as Bashmakov’s theorem for elliptic curves).

Our main result is the generalisation of statement 2 to the general X. In this
case the torsion subgroup T is replaced by the profinite completion π̂1(X) of
the topological fundamental group of X(C) as the group acting on special sets.
Respectively Gal(k̄ : k) acts as AutS(π̂1(X)) on the group, where the subscript
S indicates that we consider the group together with its action on special sets.

For X equal to P1 \ {0, 1,∞} (the projective line minus 3 points) the group
AutS(π̂1(X)) is conjecturally the Grothendieck - Teichmüller group which is
the subject of studies since its introduction in Grothendieck’s “Esquisse d’un
programme”.

The “Kummer theory” part 2(b) for the general X was essentially formulated
by Adam Harris, [2].
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1 Introduction

LetX be a compact Hausdorff space. Four main representation theorems concerning the algebra
of continuous functions over X were proved at the beginning of the forties. In 1941, Kakutani [3]
gave an order-theoretic characterisation of the unital lattice-ordered real Banach lattices of the
form C(X,R) (= continuous functions from X into R); in this result the non-algebraic concept
of norm plays a crucial rôle. In the same year, Yosida showed in the landmark paper [5] that a
vector lattice with an order unit is isomorphic to C(X,R) if, and only if, it is archimedean and
norm-complete. Similarly, Stone proved in [4] that an abelian lattice ordered group (henceforth
`-group) with an order unit is isomorphic to C(X,R) if, and only if, it is divisible, archimedean,
and norm-complete. In sharp contrast with Kakutani’s result, the norm in the two latter
results is not a primitive operator, but it is induced by the order unit. Finally, in 1943, on
the way to a representation theorem for complex C∗-algebras, Gelfand and Neumark [1] proved
that a complex unital C∗-algebra can be represented as the family of all continuous C-valued
functions on a compact Hausdorff space if, and only if, it is commutative. As in Kakutani’s
representation result, the norm is a primitive element in the structure of a C∗-algebra. All the
aforementioned results extend to dualities with the category of compact Hausdorff spaces and
continuous functions among them.

In this work we are concerned with a generalisation of Stone’s result to non divisible `-groups.
A first important result to the effect of a functional representation of every archimedean norm
complete (w.r.t. the norm induced by the order unit) `-group, was proved by Goodearl and
Handelman [2, Theorem 5.5]:

Theorem 1.1. Let X be a compact Hausdorff space and C(X,R) be the set of continuous
functions from X into R. For each x ∈ X, let Ax be either R or Zn for some positive integer
n. Set

D = {f ∈ C(X,R) | f(x) ∈ Ax for all x ∈ X} ,

and give to D the `-group structure inherited from C(X,R). Then D is an (archimedean) norm
complete `-group. Conversely, any such a group is isomorphic to one of this form.

The crucial restriction to functions such that f(x) ∈ Ax can be understood as a labelling
on the space X that must be respected by the continuous functions considered. This serves as
motivation for the definitions in the next section.

2 Main results

Definition 2.1 (The category of a-spaces).
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1. Any tuple (X, τ, ζ), where (X, τ) is a topological space and ζ is a function form X into N
will be called arithmetic space or a-space, for short. (The symbol ζ stands for знаменатель
i.e. denominator)

2. If (X, τ, ζ) and (X ′, τ ′, ζ ′) are two a-spaces and f : X → X ′ is a function, we will say that
f is an a-map, if it is continuous and for any x ∈ X, ζ ′(f(x)) divides ζ(x).

3. We call A the category of a-spaces with a-maps among them.

Example 2.2. For q ∈ R, we write den(q) to denote the denominator of q (in its irreducible
form) if q ∈ Q, and 0 otherwise. Let I be a set. We extend den to a map ˆden : RI → N as
follows: Let p = (pi)i∈I ∈ RI ,

ˆden(p) =

{
lcm{den(pi) | i ∈ I} if p ∈ QI ,

0 otherwise.

Where lcm stands for least common multiple and 0 is the top of the lattice N under the
divisibility order. Then, writing ρ for the usual Tychonoff topology on RI , the triples (RI , ρ, ˆden)
and ([0, 1]I , ρ, ˆden) are a-spaces.

For n ∈ N we shall write div(n) for the set of natural numbers that divide n.

Definition 2.3. An arithmetic space (X, τ, ζ) is called a-normal space if the following condi-
tions hold:

1. (X, τ) is compact Hausdorff.
2. For every n ∈ N, ζ−1[div(n)] is closed in the topology τ .
3. For every disjoint closed subsets A and B of (X, τ), there exist two open disjoint neigh-

bourhoods U and V of A and B, respectively, such that for every x ∈ X \ (U ∪ V ),
ζ(x) = 0.

Theorem 2.4. The a-space ([0, 1]I , ρ, ˆden) of Example 2.2 is a-normal.

If (X, τ, ζ) is an a-space, we shall denote by Ab(X,R) the unital `-group of bounded a-maps
from (X, τ, ζ) into (R, ρ, den). The main result of this work is the following:

Theorem 2.5. An a-space (X, τ, ζ) is isomorphic to (Max(Ab(X,R)), σ, ˆden) (where σ is the
Stone-Zariski topology) if, and only if, (X, τ, ζ) is an a-normal space.

Corollary 2.6. The category of (archimedean) norm complete `-groups with `-group morphisms
preserving the order unit is dually equivalent to the full subcategory of A given by a-normal
spaces.
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1 Introduction

An Abelian lattice-ordered group (or `-group, for short) is an Abelian group G, endowed with
a partial lattice order ≤ that is translation invariant, i.e., for all x, y, z ∈ G, if x ≤ y, then
x+ z ≤ y+ z. An element u of an `-group is a (strong order) unit if, for all x ∈ G, there exists
n ∈ N such that |x| ≤ nu. A unital `-group is an `-group G with a designated unit u, and a
morphism of unital `-groups is a map that preserves the lattice structure, the group structure,
and the unit.

An undesired issue about unital `-groups is that, in their usual presentation, they fail to be
an elementary class. The problem is essentially due to the fact that the definition of unit may not
be expressed in first-order logic, as an application of the compactness theorem shows. However
D. Mundici showed in [4] that the category of unital `-groups is equivalent to a finitary variety
finitely axiomatized: the category of MV-algebras. In particular, an MV-algebra 〈A,⊕,¬, 0〉 is
a set A, equipped with a binary operation ⊕, a unary operation ¬ and a distinguished constant
0 such that 〈A,⊕, 0〉 is a commutative monoid, ¬¬x = x, x ⊕ ¬0 = ¬0, and ¬(¬x ⊕ y) ⊕ y =
¬(¬y ⊕ x) ⊕ x. We have a funtor Γ —which is proved to be an equivalence in [4]— from
the category of unital `-groups to the category of MV-algebras: for (G, u) a unital `-group,
Γ((G, u)) := {x ∈ G | 0 ≤ x ≤ u}, where, for x, y ∈ Γ((G, u)), x ⊕ y := (x + y) ∧ u, and
¬x := u− x.

Every unital `-group (G, u) carries a natural seminorm ‖x‖ := inf
{

p
q ∈ Q+ | qx ≤ pu

}
,

which induces a pseudometric d(x, y) := ‖x − y‖. What is missing for d to be a metric is the
implication d(x, y) = 0 ⇒ x = y. This happens precisely when G is Archimedean, i.e. when,
for all x, y ∈ G, if, for all n ∈ N, n|x| ≤ y, then x = 0. We write norm complete `-group
for “Archimedean unital `-group complete in the metric d”. A morphism of norm complete
`-groups is simply a morphism of unital `-groups.

2 Main results

Our main result is the following.

Theorem 2.1. Up to an equivalence, the category of norm complete `-groups is an (infinitary)
variety of algebras.

Theorem 2.1 is analogous to the well-known result that, up to an equivalence of categories,
the category of norm complete vector lattices is an (infinitary) variety of algebras (see [1], [2]
and [3]). The difference here is —roughly speaking— that divisibility is not required.
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We obtain Theorem 2.1 in two steps.

2.1 First step

As a first step, we notice —as stated in Proposition 2.2 below— that the category of norm
complete `-groups is equivalent to the category of norm complete MV-algebras, whose definition
we make more precise now. On any MV-algebra we can define a pseudometric d that coincides
with the restriction of the pseudometric d on (G, u), where (G, u) is a unital `-group such that
Γ((G, u)) ∼= A; the pseudometric d on A is a metric if, and only if, (G, u) is Archimedean if, and
only if, A is an Archimedean MV-algebra, i.e., for any x ∈ A, if, for all n ∈ N, x⊕ · · · ⊕ x︸ ︷︷ ︸

n times

≤ ¬x,

then x = 0. We write norm complete MV-algebra for “Archimedean MV-algebra complete in the
metric d”. A morphism of norm complete MV-algebras is simply a morphism of MV-algebras.

Proposition 2.2. The functor Γ from unital `-groups to MV-algebras restricts to an equivalence
between norm complete `-groups and norm complete MV-algebras.

2.2 Second step

As a second step, we provide an equational axiomatization defining a variety CMV which is
isomorphic to the category of norm complete MV-algebras. This variety is not finitary: the
set of primitive operations that we consider is made of a set of primitive operations of MV-
algebras, together with an operation γ of countably infinite arity. The idea is that, in the
intended models, γ(x0, x1, x2, . . . ) = limn→∞ an whenever (xn)n converges “quickly enough”;
precisely, when, for all n ∈ N, d(xn, xn+1) ≤ 1

2n+1 . We discuss a proof of the following

Theorem 2.3. The category of norm complete MV-algebras is isomorphic to the variety CMV.

2.3 Conclusion

When coupled with the content of Luca Spada’s talk “Norm complete Abelian `-groups: topolog-
ical duality”, the result presented here amounts to the following duality theorem, that extends
Stone-Gelfand duality to a-normal spaces.

Theorem 2.4. The following categories are pairwise equivalent.

1. The opposite of the category of a-normal spaces with a-maps among them.

2. The category of norm complete `-groups.

3. The category of norm complete MV-algebras.

4. The (infinitary) variety CMV.
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The collection of open subpolyhedra of any compact polyhedron forms a Heyting algebra,
which leads to the polyhedral semantics of intuitionistic propositional calculus IPC [5]. A similar
approach to modal logics was developed in [7]. Precursors of this work are [1], [3] and [2].

In this abstract we investigate polyhedral completeness of intermediate and modal logics.
For the lack of space we will only concentrate on intermediate logics. However, all the results
can be generalized to modal logics above S4.Grz. We will define when a logic is polyhedrally
complete and give a criterion for polyhedral completeness of intermediate logics in terms of
the class of its finite Kripke frames. We will then use this criterion to show that many well-
known intermediate logics (e.g., all stable logics) are polyhedrally incomplete. We will also use
this criterion to give examples of logics that are polyhedrally complete. A full classification of
polyhedrally complete intermediate and modal logics remains an open problem.

Let P be an n-dimensional compact polyhedron. By an open subpolyhedron of P we mean a
subset of P whose complementary subset in P is a compact polyhedron. Under inclusion order,
the poset Sub(P ) of all open subpolyhedra of P is a Heyting algebra [5]. For a propositional
formula ϕ, we say that P |= ϕ if Sub(P ) |= ϕ (i.e., ϕ is valid in the Heyting algebra Sub(P )).
For a class P of polyhedra we write P |= ϕ if P |= ϕ for each P ∈ P.

Definition 1. An intermediate logic L is polyhedrally complete if there is a class P of polyhedra
such that for each formula ϕ we have L ` ϕ iff P |= ϕ.

It was shown in [5] that IPC and BDn (the intermediate logic of frames of depth n) are
polyhedrally complete. It was also proved there that Sub(P ) is a locally finite Heyting algebra,
which implies that if L is polyhedrally complete then it has the finite model property. Therefore,
the logics that do not have the f.m.p. are not polyhedrally complete. We will now formulate the
criterion of polyhedral completeness. As a key tool, we use a classical notion first introduced
by Alexandrov in the first half of the last century in connection with his studies of posets as
spaces.

Definition 2. The nerve, N (P ), of a poset P is the set of all subsets of P which are linearly
ordered (i.e. the set of all chains in P ). We order N (P ) by subset inclusion ⊆. When P is
rooted, define the rooted nerve, N ∗(P ), of P to be the set of all chains in P containing the root
element, again ordered by subset inclusion.

Theorem 3. An intermediate logic L is polyhedrally complete if and only if there is a class of
finite rooted frames C closed under N ∗ such that Logic(C) = L.

The usefulness of the above theorem is that it provides a characterisation of polyhedrally
complete logics purely in terms of Kripke frames. The results of [5] now follow from this theorem
directly (although the original proof uses the same idea).

Corollary 4. IPC and BDn for n ∈ ω are polyhedrally complete.

Are there further examples of polyhedrally complete logics? The next corollary of Theorem 3
shows that we must search outside the realm of stable logics: a logic L is stable if the class
Frames(L) of all rooted frames of L is closed under onto monotone images [4].
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Corollary 5. If L is polyhedrally complete, stable, and of height above 3, then L = IPC.
Therefore, BWn, BTWn, LC, and KC are polyhedrally incomplete.

There are continuum many stable logics and all of them have the finite model property.
Thus, there are continuum many logics with the f.m.p. that are not polyhedrally complete.
In fact, one may wonder whether there are any polyhedrally complete logics of infinite height
beyond IPC.

We provide a positive answer: Scott’s logic, SL = IPC+((¬¬p→ p)→ (p∨¬p))→ (¬p∨¬¬p)
is an infinite-height polyhedrally complete logic. For a rooted frame F let χ(F ) denote the

Jankov-Fine formula of F . It is well known that SL = IPC + χ
( )

and that it has the f.m.p.

[6]. On frames, the formula χ
( )

expresses a type of connectedness. Our proof proceeds by

considering a stronger form of this connectedness, which is preserved by the nerve construction
N ∗. We then show that SL is the logic of the class C of finite rooted frames with this strong
connectedness property, by showing that any finite frame of SL is the p-morphic image of one
in C. This then gives that SL is polyhedrally complete, by Theorem 3. The proof provides a
general method, and we use it to exhibit an infinite class of polyhedrally complete logics, all of
which are axiomatised by Jankov-Fine formulas of trees.
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Neighborhood semantics as a generalization of Kripke semantics for modal logic were in-
vented independently by Dana Scott [1] and Richard Montague [2]. Neighborhood semantics
is more general than Kripke semantics and in the case of normal reflexive and transitive logics
coincides with topological semantics.

In general topology a product of two topological spaces X1 and X2 is a topological space
with the following base {U1 × U2 ∣ Ui is open in Xi, i = 1, 2}. In [4] the authors considered
a different product of topological spaces: a product of two topological spaces X1 and X2 is a
bitopological space with two topologies—horizontal and vertical. In a similar fashion product
of neighborhood frames was introduced by Sano in [3].

We assume familiarity with basic notion of modal logic such as (normal) modal logic and
the minimal modal logic K. For details see [8].

Let L1 and L2 be two modal logics then the fusion of these logics (notation L1 ⊗ L2 ) is
the minimal modal logic containing L1 and L

′
2, where L

′
2 is the logic L2 after renaming all

modalities.
Let us define the following logics:
T = K + □p→ p, D = K + □p→◇p, D4 = D + □p→ □ □ p, S4 = T + □p→ □ □ p.
In [5] it was proved that for any two L1, L2 ∈ {D4,D,T,S4}

L1 ×n L2 = L1 ⊗ L2.

Here L1 ×n L2 is the product of two logics, based on neighbourhood semantics. More
precisely it is the logic (all valid formulas) of the class of all products of neighbourhood frames
X1 × X2 such that Li is valid in Xi (i = 1, 2).

In section 6 of [4] the authors considered jet another type of product of two spaces such that
the result is a space with three topologies: horizontal, vertical and the product topology from
the general topology. They proved that the logic of such products of all topological spaces will
be S4⊗S4⊗S4+□p→ □1p∧□2p (modality □ corresponds to the classical product topology).

We consider similar construction for neighborhood frames (n-frames for short). We say
that for two n-frames X1 and X2 their full product will be an n-frame with 3 neighbourhood
functions:horizontal, vertical and the “product”. Here is a precise definition.

N-frame is a pair X = (X, τ), where X ≠ ∅ and τ ∶ X → 2
2
X

is a neighborhood function.
In order for logic of X to be normal τ(x) have to be a filter or the full set of subsets of X.

Let X1 = (X1, τ1) and X2 = (X2, τ2) be two n-frames. Then the full product of these
n-frames X1 ×

+ X2 is defined as follows

X1 ×
+ X2 = (X1 ×X2, τ

′
1, τ

′
2, τ), where

τ
′
1(x1, x2) = {U ⊆ X1 ×X2∣ ∃V (V ∈ τ1(x1) & V × {x2} ⊆ U)} ,
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τ
′
2(x1, x2) = {U ⊆ X1 ×X2∣ ∃V (V ∈ τ2(x2) & {x1} × V ⊆ U)},
τ(x1, x2) = {U∣∃V1 ∈ τ1(x) & ∃V2 ∈ τ2(y)(V1 × V2 ⊆ U)}.

For two unimodal logics L1 and L2 we define full n-product of them as follows

L1 ×
+
n L2 = Log({X1 ×

+ X2 ∣ Li is valid in an n-frame Xi}).
In the case of logics S4 and D4 neighborhood semantics is reduced to the topological

semantics. From [4] and [6] it is known that

S4 ×
+
n S4 = S4⊗ S4⊗ S4 + □p→ □1p ∧ □2p,

D4 ×
+
n D4 = D4⊗D4⊗D4 + □p→ □1p ∧ □2p.

In this work we prove

Theorem. For normal modal logics D and T

T ×
+
n T = T⊗T⊗T + □p→ □1p ∧ □2p,

D ×
+
n D = D⊗D⊗D + □p→ □1p ∧ □2p.

There we use the idea of construction T6,2,2 (see [4]) and modify it to the ω branching tree
Tω,ω,ω, such that Log(Tω,ω,ω) = D⊗D⊗D+□p→ □1p∧□2p. Then we use the pseudo-infinite
paths construction from [5] and build an n-fame Nω(Tω) and construct a p-morphism-like map
from Nω(Tω) ×+ Nω(Tω) to Tω,ω,ω. And for logic T the proof is similar but the trees should
be reflexive.

We can try and extend the technique to the logics K, K4. These logics don’t have seriality
axiom, so there will be some additional axioms similar to the infinite set of axioms ∆ from [7].
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As Gödel argued in [3], the intuitionistic implication has an impredicative character in-
herited from the cycle of the implication’s introduction and elimination rules. To solve this
problem, some alternative logics have been proposed, such as Visser-Ruitenburg’s basic logic
BPC (see [6] and [1]) and Ardeshir-Hessam’s extended basic logic EBPC (see [2]), as the log-
ics of the transitive persistent Kripke frames and the transitive persistent serial Kripke frames,
respectively. The main point, there, is avoiding the modus ponens rule on the logical side,
and the reflexivity condition on the semantical side to break the mentioned impredicative cy-
cle. However, this lack of elimination rule breaks the adjunction pair and makes the systems
ill-behaved and inadequate for the foundational role they deserve. In this talk, we will explain
a brand new approach based on the combination of the notions of time and space to introduce
some more practical conservative extensions of these logics that bring back the symmetry of an
adjunction pair (see [4]). This spatio-temporal approach, then leads to a brand new family of
modal propositional logics augmented with the predicative implications, and a natural topo-
logical semantics, both for these logical systems and the usual systems of modal logics. It can
be also interpreted as a formalization for van Atten’s independently developed solution for the
impredicativity problem (see [5]).

1 Modal Spaces

Definition 1. A pair pX,Jq is called a modal space if X is a locale and J : X Ñ X is a
monotone function which preserves all joins. A modal space is called temporal if for all a P X,
Ja ď a. It is called serial if it is temporal, and for any a P X, if Ja “ 0, then a “ 0. We will
denote the class of all modal spaces, temporal spaces, and serial spaces by MS, TS, and SS,
respectively. A modal space is called boolean when its locale is boolean. We will show the class
of all modal boolean spaces, boolean temporal spaces, and boolean serial spaces by MSb, TSb,
and SSb, respectively.

Remark 2. Intuitively speaking, the opens of the locale are the observable propositions and J
is the temporal modality that sends the proposition a P X to the proposition Ja P X meaning
“a happened before”. Therefore, the condition that J preserves the arbitrary joins simply means
that the temporal structure respects the coverings, or “if there was an observation to show that
“one of ai’s is true”, then there is at least one observation to show that one of ai’s was true.

Example 3. There are many important examples of modal spaces. For instance, for any
continuous map pf˚ % f˚q : X Ñ X on the locale X, pX, f˚q is a modal space. For a
more illuminating example, assume that pW,ďq is a poset formalizing the ordered structure of
time. Then, consider the topology of all upward closed subsets of W and J on these opens as
JpUq “ tx|Dy P U y ď xu. Therefore, pOppW,ďq, Jq is a modal space.

Remark 4. Note that for any fixed a P X, the operation Jp´q^a preserves arbitrary joins, and
hence has a right adjoint, which we denote by a Ñ p´q. Intuitively speaking, the adjunction
captures the predicative implication, with the properties that a Ñ b is provable by c iff the
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fact that “c happened before” together with a, implies b. This time lag makes a delay between
introducing an implication, and using it in its applications. For instance, a^ paÑ bq does not
necessarily imply b, but if aÑ b has been proved before, that is if we have a^ JpaÑ bq, then
we can prove b.

2 Predicative Logics

Let LJ be the usual language of propositional logic with a unary modal operator J . To introduce
some formal systems in this language, consider the following set of natural deduction rules:

F and Implication Rules:

C $ A
F

JC $ JA

Γ $ A Π $ JpAÑ Bq
Ñ E

Γ,Π $ B

JC,A $ B
Ñ I

C $ AÑ B

Additional Rules:

JA $ K
wCoJ

A $ K
Γ $ JA

J

Γ $ A

Now, define the minimal predicative logic, mJ, as the logic of the system consisting of the
usual axioms, the cut rule, the usual conjunction and disjunction rules, and the mentioned F
and the implication rules. If we add the rule J to this system, we will have the logic J, and if
we also add wCoJ to J, the system is wInt. These logical systems provide faithful well-behaved
extensions of BPC and EBPC, respectively. Considering the natural topological semantics for
these logics, we have the following, as the main result of the talk:

Theorem 1. (Soundness-Completeness, Embedding Theorem) Let X be an infinite Hausdorff
space, and C a class of modal spaces. If X (C Γ ñ A means the validity of Γ ñ A in all
pX, Jq P C, then:

piq Γ $mJ A iff MS ( Γ ñ A.

piiq Γ $J A iff TS ( Γ ñ A. If Γ Y tAu is J-free, then we also have Γ $J A iff Γ $BPC A
iff X (TS Γ ñ A.

piiiq Γ $wInt A iff SS ( Γ ñ A. If Γ Y tAu is J-free, then we also have Γ $wInt A iff
Γ $EBPC A iff X (SS Γ ñ A.
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Let S,T be first order theories and let F : A := Mod(S) → Mod(T) =: B be a functor
between their categories of models. Many classical questions are of the form “Is every B ∈ B
of the form F (A) for some A ∈ A?” or in a weakened version “Is every B ∈ B elementarily
equivalent to F (A) for some A ∈ A?”.

Notable examples are Dilworth’s congruence lattice problem, asking whether every algebraic
distributive lattice is the congruence lattice of a lattice (solved in the negative by Wehrung
[We]), the representation problems for special groups [DM], asking whether every special
group is elementarily equivalent to the square class group of a field, or Efrat’s question [Ef]
which κ-structures arise as the Milnor K-theory of a field.

The present work addresses this kind of question. More precisely, the main result gives
criteria for determining whether the structures in the image of F can be distinguished from
general structures in B by means of certain formulas of infinitary first order logic, the κ-
geometric formulas.

Definition. Let Σ be a first order signature and κ a regular cardinal.

(i) A κ-geometric formula is a formula built from atomic formulas (including >,⊥), using ar-
bitrary (set-indexed) disjunctions, conjunctions over less than κ formulas and existential
quantification over less than κ variables.

(ii) A κ-geometric theory is a theory which can be axiomatized by formulas of the form
∀x̄ φ → ψ, where φ, ψ are κ-geometric formulas, and the quantification can be over an
arbitrary set of variables.

(iii) For a class of Σ-structures C we denote by Thκ-geom(C) the κ-geometric theory of C, i.e.
the set of all formulas of the form ∀x̄ φ → ψ, with φ, ψ κ-geometric formulas, that are
valid in every member of C.

(iv) Denote by Th¬-κ-geom(C) the set of negations of κ-geometric formulas (i.e. formulas of
the form ∀x̄ φ→ ⊥ with φ κ-geometric), that are valid in every member of C.

In the case κ = ℵ0 the above definition recovers the notions of geometric formula and
geometric theory known from topos theory. The κ-geometric theories have recently been studied
by Esṕındola [Es1], [Es2] who developed a theory of classifying toposes for κ-geometric theories
and proved a version of Deligne’s completeness theorem.

Theorem. Let S,T be κ-geometric theories over possibly different signatures such that A :=
Mod(S) and B := Mod(T) are κ-accessible categories, and denote by Aκ,Bκ their full subcate-
gories of κ-presentable objects.

Let F : A → B be a functor that preserves κ-filtered colimits and sends κ-presentable objects
to κ-presentable objects, i.e. restricts to a functor Fκ : Aκ → Bκ. Then the following hold:

(a) If Fκ : Aκ → Bκ is essentially surjective, then Thκ-geom(F(A)) = Thκ-geom(B). More
generally, this equality of κ-geometric theories holds if and only if Fκ induces an equivalence
between the idempotent completions of Aκ and Bκ.



28

(b) If Fκ : Aκ → Bκ is fully faithful, then F (A) = Mod(S′) for some axiomatic extension S′ ⊇ S
(i.e. the essential image F (A) can be characterized by additional κ-geometric formulas in
the language of S).

(c) If, in the situation of (b), additionally one has that every B ∈ B admits some morphism
to an F (A), for some A ∈ A, then Th¬-κ-geom(F (A)) = Th¬-κ-geom(B), i.e. the objects
in the essential image of F and general objects of B satisfy exactly the same negations of
geometric formulas.

As for the scope of the theorem, one should note that the category of models of a usual
finitary first order theory over a countable signature is always ℵ1-accessible. Vice versa every
κ-accessible category is the category of models of a κ-geometric theory. Thus the theorem is
applicable to the above mentioned classical questions, which typically revolve around models
of usual finitary first order theories.

An outline of the proof goes as follows: Esṕındola in [Es2] developed a theory of classifying
toposes for κ-geometric theories, working with κ-geometric morphisms, i.e. adjunctions such
that the left adjoint preserves limits of cardinality< κ. It is true that every κ-accessible category
is the category of models of a κ-geometric theory of presheaf type, i.e. the classifying topos is
a presheaf topos. The hypotheses of the theorem ensure that the functor F is induced by a
κ-geometric morphism between the classifying toposes and that this morphism is essential, i.e.
induced by a functor between the index categories of the presheaf categories. The statements
of the theorem are obtained by factorizing the said κ-geometric morphism into a surjection,
followed by a dense inclusion, followed by a closed inclusion and determining what are the
theories classified by the intermediate toposes. While such factorizations can in general be
hard to compute, factorizing essential geometric morphisms between presheaf toposes is easy, as
observed by the author in joint work with E. Ochs: It turns out that all the intermediate toposes
are presheaf toposes and the morphisms are essential. The construction of the factorization is
what yields the criteria of the theorem.

In the talk we will explain all the involved notions, like κ-presentable objects and κ-accessible
categories, with examples and give sample applications of the theorem. We will finish with an
outline of the proof, without supposing too much knowledge of topos theory.
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Nuclei play an important role in pointfree topology as they are in 1-1 correspondence with
onto frame homomorphisms, and hence describe sublocales of locales. For each frame L, let
N(L) be the set of nuclei on L. There is a natural order on N(L) given by

j ≤ k iff ja ≤ ka for each a ∈ L.

With this order N(L) is also a frame, which we will refer to as the frame of nuclei or the
assembly of L. The complicated structure of N(L) has been investigated by many authors.

To describe some of the key results about N(L), we recall that a frame L is spatial if it is
isomorphic to the frame OS of open sets of a topological space S. For a subspace T of S, a
point x ∈ T is weakly isolated in T if there is an open subset U of S such that x ∈ T ∩U ⊆ {x}.
It is clear that an isolated point of T is weakly isolated in T .

The space S is scattered if each nonempty subspace of S contains an isolated point. It is
easy to see that S is scattered iff each nonempty closed subspace of S has an isolated point.
The space S is weakly scattered if each nonempty closed subspace has a weakly isolated point.
It is well known that S is scattered iff S is weakly scattered and TD, where S is TD if each
singleton is locally closed. Finally, S is dispersed if each nonempty closed subset of S has a
detached point (see [5, Def. 1.2]).

The following are some of the landmark results about N(L).

• Beazer and Macnab [1] proved that if L is boolean, then N(L) is isomorphic to L, and
gave a necessary and sufficient condition for N(L) to be boolean.

• Simmons [5] proved that if S is a T0-space, then N(OS) is boolean iff S is scattered; and
that dropping the T0 assumption results in the following more general statement: N(OS)
is boolean iff S is dispersed.

• Simmons [5, Thm. 4.4] also gave a necessary and sufficient condition for S to be weakly
scattered. This result of Simmons is sometimes stated erroneously as follows: N(OS) is
spatial iff S is weakly scattered. While this formulation is false, Isbell [3] proved that if
S is a sober space, then indeed N(OS) is spatial iff S is weakly scattered.

• Niefield and Rosenthal [4] gave necessary and sufficient conditions for N(L) to be spatial,
and derived that if N(L) is spatial, then so is L.

In [2] a new technique was developed to study nuclei on L utilizing Priestley duality for
distributive lattices and Esakia duality for Heyting algebras. It was shown that nuclei on a
Heyting algebra L correspond to nuclear subsets of the Esakia space XL of L, where F is a
nuclear set provided F is closed and for each clopen set U , the downset ↓(F ∩ U) is clopen. If
N(XL) denotes all nuclear subsets of XL, then we utilize the dual isomorphism between N(L)
and N(XL) of [2] to give an alternate proof of the results mentioned above.

We single out a subset YL of XL consisting of nuclear points of XL, where y ∈ YL iff
{y} ∈ N(L), iff ↓y is clopen, and show that L is spatial iff YL is dense in XL. We prove that
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join-prime elements of N(XL) are exactly the singletons {y} where y ∈ YL. From this we derive
a characterization of when N(L) is spatial in terms of XL. This yields an alternate proof of
the results of Niefield and Rosenthal [4].

The next two results characterize when N(L) is spatial or boolean.

Theorem 1. Let L be a frame and XL its Esakia space. The following are equivalent.

(1) The frame N(L) is spatial.

(2) If F ∈ N(XL) is nonempty, then so is F ∩ YL.

(3) N(L) is isomorphic to the frame of open subsets of YL.

For a topological space X, let RC(X) be the complete boolean algebra of regular closed
subsets of X.

Theorem 2. Let L be a frame and XL its Esakia space. The following are equivalent.

(1) N(L) is boolean;

(2) N(XL) = RC(XL);

(3) max(D) is clopen for each clopen downset D of XL.

By specializing to the case L = OS, we prove that N(OS) is spatial iff the soberification of
S is weakly scattered. As a corollary we obtain the result of Isbell [3] that if S is sober, then
N(OS) is spatial iff S is weakly scattered. We give an example showing that this result is false
if S is not assumed to be sober.

Turning to the results of Simmons [5], one of his main tools is the use of the front topology.
We show that if S is T0, then XL is a compactification of S with respect to the front topology on
S. From this, by utilizing the T0-reflection, we derive Simmons’ characterization [5, Thm. 4.4] of
arbitrary (not necessarily T0) weakly scattered spaces. We also derive Simmons’ theorem that
if S is T0, then N(OS) is boolean iff S is scattered. We generalize this result to an arbitrary
space by showing that S is dispersed iff its T0-reflection is scattered. This yields the general
form of Simmons’ theorem that N(OS) is boolean iff S is dispersed.
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1 Introduction

First order Gödel logics form a well established class of many-valued logics with good proof-
theoretic properties and extensive theory [4]. Quantified Propositional Gödel Logics have been
studied only a few times, and not much is known about these logics besides a few results for
specific logics [1–3, 5]. Propositional quantifiers allow for quantification of propositions, which
in the setting of Gödel logics boils down to quantification over all truth values of the underlying
truth-value set. Thus, they are somewhere between first order and second order quantifiers.

In this abstract we initiate the research program to study the combination of propositional
and first-order quantifiers with respect to Gödel logic over V = [0, 1].

1.1 Syntax and semantics for Gödel logics

The (propositional) operations on Gödel sets which are used in defining the semantics of Gödel
logics have the property that they are projecting, i.e. that the operation uses one of the argu-
ments (or 1) as result (we dot the operators to distinguish them from the syntactical elements
of the language introduced later): For a, b ∈ [0, 1] let a ∧̇ b := min(a, b), a ∨̇ b := max(a, b),
a →̇ b := 1 if a ≤ b and a →̇ b := b if a > b. We define ¬̇ a := (a→ 0), so ¬̇ 0 = 1, and ¬̇ a = 0
for all a > 0.

For the following let us denote with L the following language combining first-order and
quantified propositional elements: Fix a countably infinite set of object variables X (usually
written as x, y, xi), a countably infinite set Q of propositional variables (usually written as p, q,
pi), a countable set F of functionals F , countably many for each arity (n,m), and a countable
set P of predicates P , countably many for each arity n. Functionals have two sets of parameters,
the propositional quantified level parameters and the object level parameters.

Definition 1 (Terms, atomic formulas, and formulas). Object variables are terms, and if ~p are
propositional variables, and ~t are terms, then F (~p,~t) is again a term. Propositional variables
are atomic formulas, and if ~t are terms, then P (~t) is again an atomic formula. Formulas are
build from disjunction, conjection, implication, negation, first-order and quantified proposi-
tional quantification in the usual way.

Note that we do not allow a formula other than a quantified propositional variable to
appear in functionals, and that predicates have other arguments then terms, in particular no
quantified propositional variables (that is, P (q) where P is a predicate symbol and q a quantified
propositional variable, is not allowed!). This guarantees that in the proof of the main theorem,
elimination of these functionals can be achieved.
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The semantics of first-order Gödel logics with propositional quantifiers, with respect to a
fixed Gödel set as truth value set and L is defined using the extended language LM,V , where M
is a universe of objects. LM,V is L extended with symbols for every element of M as constants,
so called M -symbols, as well as constants r for each r ∈ V , the underlying truth value set.
These symbols are denoted with the same letters.

Definition 2 (Semantics of Gödel logics with propositional quantifiers). A valuation v into V =
[0, 1] consists of a nonempty set M = Mv, the ‘universe’ of v, for each p ∈ Q (set of proposional
variables) a value pv ∈ V , for each (n,m)-ary functional F a function F v : V n ×Mm → M ,
and for each k-ary predicate symbol P , a function P v : Mk → V .

Given a valuation v, we can naturally define a value v(A) for any closed formula A of LM .
Propositional constants are evaluated to elements in V . For functions F (~rv, ~mv), we defined
v(F ) = F v(~r, ~m). For atomic formulas A = P (~m), we define v(A) = P v(~m). For atomic
formulas A = r, we define v(A) = r. For composite formulas A we define v(A) naturally by:
v(⊥) = 0, v(A → B) = v(A) →̇ v(B), v(A ∧ B) = v(A) ∧̇ v(B), v(A ∨ B) = v(A) ∨̇ v(B),
v(∀xA(x)) = inf{v(A(m)) : m ∈ M}, v(∃xA(x)) = sup{v(A(m)) : m ∈ M}, v(∀pqA(q)) =
inf{v(A(r)) : r ∈ V }, and v(∃pqA(q)) = sup{v(A(r)) : r ∈ V }. For any closed formula A ∈ L,
we let ‖A‖ := inf{v(A) : v a valuation}.

Definition 3 (Gödel logic with propositional quantifiers). The first order Gödel logic with

propositional quantifiers Gfoqp
V , as the set of all closed formulas of L, such that ‖A‖ = 1.

Theorem 4 (Hebrand Theorem for Gfoqp
[0,1] ). (i) For valid formula ∃~p∃~xA(~p, ~x) with A be-

ing quantifier free, there is a valid Herbrand expansion of form
∧

i(Ci → H) where H =∨n
j=1A

0(~c,~tj)) and A0(~c,~tj) are instances of A, ~c are fixed propositional constants, the Ci are
chains of atoms (see [2]) of H such that after deletions of ~c from the chains all possible chains
on the remaining atoms of H occur.

(ii) If a valid Herbrand expansion of the above form exists, then ∃~p∃~xA(~p, ~x) is valid.

Corollary 5. The Σ1
1-fragment of first order Gödel logic over [0, 1] extended with propositional

quantifiers and functionals is recursively enumerable.

The construction above can be used to provide a Herbrand Theorem for the full first order
Gödel logic with infix quantifiers and a skolemization with Skolem functionals.

The main remaining open problem is whether Gfoqp is recursively enumerable.
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Formal systems are not always explicitly connected to how they operate in practice. Lawvere
theories [3] formalize algebraic structures which obey equations, but they do not specify how to
compute in such a structure, meaning how to simplify a compound term using rewrite rules. In a
category, the objects are types and the morphisms are terms; as the latter are elements of hom-sets,
terms are simply equal or unequal. To represent term rewriting, we need hom-objects with more
structure. This is precisely the idea of enriched categories [2].

In operational semantics, program behavior is often specified by labelled transition systems: the
terms are vertices, and the rewrites are edges [5]. This can be represented by a Lawvere theory in
which there is a graph of morphisms between each pair of objects, or a “Gph-theory”. While directed
graphs are standard, there are many representations of semantics, so we consider enrichment by
any cartesian closed category.

We use an existing definition of enriched algebraic theory [4]. One subtlety, which the main
theorems address, is that enrichment also generalizes the arities of the theory. We simplify this
aspect by restricting to a subcategory of arities which acts like the natural numbers.

For any enriching category V, a V-theory is a V-enriched Lawvere theory with natural number
arities. Several categories have a canonical semantic meaning, forming a spectrum of enrichment
which allows us to examine the semantics of term calculi at various levels of detail.

Graphs: Gph-theories represent small-step operational semantics
— a hom-graph edge represents a single instance of a rewrite rule.
Categories: Cat-theories represent big-step operational semantics
— a morphism represents an element of the reflexive-transitive closure of the small-step graph.
Posets: Pos-theories represent full-step operational semantics
— a hom-poset boolean represents the existence of a big-step morphism.
Sets: Set-theories represent denotational semantics
— a hom-set element represents a connected component of the full-step poset.

The main idea of the paper is that functors between enriching categories enable the translation
between different kinds of semantics. We discuss how general monoidal functors induce change-
of-base 2-functors between their 2-categories of enriched categories. We prove that functors which
preserve finite products induce change-of-semantics.

Theorem 1. Let V, W be cartesian closed categories with finite coproducts of their terminal objects,
and let F : V → W be a cartesian functor. Then F is a “change of semantics” – F determines a
functor from the category of V-theories to the category of W-theories, and moreover this determines
functors between categories of models.
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Our main examples arise from a chain of adjunctions which relate these forms of semantics.
Right adjoints automatically preserve finite products, but these left adjoints do as well, and they
are more important in applications (the last supposes that the language is confluent).

Gph

a

Cat

a

Pos

a

Set

FC

UG

FP

UC

FS

UP

Change of base along Gph→ Cat maps small-step semantics to big-step semantics.
Change of base along Cat→ Pos maps big-step semantics to full-step semantics.
Change of base along Pos→ Set maps full-step semantics to denotational semantics.

Many constructions in operational semantics are encapsulated in this framework, subject only
to the simple condition of product preservation. We also have change-of-theory, a functor of model
categories induced by a functor of V-theories: we can modify a theory, such as specifying an
evaluation strategy, and it modifies the models functorially. By this and change-of-semantics,
we construct the category of all models of all enriched theories using the iterated Grothendieck
construction.

We demonstrate these concepts with the SK-combinator calculus, broadening the application of
enriched Lawvere theories from computational effects [1] to the semantics of term calculi. The SK
calculus can be presented as a Gph-theory.

Th(SK)
sort t
constructors S : 1→ t

K : 1→ t
(− −) : t2 → t

rewrites σ : (((S a) b) c)⇒ ((a b) (a c))
κ : ((K a) b)⇒ a

We show that in the free model on the empty graph, the hom-graph from 1 to t is precisely
the small-step transition system of all SK terms and rewrites. We demonstrate change-of-semantics
to big-step, full-step, and denotational. We also suggest that there are many useful change-of-
semantics by giving a different example: quotienting by the bisimulation relation.
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It is well-known that there is an adjunction

Preop ,,
CDLll

between preorders and completely distributive lattices. This adjunction is induced by homming
into the two element chain 2. Moreover, CDL is the category of algebras for the monad [[−,2],2].

This can be made to work internally in a topos as shown by [9] and, using the same techniques,
also to categories enriched over a commutative unital quantale Ω, see [1]. The dual adjunction
between Pre and CDL then becomes a special case of

Ω-Catop -- DU-algmm

for Ω = 2. Here Ω-Cat is the category of categories enriched over Ω and DU-alg is the category of
algebras for the monad [[−,Ω],Ω]. The notation DU-alg is justified because, as shown by [9, 11],
there is a distributive law between the enriched downset monad D and the enriched upset monad
U such that the induced monad DU is isomorphic to [[−,Ω],Ω].

It follows from [9] that the categorical distributive law between D and U can be written as∫
k

[ϕ(k),

∫ a

G(k)(a)⊗ a] =

∫ a ∫
k

[ϕ(k), ↓G(k, a)]⊗ a. (1)

where k ranges over a set K, a over a set A and ϕ : K → Ω and G : K × A → Ω. The end and
coend notation refers to the enriched Kan extensions explained in detail in [7]. The tensor ⊗ is the
commutative multiplication in Ω and [−,−] the corresponding internal hom (residuation). The
downarrow ↓ expresses downset closure.

This can be rephrased in more familiar notation if we introduce operations in the sense of universal
algebra that allow us to express the weighted (or indexed) limits and colimits that appear in the
Kan-extensions of (1). In more detail, the internal hom [w, v] in Ω is now written as w � v, the
tensor w ⊗ v in Ω is written as w ? v, the end

∫
k

becomes a meet
d

k and the coend
∫ a

becomes a
join

⊔
a. With this notation (1) now appears as

l

k

ϕ(k) � (
⊔
a

G(k)(a) ? a) =
⊔
a

∫
k

[ϕ(k), ↓G(k, a)] ? a, (2)

Unfortunately, the expression
∫
k
[ϕ(k), ↓G(k, a)] is calculated as a weighted limit in Ω and we

cannot express it by algebraic operations in general. There are two ways to improve on this.

First, we know from [10] that DU-alg is monadic over Set and therefore must have an equational
axiomatisation. This can indeed be achieved by extending the signature (

d
,�,

⊔
, ?) by a constant

for each element of Ω. Then for each ϕ,G we obtain an instance of (2) in which
∫
k
[ϕ(k), ↓G(k, a)]

is simply the corresponding constant in Ω.

Second, we can explore whether there is a formulation of the distributive law (2) which eliminates∫
k
[ϕ(k), ↓G(k, a)] in favour of a more traditional formulation using choice functions, as familiar

from the case Ω = 2.
∗adriana.balan@mathem.pub.ro
†jipsen@chapman.edu
‡akurz@chapman.edu
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The more abstract formulation (2) holds, rather surprisingly, for any commutative unital quantale
Ω, even for those that are not distributive (as a lattice). For a concrete formulation in terms
of operations, equations and choice functions, and analogous to the familiar distributive law for
lattices, we need additional requirements on the quantale Ω. These requirements are satisfied in
the lattice case Ω = 2 and thus do generalise it.

First, while the most famous example of Ω in this context is the one given by the real numbers
as proposed in [8], we are interested here in finite quantales Ω, mainly because this allows us to
obtain results of a more conventional finitary algebraic nature. But finite Ω are also interesting in
their own right as witnessed for example by [4, 5, 2, 6]. Having said this, the theorem below does
not depend on assuming that Ω is finite as long as we are willing to rely on the axiom of choice
and to admit infinitary joins and meets in the signature.

Second, we need to impose that powers preserve finite joins, or equivalently, that we enrich over a
finite MTL-algebra [3, 12].

We now have a version of (2) which is universal algebraic and finitary if Ω is. It specialises to the
familiar distributive law for lattices in the case of Ω = 2.

Theorem. Let Ω be a (finite) commutative unital integral quantale that is completely distributive
as a lattice and in which the powers v�− for all v ∈ Ω preserve non-empty joins. For an algebra A
in DU-alg, denote by F the set of functions K → A for some (finite) set K. Then (2) is equivalent
to l

k∈K

ϕ(k) � (
⊔
a∈A

G(k)(a) ? a) =
⊔
f∈F

l

k∈K

φ(k) � (G(k, fk) ? fk). (3)

Conclusion We have shown that the distributive law arising from enriching over a commutative
unital quantale Ω can be formulated in terms of operations and equations similar to the familiar
distributive law of lattices in case that Ω is a finite MTL-algebra.
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Incidence theorems in Euclidean or projective geometry state that some incidences follow from
other incidences, where an incidence is a pair of a line and a point, together with the information
whether the point lies on the line or not. A famous example is Desargue’s theorem, which
states that if ABC and UVW are two triangles such that A ̸= U , B ̸= V and C ̸= W , if
BC ∩ VW = {P}, AC ∩ UW = {Q} and AB ∩ UV = {R}, then the lines AU , BV and CW
are concurrent if and only if the points P , Q and R are colinear.

Our intention is to formalise and extend, within proof theory, the idea of Richter-Gebert [1,
Section 2.2] on incidence theorems, which we paraphrase as follows:

If M is a triangulated manifold that forms a 2-cycle, and therefore is orientable, then
the presence of Menelaus configurations on all but one of the triangles automatically
implies the existence of a Menelaus configuration on the final triangle.

A sextuple (A,B,C, P,Q,R) of points in R2 makes a Menelaus configuration if (B,C;P ),
(C,A;Q) and (A,B;R) are defined and their product is -1, where, for three mutually distinct
points X, Y and Z in R2, (X,Y ;Z) is undefined unless X,Y, Z are colinear, and is otherwise
defined as follows:

(X,Y ;Z) =df

{
XZ
Y Z , if Z is between X and Y ,

−XZ
Y Z , otherwise.

The Menelaus theorem states that if A,B,C are not colinear, then a Menelaus configuration
can be equivalently defined purely in terms of incidences, namely: P,Q,R colinear, as well as
B,C, P colinear, C,A,Q colinear and A,B,R colinear. As an example, consider the sphere S2

triangulated in four triangles (the facets of a tetrahedron) and assume that the vertices A, B, C
and D of the tetrahedron, as well as the points P , Q, R, U , V and W , satisfy all the incidences
displayed in the picture below.

A

B

C

P

Q

R

U

V

W

D

b b

b

b

b

b

b

b

b

b

By Menelaus theorem, we have Menelaus configurations on the triangles BCD, CAD and ABD,
i.e., we have (C,D;W ) · (D,B;V ) · (B,C;P ) = −1, (D,C;W ) · (A,D;U) · (C,A;Q) = −1, and
(B,D;V ) · (D,A;U) · (A,B;R) = −1, which, after multiplication and cancellation, delivers
(B,C;P ) · (C,A;Q) · (A,B;R) = −1. By Menelaus theorem again, P,Q,R are colinear.
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We introduce a one-sided sequent system, which deals with atomic formulae of the form “this
sextuple of points makes a Menelaus configuration”. An intuition (formalised in Proposition 1
below) behind the sequents of our system is that an arbitrary formula in a sequent is entailed
by the remaining formulae of the sequent. For an arbitrary countable set W , let

F 6(W ) =W 6 − {(X1, . . . , X6) ∈W 6 | Xi = Xj for some i ̸= j}.

The atomic formulae of our language are the elements of F 6(W ). The formulae are built out of
atomic formulae by using the connectives ∨∧ (simultaneous conjunction and disjunction) and ↔
(the classical equivalence). A sequent is a finite multiset of formulae, and the sequent consisting
of a multiset Γ is denoted by ⊢ Γ. The axiomatic sequents are formed in the following manner.
For every triangulated manifold M with 0-cells M0, 1-cells M1 and 2-cells M2 , such that
M0,M1 ⊆W , let ν : M2 → F 6(W ) be defined as

νx = (d11d
2
2x, d

1
0d

2
2x, d

1
0d

2
0x, d

2
0x, d

2
1x, d

2
2x),

where dji : Mj → Mj−1, 1 ≤ j ≤ 2, 0 ≤ i ≤ j, are the face maps of M. Then ⊢ {νx | x ∈ M2} is
an axiom of our system. The other axioms are ⊢ (A,B,C, P,Q,R), (A,B,C, P,Q,R) (identity),
⊢ (A,B,C, P,Q,R), (B,C,A,Q,R, P ) and ⊢ (A,B,C, P,Q,R), (A,R,Q, P,C,B) (switching of
triangles). The rules of inference of the system are the following:

⊢ Γ, φ ⊢ ∆, φ

⊢ Γ,∆

⊢ Γ ⊢ ∆

⊢ Γ,∆

⊢ Γ, φ ⊢ Γ, ψ

⊢ Γ, φ∨∧ψ

⊢ Γ, φ ⊢ ∆, ψ

⊢ Γ,∆, φ↔ ψ

We prove the soundness of our system with respect to Euclidean (resp. projective) interpre-
tations, i.e. functions from W to R2 (resp. to RP2). We say that an interpretation satisfies
the atomic formula (A,B,C, P,Q,R), when its interpretation as a sextuple of points in R2

makes a Menelaus configuration. Let Γ |=E φ (resp. Γ |=P φ) mean that every Euclidean
(resp. projective) interpretation that satisfies every formula in Γ also satisfies φ, where every
occurrence of ∨∧ in Γ (resp. ϕ) is interpreted as disjunction (resp. as conjunction), while ↔ is
always interpreted as classical equivalence.

Proposition 1 (Soundness). If ⊢ Γ, φ is derivable, then Γ |=E φ (resp. Γ |=P φ).

By normalizing in a particular way the derivations of our system, we prove its decidability:

Proposition 2 (Decidability). The Menelaus system is decidable.

We illustrate on examples a general pattern for extracting an incidence result (its formulation
and a proof) from derivable sequents of our system: starting from the interpretations that satisfy
all but one formulae in a derivable sequent, by the soundness result, such an interpretation
satisfies the last formula too. Menelaus theorem is used at both ends to translate from incidences
to Menlaus configurations and back.

Finally, we show that the derivable sequents of our system admit a natural cyclic operad
structure, thereby answering positively the question of whether cyclic operads appear in general
proof-theory, alongside ordinary operads.

References
[1] J. Richter-Gebert, Meditations on Ceva’s theorem, The Coxeter Legacy: Reflections and

Projections (C. Davis and E.W. Ellers, editors), American Mathematical Society and Fields
Institute, Providence, 2006, pp. 227-254



39

A new logic arising from a scattered Stone space

Guram Bezhanishvili1, Nick Bezhanishvili2, Joel Lucero-Bryan3, and Jan van
Mill4

1 Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico, USA
guram@nmsu.edu

2 Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, The
Netherlands

N.Bezhanishvili@uva.nl
3 Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, UAE

joel.bryan@ku.ac.ae
4 Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The

Netherlands
j.vanMill@uva.nl

Topological semantics for modal logic interprets modal box as topological interior, and thus
modal diamond as topological closure. For a topological space X, the logic L(X) of X is the
set of modal formulas valid in X. It is well known that L(X) is a normal extension of S4. The
famous McKinsey-Tarski theorem states that S4 is the logic of any dense-in-itself metrizable
space [4, 7].

In [2], modal logics arising from Stone spaces were studied, and it was shown that each of
S4, S4.1, S4.2, S4.1.2, S4.Grz, S4.Grzn (n ≥ 1), and their intersections arises as L(X) for some
Stone space X. Whether there is a Stone space yielding a logic not among these logics was left
open [2, Question 6.2]. We exhibit a scattered Stone space yielding a new logic, thus giving
an affirmative answer to the above question. The space is constructed by utilizing the work of
Mrowka [5, 6].

We recall that a family R of infinite subsets of the natural numbers N is almost disjoint
provided R ∩ Q is finite for any distinct R,Q ∈ R. A Mrowka space is X := N ∪R where R
is almost disjoint and whose topology is generated by the basis consisting of O(n) := {n} for
n ∈ N and O(R,F ) := {R} ∪ (R \ F ) for R ∈ R where F ⊂ N is finite. If R is infinite, then
X is not compact. By [6], there is an almost disjoint family R and a Mrowka space X such
that the Čech-Stone compactification βX of X is the one-point compactification αX of X, see
Figure 1.

βX
X
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Figure 1: Depiction of βX = αX for a Mrowka space X, and of O(R,∅) for R ∈ R.

Lemma 1. Let X be a Mrowka space such that βX = αX, and let Tk (k ∈ N) and T be as
depicted in Figure 2.

1. βX is a Stone space of Cantor-Bendixson rank 3.

2. For any k ∈ N, the tree Tk is an interior image of βX.
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3. The tree T is not an interior image of any open subspace of βX.

Tk
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�
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•

Figure 2: The trees Tk and T.

Theorem 2. Let X be a Mrowka space such that βX = αX and let χ be the Jankov-Fine
formula of T. Then the logic of βX is such that S4.Grz3 + ¬χ ⊆ L(βX) ⊂ S4.Grz2.

Proof. (Sketch) Since βX is of Cantor-Bendixson rank 3, we have that S4.Grz3 ⊆ L(βX). It
follow from Lemma 1.3 that L(βX) ` ¬χ. Therefore, S4.Grz3 + ¬χ ⊆ L(βX). Since S4.Grz2 is
the logic of {Tk | k ∈ N}, it follows from Lemma 1.2 that L(βX) ⊆ S4.Grz2. The containment
is strict because βX is of Cantor-Bendixson rank 3 > 2.

Remark 3. It is well known (see, e.g., [3, Sec. 9.4]) that in the intuitionistic setting, the
negation of the Fine-Jankov formula of the tree T axiomatizes the Scott logic obtained by
adding to the intuitionistic propositional calculus the Scott axiom

((¬¬p→ p)→ (p ∨ ¬p))→ (¬p ∨ ¬¬p).

Thus, the logic S4.Grz3 + ¬χ can alternatively be axiomatized by adding to S4.Grz3 the Gödel
translation of the Scott axiom.

Remark 4. A detailed account of these results can be found in [1].
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Let ba` be the category of bounded archimedean `-algebras, and let uba` be the full sub-
category of ba` consisting of uniformly complete `-algebras. Gelfand-Naimark-Stone duality
establishes a dual equivalence between uba` and the category KHaus of compact Hausdorff
spaces. We extend this duality to the category CReg of completely regular spaces. This we
do by first introducing basic extensions of bounded archimedean `-algebras and generalizing
Gelfand-Naimark-Stone duality to a dual equivalence between the category ubasic of uni-
formly complete basic extensions and the category Comp of compactifications of completely
regular spaces. We then introduce maximal basic extensions and prove that the subcategory
mbasic of ubasic consisting of maximal basic extensions is dually equivalent to the subcate-
gory SComp of Comp consisting of Stone-Čech compactifications. This yields the desired dual
equivalence for completely regular spaces since CReg is equivalent to SComp.

To decribe the functors establishing Gelfand-Naimark-Stone duality, for a completely regular
space X, let C∗(X) be the ring of bounded continuous real-valued functions. There is a natural
partial order ≤ on C∗(X) lifted from R. Then C∗(X) ∈ uba`. For a continuous map ϕ : X → Y
between completely regular spaces let ϕ∗ : C∗(Y ) → C∗(X) be given by ϕ∗(f) = f ◦ ϕ. Then
ϕ∗ is a unital `-algebra homomorphism, and we have a contravariant functor C∗ : CReg→ ba`
sending each X ∈ CReg to C∗(X) and each continuous map ϕ : X → Y to ϕ∗.

The functor C∗ has a contravariant adjoint which is defined as follows. Let YA be the
Yosida space of maximal `-ideals of A. It is well known that YA ∈ KHaus. For a unital `-
algebra homomorphism α : A→ B let α∗ : YB → YA be given by α∗(M) = α−1(M). Then α∗
is continuous, and we have a contravariant functor Y : ba` → CReg sending each A ∈ ba` to
YA and each unital `-algebra homomorphism α : A→ B to α∗.

The functors C∗ and Y yield a contravariant adjunction between CReg and ba`, which
restricts to a dual equivalence between KHaus and uba`. We thus arrive at the following
celebrated result:

Theorem 1 (Gelfand-Naimark-Stone duality). The categories KHaus and uba` are dually
equivalent, and the dual equivalence is established by the functors C∗ and Y .

We recall that B ∈ ba` is Dedekind complete if every bounded subset of B has a supremum
and infimum. We call B a basic algebra if B is Dedekind complete and the boolean algebra
Id(B) of idempotents is atomic. Basic algebras generalize complete and atomic boolean algebras.
Let balg be the category of basic algebras and unital `-algebra homomorphisms preserving all
existing joins and meets.

For any set X, the `-algebra B(X) of all bounded real-valued functions is a basic algebra.
This defines a contravariant functor B from the category Set of sets to balg .

Theorem 2. The functor B yields a dual equivalence between Set and balg .

Theorem 2 generalizes Tarski duality between Set and the category of complete and atomic
boolean algebras. Theorem 2 is a key ingredient in extending Theorem 1 to completely regular
spaces and compactifications. Recall that a compactification of a completely regular space X is
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a topological embedding e : X → Y into a compact Hausdorff space Y such that e[X] is dense
in Y .

Definition 3. Let Comp be the category whose objects are compactifications e : X → Y and
whose morphisms are pairs (f, g) of continuous maps such that the following diagram commutes.

X Y

X ′ Y ′

e

f g

e′

The composition of two morphisms (f1, g1) and (f2, g2) is defined to be (f2 ◦ f1, g2 ◦ g1).

If e : X → Y is a compactification, we define e[ : C∗(Y )→ B(X) by e[(f) = f ◦ e. Then e[

is a monomorphism in ba` such that e[[C∗(Y )] is join-meet dense in B(X), meaning that each
b ∈ B(X) is a join of meets from e[[C∗(Y )]. This motivates the following definition.

Definition 4.

1. Let A ∈ ba`, B ∈ balg , and α : A→ B be a monomorphism in ba`. We call α : A→ B
a basic extension if α[A] is join-meet dense in B.

2. Let basic be the category whose objects are basic extensions and whose morphisms are
pairs (ρ, σ) such that ρ is a morphism in ba`, σ is a morphism in balg , and σ ◦α = α′ ◦ρ.
The composition of two morphisms (ρ1, σ1) and (ρ2, σ2) is defined to be (ρ2 ◦ ρ1, σ2 ◦ σ1).

3. Let ubasic be the full subcategory of basic consisting of the basic extensions α : A→ B
where A ∈ uba`.

Define a contravariant functor E : Comp → basic as follows. For a compactification e :
X → Y let E(e) be the basic extension e[ : C∗(Y ) → B(X). For a morphism (f, g) in Comp,
let E(f, g) be the pair (g∗, f+), where f+ : B(X ′) → B(X) is given by f+(b) = b ◦ f for all
b ∈ B(X ′).

Theorem 5. The functor E : Comp → basic yields a dual equivalence between Comp and
ubasic.

Definition 6.

1. We call a basic extension α : A→ B maximal provided that the only elements of B that
are both a join and meet of elements from α[A] are those that are in α[A].

2. Let mbasic be the full subcategory of basic consisting of maximal extensions.

The definition is motivated by the fact that the basic extension e[ : C∗(Y ) → B(X) is
maximal if and only if e : X → Y is equivalent to the Stone-Čech compactification of X. Let
SComp be the full subcategory of Comp consisting of Stone-Čech compactifications.

Theorem 7. The restriction of E to SComp yields a dual equivalence between SComp and
mbasic.

It is well known that CReg and SComp are equivalent. Thus, we obtain:

Theorem 8. There is a dual equivalence between CReg and mbasic.

Theorem 8 generalizes Gelfand-Naimark-Stone duality to completely regular spaces.
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The celebrated van Benthem characterisation theorem states that on Kripke models modal logic
is the bisimulation-invariant fragment of first-order logic [1, 3]. The proof of this theorem relies
heavily on the compactness theorem of first-order logic. Rosen [10], however, showed that the
bisimulation characterisation theorem also holds for the class of finite models on which the com-
pactness theorem fails. Dawar and Otto [4] generalised the bisimulation characterisation theorem
to a number of model-classes including rooted finite models, rooted transitive models, etc. Olk-
hovikov [8, 9] obtained the van Benthem characterisation theorems for intuitionistic logic. The van
Benthem theorem for neighbourhood models was proved in [6]. Coalgebraic generalisations can be
found in [11].

In this abstract we formulate and sketch a proof of the van Benthem characterisation theorem in
the context of descriptive frames. This is an important class of general frames for which every modal
logic is complete [3]. These frames can be represented as Stone spaces equipped with a suitable
binary relation.

Definition 1 (Descriptive frames and models). A descriptive frame is a pair g = (W, R), where W is
a Stone space and

1. R[x] = {y ∈W : xRy} is a closed set,

2. For every clopen set U the set ◊R(U) = {x ∈W : R[x]∩ U 6= ;} is also clopen.

A descriptive model is a pair (g, V ), where g is a descriptive frame and V is a valuation in clopen
subsets of W .

Descriptive models can be seen as topological generalisations of finite models. In particular,
the two classes have similar model-theoretic properites. Like finite models the class of descriptive
models lacks the compactness property for the language of first-order logic. They also share closure
under finite disjoint unions, closure under p-morphic images, and a lack of closure under infinite
disjoint unions.

It is well known that Kripke frames are the coalgebras for the powerset functor on Set and finite
Kripke frames are coalgebras for the powerset functor on finite sets. Descriptive frames are coal-
gebras for the Vietoris functor on Stone [7]. In [2] this representation was used for developing the
notion of Vietoris bisimulation for descriptive models. In fact, similarly to finite models (more gen-
erally, image-finite models), the class of descriptive models (which are image-compact) also enjoys
the Henessy-Milner property. It was proved in [2] that Vietoris bisimularity is the same as Kripke
bisimilarity since the closure of a Kripke bisimulation is both a Kripke and Vietoris bisimulation. We
will refer to this notion as bisimilarity.

Our key technique is similar to that of Rosen [10] and Dawar and Otto [4]. Our main tool is
the notion of unravelling. However, a standard unravelling of a descriptive model is not necessarily
descriptive. Thus, we define a “descriptive unravelling”, which is a kind of a “descriptivisation”
of the standard unravelling. Roughly speaking, we add new points to the standard unravelling at
“infinite distance” from the points of unravelling, yet guaranteeing that the new model is descriptive.

Our main result states that on descriptive models, modal logic is the bisimulation-invariant frag-
ment of first-order logic (when unary predicates are interpreted as clopen sets).
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Theorem 2 (The van Benthem Characterisation Theorem for Descriptive Models). Let α(x) be a
first-order formula in one free variable. Then the following are equivalent:

1. There exists a modal formula φ such that for any pointed, descriptive model m, w we have

m |= α[w] if and only if m, w � φ.

2. If two pointed, descriptive models m, w and n, v are bisimilar, then m |= α[w] if and only if
n |= α[v].

Sketch of the proof. Similarly to [10], the proof relies centrally on the following diagram, for appro-
priate integers n≥ qd(α) (the quantifier depth of α), `≥ 3n, and infinite cardinal κ≥ ℵ0 · |m| · |n|.

m⊗κ, (w, 0) ↔ m, w ↔` n, v ↔ n⊗κ, (v, 0)

|l |l

Þm⊗κ, ew ↔ Þm⊗κ ]gn⊗κ, ew ≡n
Þm⊗κ ]gn⊗κ,ev ↔ gn⊗κ,ev

The operation e· in the above denotes the previously mentioned descriptive unravelling: the de-
scriptivisation of the unravelling tree. The operation ·⊗κ is a duplication process that makes κmany
copies of each point, in such a way that the final result remains descriptive.

Using this diagram, one can see that if m |= α[w], it follows from bisimulation-invariance that
m⊗κ |= α[(w, 0)] and thusÞm⊗κ |= α[ew] so that alsoÞm⊗κ ]gn⊗κ |= α[ew]. From there, equivalence up
to quantifier depth n ≥ qd(α) gives that en |= α[ev], where bisimulation-invariance similarly applied
provides n |= α[v]. This means that α is `-bisimulation-invariant, which means it is equivalent to
a modal formula of depth `. It is left to justify the bisimulations and n-equivalence in the diagram,
which is the main challenge of the proof. The n-equivalence is shown by a variant of Hanf’s Lemma
[5] and the bisimilarity by the aforementioned structure of the descriptive unravelling.
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NEARNESS POSETS

TRISTAN BICE

Nearness spaces generalise uniform spaces, which in turn are a well-known gener-
alisation of metric spaces. These nearness spaces have been studied intermittently
since the 50’s in various guises, and more recently people have looked at analogous
nearness structures in the point-free context, namely on frames. Somewhat sur-
prisingly, a very natural and useful extension of these ideas is possible for general
posets, as we endeavour to explain.

In fact, the story really begins 80 years ago in a paper [Wal38] by Wallman. Most
attention was focused on the earlier lattice theoretic part of [Wal38] which, together
with Stone’s famous papers around the same time, gave birth to the field of point-
free topology. However, in the latter part, Wallman showed that more general posets
arising from abstract simplicial complexes also provide a point-free description of
compact T1 spaces. Here the vertices of the complex correspond to a subbasis of the
space, while the simplices in the complex determine the covers of the space. Thus
the complex could be considered as “nearness” or “generalised uniformity” on the
poset (although these terms did not yet exist - arguably, this is a rare instance where
the point-free concept predated the pointed concept). This duality of Wallman’s
was well ahead of its time and seems to have been largely forgotten in the interim,
a situation we hope to rectify by reformulating and extending Wallman’s work.

Another important series of papers [Mor51] that took some time to gain the
recognition it deserves was due to Morita in the early 50’s. This is really the first
place nearness spaces were examined in the form of generalised uniformities (the
original nearness spaces were introduced later by Herrlich, while Katetov intro-
duced merotopic spaces, both of which turned out to be equivalent to Morita’s
generalised uniformities). The main idea here was to drop, or at least weaken,
the star-refinement axiom for uniformities in order to extend the theory to non-
completely regular spaces.

However, Morita’s work is also notable for considering basic open covers rather
than arbitrary open covers. This is exactly what we are doing, just in the point-free
context. Indeed, the covers contain such a wealth of information that there is no
need to lean so heavily on the lattice structure, as is usually done in point-free
topology. The covers even completely determine the order structure, at least under
certain weak “admissibility” conditions. A happy consequence of this observation
led us to simplify and generalise an admissibility condition investigated by Herrlich,
Picado and Pultr (see [HP00] and [PP12]).

Lastly, we touch on some applications which motivated our work. While near-
ness frames provide a nice framework for the abstract theory, it is nearness posets
that also open the door to actual constructions of interesting spaces, e.g. from
continuum theory. For example, in current work with Kubís, we are using nearness
posets arising from Fräıssé sequences in categories of graphs to provide elementary
combinatorial constructions of spaces like the pseudoarc and Lelek fan.

The author is supported by Cardinal Stefan Wyszyński University in Warsaw, Poland.
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Being at the same time interested in general theory of coalgebraic logic beyond those based
on boolean propositional part, and in some rather particular yet well-motivated non-classical
epistemic logics, I naturally find myself in the following situation: On one hand, we have been
developing general coalgebraic account of logics whose semantics can be based on poset coalgebras
[5, 3], on the other, we have quite specific examples of modal logics of information in mind, coming
from epistemic or dynamic tradition, in need of a treatment. As a step towards applications of
the general coalgebraic theory we pick a common belief logic based on Belnap-Dunn four-valued
logic BD [1, 2, 9] as its propositional base.

We consider BD in the language {∧,∨,¬,>,⊥} extended with finitely many belief modalities
3i that are essentially normal diamonds (such epistemic logics of belief-confirmed-by-a-source
were considered e.g. in [4]). We then add a common belief operator and understand it as a flat
fixed point modality [c (cf. [12]), intuitively denoting a greatest fixed point of the form νx.c(p, x)
where c(p, x) is taken to be the scheme E(p ∧ x) with Ea =

∧
i∈I 3ia. Semantically, we interpret

the language over frames of BD (see e.g. [10], cf. de Morgan frames of [8]) i.e., partially order
involutive structures (X,≤, ∗), extended with monotone relations Si : X � //X , (reading ySix as
y is a trusted source in x for agent i) used to interpret the confirmed-belief modalities as backward
looking diamonds. The involution ∗ : X −→ Xop interprets negation via x  ¬a iff ∗x 1 a, and
valuations assign to each (atomic) formula an upperset of nodes. The common belief modality is
interpreted as the appropriate greatest fixed point, which of course exists in this semantics.

We consider two ways of axiomatizing the common belief over the basic modal logic (i.e. an
axiomatization of BD extended by normal diamond modalities): one finitary, which is the standard
Kozen’s aximatiztion of [c as the greatest fixed point:

[c(p) ` c(p, [c(p))
q ` c(p, q)
q ` [c(p)

and the other infinitary, with the following rule replacing the induction rule and using finite
approximations of [c(p) (c0(p) = > and cn+1(p) = c(p, cn(p))):

{cn(p) | n ∈ N} `ω [c(p).

We aim at proving completeness of the finitary axiomatization, following closely the method used
for classical flat fixed point logics in [12]. For simplicity, we restrict ourselves to a unimodal case
at first. We denote L the Lindenbaum-Tarski algebra of the finitary system1. The frames can
be understood as poset coalgebras, using the product of the lowerset and upperset functors: i.e.
structures ξ : X −→ (L×U)X, mapping x 7→ ({y | S(y, x)}, {∗y | S(y, ∗x)})2. We exploit the fact
that a coalgebraic language in spirit of [3] is available, namely one based on a cover modality ∇,
whose arity is given by the (finitary) functor Uω×Lω and whose semantics uses the lifting of local
satisfaction relation by the same functor (see [3] for precise definitions). The essential properties of
this language proved in [3] (namely mutual definability of cover modalities and standard modalities,
axiomatization in terms of distributive laws, dual cover modality ∆, and availability of normal
forms) allow us to prove the following (we consider L∇ to be a Lindenbaum-Tarski. algebra of the
finitary system in the language based on the cover modality):

∗The work has been supported by the project GA17-04630S of the Czech Science Foundation.
1It is the formula algebra factorised by inter-derivability, i.e. the Frege congruence.
2We will need to consider also the dual box modalities defined 2a ≡ ¬3¬a on their own for normal forms to

exist.
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• On the algebra L∇, ∇U×L is a finitary O-adjoint: ∇(α, β) ≤ b iff (α, β) U× L(≤) G(b),
with G(b) being a pair of finitely generated upperset and lowerset of formulas, and using
the U× L lifting of relation ≤ (see [3] for precise definitions).

It consequently yields (using in particular the fact that 3a is definable as ∇({a}, {>})) the
following:

• The algebra L is residuated, i.e. each diamond is a finitary O-adjoint,

and, using Santocanale’s result (Proposition 6.6 in [11]) it further follows:

• The algebra L is constructive, i.e. [[ϕα] =
∧

n∈N [cn(α)].

One of the consequences of the last statement is that the infinitary system is conservative over
the finitary one (w.r.t. finitary proofs), and the infinitary rule is (globally) sound w.r.t. frame
semantics (in contrast to classical common knowledge, it is not locally sound in general).

Turning the attention towards the infinitary system itself, we provide a canonical model con-
struction, based on prime theories closed under the infinitary rule (using a Belnap’s pair extension
lemma, in an infinitary context proved in [7]). This construction, on one hand provides a strong
completeness proof of the infinitary system w.r.t. restricted semantics (namely the class of frames
where the rule is locally sound), on the other hand, together with what has been said above, it
can be used to prove weak completeness of the finitary axiomatization. The results generalize to
a multimodal setting.

This is partially work that has been presented before, and partially an ongoing work, the
ongoing part addressing questions on completeness of general flat fixed point logics extending BD
(and, further possibly also other logics with poset based semantics — adding an implication being
the main challenge). In particular, we are working on generalising the adjointness results of [6] to
poset setting.

Frankly speaking, the results offered here are obtained closely following the methods developed
before in study of classical (flat) fixed point logics, and, however desirable and not quite trivial,
are not surprising. But we find it worth investigating nevertheless, more because theory of fixed
point extensions of modal logics with a non-classical base is as yet largely undeveloped.
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3 Università di Milano, Italy

The class of involutive bisemilattices plays the role of the algebraic counterpart among one
of the three-valued logics introduced by Kleene in [15], namely paraconsistent weak Kleene
logic – PWK for short. PWK, essentially introduced by Halldén [11], can be defined as the
logic induced by a matrix given by the weak Kleene tables with {1, n} as truth set:

∧ 0 n 1

0 0 n 0
n n n n
1 0 n 1

∨ 0 n 1

0 0 n 1
n n n n
1 1 n 1

¬
1 0
n n
0 1

Equivalently (see [9, 5]), PWK can be obtained out of (propositional) classical logic (CL)
imposing the following syntactical restriction:

Γ `PWK ϕ⇐⇒ there is ∆ ⊆ Γ s.t. Var(∆) ⊆ Var(ϕ) and ∆ `CL ϕ,

where Var(ϕ) is the set of variables really occurring in ϕ.
Involutive bisemilattices consist of a regular variety, namely one satisfying identities of the

form ε ≈ τ, where Var(ε) = Var(τ). More precisely, involutive bisemilattices satisfy only the
regular identities holding in Boolean algebras. Due to the general theory of regular varieties,
which traces back to the pioneering work of Płonka [17], involutive bisemilattices can be
represented as Płonka sums of Boolean algebras, that is, a sum over semilattice direct systems
of Boolean algebras. Over the years, Płonka sums and (some) regular varieties have been
studied in depth both from a purely algebraic perspective [1, 14, 12, 13] and in connection
with their topological duals [19, 20, 4]. The machinery of Płonka sums has also found useful
applications in the study of the constraint satisfaction problem [2] and in database semantics
[16, 18]. Recently, thanks to the extension of this formalism to logical matrices [7, 8], Płonka
sums have turned out to play a useful role in the investigation of logics featuring the presence
of a non-sensical, infectious truth-value. This family of logics – including PWK and Bochvar
logic [3] – provides valuable formal instruments to model computer-programs affected by
errors [10].

In this paper we exploit the Płonka sum representation for the purpose of counting the
finite members of the class of involutive bisemilattices. In particular, we will start considering
a specific subclass of involutive bisemilattices, whose representation consists of a linearly
ordered semilattice. In particular, we provide an algorithm offering a solution to the fine
spectrum problem [21] for the class of linearly ordered involutive bisemilattices. In order
to achieve this goal, we use the categorical apparatus developed in [6]. We believe that the
application of the above-mentioned algebraic methods allows us to develop algorithms that
are more efficient than “brute-force” procedures. This is confirmed by the computational
experiments. In particular, a comparison between the efficiency of the algorithm introduced
in this paper and of Mace4 is briefly discussed. The technique will be finally extended to the
whole class of involutive bisemilattices.
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Hausdorff introduced the notion of a difference hierarchy in his work on set theory [4].
Subsequently, the notion has played an important role in descriptive set theory as well as in
complexity theory. More recently, it has seen a number of applications in the theory of regular
languages and automata [3, 2]. From a lattice theoretic point of view, the difference hierarchy
over a bounded distributive lattice D stratifies the Booleanization, B, of the lattice in question.
The Booleanization of D is the (unique up to isomorphism) Boolean algebra containing D as
a bounded sublattice and generated (as a Boolean algebra) by D. The stratification is made
according to the minimum length of difference chains required to describe an element b ∈ B:

b = a1 − (a2 − (. . . (an−1 − an)...))

where a1 ≥ a2 ≥ . . . ≥ an−1 ≥ an are elements of D. One difficulty in the study of difference
hierarchies is that in general elements b ∈ B do not have canonical associated difference chains.

Stone duality [6] represents any bounded distributive lattice as the simultaneously compact
and open subsets of an associated topological space known as the Stone dual space of the
lattice. Priestley duality [5] is a rephrasing of this duality which uses the Stone space of the
Booleanization equipped with a partial order to represent the lattice as the closed and open
upsets of the associated Priestley space. Priestley duality provides an elucidating tool for the
study of difference hierarchies. For one, the minimum length of difference chains for an element
b ∈ B has a nice description relative to the Priestley dual space X of D as the length of the
longest chain of points x1 ≤ x2 ≤ · · · ≤ xn in X so that xi belongs to the clopen corresponding
to b if and only if i is odd. Further, if we allow difference chains of closed upsets of the Priestley
space, rather than clopen upsets, then every element b ∈ B has a canonical difference chain
which is of minimum length. In particular, if the lattice D is a co-Heyting algebra, then the
canonical difference chain of closed upsets consists of closed and open upsets and thus every
b ∈ B has a canonical difference chain in D. In this talk I will start by explaining how such a
canonical difference chain is obtained. Using a compactness argument via canonical extensions,
this may be extended to every lattice that is the direct limit of the images of a family of maps
{gi : Si → B}i∈I admitting an upper adjoint, where {Si}i∈I is a family of semilattices and B
a Boolean algebra. In particular, this provides a topological proof of the well-known fact that
every element b in the Booleanization of a bounded distributive lattice D may be written as a
difference

b = a1 − (a2 − (. . . (an−1 − an)...)),

where a1 ≥ a2 ≥ . . . ≥ an−1 ≥ an are elements of D.
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Directed topology was originally introduced as a model, and a tool, for studying and classifying concurrent
systems in computer science [13, 7]. In this approach, the possible states of several processes running con-
currently are modeled as points in a topological space of configurations, in which executions are described by
paths. Restricted areas appear when these processes have to synchronize, to perform a joint task, or to use a
shared object that cannot be shared by more than a certain number of processes. Formally, see [8], a directed
space, or a dispace for short, is a pair X = (X, dX), where X is a topological space and dX is a set of paths
in X, i.e., continuous maps from [0, 1] to X, called directed paths, of dipaths, such that every constant path is
directed, and such that dX is closed under monotonic reparametrization and concatenation.

It is natural to study the homotopical properties of these spaces in order to deduce some interesting proper-
ties of the parallel programs they represent, for verification purposes, or for classifying synchronization prim-
itives. In contrast to ordinary algebraic topology, the invariants of interest are invariants under some form of
continuous deformation, but which have to respect the flow of time, or direction, given by the dipaths. In short,
the only valid homotopies are the ones which never invert the flow of time. For mathematical developments
and some applications we refer the reader to the two books [8, 6].

Directed topological invariants, most notably the computationally tractable ones such as homology, have
been long in the making (starting with [7]). Most directed homology theories have proven too weak to classify
essential features of directed topology, until the proposal [4, 5]. The main idea of [4] is to encode the way in
which the homotopy types of the spaces of directed paths vary when we move the end points. The algebraic
structure which logs all of the homotopy types of the directed path spaces between each pair of points is that of
a natural system. As observed by Fajstrup and Hess, a shortcoming of directed homotopy is that it is invariant
under time-reversal. We solve this problem using so-called composition pairings associated to natural systems.

A natural system on a category C with values in a category V is a functor D : FC → V, where FC is the
factorization category of C whose 0-cells are the 1-cells of C and the 1-cells correspond to factorizations of
1-cells in C. These were introduced in [14] and used as coefficients for cohomology of small categories in [1]
and monoids in [11], as well as to define homological finiteness invariants for convergent rewriting systems
in [9, 10].

A classic result states that the category of natural systems on a category C with values in the category Ab
of Abelian groups is equivalent to the category of internal abelian groups in the slice category CatC0/C of
categories over C with the same object set C0. In order to extend such an equivalence to natural systems with
values in the category Gp of groups, Porter [12] considers natural systems enriched with composition pairings,
which can also be interpreted as lax functors. Specifically, given a natural system D : FC → V, a composition
pairing associated to D consists of families

νf,g : Df ×Dg → Dfg νx : T → D1x ,

of morphisms of V indexed by 1-cells f, g a 0-cell x in C, satisfying coherence conditions. Porter showed that
the category of natural systems on a category C with values in the category of groups and with composition
pairings is equivalent to the category of internal groups in the category of categories over C.

We show that the natural systems of directed homotopy as introduced in [5, 3], which give a natural system−→
Pn(X ) for each dispace X and every n, admit composition pairings. We can thereby interpret these functors
as internal groups in a certain comma category:
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Theorem 1 Let X = (X, dX) be a dispace. For each n ≥ 2 there exists an internal group CnX in
CatX/

−→
P(X ) such that

−→
Pn(X )f = (CnX )f, for all traces f of X , and this assignment is functorial in

X .

Now, given some dispace X , we define its time-reversed, or opposite, dispace X ] = (X, dX]), where

dX] = {t 7→ f(1− t) | f ∈ dX}.

L. Fajstrup and K. Hess noted that
−→
Pn(X ) and

−→
Pn(X ]) are isomorphic, i.e. that the functor

−→
Pn : dTop → opNat(Gp)

is invariant under time-reversal, where dTop (resp. opNat(Gp)) denotes the category of directed spaces (resp. the
category of natural systems with values in the category of groups). Interpreting this functor, via the internal
group construction, as a functor Cn− : dTop → Cat allows us to capture this reversal via a passage to the
opposite category, our main result:

Theorem 2 For any n ≥ 0, the functor Cn− : dTop → Cat is time-reversal, i.e.

CnX ] ' (CnX )op

The results discussed in this talk are from [2], a joint work with E. Goubault and P. Malbos.
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It is well known that the Gödel translation of the intuitionistic propositional calculus IPC
into Lewis’ modal system S4 is full and faithful, meaning that

IPC ` ϕ iff S4 ` ϕt,

where we recall that the Gödel translation is defined as follows:

⊥t = ⊥
pt = 2p for each propositional letter p

(ϕ ◦ ψ)t = ϕt ◦ ψt ◦ = ∧,∨
(ϕ→ ψ)t = 2(¬ϕt ∨ ψt).

The translation extends to the predicate setting fully and faithfully by letting

(∀xϕ)t = 2∀xϕt

(∃xϕ)t = ∃xϕt.

Thus, we have
IQC ` ϕ iff QS4 ` ϕt,

where IQC is the intuitionistic predicate calculus and QS4 is the predicate S4.
The monadic fragment of IQC, known as MIPC, can be axiomatized by enriching the language

of IPC by two “quantifier modalities” ∀,∃ such that

• ∀ satisfies the S4-axioms for 2;

• ∃ satisfies the S5-axioms for 3;

• ∃p→ ∀∃p;

• ∃∀p→ ∀p.

The monadic fragment of QS4, denoted by MS4, is obtained from the fusion S4⊗ S5, where
2 is the S4-modality and ∀ is the S5-modality, by adding the left commutativity axiom

2∀p→ ∀2p.

Fischer-Servi [2] proved that the Gödel translation of IQC into QS4 restricts to a full and faithful
translation of MIPC into MS4.

Our goal is to develop an alternative temporal interpretation of intuitionistic quantifiers,
where ∀ is interpreted as “always in the future” and ∃ is interpreted as “sometime in the past.”
This we do by first introducing a new multi-modal temporal system.

Let S4.t be the temporal S4, whose modalities we denote by 2F (always in the future) and
2P (always in the past); see Esakia [1], Wolter [3]. The temporal diamonds 3P (sometime in
the past) and 3F (sometime in the future) are definable from 2P and 2F in the usual way.

The logic TS4 is obtained from the fusion S4⊗ S4.t by adding the axioms
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• 2F q → 22F q;

• 3F q → 3(3F q ∧3P q).

We extend the Gödel translation of IPC into S4 to interpret the monadic quantifiers as
follows.

(∀ϕ)t = 2Fϕ
t

(∃ϕ)t = 3Pϕ
t.

Thus, the universal quantifier is interpreted as “always in the future” and the existential quan-
tifier as “sometime in the past.” We prove that this translation is full and faithful, meaning
that

MIPC ` ϕ iff TS4 ` ϕt.

The proof can be done by either algebraic or frame-theoretic means as the systems involved are
canonical.

While the systems MS4 and TS4 are incomparable, they admit a common extension. Let
QS4.t be the predicate S4.t and let MS4.t be its monadic fragment. Thus, MS4.t is obtained
from the fusion S4.t⊗ S5 by adding the left commutativity axiom

2F∀p→ ∀2F p.

We prove that both MS4 and TS4 can be translated into MS4.t fully and faithfully. Thus, we
arrive at the following commutative diagram of translations, where the commutativity is up to
logical equivalence.

MS4

MIPC MS4.t

TS4

Consequently, we have a full and faithful translation of MIPC into MS4.t. We prove that it
extends to a full and faithful translation of IQC into QS4.t, where

(∀xϕ)t = 2F∀xϕt

(∃xϕ)t = ∃x3Pϕ
t.
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Non normal logics are understood as those propositional logics algebraically captured by
varieties of Boolean algebra expansions, i.e. algebras A = (B,FA,GA) such that B is a Boolean
algebra, and FA and GA are finite, possibly empty families of operations on B in which the
requirement is dropped that each operation in FA be finitely join-preserving or meet-reversing
in each coordinate and each operation in GA be finitely meet-preserving or join-reversing in each
coordinate. Very well known examples of non normal logics are monotone modal logic which
have been intensely investigated, since they capture key aspects of agents’ reasoning, such as
the epistemic [21], and strategic [19, 18].

Non normal logics have been extensively investigated both with model-theoretic tools [14]
and with proof-theoretic tools [17]. Specific to proof theory, the main challenge is to endow
non normal logics with analytic calculi which can be modularly expanded with additional rules
so as to uniformly capture wide classes of axiomatic extensions of the basic frameworks, while
preserving key properties such as cut elimination.

In this talk, we propose a method to achieve this goal. We will illustrate this method
for the two specific signatures of monotone modal logic. Our starting point is the very well
known observation that, under the interpretation of the modal connective of monotone modal
logic in neighbourhood frames F = (W, ν), the monotone ‘box’ operation can be understood as
the composition of a normal (i.e. finitely join-preserving) semantic diamond 〈ν〉 and a normal
(i.e. finitely meet-preserving) semantic box [3]. The binary relations Rν and R3 corresponding
to these two normal operators are not defined on one and the same domain, but span over
two domains, namely Rν ⊆ W × P(W ) is s.t. wRνX iff X ∈ ν(w) and R3 ⊆ P(W ) ×W is
s.t. XR3w iff w ∈ X (cf. [14, Definition 5.7], see also [15, 6]).

We refine and expand these observations so as to: (a) introduce a semantic environment of
two-sorted Kripke frames and their heterogeneous algebras; (b) outline a network of discrete
dualities and adjunctions among these semantic structures and the algebras and frames for
monotone modal logic; (c) based on these semantic relationships, introduce multi-type normal
logics into which the original non normal logics can embed via suitable translations; (d) retrieve
well known dual characterization results for axiomatic extensions of monotone modal logic
as instances of general algorithmic correspondence theory for normal (multi-type) LE-logics
applied to the translated axioms; (e) extract analytic structural rules from the computations
of the first order correspondents of the translated axioms, so that, again by general results on
proper display calculi [11] applied to multi-type logical frameworks as done in [3, 4, 5, 2, 8, 13,
20, 16, 10, 9, 12, 1, 7], the resulting calculi are sound, complete, conservative and enjoy cut
elimination and subformula property.
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Any (propositional) logic L, construed as a structural consequence relation, is strongly complete with
respect to the class Mod∗(L) of its reduced models, i.e., Γ `L ϕ if, and only if, Γ |=Mod∗(L) ϕ (where `L is
the derivability relation of the logic L and |=Mod∗(L) is the semantical consequence relation with respect
to the class Mod∗(L)).

Although Mod∗(L) already gives a complete semantics for L, it is common to consider meaningful
subclasses of Mod∗(L) which may provide stronger completeness theorems. In particular, if L is
finitary, then it is strongly complete w.r.t. the classes Mod∗(L)RSI and Mod∗(L)RFSI of relatively (finitely)
subdirectly irreducible members of Mod∗(L), i.e., matrices which cannot be decomposed as a non-trivial
subdirect product of an arbitrary (finite non-empty resp.) family of matrices from Mod∗(L). Recall that
in classical logic CL we have: Mod∗(CL)RFSI =Mod∗(CL)RSI = {〈2, {1}〉}, where 2 is the two-valued
Boolean algebra.

Another interesting example is the Łukasiewicz logic, a prominent many-valued logic, which is known
to be complete w.r.t. matrix 〈[0,1]Ł, {1}〉 where [0,1]Ł is the so-called standard MV-algebra; but in this
case the completeness is weaker, it holds for finite sets of premises only.

Finally, in some logics, one can prove that theorems equal tautologies but not more. This observation
led us to defining three kinds of completeness for any logic L and a set of reduced matrices K ⊆ Mod∗(L):

• Strong K-completeness, SKC for short, if L and |=K coincide, i.e, for every set of formulas Γ ∪ {ϕ}
we have: Γ `L ϕ if, and only if, Γ |=K ϕ.

• Finite strong K-completeness, FSKC for short, if finitary companions of L and |=K coincide, i.e.,
when for every finite set of formulas Γ ∪ {ϕ} we have: Γ `L ϕ if, and only if, Γ |=K ϕ.

• K-completeness, KC for short, if theorems of L and |=K coincide, i.e., for every formula ϕ we have:
`L ϕ if, and only if, |=K ϕ.

The aim of this talk is to present characterizations of these properties that will allow, for particular
choices of logics and classes of reducedmodels, either to show or to falsify the corresponding completeness
properties, and to prove relationships between completeness properties w.r.t. different matricial semantics.
Some of these results are closely related to corresponding results of universal algebra and model theory
and several of them are actually already known in the theory of abstract algebraic logic [4].

This abstract is based on a systematic investigation of these properties and corresponding characteri-
zations recently presented in our paper [2]; here in this abstract, as a sample, we showcase some of our
results.

The first batch of results is valid in full generality and is based on the localization of the class
Mod∗(L) using the class of matrices generated from K using suitable class operators, such as I, H, S∗, P,
PU, Pω which stand for isomorphic images, homomorphic images, reductions of submatrices, products,
ultraproducts and ω-filtered products (products factorized by a filter closed under countable intersections).
The subsequent results are proved for logics possessing suitable a generalized equivalence or disjunction
connective: for protoalgebraic [4], equivalential [4], or strongly p-disjunctional [2] logics.
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Theorem 1. Let L be a logic and K ⊆ Mod∗(L).

1. L has the SKC iff Mod∗(L) ⊆ IS∗Pω(K).

2. L has the FSKC iff Mod∗(L) ⊆ IS∗PPU(K).

Therefore L has the FSKC iff it has the SPU(K)C.

If L is protoalgebraic, we could write equality instead of subsethood in the first claim, if it is even
finitary and finitely equivalential, we could do that in the second claim as well. For protoalgebraic logics
we can also prove that L has the KC iff H(Mod∗(L)) = HS∗P(K).

The second kind of results characterize the completeness properties using the localization of the
(countable members of the) classes Mod∗(L)RSI and Mod∗(L)RFSI.

Theorem 2. Let L be a protoalgebraic or strongly p-disjunctional finitary logic and K ⊆ Mod∗(L).

1. L has the SKC iff Mod∗(L)ωRSI ⊆ IS∗(K).

2. L has the FSKC iff Mod∗(L)RFSI ⊆ IS∗PU(K).

If L is both protoalgebraic and strongly p-disjunctional logic, then L has the KC iff Mod∗(L)RFSI ⊆

HS∗PU(K).

The first claim of the previous theorem can be improved if L is a finitary protoalgebraic logic with a
particularly nice disjunction connective, called lattice-disjunction [1]. Then we can prove that L has the
SKC iff Mod∗(L)ωRFSI ⊆ IS∗(K+) (where by K+ we denote the class K expanded by the trivial reduced
matrix), which entails an interesting fact that Mod∗(L)ωRFSI ⊆ IS∗(Mod∗(L)ω,+

RSI ).
The previous theorem has also an interesting corollary generalizing the above mentioned fact about

classical logic.

Corollary 3. Let L be a protoalgebraic and strongly p-disjunctional logic which has KC w.r.t. a finite set
of finite matrices. Then the class Mod∗(L)RFSI consists only of finitely many (up to isomorphism) finite
matrices and hence Mod∗(L)RSI =Mod∗(L)RFSI.

As a final illustration we mention a result also speaking about matrices in Mod∗(L)RFSI and their
relation to those in K but using the notion of partial embeddability, which is actually a common technique
in the literature on mathematical fuzzy logic for proving completeness theorems.

Theorem 4. Let L be a finitary equivalential logic in a finite language and K ⊆ Mod∗(L). Then L has
the FSKC iff Mod∗(L)RFSI is partially embeddable into K+.
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A right order on a group G is a total order ≤ on G such that x ≤ y implies xt ≤ yt,
for all x, y, t ∈ G. There are at least two distinct ways that could lead a mathematician to
encounter such orders on groups. First, it is standard that a countable group admits a right
order if, and only if, it acts faithfully on the real line by orientation-preserving homeomor-
phisms (see, e.g., [7, Theorem 6.8]). The result indicates that orders on groups play a rôle in
topological dynamics. Second, right orders are central to the theory of lattice-ordered groups
(briefly, `-groups), i.e., groups with a lattice structure compatible with the group operation
(see, e.g., [9, 8]). For a recent connection between right orders and `-group equations, see [4].

In 2004, Sikora’s paper “Topology on the spaces of orderings of groups” [11] pioneered a
different perspective on the study of the interplay between topology and ordered groups, that
has led to applications to both orderable groups and algebraic topology. The basic construction
in Sikora’s paper is the definition of a topology on the set of right orders R(G) on a group
G, thereby associating a natural topological space to any right-orderable group. The space is
then proved compact, Hausdorff, and zero-dimensional (see, e.g., [2, Problem 1.38]).

We show in [3] that Sikora’s space arises naturally from the study of `-groups, as the minimal
spectrum of the `-group freely generated by the group at hand. The `-spectrum SpecH of an
`-group H is the root system of all its prime subgroups ordered by inclusion topologised with
the hull-kernel topology. Here, a prime subgroup of H is an order-convex sublattice subgroup p
of H with the further property that x∧y ∈ p implies x ∈ p or y ∈ p. We write MinH for the set
of inclusion-minimal prime subgroups of H with the subspace topology. By an application of
Zorn’s Lemma, any prime subgroup of H contains a minimal prime subgroup. It can be proved
that MinH is Hausdorff [6, Proposition 49.8], and that compactness of SpecH is equivalent to
the existence of a strong order unit—an element u ∈ H+ := {x ∈ H | e ≤ x} that generates
H as an order-convex sublattice subgroup, where e denotes the group identity [5, 1.3]. If H is
finitely generated, every p ∈ SpecH is included in a unique maximal prime subgroup, and we
write MaxH for the set of maximal prime subgroups of H with the subspace topology. We call
an `-group representable if it is a subdirect product of totally ordered groups.

By replacing right orders with right pre-orders—pre-orders that are invariant under group
multiplication on the right—we provide a systematic, structural account of the relationship
between (total) right pre-orders on a group G and prime subgroups of the `-group F `(G) freely
generated by G (or over G). This connection is developed in full generality—that is, for any
variety of `-groups (see [3, Theorem 2.1]). It follows that the space of right pre-orders on any
group G is homeomorphic to the `-spectrum SpecF `(G) and, when G is right orderable, Sikora’s
space R(G) is homeomorphic to MinF `(G). Further, when G admits an order (i.e., a right
order that is invariant under group multiplication on the left), the minimal spectrum of the free
representable `-group F `

R(G) over G is homeomorphic to the space O(G) of orders on G. This
theoretical framework leads to a few immediate, diverse results, some of which are listed below.

Example. The space of right pre-orders on a finitely generated group G is compact.

This follows immediately from the fact that the finitely many generators of G induce the
existence of a strong order unit on F `(G).

∗Based on joint work with Vincenzo Marra (Università degli Studi di Milano).
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Example. For any group G, the space MinF `(G) is compact.

In fact, we show that the space of right pre-orders on G is either empty or homeomorphic to
the space of right pre-orders on a corresponding right-orderable group G∗ [3, Remark 6.2]. The
minimal layer of the latter is Sikora’sR(G∗), which is indeed compact. This topological property
of the minimal spectrum can be reformulated algebraically as follows. For any `-group H, we
say that H+ is complemented if for every x ∈ H+ there is a y ∈ H+ such that x ∧ y = e, and
x ∨ y is a weak order unit—an element w ∈ H+ such that w ∧ x = e implies x = e.

Example. For any group G, the distributive lattice F `(G)+ is complemented.

Example. The free `-group F `(n) of rank n ≥ 2 acts by homeomorphism on the Cantor space.

For this, it suffices to observe that F `(n) acts by homeomorphism on MinF `(n). It follows
from [10, Corollary 5], [2, §1.5.2], and [3], that MinF `(n) is the Cantor space.

These consequences are nothing more than translations of results from the right order setting
to the `-group setting, or vice versa, facilitated by the correspondence established in [3]. We
mention here two possibilities for further development.

First, we observe that [3] provides a new perspective on the open question whether there ex-
ist isolated points in O(F (n)) for n ≥ 2 (this question was raised by McCleary in [1, §4]). More
precisely, we get a necessary condition for the existence of such isolated points. In fact, it is
possible to argue that MaxF `

R(n) is the (n − 1)-sphere Sn−1, and that there exists a closed
continuous map λ : MinF `

R(n) � MaxF `
R(n). Thus, if λ is irreducible—it sends proper closed

subsets to proper closed subsets—then MinF `
R(n) has no isolated points. We finally mention the

intriguing problem of obtaining a natural representation of F `
R(n) for n ≥ 2 in terms of (possi-

bly, piecewise linear) functions. In tackling this problem, we believe that the connection between
topological dynamics and right orders mentioned in the beginning will be a key ingredient.

References

[1] Ashok K. Arora and Stephen H. McCleary. Centralizers in free lattice-ordered groups. Houston
J. Math., 12, 1986.

[2] Adam Clay and Dale Rolfsen. Ordered Groups and Topology, volume 176 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2016.

[3] Almudena Colacito and Vincenzo Marra. Orders on groups, and spectral spaces of lattice-groups.
arXiv preprint arXiv:1901.07638. 2019.

[4] Almudena Colacito and George Metcalfe. Ordering groups and validity in lattice-ordered groups.
J. Pure Appl. Algebra. To appear. 2019.

[5] Paul Conrad and Jorge Martinez. Complemented lattice-ordered groups. Indag. Math., 1(3):281–
297, 1990.

[6] Michael R. Darnel. Theory of Lattice-Ordered Groups, volume 187 of Monographs and Textbooks
in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1995.

[7] Étienne Ghys. Groups acting on the circle. Enseign. Math. (2), 47(3-4):329–407, 2001.

[8] Andrew M. W. Glass. Partially Ordered Groups, volume 7. World Scientific, 1999.

[9] Valerii M. Kopytov and Nikolai Ya. Medvedev. The Theory of Lattice-Ordered Groups, volume
307 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1994.

[10] Stephen H. McCleary. Free lattice-ordered groups represented as o-2 transitive `-permutation
groups. Trans. Am. Math. Soc., 290(1):69–79, 1985.

[11] Adam S. Sikora. Topology on the spaces of orderings of groups. Bull. Lond. Math. Soc., 36(4):519–
526, 2004.



63

The logic of categories and informational entropy

Willem Conradie, Andrew Craig, Alessandra Palmigiano, and Nachoem
M. Wijnberg

The contributions discussed in this talk lie at the intersection of several strands of research.
They are rooted in the generalized Sahlqvist theory for normal LE-logics [9, 8, 4], i.e. those
logics algebraically captured by varieties of normal lattice expansions [16].

Via canonical extensions and discrete duality, basic normal LE-logics of arbitrary signatures
and a large class of their axiomatic extensions can be uniformly endowed with complete rela-
tional semantics of different kinds. The relational structures on which this talk will focus are
based on formal contexts [15, 13, 6, 7, 17, 5] and reflexive graphs [1, 3]. In a mathematical setting
in which the original discrete duality for perfect normal LEs has been relaxed to an adjunction
involving complete normal LEs, these semantic structures have yielded uniform theoretical de-
velopments in the algebraic proof theory [17] and in the model theory [11] of LE-logics, and also
insights on possible interpretations of LE-logics which have generated new opportunities for ap-
plications. In particular, via polarity-based semantics, in [6], the basic non-distributive modal
logic and some of its axiomatic extensions are interpreted as epistemic logics of categories and
concepts. Then, in [7], the corresponding ‘common knowledge’-type construction is used to give
an epistemic-logical formalization of the notion of prototype of a category. In [5, 18], polarity-
based semantics for non-distributive modal logic is proposed as an encompassing framework for
the integration of rough set theory [19] and formal concept analysis [14]; in this context, the
basic non-distributive modal logic is interpreted as the logic of rough concepts, and on the basis
of this interpretation, polarity-based structures have been used as the semantic framework for
a Dempster-Shafer theory of concepts [12]; via its graph-based semantics, in [3], the same logic
is interpreted as the logic of informational entropy, i.e. an inherent boundary to knowability
due e.g. to perceptual, theoretical, evidential or linguistic limits.

In the graphs (Z,E) on which the relational structures are based, the relation E is in-
terpreted as the indiscernibility relation induced by informational entropy, much in the same
style as Pawlak’s approximation spaces in rough set theory. However, the key difference is
that, rather than generating modal operators which associate any subset of Z with its defin-
able E-approximations, E generates a complete lattice (i.e. the lattice of Ec-concepts). In our
approach, concepts are not definable approximations of predicates, but rather they represent
‘all there is to know’, i.e. the theoretical horizon to knowability, given the inherent boundary
encoded into E (in their turn, Ec-concepts are approximated by means of the additional rela-
tions of the graph-based relational structures, from which the semantic modal operators arise).
Interestingly, E is required to be reflexive but in general neither transitive nor symmetric, which
is in line with proposals in rough set theory [20, 21] that indiscernibility does not need to give
rise to equivalence relations.

Time permitting, we will discuss the many-valued [2, 5] and many-valued and multi-type
[10] versions of the polarity-based and graph-based semantics of basic normal non-distributive
modal logic, and in particular their potential for modelling situations in which categories and
concepts are vague, and informational entropy is graded.
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We present the results of [6], in which we state and prove a version of the Goldbatt-Thomason
theorem which applies uniformly to normal LE-logics in arbitrary signatures, i.e. classes of logics
algebraically captured by varieties of normal lattice expansions. This class of logics includes well
known logics such as the full Lambek calculus and its axiomatic extensions [20, 8], orthologic
[13], and the Lambek-Grishin calculus [17]. The theorem is formulated as usual in terms of four
model-theoretic constructions (coproduct, bounded morphic image, generated subframe, filter-
ideal frame) on polarity-based structures, defined and justified on duality-theoretic grounds.

This result contributes to the theory of polarity-based semantics for normal LE-logics. Build-
ing on the theory of canonical extensions [10, 7], polarity-based semantics was introduced in
[9] for the multiplicative fragment of the Lambek calculus, based on RS-polarities (i.e. those
polarities that dually correspond to perfect lattices). With the same method, a polarity-based
semantics for arbitrary LE-languages is introduced [15] in which the ‘RS’ restriction is dropped.

Thanks to its generality and uniformity, the polarity-based semantics for LE-logics lends
itself to support a rich mathematical theory, uniformly developed for the whole class of LE-
logics or large subclasses thereof: examples of such results are the generalized Sahlqvist theory
[5], and the uniform proof of semantic cut elimination and finite model property for certain
classes of LE-logics [15], paving the way to a research program aimed at extending also other
results in algebraic proof theory (e.g. decidability via finite embeddability property, disjunction
property, Craig interpolation) from substructural logics to LE-logics.

Interestingly, the polarity-based semantics has also proved suitable to support a number of
interpretations of the meaning of (some) LE-languages, in the same way in which Kripke seman-
tics captures the essentials of various independent conceptual frameworks of reference for modal
logic. Specifically, in [4, 3], a poly-modal lattice-based logic was given a natural interpretation
as an epistemic logic of formal concepts, under which, 2iφ intuitively denotes ‘the concept φ
according to agent i’. This interpretation is also consistent with the epistemic interpretation
of well known (Sahlqvist) modal principles such as factivity and positive introspection. In
[21, 16], the polarity-based semantics of the LE-logic in the language ∧,∨,>,⊥,2,3 is used
as a natural framework for rough concepts which unifies Formal Concept Analysis and Rough
Set Theory [22] under which, 2φ denotes the category of the certified members of φ. Also this
interpretation is consistent with the interpretation of well known (Sahlqvist) modal principles
such as seriality.

Precisely the availability of these and other interpretations makes it interesting to study the
expressivity of LE-logics in regard to their polarity-based semantics, and further motivates the
contributions discussed in the present talk. Besides its centrality in the build-up of a uniform
mathematical theory of the polarity-based semantics of LE-logics, the Goldblatt-Thomason
theorem provides a useful strategy to determine whether a certain elementary class of polarity-
based structures can be captured by an LE-axiomatic principle. It is enough to show that the
given class fails to reflect/be closed under one of the usual constructions to establish that no
such axiomatic principle exists.

Goldblatt-Thomason theorem [14] has been extended to Positive Modal Logic [2], coalgebraic
logic [19], graded modal logic [23], distributive substructural logics [1],  Lukasiewicz logic [24],
and possibility semantics for modal logic [18]. Recently, Goldblatt himself gave a version of it
for the logic of general lattices [12] and developed two different versions of it for lattice-based
modal logic [11], one for classes closed under canonical extensions of polarity structures, and
another for classes closed under ultrapowers.
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The motivations for classical non-normal modal logics (CNNML) (see [3]) come from the
analysis of epistemic and deontic modalities, whereas intuitionistic modal logics (see [9]) have
been studied with the purpose of giving a constructive account of modal logics, in particular for
type theoretic application. We claim that it is interesting to combine the two logical traditions,
so that in [4] and [5] we have defined a class of intuitionistic non-normal modal logics (INNML)
that can be seen as intuitionistic counterparts of the classical cube of CNNMLs. In particular,
we have defined a family of 24 systems containing two non-interdefinable modalities 2 and 3.
Each system contains some of the modal axioms characterising the classical cube:

A ⊃ B B ⊃ ARE2
2A ⊃ 2B

M2 2(A ∧B) ⊃ 2A N2 2> C2 2A ∧2B ⊃ 2(A ∧B)
A ⊃ B B ⊃ ARE3

3A ⊃ 3B
M3 3A ⊃ 3(A ∨B) N3 ¬3⊥ C3 3(A ∨B) ⊃ 3A ∨3B

In addition, each system contains some of the following interaction axioms, that express under
which conditions two formulas 2A and 3B are jointly inconsistent:

weaka ¬(2> ∧3⊥) weakb ¬(3> ∧2⊥) ¬(A ∧B)
str
¬(2A ∧3B)nega ¬(2A ∧3¬A) negb ¬(2¬A ∧3A)

In [5] we have given cut-free calculi and a proof of decidability for all systems. We have also
provided a modular semantic characterisation of the logics in terms of neighbourhood models:

Definition 0.1. A coupled intuitionistic neighbourhood model is a tupleM = 〈W,�,N2,N3,V〉,
where W is a non-empty set, � is a preorder over W, V is a hereditary valuation function
W −→ P(Atm) (w � v implies V(w) ⊆ V(v)), and N2, N3 are two neighbourhood functions
W −→ P(P(W)) such that w � v implies N2(w) ⊆ N2(v) and N3(w) ⊇ N3(v). The functions
N2 and N3 can be supplemented, closed under intersection, or contain the unit. Moreover,
letting −α denote the set {w ∈ W | for all v � w, v /∈ α}, N2 and N3 can be related as follows:
(i) For all w ∈ W, N2(w) ⊆ N3(w); (ii) If α ∈ N2(w), then W \−α ∈ N3(w);
(iii) If −α ∈ N2(w), then W \ α ∈ N3(w); (iv) If α ∈ N2(w) and α ⊆ β, then β ∈ N3(w).

The associated forcing relation w  A is the usual one for p, ⊥, B ∧ C, B ∨ C, whereas for
B ⊃ C, 2B and 3B it is as follows: w  B ⊃ C iff for all v � w, v  B implies v  C; w  2B
iff [B] ∈ N2(w); and w  3B iff W \ [B] /∈ N3(w).

Translation or embedding of intuitionistic modal logics into classical bimodal logics have
been studied, for instance, in [8], [11], and [6]. We present an embedding of our INNMLs
into classical multimodal logics of the form (S4, cL2, cL3) – where cL2 and cL3 range over
CNNMLs. Logics (S4, cL2, cL3) are defined on a propositional modal language L3 containing
three modalities �≤ , �2 , �3 (by duality we can define 3≤ , 32 , 33 ).

Definition 0.2. Given two CNNMLs cL2 and cL3, the classical multimodal logics (S4, cL2,
cL3) are defined by taking S4 axioms and rules on �≤ ; cL2 axioms and rules on �2 ; cL3 axioms

∗This work was partially supported by the Project TICAMORE ANR-16-CE91-0002-01.
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and rules on �3 ; and the connecting axioms �2 A→ �≤ �2 A and 33 A→ �≤33 A. In addition, each
multimodal logics contains either (a) axiom �2 A → �3 A, or (b) both axioms �2 A → �3 3≤ A and
�2 �≤ A→ �3 A, or (c) the rule A→ B

�2 A→ �3 B
.

For each INNML L, the classical multimodal logic (S4, cL2, cL3) associated to L (denoted as
emb(L)) is determined as follows: (i) cL2 is the CNNML defined by the 2-axioms of L. (ii) cL3
is the CNNML defined by the 3-axioms of L. (iii) The axioms connecting �2 and �3 depend on
the interaction axioms of L: emb(L) contains (a) if L has axioms weaka and weakb, it contains
(b) if L has axioms nega and negb, and it contains (c) if L has rule str. For logics containing
axioms M2 and M3 we always consider axiom (a).

We consider the following translation of formulas of INNMLs into formulas of L3: †(p) = �≤ p,
†(⊥) = ⊥, †(A ∧ B) = †(A) ∧ †(B), †(A ∨ B) = †(A) ∨ †(B), †(A ⊃ B) = �≤(†(A) → †(B)),
†(2A) = �≤ �2 †(A), †(3A) = �≤33 †(A). For each INNML L, we show that L is embedded into
the corresponding classical multimodal logic emb(L) by proving the following:

Theorem 0.1. `L A if and only if `emb(L) †(A).

In a similar way we can prove analogous embeddings for other INNMLs studied in the liter-
ature, such as Constructive K by Bellin et al. [2] and the propositional fragment of Wijesekera’s
Constructive Concurrent Dynamic Logic [10]. Both logics can be included in our semantic
framework by considering a simple additional property. Their embedding into classical non-
normal multimodal logics can be proved by considering the connecting axiom �2 A ∧ 33 B →
33 (A ∧ B). This embedding shows the usefulness of studying multimodal non-normal modal
logics, a topic explored e.g. in [1] and [7], and that we plan to treat in future research.
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Analogously to classical logic, coalgebraic methods can be used to introduce modal operators
to positive logic. In particular, Pre- and Pos-functors yield frames for interpreting positive logic
with modalities corresponding to positive predicate liftings. Coalgebras for endofunctors on
Pries can be seen as descriptive frames for modal positive logic, because they are dual to the
algebraic semantics. We observe that some functors are closely related: We give and compare
two ways to lift a Pos-functor to a Pries-functor.

The framework is as follows: Let P be a category with a forgetful functor U : P → Set.
Let P : P → DL be a contravariant functor to the category of bounded distributive lattices
and T an endofunctor on P. For n ∈ N, an n-ary positive predicate lifting for T is a natural
transformation λ : UPn → UPT . A set Λ of predicate liftings yields a language which can be
interpretated in T -coalgebras in the usual way.

Examples. All items (a) below yield frame semantics for Dunn’s modal positive logic [4].

1. Let P = Pre, the category of preorders and monotone functions, and P = Up, the functor
taking upsets and inverse images.

(a) For a preorder X let PvX be the powerset of X ordered by: a v b iff [∀x ∈ a∃y ∈ b
s.t. x ≤X y and ∀y ∈ b∃x ∈ a s.t. x ≤X y ]. For a monotone function f let Pvf
be the direct image of f . Then Pv is a functor whose coalgebras are precisely PML-
frames [3]. The modalities 2 and 3 correspond to the positive predicate liftings given by
λ2X(a) = {b ∈ PvX | b ⊆ a} and λ3X(a) = {b ∈ PvX | b ∩ a 6= ∅}.

(b) Although used for intuitionistic logic, H2-frames from [2] are coalgebras for the functor
P2 : Pre → Pre, which sends a preorder X to the powerset of X ordered a v2 b iff every
element of b has a ≤X -predecessor in a, and a morphism f to its direct image.

2. Let P = Pos, the category of posets and monotone functions, and P = Up.

(a) Closely related to Pv is the convex powerset functor Pc on Pos, which sends a poset to
the collection of convex sets ordered by v, and a monotone functor f : X → X ′ to Pcf
defined by Pcf(a) = {x′ ∈ X ′ | ∃x, y ∈ X s.t. f(x) ≤ x′ ≤ f(y)}.

(b) Also used for intuitionistic logic are 2-frames [8]. These are coalgebras for the upper power-
set functor Pup, which sends a posetX to the set of upsets ofX ordered by reverse inclusion,
and a morphism f : X → X ′ to Pupf : a 7→ ↑a = {x′ ∈ X ′ | ∃y ∈ a s.t. f(y) ≤X′ x′}.

3. Let P = Pries, the category of Priestley spaces and morphisms, and P = ClpUp [7].

(a) Coalgebras for the convex Vietoris functor Vc are equivalent to K+-spaces [6], which can
be used to interpret positive modal logic [4], using the obvious predicate liftings.

For all these examples there are straightforward analogs of λ2 yielding 2-like modalities, and
for all items (a) the same goes for λ3. The relation between Pre-functors and Pos-functors is
studied in [1, Sec. 4]. In particular Pv and P2 lift to Pc and Pup respectively, as do corresponding
predicate liftings. Since this is understood, we focus on the connection between Pos-functors
and Pries-functors. More precisely, we give two ways of lifting Pos-functors to Pries-functors.
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Our first lifting method resembles [5]. Let W : Pries → Pos be the forgetful functor which
sends a Priestley space to the underlying poset, and pf : DL→ Pries the contravariant functor
taking a distributive lattice to its Priestley space of prime filters [7]. Let T : Pos → Pos be

any functor and Λ a set of positive predicate liftings for T . For a Priestley space X let D̂ΛX
be the sub-distributive lattice of UpTWX generated by {λ(a1, . . . , an) | λ ∈ Λ, ai ∈ ClpUpX},
and for a morphism f : X → X ′ let D̂Λf : D̂ΛX ′ → D̂ΛX be restriction of UpTW f to D̂ΛX ′.
Then D̂ΛX is a contravariant functor Pries→ DL. Define

T̂Λ = pf ◦ D̂Λ : Pries→ Pries.

The set Λ lifts to a set Λ̂ of predicate liftings for T̂ yielding the same language (with different

semantics). For example: P̂c,{λ2,λ3} = Vc, and the lift of the functor Pup with respect to λ2 is
the so-called upper Vietoris functor, whose coalgebras are descriptive 2-frames [8].

A second way of lifting functors is as follows: Suppose T : Pos → Pos restricts to the
category Posf of finite posets. Denote by Priesf the full subcategory of Pries whose objects
are finite finite Priestley spaces. For a Priestley space X , let UX : (X↓Priesf ) → Pries be the
obvious forgetful functor from the coslice category to Pries. Then the (cofiltered) limit of the
diagram UX is X itself. Since Posf ∼= Priesf , we can apply T to the diagram UX and define

TX = lim(TU X ).

A morphism f : X → X ′ entails that TX is a cone of TU X ′ , hence gives a unique mediating
morphism TX → TX ′, which we take to be Tf .

Theorem. Let T be an endofunctor on Pos which restricts to Posf and preserves epis and
cofiltered limits. Let Λ be the set of all positive predicate liftings for T . Then there is a natural
isomorphism T → T̂ .

Both Pc and Pup satisfy the preconditions of the Theorem. The connection between the two
lifts appears to be an instance of a more general phenomenon, where instead of DL we have a
variety of algebras. I am still investigating this more general setting.
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Subordination algebras have been studied under several different names: precontact algebras
([6]), proximity algebras ([7]), strict implications algebras ([3]) or even quasi-modal algebras
([4]). The equivalences between all these definitions are well discussed in [2] and [5]. Modal
algebras and subordination algebras share a common characteristic: their duals, in the sense
of the Stone Duality, are Boolean topological spaces with a closed relation and, in particular,
Kripke frames. Therefore the latter denomination, quasi-modal, is not a surprise. Moreover,
since subordination algebras form a more general class than modal algebra, we propose an
investigation of modal logic through subordination algebras.

While this problem has already been studied under other perspectives, for instance in [1]
or in [3], our approach is slightly different as we are interested in validity of modal formulas in
subordinations algebras instead of validity of subordination formulas.

Definition 1 (see [2]). A subordination algebra (or quasimodal algebra) is a pair B = (B,≺)
where B is a Boolean algebra and ≺ is a binary relation on B, called subordination, verifying
the following properties :

1. 0 ≺ 0 and 1 ≺ 1,

2. a ≺ b, c implies a ≺ b ∧ c,

3. a, b ≺ c implies a ∨ b ≺ c,

4. a ≤ b ≺ c ≤ d implies a ≺ d.

In [2], it is stated that modal algebras are particular subordination algebras. The authors
also provide a sufficient condition for subordination algebras to be modal algebras.

Definition 2. A subordination space is a pair X = (X,R) where X is a Stone space and R is
a binary closed relation on X.

Theorem 3 (see [4]). The category Sub, whose objects are subordination algebras and whose
morphisms are the q-homomorphisms defined in [4], and the category SubS, whose objects
are subordination spaces and whose morphisms are the q-morphisms defined in [4], are dually
equivalent.

To be seen as models for modal logic, we need to define valuation and validity on subor-
dination algebras. The problem is that we cannot extend freely the valuation for variables to
modal formulas, as for instance �p may fail to be a clopen set of the dual. In order to resolve
this issue, we will focus on the canonical extension of a subordination algebra.

Theorem 4. If B = (B,≺) is a subordination algebra, then its canonical extension Bδ =
(P(XB),≺R), where (XB, R) is the subordination space dual to B and ≺R is defined by

E ≺R F ⇔ R(−, E) ⊆ F, (1)

is a complete tense bimodal algebra with ♦E = R(−, E) and �E = R(E,−).
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Definition 5. Let B be a subordination algebra. A valuation on B is a map v : Var −→ B,
where Var is the set of variables. In particular, this map can be considered as a map v : Var −→
Bδ and, as such, extend to a bimodal morphism between the set of all bimodal formulas and
Bδ. As usual, we will say that a formula ϕ is valid in B under the valuation v, which will be
denoted by B |=v ϕ, if v(ϕ) = 1, where 1 is the top element of both B and Bδ. The formula ϕ
is valid in B if B |=v ϕ for all valuation v, this is denoted by B |= ϕ.

Definition 6. Let ϕ be a bimodal formula. It is closed (resp. open) if it is obtained from
propositional variables, negation of propositional variables, > and ⊥ by applying ∧, ∨, ♦ and
� (resp. � and �).

It is positive (resp. negative) if it is obtained from propositional variables (resp. negation
of propositional variables)> and ⊥ by applying ∧, ∨, ♦, �, � and �.

It is strongly positive if it is a conjunction of formulas of the form

�〈k〉p = �k1�k2 · · ·�knp

where p is a propositional variable, n ∈ N and k ∈ Nn.
It is s-positive (resp. s-negative) if it is obtained from closed positive formulas (resp. open

negative formulas) by applying ∧, ∨, � and � (resp. ♦ and �).
It is s-untied if it is obtained from strongly positive and s-negative formulas by applying ∧,

∨, ♦ and �.

Theorem 7. Let ϕ = �〈k〉(ϕ1 → ϕ2) be a bimodal formula where ϕ1 is s-untied and ϕ2 s-
positive. Then, there exists a first order formula f in the language of the accessibility relation
such that for a subordination algebra (B,≺) and its dual (XB, R) we have

(B,≺) |= ϕ if and only if (XB, R) |= f.

This theorem is relatively similar to the one obtained in [8] with the particularity that in
the formula ϕ there is no � within the scope of a ♦.
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In 1937, M. Stone [5] proved that there exists a dual equivalence St : Stone −→ Bool between the
category Stone of compact zero-dimensional Hausdorff spaces and continuous maps and the category
Bool of Boolean algebras and Boolean homomorphisms. In 1964, H. P. Doctor [4] extended the Stone
duality to a duality between the category PZHLC of all locally compact zero-dimensional Hausdorff
spaces and all perfect maps between them and the category GBPL of all generalized Boolean algebras
and suitable morphisms between them. Later on, G. Dimov [1, 2] extended the Stone Duality to the
category ZHLC of zero-dimensional locally compact Hausdorff spaces and continuous maps.

In this talk, extending the Stone Duality Theorem, we will describe two categories which are dually
equivalent to the category ZHaus of zero-dimensional Hausdorff spaces and continuous maps. We will
find as well two categories which are dually equivalent to the category ZComp of all zero-dimensional
Hausdorff compactifications of zero-dimensional Hausdorff spaces. The details are given in [3].
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A dual equivalence often arises as the restriction of a dual adjunction to its fixed subcategories,
given by those objects for which the adjunction units and co-units are isomorphisms. This work is
about the converse procedure: given a dual equivalence, furnished by contravariant functors

T : A → B and S : B → A,

where B is a full subcategory of an ambient category C, find a good description of a category D containing
A as a full subcategory, as well as of a pair of dual equivalences

T̃ : D → C and S̃ : C → D

extending T and S. As the mere existence for such D, T̃ , S̃ may be quite trivially verified, the important
qualifier for this task lies in the word good.

We are guided by our role model, the Fedorchuk duality, which arises as an extension of a restriction
of the Stone duality, as follows. As noted by Dimov [2, 3], the restriction of the Stone duality to the
category A of complete Boolean algebras and their sup-preserving maps produces a dual equivalence
between A and the category B of extremally disconnected compact Hausdorff spaces and their open
continuous maps. Considering B as a full subcategory of the category C of all compact Hausdorff
spaces and their quasi-open continuous maps, the goal is then to provide a categorical framework for
the construction of Fedorchuk’s category CNCA of so-called complete normal contact algebras and their
suitably chosen morphisms, which he had identified as dually equivalent to C in his paper [4].

Key to our categorical construction is the equivalent description of the CNCA-objects as pairs (A, p),
with A a complete Boolean algebra and p : TA −→ C an irreducible map of its Stone dual space TA
onto a compact Hausdorff space C based on a theorem of Bezhanishvili [1]. We therefore consider the
class P of all irreducible continuous maps B −→ C with domain in B, which are well-known to be
quasi-open. The challenge in the general categorical context is then to find a set of suitable conditions
on an arbitrary class P of morphisms in any category C which, in the abstract context, allows for
the construction of a category D dually equivalent to C and, in the concrete context, reproduces the
Fedorchuk duality.

Given a dual equivalence T : A ←→ B : S, where B is a full subcategory of a category C, we call a
class P of morphisms in C a (B, C)-covering class if

(P1) ∀ (p : B −→ C) ∈ P : B ∈ |B|;

(P2) ∀B ∈ |B| : 1B ∈ P;

(P3) P ◦ Iso(B) ⊆ P;

The research of the first two authors was supported by the Bulgarian National Science Fund, contract no.
DN02/15/19.12.2016, and that of the third author by the Natural Sciences and Engineering Council of Canada
under the Discovery Grants Program.
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(P4) ∀C ∈ |C| ∃ (p : B −→ C) ∈ B;

(P5) for morphisms in C, there is a functorial assignment

((p : B→C)∈P, v : C → C′, (p′ : B′→C′)∈P) 7→ (v̂ : B → B′ with v ◦ p = p′ ◦ v̂);

we emphasize that, in this assignment, v̂ depends not only on v, but also on p and p′. In condition
(P4) we tacitly assume that, for every C ∈ |C|, there is a chosen morphism p ∈ P with codomain C.
In the presence of (P2), that morphism may be taken to be an identity morphism whenever C ∈ |B|.
To highlight the choice, we may reformulate (P4) as

(P4′) ∀C ∈ |C| ∃ (πC : EC −→ C) ∈ P (with πC = 1C when C ∈ |B|).

It is then clear that (P5) enables us to make E a functor C −→ B and π a natural transformation
IE −→ IdC .

In our role model, EC is the absolute of the compact Hausdorff space C, and πC serves as a
projective cover. Actually, E turns out to be a coreflector of the category C onto B, as we show
in extension of results by Henriksen and Jerison [5] and Bereznitskij (as cited in [7]). In general,
the existence of a (B, C)-covering class is weaker than having a right adjoint for the full embedding
I : B ↪→ C; rather, it is equivalent to I being part of a semi-adjunction in the sense of Medvedev
[6]; this means that the embedding has almost a right adjoint E, except that one of the triangular
identities required for an adjunction is missing. This clarifies the status of conditions (P1-5) in standard
categorical terms. They permit us to prove:

Theorem. With the category D constructed as suggested by the Fedorchuk duality, D contains A as a
full subcategory and admits a dual equivalence T̃ : D ←→ C : S̃, extending the given dual equivalence
T : A ←→ B : S, in the sense that

T̃ J = IT and S̃I ∼= JS.

One can actually establish a rather complete array of identities which show the smooth interaction of
the two dual adjunctions with each other, as well as with the semi-reflective embedding A ↪→ D and
the semi-coreflective embedding B ↪→ C. (Some of these identities require a slight strengthening of
condition (P4).) The identities allow us to go back and forth between D and C as efficiently as between
A and B.

Armed with this categorical extension theorem, we sketch a new proof of Fedorchuk’s duality
theorem which, unlike its original proof, does not make use of the de Vries duality theorem. Time
permitting, we will also comment on further applications of the categorical framework.
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In [2], we proved a general categorical theorem for extensions of dualities (briefly, ED-Theorem)
and derived from it the Fedorchuk Duality Theorem [4] which says that there exists a dual equivalence
between the category CHausqop of compact Hausdorff spaces and their quasi-open maps and the
category Fed of complete normal contact algebras and suprema-preserving Boolean homomorphisms
which reflect the contact relation. In this talk, we present the results from the continuation [3] of [2].
They concern the de Vries dual equivalence between the category CHaus of compact Hausdorff spaces
and their continuous maps and the category DeV of complete normal contact algebras and de Vries’
morphisms between them. We start by deriving from our ED-Theorem the recent Duality Theorem of
Bezhanishvili-Morandi-Olberding [1] which extends de Vries’ duality from the category CHaus to the
category Tych of Tychonoff spaces and their continuous maps. We do this by obtaining first a new
category C′ and a dual equivalence between it and the category Tych which extends de Vries’ duality.
Then, using the Tarski Duality Theorem, we show that the category C′ is equivalent to the category
BMO obtained in [1] as a dual to the category Tych. Further, we present a new general categorical
theorem for extensions of dualities and derive from it de Vries’ Duality Theorem. Moreover, in the
process of doing this, we obtain a new duality theorem for the category CHaus.
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Bunched logics, beginning with O’Hearn and Pym’s BI [9, 10], have proved to be excep-
tionally useful tools in modelling and reasoning about computational and information-theoretic
phenomena such as resources, the structure of complex systems, and access control. Perhaps
the most striking example is Separation Logic [11] a specific theory of predicate BI with prim-
itives for mutable data structures. Separation Logic has heralded a paradigm shift in deploy-
able program correctness proving, key examples of which being the static analysis tool Infer
(www.fbinfer.com) — now part of the code review production line at Facebook, with millions
of lines of code automatically checked for memory bugs to date — and the Coq-implemented
Concurrent Separation Logic framework Iris, which has been used to give machine-checked
safety proofs for the systems programming language Rust [8].

Bunched logics provide an alternative to the resource-sensitive reasoning facilitated by linear
logic. In linear logic, the structural rules of weakening and contraction are dropped, leading to a
splitting of conjunction and disjunction into additive and multiplicative forms. These structural
rules are reintroduced in a controlled manner via the exponentials ! and ?. This leads to an
operational number-of-uses interpretation of formulae: a formula ϕ is a resource that may be
used once; however, !ϕ denotes a duplicable resource ϕ that can be used as many times as
one needs. In bunched logics, the control of structural rules is implemented very differently:
in bunched sequent calculi, contexts are tree-shaped structures — bunches — built from two
context formers to which different structural rules apply: one in which all apply, and another in
which weakening and contraction (and possibly more) are dropped. Such systems can safely be
seen as the free combination of intuitionistic propositional logic with multiplicative fragments
of linear logics. The upshot of this is the existence (in contrast with linear logic) of a simple
Kripke semantics of abstract resource: formulae have a declarative separation interpretation,
describing properties a resource may satisfy, and, in particular, the manner in which resources
must be (de)composed into components in order to meet a specification.

In the characteristic case of BI, Kripke resource models are given by ordered partial com-
mutative monoids, in which worlds are seen to be resources that can be compared via an order
≤ and, when compatible, composed by a partial composition ◦. For example, in the standard
model of Separation Logic the resources are heaps (chunks of dynamically allocated computer
memory) which can be compared (when one heap contains another) and, when compatible
(when the memory addresses assigned by each heap are disjoint), composed by disjoint union.
The Kripke semantics then extends that for intuitionistic logic with clauses for the multiplicative
connectives. In particular, the multiplicative conjunction, ∗, is interpreted as follows:

x � ϕ ∗ ψ iff there exists resources y, z such that y ◦ z ≤ x and y � ϕ and z � ψ,

to be read as “the resource x is sufficient for ϕ∗ψ iff part of x can be split into separate resources,
y and z, with y sufficient for ϕ and z sufficient for ψ”. Further multiplicative connectives—
corresponding to implications, negation, disjunction, verum and falsum—are similarly given a
straightforward Kripke semantics via operations on resources.

Resource semantics has been hugely influential; in particular, in its instantiations in Sep-
aration Logic and its descendents, with a huge body of literature and automated reasoning

www.fbinfer.com
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tools successfully applying the idea to a range of computational phenomena. In contrast, the
alternative algebraic view on bunched logics — as Heyting algebras extended with additional
residuated monoidal operations — has seen little attention, with recent work by Galatos &
Jipsen [5] and Litak & Jipsen [7] rare exceptions. This is quite an usual situation for a family
of systems closely related to intuitionistic, modal and substructural logics.

In this talk, we give a systematic account of resource semantics via a family of Stone-
type duality theorems between categories of bunched logic algebras and categories of ordered
topological spaces. This framework encompasses the full range of systems: from the weakest
bunched logics to those involving multiplicative variants of all of the standard propositional
connectives, as well as those featuring (separating) modalities. By considering the category
theoretic structures of bunched logic hyperdoctrines and indexed topological spaces, the duality
theorems are extended to the predicate case, thus additionally capturing Separation Logic. As
corollaries we retrieve soundness and completeness for the standard Kripke semantics found in
the literature as well as new results for logics that previously lacked a semantic formulation.

To do so, we synthesise a variety of related work from modal [6], relevant [12], substructural
[1] and categorical logic [2]. Much of the theory these areas enjoy is produced by way of alge-
braic and topological techniques. We argue that by recontextualizing the resource semantics of
bunched logics in this way, similar theory can be given for both Separation Logic and its un-
derlying systems. As examples, we prove a range of metatheory, including: decidability of weak
bunched logics, the failure of interpolation, and a Goldblatt-Thomason-style characterisation of
the definable classes of resource models. Further, we indicate a range of future directions build-
ing on our framework, including the natural duality generalisation of our results, extensions
with semantics of program execution, and the development of Sahlqvist-style correspondence
theory for bunched logics. This talk is based on material from the first author’s PhD thesis [3],
some of which will appear in a forthcoming journal article [4].
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Given a poset P define F and I to be, respectively, the sets of all filters and ideals of
P . A standard method for constructing a canonical extension e : P → C is to first define
an antitone Galois connection between ℘(F) and ℘(I) based on the relation of ‘non-empty
intersection’ between ideals and filters, and then to define C to be set of all subsets of F that
are closed with respect to the induced closure operator. The embedding e is then defined
by e : p 7→ {F ∈ F : p ∈ F} [3, 2]. When working with canonical extensions, it is often
convenient to define the so-called ‘intermediate structure’ as a subposet of C generated from
the embedded image e[P ] by including certain joins and meets. Pulling back the natural
embeddings of F and I into C we obtain orderings of F and I which agree with the ‘intrinsic’
orderings of these sets by reverse inclusion and inclusion respectively.

Generalizing, we can relax the requirements on F and I to allow for alternative definitions
of ‘filter’ and ‘ideal’, and also to allow for situations where F and I include some, but not
necessarily all, filters and ideals (as they are defined) respectively. Provided some consistency
properties are satisfied, the ‘completion via Galois connection’ process described above with
respect to the resulting polarization produces another class of completions [8, 6].

Generalizing further, we can extend to relations between filters and ideals other than
non-empty intersection, using polarities (F , I,R). For example, this method can be used
to produce ∆1-completions, of which canonical extensions are one example [4]. As with
canonical extensions, we can define the intermediate structure for a ∆1-completion d : P →
D. This is a subposet, Id, of D generated from d[P ] in a canonical way.

For a polarity (F , I,R) not producing a ∆1-completion, the natural maps from F and I
into the lattice of Galois closed sets C need not be order embeddings, so the intrinsic orders
on F and I and the orders induced by C are not necessarily the same. It is natural to ask
what must be true of R for the intrinsic and induced orders to match, and this question is
easy enough to answer.

We can also approach the situation in another way, by defining an extension polarity to
be a triple (eX , eY ,R) such that eX : P → X and eY : P → Y are extensions of P , and R
is a relation between X and Y . Given such an extension polarity, we may ask (1) “When is
it possible to define a pre-order on X ∪ Y that agrees with the orders on X and Y , and also
with R?”, and (2) “If eX and eY are meet- and join-extensions respectively, when can such
a pre-order be defined so that the natural embeddings ιX : X → X ∪ Y and ιY : Y → X ∪ Y
additionally have strong preservation properties as in the case of canonical extensions?”.
These questions are also easy enough to answer. More interestingly, it turns out that when
a pre-order does exist for (eX , eY ,R) in affirmative answer to (2), it is necessarily unique.
We use X ] Y to denote the poset over X ∪ Y induced by this unique pre-order.
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Given eX and eY , the relation Rl of ‘non-empty intersection’ defined by xRl y ⇐⇒
e−1
X (x↑)∩e−1

Y (y↓) 6= ∅ is the minimal relation such that there is an affirmative answer to (2).
In the case where R = Rl, we show that X ] Y has a universal property, and based on this
we define the canonical amalgamation of eX and eY to be a triple (A(eX ,eY ), πX , πY ),
where A(eX ,eY ) is a poset and πX and πY are maps satisfying some additional properties.
(A(eX ,eY ), πX , πY ) is unique up to a suitable notion of isomorphism, and always exists as
(X ] Y, ιX , ιY ) provides a concrete construction.

Following [4], by combining (A(eX ,eY ), πX , πY ) with taking MacNeille completions we
obtain a construction for canonical extension like completions. Moreover, we can in some
circumstances extend the universal properties of meet- and join-completions from [7, Theo-
rem 2] to canonical amalgamations. As an application of this, we present a construction of
the free lattice generated by a poset P and preserving selected bounds (as in [1, 5]) as a col-
imit. This construction and the proof it has the required universal property are illustrated
by the diagrams in Figures 1 and 2 respectively.
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Abstract

An Artin glueing [2] of two frames H and N is a frame G in which H and N are
included as sublocales, with H open and N its closed complement. Artin glueings are not
unique, but are determined by meet preserving maps f : H → N .

Compare this to a semidirect product G of two groups N and H. Both N and H are
subgroups of G, with N being normal. They satisfy that N ∩ H = {e} and NH = G,
which if thought of in terms of the lattice of subobjects of G, says that N and H are
complements. Furthermore, just as with the Artin glueing, semidirect products of groups
are not unique and are similarly determined by a map f : H → Aut(N).

In order to show that this analogy has substance we examine a link to extension prob-
lems. It is well known that the split extensions between any two groups N and H are
precisely the semidirect products of N and H. We show that Artin glueings are pre-
cisely the solutions to a natural extension problem in the category RFrm of frames with
meet-preserving maps.

We consider a chain N
m−→ G

e−→ H to be an extension if m is the kernel of e and e
is the cokernel of m. We are really interested in split extensions. In the case of groups,
split extensions satisfy the property that if s is a splitting of e, then the images of m and
s together generate G. This is not so in RFrm and it will only occur when s is the right
adjoint of e. For our purposes, this generation property is crucial and so we restrict to
the generating split extensions. We briefly discuss some connections with the theory of
S-protomodularity [1].

We show that there is a natural way to view an Artin glueing as an extension in RFrm
and that every extension N

m−→ G
e−→ H can be thought of as the glueing of H and N along

m∗e∗.
We develop these ideas further by constructing the corresponding Ext functor, which

takes in two frames and returns the set of Artin glueings. In the case of groups we have
that Ext(H,N) ' Hom(H,Aut(N)) and we find analogously that for frames we have
Ext(H,N) ' Hom(H,N).
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1 Introduction

In [BBÖS16] a topological semantics for evidence-based belief and knowledge is introduced,
where knowledge amounts to not only having evidence but having indefeasible evidence, a
notion encoded by the dense open sets1.

Definition 1 (The dense interior semantics). Our language is the propositional language en-
riched with a knowledge modality K. A topological evidence model (topo-e-model) is a tuple
(X, τ, V ), where (X, τ) is a topological space, and V : Prop → 2X is a valuation. The seman-
tics of a formula φ is defined as follows: ‖p‖ = V (p); ‖φ ∧ ψ‖ = ‖φ‖ ∩ ‖ψ‖; ‖¬φ‖ = X\‖φ‖;
x ∈ ‖Kφ‖ iff x ∈ Int ‖φ‖ and Int ‖φ‖ is dense, where Int is the interior operator.

The framework introduced in [BBÖS16] is single-agent and the logic of topo-e-models is S4.2.
In this abstract we present a multi-agent generalisation, along with some “generic models”.
Our proposal differs conceptually from previous multi-agent approaches to the dense interior
semantics in that we build it on the notion of local density.

2 One-Agent Generic Models

Following the spirit of the McKinsey-Tarski theorem [MT44], one of our aims is finding generic
models for this logic, i.e. single topological spaces whose logic under the dense interior semantics
is S4.2. The proof of the next two theorems can be found in [BBG19].

Theorem 2. S4.2 is sound and complete in the dense interior semantics with respect to any
dense-in-itself metrisable space such as R, Q, etc.

In [BBÖS16] also an expansion of this logic is considered with the universal modality [∀] and
topological interior modality �, which encodes “having evidence”. We denote this logic by
Logic∀�.

Theorem 3. Logic∀� is sound and complete in the dense interior semantics with respect to
any dense-in-itself, metrisable and idempotent space such as Q.

3 Going Multi-Agent

For simplicity of presentation we work in a two-agent system (it is rather straightforward to
extend these results to n > 2 agents). Our language now contains modalities K1 and K2, each
encoding the same notion as in the single-agent system.

1A set U ⊆ X is dense whenever ClU = X, or equivalently when it has nonempty intersection with every
nonempty open set.
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The Problem of Density. Topological-partitional models. A first (naive) approach to
multi-agent topo-e-models would be to simply consider two topologies τ1 and τ2 on the same
space and have agent i know φ whenever Intτi ‖φ‖ is dense in τi. This is undesirable: this global
notion of density does not account for cases in which two agents do not consider the same set
of worlds possible. Instead, we want to make explicit, at each world x ∈ X, which subsets of
worlds in X are compatible with each agent’s information. We will do this is via partitions.

Definition 4. A topological-partitional model is a tuple (X, τ1, τ2,Π1,Π2, V ) where X is a set,
τ1 and τ2 are topologies defined on X, Π1 and Π2 are partitions and V is a valuation.

For U ⊆ X we write Πi[U ] := {π ∈ Πi : U ∩π 6= ∅}. For i = 1, 2 and π ∈ Πi[U ] we say that
U is i-locally dense in π whenever U ∩ π is dense in the subspace topology (π, τi|π). We simply
say U is i-locally dense if it is locally dense in every π ∈ Πi[U ].

For the remainder of this abstract, we limit ourselves to the fragment of the language including
the K1 and K2 modalities.

Definition 5 (Semantics). We read x ∈ ‖Kiφ‖ iff there exists an i-locally dense τi-open set U
with x ∈ U ⊆ ‖φ‖.
This definition generalises one-agent models, appears to be more suitable conceptually and,
moreover, gives us the logic one would extrapolate from the one-agent case:

Theorem 6. The LK1K2
-logic of topological-partitional models is S4.2K1

+ S4.2K2
, the least

normal modal logic containing the S4.2 axioms for each Ki.

4 Multi-Agent Generic Models

The Quaternary Tree T2,2. The quaternary tree T2,2 is the full infinite tree with two rela-
tions R1 and R2 where every node has exactly four successors: a left Ri-successor and a right
Ri-successor for i = 1, 2. We can define two topologies τi and two partitions Πi on T2,2 by
taking, respectively, the set of Ri-upsets and the set of Ri-connected components.

Theorem 7. S4.2K1 + S4.2K2 is sound and complete with respect to (T2,2, τ1,2,Π1,2).

The rational plane Q×Q. We can define two topologies on Q×Q by “lifting” the open sets
in the rational line horizontally or vertically [BBtCS06]. Formally, the horizontal topology τH is
the topology generated by {U × {y} : U is open, y ∈ Q} and likewise for the vertical topology
τV .

Proposition 8. There exist partitions ΠH and ΠV such that (Q × Q, τH,V ,ΠH,V ) is a
topological-partitional model whose logic is S4.2K1

+ S4.2K2
.
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A lattice with involution (also known as an i-lattice) is an expansion of a lattice (L,∧,∨)
by an anti-isomorphism, i.e., a function ¬ : L→ L such that for all x, y ∈ L,

¬¬x = x,

¬(x ∧ y) = ¬x ∨ ¬y, and

¬(x ∨ y) = ¬x ∧ ¬y.

Distributive lattices with involution have received extensive attention under the name De Mor-
gan lattices (or De Morgan algebras when equipped with distinguished lattice bounds). For De
Morgan lattices, there is a complete description of the lattice of subvarieties [4] and even lattice
of subquasivarieties [6], as well as duality-theoretic analyses [2, 3]. In all of these studies, De
Morgan lattices satisfying the normality condition,

x ∧ ¬x ≤ y ∨ ¬y,

play a crucial role, and comprise the subvariety of Kleene lattices. Non-distributive lattices
with involution have received much less attention and are not as well-understood (but see, e.g.,
[5] and [1] for some recent studies).

The purpose of the present work is to contribute to our understanding of the normality
condition in the context of non-distributive lattices with involution. For this, three finite lattices
with involution play a decisive role, and have labeled Hasse diagrams as follows:

• > = ¬⊥

•a = ¬a • b = ¬b

• ⊥ = ¬⊥

F4

• > = ¬⊥

•a = ¬a
• b

• ¬b

• ⊥ = ¬>

F5

• > = ¬⊥

•a • b

• c

•¬c

•¬a • ¬b

• ⊥ = ¬>

F8

Each of F4, F5, and F8 can readily be seen to refute the normality condition. The i-lattice
F4 is shown in [4] to generate the variety of distributive i-lattices as a quasivariety, and F8 is
shown in [6] to generate the quasivariety of distributive i-lattices whose non-trivial members
lack a ¬-fixed element. The following theorem shows that these finite structures play a decisive
role among non-distributive i-lattices as well.

∗This project received funding from the European Research Council (ERC) under the European Unions
Horizon 2020 research and innovation program (grant agreement No. 670624).
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Theorem 1. Let L = (L,∧,∨,¬) be a lattice with involution. Then the following hold:

1. If L has a modular lattice reduct, then L refutes x∧¬x ≤ y ∨¬y if and only if one of F4

or F8 embeds in L.

2. If L has a ¬-fixed element, then L refutes x∧¬x ≤ y ∨¬y if and only if one of F4 or F5

embeds in L.

The preceding theorem offers an account of normality in the non-distributive setting in the
same spirit as the celebrated result of lattice theory that a lattice L is distributive if and only
if neither the five-element non-modular lattice nor the five-element modular, non-distributive
lattice embeds into L.
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Let Bn be the Boolean subalgebra generated by halfspaces inside the powerset ℘(Rn). We call
elements of Bn polyhedra. Bn is in fact an S4 modal subalgebra of ℘(Rn) with respect to the
Euclidean closure operator ◊. Moreover, Bn turns out to be an S4.Grz-algebra.

Take a polyhedron P ∈Bn and denote the relativization of Bn to P by P+. Then P+ is a S4.Grz-
algebra consisting of all subpolyhedra of P, endowed with the subspace closure operator. Inside
P+ there also sits a Heyting algebra of all open subpolyhedra of P. These structures give rise to the
corresponding formalisms – modal logics above S4.Grz if we concentrate on the modal algebras P+

and intermediate logics if we instead focus on the Heyting algebras sitting inside. Here we consider
only the modal case, but the results easily translate to intermediate logics. The systematic study of
the polyhedral semantics for modal and instuitionistic logics has been initiated in [4], [2] and [5].

We consider polyhedral modal logics – the logics Log{P+i | i ∈ I}, generated by some family (Pi)i∈I
of polyhedra Pi ∈Bni . Each P+ is of finite height and hence, locally finite [3]. This has to do with
the geometric dimension of P being finite. It follows that polyhedral logics enjoy the finite model
property and their study can be reduced to the study of the corresponding finite posets.

Each polyhedral logic L has well-defined dimension dim L: it is either the smallest d for which L
contains the Jankov-Fine axiom of the (d + 1)-element chain, or infinity, if such a d does not exist.
This happens to coincide with the maximum of the geometric dimensions of the polyhedra P which
validate L. The polyhedral logics of finite dimension are of finite height and hence, locally finite.

The smallest extension of S4.Grz of height n is S4.Grzn (the logic of posets of height ¶ n),
while the largest is S4.Grzn.3 (the logic of the n-element chain). It follows from the results of [2]
interpreted modally that the smallest polyhedral logic of dim n is S4.Grzn+1 (the modal logic of all
polyhedra of dim ¶ n). On the other hand, S4.Grzn.3 is polyhedrally incomplete for any n> 1. The
largest polyhedral logic of dim n turns out to be PLn = Log(Bn).

Theorem 1. Let L be a polyhedral modal logic of dim n. Then S4.Grzn+1 ⊆ L ⊆ PLn.

There is a single polyhedral logic of dim 0 – the trivial logic Triv= S4.Grz1 = PL0. Let us denote
by Fn the n-fan – the rooted poset of height 2 with n-many maximal points.

Theorem 2. The modal logic L is a polyhedral logic of dimension 1 iff L = S4.Grz2 or L coincides with
the modal logic of an n-fan Fn for some n > 1. These logics form a descending countable chain (under
inclusion) between S4.Grz2 and PL1 where the latter is the modal logic of the 2-fan.

S4.Grz3

PL2

S4.Grz3.3

Flat2

Figure 1: The (flat) polygonal logics inside the
lattice of all height 3 extensions of S4.Grz

We now turn to flat polyhedra – those dim n poly-
hedra that are embedded into the ambient Euclidean
space Rn of the same dimension. The relevant alge-
braic notion is that of relativization, while the rele-
vant modal notion is that of downward subframiza-
tion [6], [1]. Call the polyhedral logic L of dim n
flat iff L is complete w.r.t. to some class (P+i )i∈I of
polyhedral algebras such that Pi ∈Bn are polyhedra
of dim n inside Rn for all i ∈ I .
Theorem 3. The least flat polyhedral logic Flatn of
dim n is the downward subframization of PLn.
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Our main results concern the flat logics of dim 2 – we call them Flat Polygonal Logics. By defini-
tion, such logics are generated by some family of relativizations of B2. In other words, flat polygonal
logics are complete w.r.t. some class (P+i )i∈I where each Pi is a flat polygon – a polygonal subset of
the Euclidean plane R2. We will give a full characterization of flat polygonal logics, using an explicit
collection of Jankov-Fine and subframe formulas for certain finite posets. It turns out that Flat2 is
the logic of finite height-3 posets without a subframe isomorphic to the 3-fork poset .

Theorem 4. Flat2 = S4.Grz3+σ
� �

whereσ
� �

is the subframe formula forbidding the 3-fork.
Moreover, flat polygonal logics are all in the interval [Flat2,PL2].

To describe the flat polygonal logics occurring between Flat2 and PL2, we introduce posets
Fm,n depicted below that are ordered by reducibility – F is reducible to G if there exists an onto
p-morphism from F to G. The poset of these frames is depicted on Figure 2.

n
︷︸︸︷

m
︷︸︸︷

Fm,n :=
· · ·

· · ·

F1,1F2,0

F1,2F2,1F3,0

F1,3F2,2F3,1F4,0
F1,n−1

Fn,0 ...............

............

Figure 2: Poset Q of the frames Fm,n ordered by reducibility

The reducibility among Fm,n
can be described as follows:
Fm,n reduces to Fm′,n′ iff m+n¾
m′ + n′ and m ¾ m′. Denote the
poset of these frames by Q.

Lemma 5. The dual poset of Q is
a well partial order, i.e. Q con-
tains neither infinite strictly as-
cending chains, nor infinite an-
tichains.

For every antichain α in Q
the corresponding logic Lα is ob-
tained by adding to Flat2 the
Jankov-Fine axioms χ(Fm,n) for
each Fm,n ∈ α. It is not difficult to see, that Lα ⊆ Lβ iff α ⊆ ↓β . Moreover:

Theorem 6. The logics Lα, for α ⊂ Q an antichain, are all different, and exhaust all flat polygonal
logics, that is all polygonal logics between Flat2 and PL2.

It follows that there are only countably many flat polygonal logics, each one of them being finitely
axiomatizable and decidable. In the talk we will also present a way to describe the Kripke frames
for each flat polygonal logic L based on the upset of L-frames inside Q and a certain operation on
rooted posets defining PL2 and PL1 – crown frames [4] and n-fans.
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Abstract

We describe various encodings of counter machines and interpretations of semigroups
into varieties of residuated lattices. We obtain the undecidability of the word problem and
thus of the quasi-equational theory for these varieties.

Proofs of undecidability in substructural logics employ encodings of counter machines or
interpretations of semigroups.

The hardware of a counter machine consists of a finite number of registers, which can be
thought of as empty boxes labeled by the name of the register, and tokens each of which can
be in some register, as well a final set of internal states in which the machine can be in, with
designated initial state qI and final state qF . We write R = {r1, . . . , rk} for the set of registers, Q
for the set of states, and we label each token within register ri by ri. Therefore the configuration
of a machine can be represented by the monoid term qS0r

n1
1 S1 · · ·Sk−1r

nk

k Sk. The auxiliary
letters S0, . . . , Sk are called stoppers. The software consists of a finite set of instructions taken
from three different types. Increment instructions: when in state q, increment register ri by
one token and change the internal state to q′. Analogously we can decrement a non-zero
counter (and do nothing if it is empty). Finally zero-test instructions: when in state q, check
the contents of register ri and if they are empty then move to state q′. We represent these
instructions by the following inequalities: qSi ≤ q′riSi, qriSi ≤ q′Si and Si−1qSi ≤ Si−1q

′Si.
We also assume that for every letter x and every state q, we have the ambient instructions
xq ≤ qx and qx ≤ xq.

The computation relation ≤ of a machine is defined as the reflexive-transitive closure of
the smallest compatible relation containing the instructions. We say that a configuration C
is accepted if C ≤ qFS0S1 · · ·Sk. For example, consider the machine that has set of states
Q = {q1, qF }, with initial and final state qF , set of registers R = {r1, r2} and set of instructions
P = {qF r1S1 ≤ q1S1, q1r2S2 ≤ qFS2}, then we have

qFS0r1S1r2S2 ≤ S0qF r1S1r2S2

≤ S0q1S1r2S2

≤ S0S1q1r2S2

≤ S0S1qFS2

≤ S0qFS1S2

≤ qFS0S1S2.

The only initial configurations that are accepted are of the form qFS0r
n
1S1r

n
2S2, where n is a

natural number, so the machine checks if we have an equal number of r1-tokens as r2-tokens.
It is well known that there is a counter machine with an undecidable set of accepted config-

urations. This fact can be used to prove that the quasiequational theory of residuated lattices
is undecidable. Horčik proves that the quasiequational theory of square-increasing (x ≤ x2)
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residuated lattices is also undecidable, via a different encoding that is resilient to applications
of square increasingeness. The need for a different encoding is explained by the fact that in
the standard encoding tokens can be doubled at will by the use of the ambient instruction
of square increasingness. Unfortunately, this result does not cover more involved inequalities
such as xy ≤ xyx ∨ x ∨ y. We describe a new encoding (using powers of a fixed appropriate
integer) that is resilient to such ambient instructions, thus obtaining undecidability results for
the corresponding varieties.

For the implementation and correct encoding of the zero test, it is imperative that we
do not have ambient instructions of the form xy ≤ yx for all letters, as then the tokens ri
are not constrained within the designated stoppers Si−1 and Si as they are expected to be
for the correct application of zero tests; the stoppers fail to stop them. Therefore, all of the
above encodings provide no help in proving the undecidability of the quasiequational theory of
any variety of commutative residuated lattices. (We discuss some innocent generalizations of
commutativity for which the encoding still works, but for commutativity itself and many of its
variants the above encodings fail.) We present variants of the above encoding that implement
the zero test in an indirect way: we can simulate parallel computation, one strand of which will
make sure that any zero tests used were applied correctly and the other strand will perform
the main computation. Acceptance is defined when all strands terminate successfully. Parallel
computation is performed with the use of the join operation. (We note that join, when it
appears on the left-hand side of an inequality, has a conjunctive effect.) By further combining
two of the above ideas, we can modify the encoding to include parallel computation and powers
of an integer at the same time. This results in encodings that are resilient to a plethora of
inequalities in the signature of {∨, ·, 1}, even in the presence of commutativity. All of the above
results can be strengthened to obtain the undecidability of the word problem for these varieties.

We also briefly explore the method of proving undecidability via interpreting semigroups.
The argument relies on identifying a term that is definable in the existing language, usually with
the aid of a few constants (hence a polynomial term). These constants are needed for importing
a geometric intuition analogous to that of a coordinate frame in (projective) geometry. A subset
(a line) is identified and an associative operation is defined on it. The proof concludes by defining
a specific finitely presented algebra in the variety, in which decidability of the word problem
is equivalent to decidability of the word problem for a specific semigroup, which is known to
have an undecidable word problem. This method can be used to study varieties of distributive
residuated lattices, as the argument relies on the distributive residuated lattice of all subsets of
an infinitely-dimensional vector space.
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Glivenko’s theorem, proved by Valery Glivenko in 1929, may be formulated algebraically as the
statement that an equation ¬¬s ≤ ¬¬t is valid in all Heyting algebras if and only if s ≤ t is valid
in all Boolean algebras [8]. In this work [7], we show that “integrally closed” residuated lattices,
enjoying close connections to (pseudo) BCI-algebras [10, 12, 3], Dubreil-Jacotin semigroups [1,
Chap. 12–13], and algebras for Casari’s comparative logic [2, 11], admit an analogous Glivenko
property with respect to lattice-ordered groups (`-groups) and indeed form the largest variety of
residuated lattices admitting such a property. We also use this Glivenko property for `-groups
to give a sequent calculus for the variety of integrally closed residuated lattices and establish
the decidability (indeed PSPACE-completeness) of its equational theory.

A residuated lattice is called integrally closed (cf., [4, Chap. XII.3]) if it satisfies the equation
x\x ≈ e or, equivalently, the equation x/x ≈ e. It is easily shown that any integral, cancellative,
or divisible residuated lattice is integrally closed. Also, it is not hard to prove that any integrally
closed residuated lattice A is e-cyclic, i.e., satisfies the equation x\e ≈ e/x.

For any e-cyclic residuated lattice A and a ∈ A, let ∼ a denote the common result a\e = e/a.
The map α : A → A; a 7→ ∼∼ a is always a nucleus on A and induces a residuated lattice
structure on its image which we denote by A∼∼ (see, e.g., [6, Lem. 5.2–5.3]). The relationship
between A and A∼∼ is particularly interesting when A is integrally closed.

Proposition 1. Let A be an e-cyclic residuated lattice.

(a) A is integrally closed if, and only if, A∼∼ is an `-group.

(b) If A is integrally closed, then α : A � A∼∼ is a homomorphism and α−1(↓e) = ↓e.
Indeed, any residuated lattice A admitting a homomorphism h : A � G such that G is an
`-group and h−1(↓e) = ↓e must be integrally closed, in which case A∼∼ is the unique (up to
isomorphism) homomorphic image of A with these two properties.

Let us denote the variety of integrally closed residuated lattices by IcRL and the variety of
`-groups by LG. Given any class K ⊆ IcRL, we define the class K∼∼ := {A∼∼ | A ∈ K} ⊆ LG.
The following result is then a straightforward consequence of Proposition 1.

Proposition 2. The map V 7→ V∼∼ is an interior operator on the lattice of subvarieties of
IcRL whose image is the lattice of subvarieties of LG.

Following [6], we say that a variety V of residuated lattices admits the (equational) Glivenko
property with respect to another variety W of residuated lattices if for all terms s, t in the
language of residuated lattices,

V |= e/(s\e) ≤ e/(t\e) ⇐⇒ W |= s ≤ t ⇐⇒ V |= (e/s)\e ≤ (e/t)\e,

noting that if V is a variety of e-cyclic residuated lattices, this simplifies to

V |= ∼∼ s ≤ ∼∼ t ⇐⇒ W |= s ≤ t.

We can now state the following Glivenko theorem for (varieties of) `-groups.

∗The research reported here was supported by Swiss National Science Foundation (SNF) grant 200021 165850.
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Theorem 3. Any variety V of integrally closed residuated lattices admits the Glivenko property
with respect to the variety V∼∼. Moreover, IcRL is the largest variety of residuated lattices
that admits the Glivenko property with respect to LG.

Let us now define a sequent to be an expression of the form Γ⇒ t where Γ is a finite sequence
of terms and t a term in the language of residuated lattices. We say that a sequent s1, . . . , sn ⇒ t
is valid in a class K of residuated lattices, denoted by |=K Γ⇒ t, if K |= s1 · · · sn ≤ t, where the
empty product is understood as e. Theorem 3 may then be used to establish the soundness,
with respect to validity in IcRL, of the following “non-standard” weakening rule:

Γ,Π⇒ t |=LG ∆⇒ e

Γ,∆,Π⇒ t
(LG-w)

where |=LG ∆⇒ e may be understood as a side-condition for weakening that is decidable [9],
indeed co-NP-complete [5]. This condition can also be understood proof-theoretically as asking
for a derivation of the sequent ∆⇒ e in some calculus for `-groups, such as the hypersequent
calculus admitting cut-elimination provided in [5]. Adding the rule (LG-w) to the standard
sequent calculus for residuated lattices we obtain a sequent calculus for IcRL that admits
cut-elimination. This allows us to establish the following result.

Theorem 4. The equational theory of IcRL is decidable, indeed PSPACE-complete.

Let us mention finally that, by considering the appropriate reducts and expansions of the
language of residuated lattices, these results can be related to previous work on (pseudo) BCI-
algebras [10, 12, 3], Dubreil-Jacotin semigroups [1, Chap. 12–13], and algebras for Casari’s
comparative logic [2, 11].
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The existential and universal quantifiers in first order logic have a clear intuitive meaning
and a very well understood behaviour from their interpretation in classical models. However,
many challenges arise when trying to interpret quantifiers in a non-classical setting. Already
in intuitionistic logic the semantics of the universal quantifier cannot be defined locally (i.e. its
intuitionistic interpretation requires to look across possible worlds in models and across the
individuals inhabiting those worlds) [7], and unless the constant domain axiom ∀x(A∨B(x))↔
A ∨ ∀xB(x) is assumed, the domains of the models might vary. Likewise for modal logic, even
within a classical framework, different semantics have led to different axiomatizations [8, 11].
For weaker logics than the intuitionistic, it is unclear how to properly axiomatize the quantifiers
and how to interpret them. In [12, 14, 13], a general approach on quantification is given based
on the theory of hyperdoctrines. In [18], semantics with a constant domain are given for
distributive modal logic. In [17, 3, 15], an algebraic approach is explored which covers a class
of logics, based on the algebraic interpretation of quantifiers as suprema and infima [16]. For
classical modal logic, a very general complete axiomatization is given in [4].

Our proposal builds on [19, 1], where a proper display calculus is introduced for classical first
order logic, based on a well known semantic analysis that represents classical first order models
as hyperdoctrines. As was the case of other logical frameworks (cf. e.g. [5, 6, 9]), this semantic
analysis makes it possible to define a suitable multi-type calculus for first order logic in which
the side conditions of introduction rules for the quantifiers are encoded into analytic structural
rules involving different types. Wansing’s insight [21, 20, 2] that quantifiers can be treated
proof-theoretically as modal operators is incorporated into this approach by simply regarding
(∀x) and (∃x) as modal operators bridging different types (i.e. as heterogeneous operators).
Following Lawvere [12, 14, 13] and Halmos [10], this requires to consider as many types as there
are finite sets of free variables; that is, two first order formulas have the same type if and only
if they have exactly the same free variables.

In this environment, both substitutions and quantifiers are explicitly represented as logical
and structural connectives, which allows to encode the axioms capturing their interaction as
analytic (hererogeneous) modal reduction principles, and hence as analytic structural rules.
Thanks to this, we are now in a position to explore systematically the space of properties of
substitutions and quantifiers and their possible interactions, and more importantly, to conduct
a finer-grained analysis of fundamental interactions between quantifiers and intensional con-
nectives. For instance, certain rules encode the fact that the cylindrification maps are Boolean
algebra homomorphisms, which in turn captures the fact that classical propositional connectives
are all extensional.

This talk reports on preliminary results about multi-type algebraic semantics and ana-
lytic multi-type display calculi for first order logics based on varieties of lattice expansions
(normal LE-logics). Using duality theory and the theory of canonical extensions we investi-
gate the corresponding relational models. We recast the completeness proofs for classical and
intuitionistic first order logic and discuss the challenges that arise in the interpretation of quan-
tifiers in first order logic when the propositional base is weaker than classical or intuitionistic.
Time permitting, we discuss relational semantics for first order co-intuitionistic and distributive
propositional based logic as case studies, and show that the expected meaning of the quanti-
fiers drastically changes unless extra assumptions are added which are hard to justify. We also
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discuss the modal logics obtained from this process and compare them with those of [4, 11].
Finally we present general polarity-based semantics for first order LE-logics and discuss possible
interpretations.
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In J. Väänänen, Å. Hirvonen, and R. de Queiroz, editors, Logic, Language, Information, and
Computation, LNCS 9803, pages 215–233. Springer, 2016.

[7] D. Gabbay, V. Shehtman, and D. Skvortsov. Quantification in Nonclassical Logic. Studies in Logic
and the Foundations of Mathematics. Elsevier, 2009.

[8] J. W. Garson. Quantification in modal logic. In Handbook of philosophical logic, pages 267–323.
Springer, 2001.

[9] G. Greco and A. Palmigiano. Linear logic properly displayed. Submitted. ArXiv preprint
1611.04181.

[10] P. R. Halmos. Polyadic Boolean algebras. Proceedings of the National Academy of Sciences,
40(5):296–301, 1954.

[11] K. Kishida. Neighborhood-sheaf semantics for first-order modal logic. Electronic Notes in Theo-
retical Computer Science, 278:129–143, 2011.

[12] F. W. Lawvere. Functorial semantics of elementary theories. In Journal of symbolic logic, vol-
ume 31, page 294, 1966.

[13] F. W. Lawvere. Adjointness in foundations. Dialectica, 1969.

[14] F. W. Lawvere. Equality in hyperdoctrines and comprehension schema as an adjoint functor.
Proceedings of the AMS Symposium on Pure Mathematics XVII, pages 1–14, 1970.

[15] F. Montagna. Storage operators and multiplicative quantifiers in many-valued logics. J. Log.
Comput., 14(2):299–322, 2004.

[16] A. Mostowski. Axiomatizability of some many valued predicate calculi. Fundamenta mathematicae,
50:165–190, 1961.

[17] H. Ono. Algebraic semantics for predicate logics and their completeness. Logic at work. Stud.
Fuzziness Soft Comput, 24:637–650, 1999.

[18] G. Restall. Constant domain quantified modal logics without Boolean negation. 2005.

[19] A. Tzimoulis. Algebraic and Proof-Theoretic Foundations of the Logics for Social Behaviour. PhD
thesis, Delft University of Technology, 2018.

[20] H. Wansing. Displaying modal logic, volume 3. Springer, Trends in Logic, 1998.

[21] H. Wansing. Predicate logics on display. Studia Logica, 62(1):49–75, 1999.



94

Algebraic proof theory for LE-logics

Giuseppe Greco, Peter Jipsen, Fei Liang, Alessandra Palmigiano, and
Apostolos Tzimoulis

This presentation reports on the results of [9] where we extend the research programme in al-
gebraic proof theory from axiomatic extensions of the full Lambek calculus to logics algebraically
captured by certain varieties of normal lattice expansions (normal LE-logics). Specifically, we
generalise the residuated frames in [7] to arbitrary signatures of normal lattice expansions. This
generalization is a valuable tool for proving key properties of LE-logics in full uniformity. We
prove semantic cut elimination for the display calculi D.LE associated with the basic normal
LE-logics and their axiomatic extensions with analytic inductive axioms. We also prove the
finite model property for each such calculus D.LE, as well as for its extensions with analytic
structural rules satisfying certain additional properties.

Algebraic proof theory [3] is a research area aimed at establishing systematic connections
between results in structural proof theory (such as cut elimination theorems) and in algebraic
logic (such as representation theorems for classes of algebras). While results of each type have
been traditionally formulated and developed independently from the other type, algebraic proof
theory aims at realizing a deep integration of these fields. The main results in algebraic proof
theory have been obtained for axiomatic extensions of the full Lambek calculus, and, building
on the work of many authors [1, 4, 12, 8, 3, 7], establish a systematic connection between a
strong form of cut elimination for certain substructural logics (on the proof-theoretic side) and
the closure of their corresponding varieties of algebras under MacNeille completions (on the
algebraic side). Specifically, given a cut eliminable sequent calculus for a basic logic (e.g. the
full Lambek calculus), a core question in structural proof theory concerns the identification of
axioms which can be added to the given basic logic so that the resulting axiomatic extensions
can be captured by calculi which are again cut eliminable. This question is very hard, since
the cut elimination theorem is notoriously a very fragile result. However, in [2, 3] a very
satisfactory answer is given to this question for substructural logics, by identifying a hierarchy
(Nn,Pn) of axioms in the language of the full Lambek calculus, referred to as the substructural
hierarchy, and guaranteeing that, up to the levelN2, these axioms can be effectively transformed
into special structural rules (called analytic) which can be safely added to a cut eliminable
calculus without destroying cut elimination. Algebraically, this transformation corresponds to
the possibility of transforming equations into equivalent quasiequations, and remarkably, such
a transformation (which we will expand on shortly) is also key to proving preservation under
MacNeille completions and canonical extensions.

The second major contribution of algebraic proof theory is the identification of the alge-
braic essence of cut elimination (for substructural logics) in the relationship between a certain
polarity-based relational structure (residuated frame) W arising from the given sequent calculus,
and a certain ordered algebra W+ which can be viewed as the complex algebra of W by analogy
with modal logic. Specifically, the fact that the calculus is cut-free is captured semantically by
W being an intransitive structure, while W+ is by construction an ordered algebra, on which
the cut rule is sound. Hence, in this context, cut elimination is encoded in the preservation of
validity from W to W+. For instance, the validity of analytic structural rules/quasiequations
is preserved from W to W+ (cf. [3]), which shows that analytic structural rules can indeed be
safely added to the basic Lambek calculus in a way which preserves its cut elimination.

In [7], residuated frames are introduced. Much in the same way as Kripke frames for
modal logic, residuated frames provide relational semantics for substructural logics and underlie
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the representation theory for the algebraic semantics of substructural logics. The algebraic
proof theory program is developed in [7] by showing the existence of a connection between
Gentzen-style sequent calculi for substructural logics and residuated frames, which translates
into a connection between a cut-free proof system and the finite model property and the finite
embeddability property for the corresponding variety of algebras.

We generalize the residuated frames of [7] and their connection with proof calculi. Specif-
ically: we introduce LE-frames as the counterparts of residuated frames for arbitrary logical
signatures of normal lattice expansions (LE-signatures); in particular, arbitrary signatures do
not need to be closed under the residuals of each connective. We introduce functional D-frames
as the LE-frames associated with any proper display calculus in any LE-signature; this gener-
alization involves moving from structural rules of so-called simple shape to the more general
class of analytic structural rules (cf. [10], Definition 4) in any LE-signature. Our results include
the proof of semantic cut elimination for the display calculus D.LE associated with the basic
normal LE-logic in any signature, the transfer of this cut eliminatiion to extensions of D.LE
with analytic structural rules, and the finite model property for D.LE and for extensions of
D.LE with analytic structural rules satisfying certain additional properties. We also discuss
how these results recapture the semantic cut elimination results in [3] and apply in a modular
way to a range of logics which includes (analytic extensions of) the basic epistemic logic of
categories [5, 6], and the Lambek-Grishin calculus [11].
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In the tradition of ‘parsing as deduction’, various logical calculi have been considered for appli-
cations in formal linguistics. In recent years a line of research has emerged focusing on the anal-
ysis of logical systems specifically designed to model a controlled linguistic resource management
[13, 12, 14, 15, 10, 1, 18]. Research on structural control and substructural logics is also motivated
by applications in other domains and has given rise to a rich literature in logic (see [6, 9, 11, 4, 17]).
In particular, [16] introduces a language expansion of the non-associative Lambek calculus NL with a
set of unary adjoint operators and a further generalization with a set of residuated n-ary connectives
(see also [2]). The general strategy is to define a multi-modal logic where linguistic composition is
relativized to specific resource management modes via a language expansion of the basic logic, and the
extra expressivity needed for linguistics applications is obtained in a controlled fashion via the addition
of interaction postulates between modes. Notably, the extra expressivity can be used to licence or to
block the access to different regimes of resource management (see also [12]).

In the present proposal we introduce the class of multi-type logics for explicit structural control
management (mSCLs) together with their algebraic and relational semantics, and provide proper display
calculi for the basic mSCLs and their analytic axiomatic extensions in a modular fashion (e.g. preserving
completeness, subformula property and cut elimination) according to the general methodology emerged
in the field of structural and algebraic proof theory [3, 5, 7, 8]; in particular, we show how all the logics
considered in [16] and related work, when recast as mSCLs, can profit from the pleasant proof-theoretic
and model-theoretic benefits that the multi-type approach brings with it.

For each i ∈ I, a heterogeneous structural control algebra is a structure

H := (G,S i,B,^i,�i,�i,_i,^,�,�,_,F ,G,FB,GB,≤G,≤S i ,≤B)

such that

• G := (G,≤G,F ,G) is a partially ordered algebra, F (resp. G) is a set of maps from Gn to G for
some natural number n, and for each map in F ∪G the corresponding adjoint/residual is also in
F ∪G;

• (S i,≤S i ) is a partial order; �i : G� S i, ^i : S i ↪→G, and ^i a �i; _i : G� S i, �i : S i ↪→G, and
_i a �i;

• the composition ^i�i : G→ G (resp. �i_i : G→ G) defines an interior operator (resp. a closure
operator); the compositions �i^i : S i→ S i and _i�i : S i→ S i define identity on S i;

• (B,≤B) is a partial order; � : G ↪→ B, ^ : B ↪→ G, and ^ a �; � : G ↪→ B, _ : B ↪→ G, and
_ a �; moreover, for each map f ∈ F (resp. g ∈ G) with domain Gn, there exists a map FB 3 fB :
B×Gn−1 → G (resp. GB 3 gB : B×Gn−1 → G), and for each map in FB ∪GB the corresponding
adjoint/residual is also in FB∪GB;

• the composition ^� : G→G and �_i : G→G define identity on G; the compositions �^ : B→ B
and _� : B→ B define identity on B.
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G is the set of general elements, the elements that inhabit the more restrictive regime. The sort
(S i,≤S i ) is a set of elements that witness the licence of a special (more liberal) regime. The in-
dexed unary heterogeneous operators are the licensing modalities and therefore they play a rôle in
each interaction postulate: they identify special elements in the general regime/type modulo the com-
position of adjoint pairs. E.g. in the expanded signature of the Lambek calculus the postulate (A)
(x⊗ y)⊗^aα ≤G x⊗ (y⊗^aα) represents a controlled form of left-to-right associativity. The x,y here
are general elements and ^aα is the image of a special element α which then licenses the restructuring.
Complementary to this licensing use of the control operators, the sort (B,≤B) is a set of elements that
provide the room to block structural transformations that would otherwise be allowed. The non-indexed
unary operators � and ^ plus the n-ary heterogeneous operators in FB ∪GB guarantee the necessary
expressivity to make the needed type distinctions. E.g we could impose the interaction postulate (E)
x⊗^eα ≤G ^eα⊗ x (where x is general and α is special) without imposing x⊗B1 β ≤G β⊗B2 x (where x
is general, β is a blocking element, ⊗B1 : G×B→G, and ⊗B2 : B×G→G).

In the full paper, we show how the multi-type approach leads to elegant analyses of a number of
motivating examples for structural control in grammatical type logics.
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A "symmetric" formulation of intuitionistic propositional calculus, suggested by various authors 

(G. Moisil, A. Kuznetsov, C. Rauszer), presupposes that any connective &, , →G, ⏉, ⏊  has its dual 

, &, →Br, ⏊, ⏉,  and the duality principle of the classical logic is restored. The notion of double-

Brouwerian algebras was introduced by J. McKinsey and A. Tarski in [MT], based on the idea 

considered by T. Skolem in 1919.  

MV-algebras were introduced by Chang in [Ch] as an algebraic model for infinitely valued 

Łukasiewicz logic. An MV-algebra is an algebra (A, ⊗, ⊕, *, 0, 1) where (A, ⊕, 0) is an abelian monoid, 

and the following identities hold for all x, y A:  

 

x 1 = 1, x** = x,  0* = 1, x   x* = 1, x*  y)*  y  = (y*  x)*  x, x  y = (x*  y*)*. 

 

Every MV-algebra has an underlying ordered structure defined by x  y iff  x*  y = 1 which is a lattice 

order on A. The unit interval of real numbers [0, 1] endowed with the following operations: x  y=min(1, 

x + y), x  y = max(0, x+y −1), x* = 1−x, becomes an MV-algebra. From these operations are defined 

the lattice operations x  y = max(x, y) = (x  y*)  y and x  y = min(x,y) = (x*  y)  x. It is well 

known that the MV-algebra S = ([0,1], ⊗, ⊕, *, 0, 1) generates the variety MV of all MV-algebras, i. e. 

V(S) = MV. The algebra Sn = ({0,  1/n, … ,  n −1/n, 1}, ⊗, ⊕, *,0, 1) generates the subvariety MVn, 

the algebras of which is called MVn-algebras [Gr], i. e. V(Sn) = MVn. Notice that MV = V(n MVn). 

A Heyting algebra  (A, ∨, ∧, →H, 0, 1) is a bounded distributive lattice where the implication →H  

is adjoint to the lattice operation infimum  ∧.  A Browerian  algebra  (A, ∨, ∧, →Br, 0, 1) is a bounded 

distributive lattice where the co-implication (relatively pseudo-difference) →Br  is adjoint to the lattice 

operation supremum  ∨. If for bounded distributive lattice (A, ∨, ∧, 0, 1) there exist both implication 

→H    and relatively pseudo-difference →Br then it is named bi-Heyting (Heyting-Brouwerian)  algebra.  

A Gödel algebra (A, ∨, ∧, →G ,0, 1) is a Heyting algebra satisfying the identity (x →G y)∨(y  →G x) =1. 

We introduce a new algebra (A, ⊗, ⊕, *, ∨, ∧, →G, 0, 1) called Gödel-MV-algebra (GM V-

algebra) if (A, ⊗, ⊕, *, 0, 1) is M V -algebra and (A, ∨, ∧, →G ,0, 1) is a Gödel algebra.  In other 

words we have symbiosis of two algebras – MV-algebra and Gödel algebra.   

Let  Sn  = ({0,  1/n, … ,  n −1/n, 1}, ⊗, ⊕, *, ∨, ∧, →G, 0, 1) be GM Vn-algebra where ({0,  1/n, … 

,  n −1/n, 1}, ⊗, ⊕, *, 0, 1)  = Sn and ({0,  1/n, … ,  n −1/n, 1}, ∨, ∧, →G, 0, 1) is a Gödel algebra. Let 

GMVn  be the variety generated by the family { Sk :  1  k  n}.  

Taking into account that Lukasiewicz implication       x  y = x*   y is expressible in MV-

algebra, we have two distinct residuations.  Moreover, the relatively pseudo-difference b →Br a =       

(a*  →G b*)*  and Brouwerian negation  ┌a = (a*)* = 1 →Br a. 

mailto:adinola@unisa.it
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mailto:revaz.grigolia@tsu.ge
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Let A = (A, ⊗, ⊕, *, ∨, ∧, →G, 0, 1)  be GMV-algebra. Denote by A˚ = (A, ⊗, ⊕, *, 0, 1) the MV-

reduct of the GMV-algebra A and by A^ = (A, ∨, ∧, →G ,0, 1) the Heyting-reduct of the GMV-algebra 

A. 
 

Theorem 1. Let (A, ⊗, ⊕, *, ∨, ∧, →G, 0, 1)  be a GMV-algebra. Then A^ is a bi-Heyting (Heyting-

Brouwerian) algebra, where the relatively pseudo-difference b →Br a = (a*  →G b*)*  and  

Brouwerian negation ┌a = (a*)* = 1 →Br a. 
 

Let (A, ⊗, ⊕, *, ∨, ∧, →G, 0, 1) be a GMV-algebra. A subset F  A is said to be a Skolem MV-

filter, if F is a MV-filter (i. e. 1 F, if x F and  x  y, then y F, if x, y F, then x  y F) and if       

x F, then ┌x F. 
 

Theorem 2. Let F be a Skolem MV-filter of the GMV-algebra A. The equivalence relation  
x  y  (x*  y)  (y*  x) F is a congruence relation for the GMV-algebra A. 
 

Theorem 3. (i) Any chain GMV-algebra A is simple. 

(ii) Let {Fi}iI be the family of all maximal Skolem MV-filters of the GMV -algebra A. Then A is 

isomorphic to the subdirect product of the algebras of A/Fi (i  I). 

(iii) Any GMV-algebra is subdirect product of chain GMV -algebras. 

(iv) Any GMV-algebra is semi-simple. 
 

Theorem 4.  m-generated  free GMV-algebra  FGMV(m) is isomorphic to a subalgebra of an 

inverse limit F(m) of a chain of order type * of finite algebras, for m , and the finite algebras  

are isomorphic to the m-generated  free algebra  FGMVn(m)  of the variety GMVn . 
 

Theorem 5. A GMV-algebra A is finitely presented iff A  FGMV(m)/[u), where [u) is a principal 

Skolem MV-filter generated by some element u FGMV(m). 
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A pair L = 〈R,6〉 is a Grzegorczyk lattice iff it is a lattice with zero element and satisfies
the following strong polarization condition1:

x 
 y =⇒ ∃z∈R(z 6 x ∧ z ⊥ y ∧ ∀u∈R(u 6 x ∧ u ⊥ y) =⇒ u 6 z) , (P)

where x ⊥ y
df⇐⇒ x u y = 0 (with u being the standard meet operation). All elements from

the class have the relative complement operation in R×R:

x− y := max{z ∈ R | z 6 x ∧ z ⊥ y} , (df −)

which is well-defined thanks to (P).
A triple C = 〈R,6,C〉, where 〈R,6〉 is a Grzegorczyk lattice and C ⊆ R×R satisfies:

0 C/ x, (C0)

x 6 y =⇒ x C y, (C1)

x C y =⇒ y C x, (C2)

x 6 y ∧ x C z =⇒ y C z , (C3)

will be called a quasi-contact lattice.2 Elements of R are called regions and C is a contact
(connection) relation. In C we define non-tangential inclusion and overlap relations by means
of the following two conditions (respectively):

x� y
df⇐⇒ ∀z∈R(z ⊥ y =⇒ z C/ y) , x© y

df⇐⇒ x u y 6= 0 .

A pre-point of C is a non-empty set X of regions such that:

0 /∈ X , (r0)

∀u,v∈X(u = v ∨ u� v ∨ v � u) , (r1)

∀u∈X∃v∈X v � u , (r2)

∀x,y∈R

̂
∀u∈X(u© x ∧ u© y) =⇒ x C y

)
. (r3)

The purpose of this definition is to formally grasp the intuition of point as the system of
diminishing regions determining the unique location in space.

1In the sequel, ∧, ∨, =⇒ and ⇐⇒ are standard logical connectives of conjunction, disjunction, implication
and equivalence, respectively.

2The prefix ‘quasi’ is due to absence of the standard contact relation axiom: x C y t z =⇒ x C y ∨ x C z
(where t is the standard join operation).
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Let Q be the set of all pre-points of C. We extend the set of axioms for C with the following
postulates:

x© y =⇒ ∃Q∈Q∃z∈Q z 6 x u y , (G1)

x C y ∧ x ⊥ y =⇒ ∃Q∈Q∀z∈Q (z © x ∧ z © y). (G2)

called Grzegorczyk axioms, introduced in [5]. Any C which satisfies all the aforementioned
axioms is called Grzegorczyk contact lattice (GCL for short). Every such lattice satisfies the
standard contact relation axioms (see e.g. [1]).

A point of GCL is any filter generated by a pre-point:

p is a point iff ∃Q∈Q p = {x ∈ R | ∃q∈Q q 6 x} .

In every GCL we can introduce a topology in the set of all points, first by defining the set of
all internal points of a region x:

Irl(x) := {p | x ∈ p} ,

and second, taking all Irl(x) as a basis. As a result we obtain a concentric topological space
(see. [2, 4]).

The following set-theoretical representation theorem holds for GCLs:

Theorem 1. If C is a GCL, then Irl[C] is a GCL and :

1. Irl is an isomorphism of C onto Irl[C],

2. the operation Irl is a reduced and perfect representation of C,

3. C is complete iff Irl[C] is complete.

In our talk we would like to sketch a proof of the above theorem and give a full characteri-
zation of finite Grzegorczyk contact lattices, in particular we would like to show that:

Theorem 2. A Grzegorczyk contact lattice L is finite iff it is finite as a lattice and C =©.

Theorem 3. A Grzegorczyk contact lattice L is finite iff it is complete and the set of Grzegorczyk
points coincides with the set of maximal filters.

All results from the talk can be found in [2, 3, 4].
The presentation is a continuation of presentations given at TACL 2009, 2015 and SYSMICS

2019 conferences.
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 Lukasiewicz logic ( L) is an important and familiar example of a many-valued logic; a vast
amount of knowledge has been accumulated on its algebraic semantics, provided by the class of MV-
algebras. Semantic investigations allowed a fairly good understanding of the computational aspects
of the logic, with a range of results. The propositional logic (tautologousness and provability
from finite theories) is known to be coNP complete, a result that follows Mundici’s approach to
determining the complexity of the SAT problem for [0, 1] L, the standard MV-algebra [10]. First-
order standard tautologies turned out to be complete for the class Π2 of the arithmetical hierarchy
[13], and also the monadic fragment of first-order logic (both general and standard semantics) is
undecidable, a result due to Bou. Admissible rules of  Lukasiewicz logic are decidable in polynomial
space, and complete therein [7, 8]. One can further show, e.g., that the set of formulas that are
positively, but not fully, satisfiable in the standard semantics is complete for the class DP [6], or
that the set of prenex formulas with one existential propositional quantifier valid in the standard
semantics belongs to the class ΠP

2 of the polynomial hierarchy [2].
The present work looks at an optimization problem in (propositional)  Lukasiewicz logic. To

introduce the problem, we consider a conservative expansion of  Lukasiewicz logic with constants
for the rational elements of the standard semantics and the bookkeeping axioms; this logic is
sometimes called Rational Pavelka logic (RPL) [4, 3, 12]. Pavelka completeness theorem states
that for T a theory and ϕ a formula in RPL, the provability degree of ϕ in T equals its validity
degree, i.e., one has

|ϕ|T = sup{r | T `RPL r → ϕ} = inf{v(ϕ) | v model of T} = ‖ϕ‖T

where, in the definition of the provability degree, the r’s range in the rationals in [0, 1], while the
assignments v used to define the validity degree are taken in the standard MV-algebra. Computing
the validity degree appears easier than directly obtaining results on the provability degree, because
for the former, one can appeal to the standard semantics. In fact [4] shows that for a finite T ,
the validity degree is attained on a rational assignment (and is therefore rational); it follows also
that the denominators are of polynomial size in |T | and |ϕ|. Another reason for working with
the validity degree is that the definition applies easily even in  Lukasiewicz logic without any new
rational constants. For a finite T , computing the validity degree is a natural optimization problem.

ValDegree
Instance: a finite theory T and a formula ϕ of RPL (with or without rational constants).
Output: ‖ϕ‖T .

It is shown in [5] that provability from finite theories in RPL, taken as a decision problem, is
coNP complete (so expansion with rational constants does not affect the complexity of  Lukasiewicz
logic). In particular, the problem “given T , ϕ, and a rational r, does T `RPL r → ϕ?” is coNP
complete.

We first establish an expectable result: on input T and ϕ, one can compute, in time polynomial
in the input size, the validity degree ‖ϕ‖T if one has as oracle a subroutine solving the decision
version of the problem; this is achieved by binary search, taking into account the above observation
about small denominators. In other words, there is a Turing reduction of the optimization to the
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decision version of the problem, analogously to other optimization problems such as TSP (cf. [11]).
This puts ValDegree in FPNP. We note [1] provides tight upper bounds for denominators needed
to demonstrate that an  L-formula is not a tautology of the standard semantics.

A lower bound for ValDegree can be established by reducing another optimization problem
to it, via a metric reduction (a many-one polynomial-time reduction suitable for optimization
problems). We provide a metric reduction from the Weighted-MaxSAT problem: “for a Boolean
CNF formula ϕ(x1, . . . , xk) with (binary) weights on clauses w1, . . . , wn, maximize the sum of
weights of true clauses over all assignments to variables in ϕ”, to ValDegree. The problem
Weighted-MaxSAT has been proved complete for the classes FPNP and OptP in [9].
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Our central theme of study in this note is the topos approach to quantum mechanics that
was introduced by Isham and Butterfield [14], and continued by others including Döring and
Flori, see [2, 3, 4]. The two books by Flori [5, 6] are the most current source. This approach
has also spurred a related topos approach [11, 12, 13, 17].

The idea of this topos approach is to take the von Neumann algebra N used to represent a
quantum system, form its poset of abelian von Neumann subalgebras V(N ), and then take the
topos of presheaves on this poset as the fundamental ingredient. The philosophy is that quantum
mechanics behaves classically if one restricts attention “locally”, that is to pieces consisting of
observables one can measure at the same time, the abelian subalgebras. The topos approach is
a machinery to paste together these local “snapshots” to form the whole picture. For instance,
the spectral presheaf Σ associates to each V ∈ V(N ) its Gelfand spectrum ΣV . This spectral
presheaf is the analog of a classical state space. Events are classically certain subsets of the
state space, and in the topos approach these correspond to clopen subobjects of the spectral
presheaf Σ, that is, subobjects of Σ where each component is a clopen subset of the Gelfand
spectrum ΣV . Many aspects of quantum theory are developed in this approach such as events,
observables, states, and automorphisms. The Kochen-Specker Theorem [15] that it is impossible
to assign simultaneous truth values to all questions of a quantum system is equivalent to the
spectral presheaf Σ failing to have a global element.

Several results are of interest in looking at this topos approach from afar. First, the structure
of the poset V(N ) determines the von Neumann algebra up to Jordan isomorphism [1], a result
that has various extensions [8, 9, 10, 16]. Most pertinent here is the result of [9] where it is shown
that the poset V(N ) is determined by its subposet V(N )∗ of elements of height at most two, and
that these posets V(N )∗ have representations reminiscent of projective geometries consisting
of points and lines. These results are extended in [9] to provide a near categorical equivalence
between orthomodular posets and certain structures that closely resemble projective geometries
and the morphisms between them. This can be viewed as a version of Greechie diagrams [7]
that treats arbitrary orthomodular posets and the morphisms between them.

Our purpose here, is to turn these results back to the original focus, that of the topos
treatment of quantum mechanics. Rather than consider the topos of presheaves over V(N ), we
consider the topos of presheaves over V(N )∗. We show that the ingredients of [2, 5, 6] hold
in this altered setting. The point is that the topos approach embeds quantum mechanics into
the topos of presheaves, but presheaves without physical importance abound. The same is true
whether one works in the topos over V(N ) or its short version V(N )∗.

Not only can one achieve the same result working with presheaves over the short poset
V(N )∗, it provides considerable simplification. For example, each V ∈ V(N )∗ has a Boolean al-
gebra of projections with at most 8 elements. So the spectral presheaf Σ∗ over V(N )∗ associates
to such V its spectrum which is a set with at most 3 elements. The Stone topology vanishes
into discreteness. The result that the clopen subobjects of Σ∗ form a Heyting algebra is then
a triviality from topos theory, they are all subobjects. Similar comments apply even moreso to
various other aspects of the topos approach such as observables, states, and automorphisms.
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This also points to a question related to the view expressed in [2] that the internal logic of the
topos of presheaves over V(N ) captures a tangible aspect of quantum mechanics. If this is the
case, why this logic, rather than that of the topos of presheaves over V(N )∗?
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[1] A. Döring and J. Harding, Abelian subalgebras and the Jordan structure of a von Neumann algebra,
Houston J. Math. 42(2):559–568, 2016.
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Given any Heyting algebra A = (A,∧,∨,→, 0, 1) we obtain monoids (A,∨, 0) and (A,∧, 1).
The direct product of these two monoids determines a monoidal structure on A2 which lifts to
the power set ℘(A2) in the evident way. The set N ⊆ A2 ×A2 defined as,

(s, a)N(t, b) ⇐⇒ s ∨ t ∨ (a→ b) = 1,

is a so-called nuclear relation on the lattice-ordered monoid ℘(A2) and as such gives rise to a
complete lattice, see, e.g., [4], which we denote by A+. It can be shown that A+ is in fact a
Heyting algebra and that A embeds into it, making A+ a completion of A. This completion is
(isomorphic) to the so-called hyper-MacNeille completion introduced by Ciabattoni, Galatos,
and Terui [2] in connection with their algebraic proof of cut-admissibility for a certain class
of hyper-sequent calculi. In the context of Heyting algebras1 they showed that any variety
of Heyting algebras axiomatised by so-called P3-equations is closed under hyper-MacNeille
completions [2, Thm. 6.8]. They also showed that for any subdirectly irreducible Heyting
algebra A the hyper-MacNeille completion A+ and the MacNeille completion A coincide [2,
Prop. 6.6]. Furthermore, they provided sufficient conditions for the embedding A ↪→ A+ to be
regular, i.e., to preserve all existing meets and joins in A, [2, Prop. 6.11].

We report on work to understand the hyper-MacNeille completion of Heyting algebras
from a more algebraic point of view allowing us to generalize some of the results from [2].

A bounded distributive lattice D is supplemented if for each a ∈ D the equation a∨x ≈ 1 has a
least solution which we denote ∼ a. Thus a bounded distributive lattice is supplemented iff its
order dual is pseudo-complemented, cf., e.g., [1, Chap. VIII]. We call a supplemented bounded
distributive lattice De Morgan supplemented if it satisfies the equation ∼(x ∨ y) ≈ ∼x ∧ ∼ y,
noting that the dual equation is satisfied in any supplemented bounded distributive lattice.

Examples of De Morgan supplemented Heyting algebras include all Boolean algebras and
all Heyting algebras with a join irreducible top element, viz., the finitely subdirectly irreducible
(fsi) Heyting algebras. In fact, a Heyting algebra is De Morgan supplemented iff it is a Boolean
product of fsi Heyting algebras, cf., [7, Thm. 9.5]. For De Morgan supplemented Heyting
algebras the hyper-MacNeille completion is easy to understand.

Proposition 1. Let A be a De Morgan supplemented Heyting algebra. Then, A+ is isomorphic
to A.

In particular, we obtain that the MacNeille and the hyper-MacNeille completions coincide
for finitely subdirectly irreducible Heyting algebras and for Boolean algebras.

Each prime filter x on a Heyting algebra A gives rise to a congruence θx on A such that the
quotient A/θx is finitely subdirectly irreducible. Letting M denote the set of prime filters of

∗This project has received funding from the European Unions Horizon 2020 research and innovation pro-
gramme under the Marie Skodowska-Curie grant agreement No 689176.

1The results from [2] applies in one form or other, mutatis mutandis, in the much more general setting of
pointed residuated lattices or FL-algebras.
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A which are minimal with respect to set-theoretic inclusion, it is not difficult to see that A is
a subdirect product of the family {A/θx}x∈M . One may topologize the (disjoint) union of this
family to obtain a sheaf of Heyting algebras with base space M and stalks {A/θx}x∈M . By
identifying dense open sections of this sheaf when they agree on a dense open subset of M we
obtain a Heyting algebra Q(A) which belongs to the variety generated by A. The algebra Q(A)
is always De Morgan supplemented and completely determines the hyper-MacNeille completion
of A in the following sense.

Theorem 2. The hyper-MacNeille completion A+ of a Heyting algebra A is isomorphic to the
MacNeille completion of Q(A).

Remark 3. We note that algebras of dense open sections also play a crucial role in the study
of MacNeille completions of (weak) Boolean products of lattice-based algebras, cf., [5, 3].

From Theorem 2 and Proposition 1 we obtain the following.

Corollary 4. A variety V of Heyting algebras is closed under hyper-MacNeille completions iff
the class of De Morgan supplemented members of V is closed under MacNeille completions.

Even for supplemented Heyting algebras MacNeille completions are relatively easier to work
with than for arbitrary Heyting algebras. Consequently, using Corollary 4 it is not difficult to
show that many varieties of Heyting algebras are closed under hyper-MacNeille completions,
e.g., the well-known varieties LC, KC and BD2. Note that unlike the first two, the variety BD2

cannot be axiomatized by P3-equations, see [6, Prop. 3.24].
One may show that when the size of the algebras {A/θx}x∈M is uniformly bounded on a

dense open subset of M then Q(A) is complete. Jónsson’s Lemma then implies the following.

Theorem 5. Any finitely generated variety of Heyting algebras is closed under hyper-MacNeille
completions.

Theorem 5 in conjunction with the characterization of varieties of Heyting algebras deter-
mined by P3-equations [6] allows us to give more examples of varieties of Heyting algebras
closed under hyper-MacNeille completions but not determined by P3-equations.

Finally, from Theorem 2 it also follows that the hyper-MacNeille completion of a Heyting
algebra is always De Morgan supplemented. Using this it can be shown that, at least for
Heyting algebras, the sufficient condition for the hyper-MacNeille completion to be regular
given by Ciabattoni et al. is in fact also necessary.
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Categorifying the comprehension scheme of ZF naturally leads to the notion of the subobject
classifier, namely the “true” morphism from the terminal object to the truth object of the category
is the universal subobject and any subobject is obtained as a pullback of the universal subobject.
It also yields the epi-mono factorization system in the category.

Going one level higher, it was first realized by Street and Walters ([1]) that category of
pointed sets discretely opfibred over the category of sets plays the same role as the subobject
classifier. This was internalized in suitably structured 2-categories. Similarly the comprehension
construction yields that discrete opfibrations and initial functors form a factorization system.
There is a dual comprehensive factorization system, namely that of discrete fibrations and final
functors.

Going yet another dimension higher, we introduce the notion of comprehension constructions
for bicategories ([10]) (that is internal to the tricategory Hom of bicategories, pseudo functors,
pseudo natural transformations, and modifications). This will rely on earlier work on fibrations
of bicategories ([4], [5], [6]).

For us, the main example is the bicategory of generalized spaces (that is Grothendieck toposes
defined over a varying elementary base) fibred over the bicategory of elementary toposes and
geometric morphisms. We use the structure of comprehension to prove results about fibrations
and opfibrations of toposes from fibrational extension of generalized geometric theories ([9]).
As we shall see the notions of (op)fibration of toposes have close connections to topological
properties. For instance, every local homeomorphism is an opfibration while every fibrewise
Stone space is a fibration.

To study fibrations of toposes, Johnstone defined fibrations internal to 2-categories ([3]). If
toposes are taken to be bounded over some fixed baseS , the analysis of fibrations and opfibrations
in the 2-category BTop/S of bounded toposes over base S is much easier than the general case
where there is no canonical choice of base topos and one has to work in the 2-category BTop.
Indeed, Johnstone proved several important (op)fibrational results in BTop.

I will introduce the 2-categoryCon of Arithmetic Universe (AU) contexts developed by Vickers
([7], [8]). It provides a language to reason about geometric construction within the predicative
fragment of internal language of toposes, that is within the language of Arithmetic Universes.

Borrowing from work of Street ([2]), we introduce a syntactic notion of (op)fibration in Con

which is based on Chevalley’s internal characterization of fibrations obtained as a theorem in
there. Note that Johnstone’s definition of internal (op)fibrations is more general than Chevalley’s
definition: neither strictness of 2-categories nor the existence of the structure of strict pullbacks
and comma objects are assumed.
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I shall explain our result that gives a recipe for obtaining (op)fibrations of toposes from the
finitary syntactic (op)fibrations of contexts ([9]). The scaffolding of the proof of this result is
based on a certain comprehension bicategory involving fibred bicategory of generalized spaces
over elementary toposes.

As an applications of this result, I will discuss the construction of the colimits of Grothendieck
topos from generalized point-free bag contexts. Hopefully, this sheds some light on the relation-
ship between AUs and traditional Grothendieck topos theory.
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In this contribution we investigate and slightly generalize a certain construction due to
Tsinakis and Wille [5] of “residuated lattices of fractions” based on bimodules of residuated
lattices. In particular, we investigate to what extent residuated bimodules (two-sorted algebras
consisting of a residuated lattice acting on a lattice) can be presented as one-sorted algebras
consisting of a residuated lattice equipped with an interior and a closure operator satisfying
certain conditions, and vice versa. In doing so, we generalize the results of Busaniche and
Cignoli [1] for integral commutative residuated lattices to arbitrary residuated lattices.

A residuated `-bimodule is a two-sorted algebra consisting of a residuated lattice L, a lat-
tice M, a residuated left action ∗ of L on M with residuals ∗\ and ∗/, and a residuated right
action ∗ of L on M with residuals \∗ and /∗ . The preceding operations satisfy the following
conditions for all a, b ∈ L and x ∈M:

e ∗ x = x, x ∗ e = x,

ab ∗ x = a ∗ (b ∗ x), (a ∗ x) ∗ b = a ∗ (x ∗ b), x ∗ ab = (x ∗ a) ∗ b,
x ≤ a∗\y ⇐⇒ a ∗ x ≤ y ⇐⇒ a ≤ y∗/x,

x ≤ y/∗a ⇐⇒ x ∗ a ≤ y ⇐⇒ a ≤ x\∗y.

In particular, each residuated lattice L acts on its own order dual L∂ with the residuated action
a ∗ x = x/a and x ∗ a = a\x. We call this the canonical action of L on L∂ .

Residuated `-bimodules arise whenever a residuated lattice L is equipped with a conucleus σ
(see [2, 3] for the definition of a conucleus σ on L and the conuclear image Lσ) and a closure
operator γ satisfying the compatibility conditions σa · γx ≤ γ(a · x) and γx · σa ≤ γ(x · a).
Then Lσ acts on the lattice of γ-closed elements Lγ via the residuated action a ∗ x = γ(a · x)
and x ∗ a = γ(x · a). In fact, we show that each residuated `-bimodule equipped with an
element 0 ∈M such that a ∗ 0 = 0 ∗ a for each a ∈ L arises in this way by modifying the twist
product construction in [5] slightly. (Such bimodules will be called cyclic-pointed. Accordingly,
a cyclic-pointed residuated lattice is a residuated lattice L equipped with a constant 0 such that
a\0 = 0/a for each a ∈ L.)

This is because each cyclic-pointed residuated `-bimodule yields a residuated lattice Lo0M
which consists of the set {〈a, x〉 | a ∈ L & x ∈M & 0 ∗ a ≤ x} equipped with the operations

eLo0M = 〈e, 0〉, 〈a, x〉 · 〈b, y〉 = 〈ab, (x ∗ b) ∨ (a ∗ y)〉,
〈a, x〉 ∧ 〈b, y〉 = 〈a ∧ b, x ∨ y〉, 〈a, x〉\〈b, y〉 = 〈a\b ∧ x\∗y, a∗\y〉,
〈a, x〉 ∨ 〈b, y〉 = 〈a ∨ b, x ∧ y〉, 〈a, x〉/〈b, y〉 = 〈a/b ∧ x∗/y, x/∗ b〉.

In the case of L acting canonically on its order dual L∂ , the resulting algebra will be denoted L./.
The residuated lattice L can be recovered as the image of the conucleus σ : 〈a, x〉 7→ 〈a, a ∗ 0〉,
and M can be recovered as the image of the closure operator γ : 〈a, x〉 7→ 〈x\∗0, x〉. This yields
the following improvement of a result proved in [3] for bounded residuated lattices.
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Theorem 1. The conuclear images of (commutative) involutive residuated lattices are exactly
(commutative) cyclic-pointed residuated lattices. More precisely, if 0 is a cyclic element of a
(commutative) residuated lattice L, then there is a (commutative) involutive residuated lattice K
and a conucleus σ on K which preserves joins and products such that 〈L, 0〉 ∼= 〈Kσ, σ(0)〉.

An algebra of the form L o0 M (of the form L./) will be called a bimodule (square) twist
product. Square twist products are in fact involutive residuated lattices (in the sense of e.g. [5]).

Theorem 2. A residuated lattice L with a conucleus σ, a closure operator γ, and a constant
0 = γ0 embeds into a bimodule twist product if and only if it satisfies the following equations:

σx\y ∧ x\γy = x\y σ(x · y) = σx · σy
x/σy ∧ γx/y = x/y σ(x ∨ y) = σx ∨ σy
σx · y ∨ x · σy = x · y γ(x ∧ y) = γx ∧ γy

σx\γy = γ(x\y) γ(0 · σx) = γσx σ(0\γx) = σγx

σy/γx = γ(y/x) γ(σx · 0) = γσx σ(γx/0) = σγx

In that case the embedding is given by the map η : x 7→ 〈σx, γx〉.

Theorem 3. An involutive residuated lattice L with a conucleus σ embeds into a square twist
product if and only if it embeds into a bimodule twist product when expanded by the closure
operator γx = (σ(x\0))\0.

These embeddings in fact yield categorical adjunctions. Restricting to square twist products
of integral commutative residuated lattices corresponds to imposing the equations 0 = e, σx =
e ∧ x, and x · y = y · x on the square twist products. In particular, the above equations then
reduce to the equational description of the so-called K-lattices of Busaniche and Cignoli [1].
The T -lattices of Ono and Rivieccio [4] are also related, although distinct, structures.

Finally, we remark that the preceding construction can be used to prove that any Brouwerian
algebra is isomorphic to the negative cone of an idempotent involutive residuated lattice.

Theorem 4. Brouwerian algebras are precisely the negative cones of idempotent involutive
residuated lattices. In particular, each Brouwerian algebra L is isomorphic to the negative cone
of an idempotent involutive nucleus image of a conucleus image of L./.
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The notion of contact algebra is one of the main tools in the region based theory of space. It
is an extension of Boolean algebra with an additional relation C called contact. The elements
of the algebra are called regions and are considered as analogs of physical bodies. A ternary
predicate of extended contact ` has been introduced in [2]. Extended contact gives the possi-
bility to define the unary predicate of internal connectedness co which cannot be defined in the
language of contact algebras (co(a) iff ∀b∀c(b 6= 0 ∧ c 6= 0 ∧ a = b+ c→ b, c 0 a∗)).

Definition 1. [2] Extended contact algebra (ExtCA, for short) is a system B = (B,≤
, 0, 1, ·,+, ∗,`, C, co), where (B,≤, 0, 1, ·,+, ∗) is a nondegenerate Boolean algebra, ` is a ternary
relation in B such that the following axioms are true:
(1) a, b ` c→ b, a ` c,
(2) a ≤ c→ a, b ` c,
(3) a, b ` x, a, b ` y, x, y ` c→ a, b ` c,
(4) a, b ` c→ a · b ≤ c,
(5) a, b ` c→ a+ x, b ` c+ x,
C is a binary relation in B such that
(6) aCb↔ a, b 0 0,
co is a unary predicate in B such that
(7) co(a)↔ ∀b∀c(b 6= 0 ∧ c 6= 0 ∧ a = b+ c→ b, c 0 a∗).

Primary semantics for ExtCAs is topological. Let X be a topological space and a be its
subset. We say that a is regular closed if a = Cl Int a. A topological ExtCA over X is the
structure with universe the set RC(X) of all regular closed subsets together with the following
interpretations: a ≤ b iff a ⊆ b, 0 = ∅, 1 = X, a ·b = Cl Int (a∩b), a+b = a∪b, a∗ = Cl (X \a),
a, b ` c iff a ∩ b ⊆ c, aCb iff a, b 0 ∅, co(a) iff Int a is a connected subspace of X.

It is interesting also to consider a relational semantics for ExtCAs. An equivalence frame
of type 2 is a relational structure of the form (W,R1, R2), where W is a nonempty set and R1

and R2 are equivalence relations on W .

We relate to any equivalence frame of type 2 a relational ExtCA with underlying structure
the Boolean algebra of all subsets of W : B = (2W ,⊆, ∅,W,∩,∪, ∗,`, C, co), where ∗ denotes
the set theoretical complement and for any subsets of W a, b, and c:

• a, b ` c iff ∀A,A1, B,B1

(
AR1A1 ∈ a,BR1B1 ∈ b, AR2B → (∃C,C1)(CR1C1 ∈ c, AR2C)

)
and a ∩ b ⊆ c,

• aCb iff a, b 0 ∅,
• co(a) iff (∀b, c ⊆W )(b 6= ∅, c 6= ∅, a = b ∪ c→ b, c 0 (W \ a)).

We say that a formula is true in (W,R1, R2) if it is true in the ExtCA related to (W,R1, R2).

Theorem 1. [1] Let B be a finite ExtCA. Then B is isomorphically embedded in the ExtCA
related to some equivalence frame of type 2 (W,R1, R2).
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We consider a quantifier-free first-order logic L for ExtCAs which has the following:
• axioms:
- the axioms of the classical propositional logic
- the axioms of Boolean algebra
- the axioms of ExtCA concerning the relations extended contact and contact
- the axiom schemes:
(Ax co) co(p) ∧ q 6= 0 ∧ r 6= 0 ∧ p = q + r → q, r 6` p∗
(Ax co 1) co(0)

(Ax co 2) ¬co(p+ q)→ ¬co(p) ∨ ¬co(q)
(Ax co 3) co(p+ q)→ co(p) ∧ co(q)
• rules:
- MP

This logic is decidable and we have the following

Theorem 2. For every quantifier-free formula α the following conditions are equivalent:
i) α is a theorem of L;
ii) α is true in all equivalence frames of type 2.

Extended contact gives also the possibility to define the relation of contact (aCb iff a, b 6` 0)
and the binary relation RC∩ meaning that the intersection of two regular closed sets is a regular
closed set (RC∩(a, b) iff a, b ` a · b). It is worth to consider also a quantifier-free first-order
language without the predicate of internal connectedness i.e. L(0, 1; ·,+, ∗;≤,`, C). In this
weaker language one equivalence relation is enough - we consider equivalence frames of type
1. They are relational structures (W,R), where W is a nonempty set and R is an equivalence
relation on W .

We relate to any equivalence frame of type 1 a relational ExtCA in L B = (2W ,⊆
, ∅,W,∩,∪, ∗,`, C), where ∗ denotes the set theoretical complement and for any subsets of
W a, b, and c:

• a, b ` c iff
(

(∃A ∈ a)(∃B ∈ b)ARB → (∃C ∈ c)ARC
)

and a ∩ b ⊆ c,
• aCb iff a, b 0 ∅

Theorem 3. [1] Let B be a finite ExtCA. Then in L B is isomorphically embedded in the
ExtCA related to some equivalence frame of type 1 (W,R).

Let L1 be the logic obtained from L by removing axioms (Ax co), (Ax co 1), (Ax co 2) and
(Ax co 3). This logic is called extended contact logic. We have the following

Theorem 4. For every formula α in L the following conditions are equivalent:
i) α is a theorem of L1;
ii) α is true in all equivalence frames of type 1.

Thanks. Thanks to the anonymous referee for the remarks. This abstract is supported by
contract DN02/15/19.12.2016 ”Space, Time and Modality: Relational, Algebraic and Topolog-
ical Models” with Bulgarian NSF.
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Effect algebras [1, 5, 2] are positive, cancellative, unital partial abelian monoids. The
category of effect algebras is denoted by EA.

It was proved by Jacobs and Mandemaker in [4] that the category EA is cocomplete. Co-
products of effect algebras are very easy to describe, this construction is called 0, 1-pasting.
It is much more difficult to describe coequalizers. Let us note that a regular epimorphism of
effect algebras need not be surjective, see [4] for an example. This is probably the reason why
previous attempts to give a sufficiently general theory of congruences of effect algebras were
not entirely satisfactory.

In [4], colimits are transferred along a coreflection from a pseudovariety of barred commu-
tative monoids, which has all colimits. In the present paper, we use a similar but different
method. We fully embed the category of effect algebras into a category of finite multiset covers
FinMulCov. The object of this category consist of pairs (𝑋, 𝒯(𝑋)), where 𝑋 is a set and
𝒯(𝑋) is a system of finite 𝑋-based multisets such that every element of 𝑋 belongs to at least
one multiset in 𝒯(𝑋). The notion of a set equipped with a multiset cover is a generalization of
the notion of an 𝐸-test space [3].

Morphisms in FinMulCov are given by pushforwards, as follows; if 𝐭 ∶ 𝑋 → ℕ is a finite
𝑋-based multiset and 𝑓 ∶ 𝑋 → 𝑌 is a mapping, then a pushforward of 𝐭 along 𝑓 is a finite
𝑌 -based multiset 𝑓∗(𝐭) ∶ 𝑌 → ℕ is given by the rule

𝑓∗(𝐭)(𝑦) = ∑
𝑥∈𝑓−1(𝑦)

𝐭(𝑥)

If (𝑋, 𝒯(𝑋)) and (𝑌 , 𝒯(𝑌 )) are sets equipped with a finite multiset cover, then a morphism from
(𝑋, 𝒯(𝑋)) to (𝑌 , 𝒯(𝑌 )) is a mapping 𝑓 ∶ 𝑋 → 𝑌 such that for every 𝐭 ∈ 𝒯(𝑋), 𝑓∗(𝐭) ∈ 𝒯(𝑌 ).
It is relatively straightforward to prove that FinMulCov has all colimits.

From every effect algebra (𝐸, +, 0, 1) one can construct a finite multiset cover (𝐸, 𝒯(𝐸))
such that 𝒯(𝐸) is a collection of all finite multisets 𝐭 ∶ 𝐸 → ℕ satisfying

∑
𝑥∈supp(𝐭)

𝐭(𝑥).𝑥 = 1.

This construction is a functor from the category of effect algebras EA into the category
FinMulCov. Moreover, it is a right adjoint and the counit of the adjunction is an isomorphism.
Therefore, we obtain the following theorem:

Theorem 1. EA is equivalent to a reflective subcategory of FinMulCov.

We may then use this result to give an explicit construction of colimits of effect algebras: a
colimit of a diagram in EA can be computed in FinMulCov and then reflected to EA.

∗This research is supported by grants VEGA 2/0069/16, 1/0420/15, Slovakia and by the Slovak Research
and Development Agency under the contracts APVV-14-0013, APVV-16-0073.
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An involutive residuated poset is of the form (A,≤, ·,∼,−, 0) such that (A,≤) is a poset, · is
associative, and for all x, y ∈ A,

x ≤ y ⇐⇒ x · ∼y ≤ 0 ⇐⇒ −y · x ≤ 0.

The element −0 is denoted by 1, and x · y is usually written xy.

Lemma 1. Involutive residuated posets satisfy the following identities and quasi-inequalties.

1. ∼−x = x = −∼x

2. x ≤ y ⇐⇒ ∼y ≤ ∼x ⇐⇒ −y ≤ −x

3. 1x = x = x1

4. 1 = ∼0, −1 = ∼1 = 0

5. xy ≤ z ⇐⇒ y ≤ ∼(−z · x) ⇐⇒ x ≤ −(y · ∼z)

Hence they are residuated po-monoids with residuals x\y = ∼(−y ·x) and x/y = −(y ·∼x), and
· is order-preserving in both arguments.

The class of involutive residuated posets is denoted by InRP. Since all operations are order-
preserving or order-reversing in each argument this class forms a partially ordered quasivariety
(Pigozzi [4]). It is in fact a partially ordered variety (or po-variety) defined by the (in)equations
(xy)z = x(yz), ∼−x = x = −∼x, ∼0 = −0, −0 · x = x, −x · x ≤ 1, x · ∼(yx) ≤ ∼y together
with the order-preservation of · and the order-reversal of ∼,−.

The po-subvarieties of commutative (xy = yx), cyclic (∼x = −x), integral (x ≤ 1) and
idempotent (xx = x) InRLs are denoted by CInRL, CyInRL, IInRL and IdInRL respectively.

InRP contains several well-known (term-equivalent) subclasses of (po-)algebras:

• The variety of pointed groups is axiomatized by adding x ≤ y =⇒ x = y to InRP.

• The variety of groups is axiomatized by adding 0 = 1 to pointed groups. Hence involutive
residuated posets may be considered the analogue of (pointed) groups over the category
of posets.

• The po-subvariety of pregroups (Lambek [2]) is obtained by adding the identities 0 = 1
and xy = ∼(−y · −x) to InRP.

• The po-subvariety of partially ordered groups (Glass [1]) is obtained by adding ∼x = −x
to pregroups.

• Involutive pocrims (Raftery [5]) are defined as involutive partially ordered commutative
residuated integral monoids, hence they are the subvariety CIInRP. They are a class of
algebras since x ≤ y ⇐⇒ −y · x = 0. Involutive pocrims include the subvarieties of
IMTL-algebras, (pseudo)-MV-algebras and Boolean algebras.
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• The variety of involutive residuated lattices is the expansion of InRP with a semilattice
operation ∨ such that x ≤ y ⇐⇒ x ∨ y = y, and this class includes the subvarieties of
lattice-ordered groups, classical linear logic algebras (without exponentials), De Morgan
monoids and Sugihara algebras from relevance logic.

For the po-variety of idempotent involutive residuated posets we have the following result,
which is from joint work with José Gil-Ferez.

Theorem 2. 1. Cyclic idempotent involutive residuated posets are commutative.

2. Finite idempotent involutive residuated chains are commutative.

3. There exists an infinite noncyclic idempotent involutive residuated chain.

We conjecture that all finite idempotent involutive residuated posets are commutative. The
following partial result has been obtained with the help of Prover9 [3].

Theorem 3. The po-subvariety of IdInRP determined by the identity ∼∼x = −−x satisfies
cyclicity and commutativity.

The smallest idempotent involutive residuated poset that is not a lattice has 10 elements and
is depicted in Figure 1. The · operation defines a semilattice since it is associative, commutative
and idempotent. This semilattice is displayed in the same figure as a meet-semilattice with top
element 1. Idempotence implies that 0 ≤ 1 and that ([0, 1], ·,+,−, 0, 1) is a Boolean algebra,
where x+ y = ∼(−y · −x).

1

0

≤

1

0

x v y ⇐⇒ xy = x

Figure 1: The smallest idempotent involutive residuated poset that is not a lattice.

For a po-algebra A in CIdInRP, define the terms 0x = −x · x and 1x = −(−x · x), and let
[[a, b]] = {c ∈ A : ac = a, bc = c}. Then the semilattice intervals ([[0x, 1x]], ·,+,−, 0x, 1x) are also
Boolean algebras and they partition A.

It is an open problem to characterize the posets that are reducts of involutive residuated
posets, even for the idempotent and/or finite members of InRP.
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A (pointed) residuated lattice is an algebraic structure A = 〈A,∧,∨, ·, \, /, 1, 0〉 such that
〈A,∧,∨〉 is a lattice, 〈A, ·, 1〉 is a monoid and · is residuated in the underlying lattice order with
residuals \ and /, i.e. for a, b, c ∈ L, ab ≤ c ⇐⇒ a ≤ c/b ⇐⇒ b ≤ a\c [3]. A residuated lattice
A is called idempotent if aa = a for all a ∈ A and commutative if ab = ba for all a, b ∈ A. The
linearly ordered members of the variety of commutative idempotent residuated lattices have
been studied in e.g. [6].

We define two linear negations on A by ∼x := x\0 and −x := 0/x. A residuated lattice
where −∼a = a = ∼−a for all a ∈ A is called involutive. Let CIdInRL denote the variety of
commutative idempotent involutive residuated lattices. In this setting, both residuals and both
negations coincide. We work in the signature 〈A,∧,∨, ·, /,−, 1, 0〉. Interesting subvarieties of
CIdInRL include Sugihara monoids, the algebraic semantics of relevance logic RMt [1].

The algebras A ∈ CIdInRL are studied by considering their monoidal reduct. For a, b ∈ A,
consider the monoidal order v, where a v b if and only if a · b = a ([4]). By the properties of
A, v is a meet-semilattice order with · as the meet operator and 1 as its maximum.

For each a ∈ A, let ⊥a and >a denote the terms a ∧ −a and a ∨ −a respectively. We write
[a, b]v and [a, b]≤ for the sets {c ∈ A | a v c v b} and {c ∈ A | a ≤ c ≤ b} respectively. The
following theorem summarizes a number of interesting properties of the structure of members of
CIdInRL, relating its monoidal and lattice order. These properties are illustrated by an example
in Figure 1.

Theorem. Let A ∈ CIdInRL.

• For each a ∈ A, 〈[⊥a,>a]v,∧,∨,−,⊥a,>a〉 is a Boolean algebra.

• The intervals [⊥a,>a]v partition A.

• The algebra 〈{⊥a | a ∈ A}, ·,∨〉 is a distributive lattice. Moreover, {⊥a | a ∈ A} = {a ∈
A | a ≤ 0}.

• For each a ∈ A, [⊥a, 1]v = [⊥a,>a]≤.

Aiming for a structural characterization of the finite members of the variety CIdInRL, we
exploit the properties listed above to construct new members of the variety. The methods to
build such new members involve the doubling of a filter in the monoidal order generated by an
element a ≤ 1. When a = ⊥a this construction generalizes Day’s doubling for lattices [2]. We
conjecture that these constructions suffice to construct all finite members of the variety.
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Hasse diagram of ≤

>c

>b

a >a

1 0

−a ⊥a

−b

c

b

⊥b

−c

⊥c

Hasse diagram of v

1 0

a >a

−a ⊥a

>b

−b

>c

b

⊥b

c −c

⊥c

Figure 1: The Hasse diagrams for ≤ and v of a residuated lattice A ∈ CIdInRL.
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We �rst establish a term equivalence between involutive residuated lattices [3] and a special
class of semirings, called involutive 0-free semirings. The semiring perspective helps us �nd a
necessary and su�cient condition for [0, 1] to be a subalgebra of an involutive residuated lattice.
We also import some results and techniques of semimodule theory in the study of this class of
semirings. Following what was already done with MV-semirings ([1], [4]), we generalize some
results about injective and projective semimodules [2]. Indeed, we note that the involution
plays a crucial role and that the results for MV-semirings are still true for involutive semirings
whenever the Mundici functor [6] is not involved. Using the Brzozowski derivative [5], we �nd
a new characterization of injective semimodules over additively idempotent and commutative
semirings.

An involutive residuated lattice is an algebra (A,∨,∧, ·, 1,∼,−) of type (2, 2, 2, 0, 1, 1) such
that (A,∨,∧) is a lattice, (A, ·, 1) is a monoid and for all x, y, z ∈ A

x · y ≤ z ⇐⇒ x ≤ −(y · ∼z) ⇐⇒ y ≤ ∼(−z · x).

It follows that the identity ∼−x = −∼x = x holds. A semiring is an algebra (S,+, ·, 0, 1) of
type (2, 2, 0, 0) such that (S,+, 0) is a commutative monoid, (S, ·, 1) is a monoid and for all
x, y, z ∈ S x · (y + z) = (x · y) + (x · z), (x + y) · z = (x · z) + (y · z) and 0 · x = x · 0 = 0. If
the semiring S is idempotent (i. e. x+ x = x for all x ∈ S), then (S,+, 0) is a join-semilattice.
A semiring S is zero-free is it doesn't have 0 (i. e. (S,+) is a commutative semigroup and the
last axiom of semirings isn't assumed to hold). An involutive zero-free idempotent semiring is
an algebra (A,∨, ·, 1,∼,−) such that

• (A,∨, ·, 1) is a zero-free idempotent semiring and

• x ≤ y ⇐⇒ x · ∼y ≤ −1 ⇐⇒ −y · x ≤ −1 for all x, y ∈ A.

Proposition 1. 1. Involutive residuated lattices and involutive zero-free semirings are term-
equivalent.

2. Denoting the element −1 in an involutive residuated lattice by 0, the interval [0, 1] is a
subalgebra if and only if 0 · 0 = 0.

An involutive semiring is an algebra (A,∨, ·, 0, 1,∼,−) of type (2, 2, 0, 0, 1, 1) such that

• (A,∨, ·, 0, 1) is an idempotent semiring and

• x ≤ y ⇐⇒ x · ∼y = 0 ⇐⇒ −y · x = 0 for all x, y ∈ A.

Let S be an idempotent semiring. A (left) S-semimodule is a join semilattice (M,∨, 0) with
a scalar multiplication · : A ×M → M , denoted a · x, such that the following conditions hold
for all a, b ∈ A and x, y ∈M :
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1. (a · b) · x = a · (b · x);

2. a · (x ∨ y) = (a · x) ∨ (a · y);

3. (a ∨ b) · x = (a · x) ∨ (b · x);

4. 0A · x = 0M = a · 0M ;

5. 1 · x = x.

It is known that, in every variety of algebras, the projective objects are the retracts of the
free ones. In particular, in the category of S-semimodule over a �xed semiring S, the free
objects are S(X), for some set X, ([1]).

Proposition 2. Let A be a �nite commutative involutive semiring and M a �nitely generated
A-semimodule. Then, M is injective if and only if it is projective.

Let Id(A) denote the set of join-semilattice ideals of an involutive semiring A. With the
Brzozowski derivative [5] as action, Id(A) is an A-semimodule.

Proposition 3. Let A be a commutative idempotent semiring and M an A-semimodule. Then,
M is injective if and only if M is a retract of Id(A)X for some set X.

A semiring S is called left (right) self-injective if the regular left (right) S-semimodule S is
injective. If the semiring is commutative and has this property then it is called self-injective.
It is clear from the two previous results that every �nite commutative involutive semiring is
self-injective.

Lemma 4. ([4]) Let S =
∏

i∈I Si be a direct product of semirings. Then S is left self-injective
if and only if each Si is left self-injective.

Thanks to the preceding lemma we have the following result.

Proposition 5. Every direct product of �nite commutative involutive semirings is self-injective.

Acknowledgement. The second author is very grateful for support from the SYSMICS project
and for the opportunity to spend a month doing research at Chapman University.
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Goubault-Larrecq [2] showed that the de Groot duality of stably compact spaces induces
a family of dualities on various powerdomain constructions. For example, he showed that the
dual of the Smyth powerdomain of a stably compact space X is the Hoare powerdomain of the
dual Xd and that the Plotkin and probabilistic powerdomain constructions commute with the
duality (−)

d
.

Our aim is to give a simple account of the above phenomena for stably compact locales, the
pointfree side of stably compact spaces. To this end, we introduce the following structure.

Definition 1. An entailment relation [1] on a set S is a binary relation ` on the finite subsets
of S such that

a ` a A ` B
A′, A ` B,B′

A ` B, a a,A ` B
A ` B

where a ∈ S and A,B,A′, B′ are finite subsets of S, and “,” denotes a union. An entailment
relation (S,`) is continuous if it is equipped with an idempotent relation ≺ on S such that

∃C (A ≺U C ` B)↔ ∃D (A ` D ≺L B) ,

where A ≺U B
def⇐⇒ ∀b ∈ B∃a ∈ A (a ≺ b), and ≺L is defined dually.

Every continuous entailment relation (S,`,≺) presents a stably compact locale by the set S
of generators and relations a =

∨
b≺a b and

∧
A ≤

∨
B for each A ` B. Conversely, any stably

compact locale can be represented by such a structure.
The notion of continuous entailment relation is related to a well-known representation of a

stably compact locale, called strong proximity lattice [3], which is a pair (S,≺) of a distributive
lattice (S, 0,∨, 1,∧) and an idempotent relation ≺ on S such that ≤ ◦ ≺ ◦ ≤ = ≺, and satisfying

0 ≺ 0, a ≺ c & b ≺ c→ a ∨ b ≺ c, a ≺ b ∨ c→ ∃b′ ≺ b∃c′ ≺ c (a ≺ b′ ∨ c′) ,

and the dual properties for 1 and ∧. It can be shown that the category of strong proximity
lattices and approximable relations is equivalent to that of continuous entailment relations with
a suitable notion of morphism.

The equivalence between the above two structures provides us with a simple method for
analysing the de Groot duals of various constructions on a stably compact locale presented
by a strong proximity lattice. Specifically, the method rests on an observation that the dual
Sd = (S,a,�) of a continuous entailment relation S = (S,`,≺) is a continuous entailment
relation, which presents the de Groot dual of the locale presented by S. Moreover, if the
relation ` is generated from a set R of initial entailments (i.e., axioms), then the dual a is
generated from axioms Rop := {A a B | A ` B ∈ R}.

In what follows, we take up the construction of a probabilistic powerdomain in the pointfree
setting to illustrate the point just mentioned.
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Definition 2. A probabilistic valuation on a locale X is a Scott continuous function µ : X →−−→
[0, 1] from X to the lower reals

−−→
[0, 1] satisfying µ(0) = 0, µ(1) = 1, and the modular law:

µ(x) + µ(y) = µ(x ∧ y) + µ(x ∨ y). The dual of a probabilistic valuation, called covaluation, is

a Scott continuous function ν : X →
←−−
[0, 1] from X to the upper reals

←−−
[0, 1] satisfying ν(1) = 0,

ν(0) = 1, and the modular law. Let V(X) and C(X) be locales whose points are probabilistic
valuations on X and covaluations on X, respectively (cf. Vickers [5]).

Proposition 3. Let X be a stably compact locale represented by a strong proximity lattice (S,≺).
Then, the locale V(X) is presented by a continuous entailment relation on {〈p, a〉 | p ∈ Q, a ∈ S}
generated by the axioms

∅ ` 〈p, a〉 (p < 0) 〈p, a〉 ` ∅ (1 < p) 〈p, 0〉 ` ∅ (0 < p) ∅ ` 〈p, 1〉 (p < 1)

〈p, a〉 ` 〈q, b〉 (q ≤ p & a ≤ b)
〈p, a〉, 〈q, b〉 a` 〈r, a ∧ b〉, 〈s, a ∨ b〉 (p+ q = r + s)

together with an idempotent relation 〈p, a〉 ≺V 〈q, b〉
def⇐⇒ q < p & a ≺ b.

Note that each generator 〈p, a〉 of V(X) represents a basic open set of all probabilistic
valuations µ on X such that p < µ(a). A simple inspection shows that the locale C(X) of
covaluations is presented by the dual of the continuous entailment relation given above, where
each generator 〈p, a〉 represents a basic open set of all covaluations ν on X such that ν(a) < p.
This immediately yields the following.

Theorem 4. If X is a stably compact locale, then V(X)
d ∼= C(Xd).

The observation by Vickers [5, Proposition 6.3] implies V(X) ∼= C(X) and hence the follow-
ing.

Theorem 5. If X is a stably compact locale, then V(X)
d ∼= V(Xd).

The de Groot duals of the other powerlocale constructions (which correspond to Smyth,
Hoare, and Plotkin powerdomains) can be analysed in a similar manner [4], which yields the
pointfree analogues of the results by Goubault-Larrecq [2].
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We study the problem of (projective) unification in normal modal logics (modal logic, for
short) extending K4. A substitution σ is a unifier for a formula A (in a given modal logic L) if
`L A[σ]. The set of constants in a modal logic L is denoted by Cons(L). It can be shown (see
e.g. [3]) that the modal algebra 〈Cons(K4T2),∧,¬,>,2〉 is isomorphic to the product of modal
algebras A = ({0, 1},∩,−, 1,21) and B = ({0, 1},∩,−, 1,22) in which 210 = 0 and 220 = 1.
Together with some facts about the logic K4G this yields:

Lemma 1. Let L be a modal logic extending K4GT2 such that Cons(L) = {>,⊥,3>,2⊥}. If
a formula A is not unifiable (there is no unifier for A) in L, then

A `L 3>

or there exists a formula B such that

A `L 2⊥ ∨ (3B ∧3¬B).

An inference rule A/B is said to be passive (in L) if A is not unifiable (in L). As a consequence
of Lemma 1 we obtain the following:

Lemma 2. Let L be a modal logic extending K4GT2 such that Cons(L) = {>,⊥,3>,2⊥}.
The set consisting of the rules

3>
⊥

and
2⊥ ∨ (3A ∧3¬A)

⊥
is a basis for the set of all passive rules in L.

Let L ∈ NExt(K4GT2) be a modal logic with two constants such that `L 3>. In this case
the second rule from Lemma 2 could be replaced with

P2 :
3A ∧3¬A

⊥
.

Moreover, the rule P2 forms a basis for all passive rules in L.
The only consistent modal logic L ∈ NExt(K4GT2) with two constants such that `L 3> ↔

⊥ is Ver = K⊕2⊥. The only passive formula in this logic is ⊥. Moreover, it is known that the
modal logic Ver is structurally complete.

A unifier σ for a formula A is said to be projective (in a modal logic L) if

A `L x↔ x[σ]

for each variable x. A formula is said to be projective (in L) iff there exists a projective unifier
for the formula. We say that L has projective unification if there exists a projective unifier for
each unifiable formula (in L).

To show the main result on projective unification in NExt(K4) we use Gilardi’s character-
ization of projective formulas through the so-called extension property, see [2]. Theorem 2.2
from [2] implies the following:
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Theorem 1 (Ghilardi). Let L be a modal logic in NExt(K4) characterized by a class C of finite
rooted frames. A formula A is projective in L if and only if the class

{〈F, v〉 : F ∈ C and 〈F, v〉 |= A}

has the extension property.

Below is the main result.

Theorem 2. A modal logic L ∈ NExt(K4) has projective unification if and only if K4D1 ⊆ L.

By Theorem 2 we obtain.

Corollary 1. Every modal logic containing K4D1 is almost structurally complete.

Corollary 2. A modal logic L extending K4D1 is structurally complete if and only if either
L = Ver or K4D1M ⊆ L.

As an immediate consequence of Theorem 2, we obtain the following result proved by Dzik
and Wojtylak [1] using another method.

Theorem 3 (Dzik and Wojtylak). A modal logic in NExt(S4) has projective unification if and
only if it contains S4.3.

List of axioms
K 2(x→ y)→ (2x→ 2y),
T 2x→ x,
T2 2(2x→ x),
4 2x→ 22x,
M 23x→ 32x,
G 32x→ 23x,
.3 2(2+x→ y) ∨2(2+y → x),
D1 2(2x→ y) ∨2(2y → x).
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The Brouwer modal logic KTB is defined as the following normal extension of the minimal normal
modal logic K: KTB := K⊕ T ⊕ B where the new axioms are the following: T := 2p→ p and
B := p→23p .
The set of rules consists of the modus ponens, the rule of uniform substitution and the rule of necessi-
tation.
The axiom T is called the axiom of necessity, whereas the axiom B is known as the Brouwerian axiom.
We paraphrase here the following justification of the second name given by G.E. Hughes and M.J. Cress-
well in [2], p. 57. As it is known, L. Brouwer is the founder of the intuitionist school of mathematics.
The law of double negation does not hold in intuitionistic logic. Exactly it holds that (i) `INT p→¬¬p
but (ii) 6`INT ¬¬p→ p. Suppose that negation has a stronger meaning – necessarily negative. Hence
¬p may be translated as 2¬p. The corresponding modal formula to (i) is p→2¬2¬p, which gives us
p→ 23p and obviously `KT B p→ 23p. If we translate (ii) in this way, we obtain: 23p→ p, which
is not a thesis even of the system S5 defined below. Hence 6`KT B 23p→ p. Further, G.E. Hughes
and M.J. Cresswell write: ‘Thus although the connection with Brouwer is somewhat tenuous, historical
usage has continued to associate his name with this formula.’
This motivation combining Brouver’s axiom with the intuitionistic logic will be the starting point in our
research. Of course, we have to find out a translation other than the Gödel-McKinsey-Tarski one. The
Gödel-McKinsey-Tarski translation leads to S4 logic and its normal extensions. They are known as the
modal companions of intuitionistic logic (and intermediate ones) and are well described in literature,
(see [1], [3]).
We propose some naive translation which will work within the language of formulas written in one
variable. Let

α
0 =⊥, α

1 = p, α
2 = p→⊥,

α
2n+1 = α

2n∨α
2n−1, α

2n+2 = α
2n→ α

2n−1 for n≥ 1
α

ω = p→ p for ω 6∈ N.

In the set of all formulas written in one variable we introduce an equivalence relation ≡ in the standard
way: ϕ ≡ ψ if both ϕ → ψ and ψ → ϕ are intuitionistic tautologies.
Every formula from our language falls into one of the equivalence classes Am = [αm]≡. Therefore, up to
this equivalence relation on the classes of formulas Am, the quotient algebra rises to the so-called Rieger
- Nishimura lattice R, which is a single-generated free Heyting algebra (see Figure 1).
We define the translation in the following way:

t(⊥) =⊥, t(p) = p, t(α → β ) =2(t(α)→ t(β )), (1)
t(α ∧β ) = t(α)∧ t(β ), t(α ∨β ) = t(α)∨ t(β ). (2)

Then we get: t(¬p) = 2¬p (because ¬p = p → ⊥) and further t(¬¬p) = 2¬2¬p = 23p. One
may notice that the Gödel-McKinsey-Tarski translation (symb. T ) differs from our translation because
T (⊥) =2⊥ and T (p) =2p.
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The bottom of the Rieger-Nishimura lattice after translation t is presented in Figure 2.
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We shall built up the modal equivalent of the Rieger-Nishimura lattice. It will not be possible to interpret
the whole lattice, however, we will be able to obtain an infinite upper sublattice. From this translation
we obtain many theorems combining intuitionistic logic of one variable with the same fragment of the
modal Brouwer logic.
Further, we shall find the connection between the height of the upper sublattice and the degree of branch-
ing the considered KTB-frames.
Our next task is to generalize this result for formulas written in two variables.
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In this talk, we present the results of the paper [3] by Mark V. Lawson and the speaker.
Our work connects, unifies and extends the two approaches [4, 5] in relating inverse semigroups
with étale localic or topological groupoids. The paper [5] achieves this by showing how to
construct étale localic groupoids from pseudogroups by means of a class of quantales, whereas
the paper [4] achieves this by relating distributive inverse semigroups and pseudogroups to
étale topological groupoids making use of prime and completely prime filters. Both of these
approaches were motivated by the theory of C∗-algebras but from slightly different traditions.

In [3] we replace étale localic or topological groupoids of [4, 5] by étale localic or topological
categories. Although our work is a generalization of both [4] and [5], we argue that working at
this level of generality actually clarifies and simplifies the theory. The use of localic categories
generalized from [5] greatly sharpens some of results of [4], whereas the use of involutions in [5],
which we avoid in our generalization, renders the theory superficially more complex. One very
important additional feature of our theory is that our results are fully functorial.

A class of semigroups, called restriction semigroups, plays the role in our theory similar to
that inverse semigroups play in [4] and [5]. Restriction semigroups are non-regular general-
izations of inverse semigroups. They are equipped with two unary operations, ∗ and +, that
generalize the operations a 7→ a−1a and a 7→ aa−1, respectively, in an inverse semigroup. Such
semigroups and their one-sided analogues arise naturally from various sources and have been
widely studied by many authors, see the survey article [2].

Projecting down from localic to topological categories, we extend the classical adjunction
between locales and topological spaces [1]. This yields extensions of the classical Stone duality,
the role of Boolean algebras being played by so-called Boolean restriction semigroups (resp.
Boolean restriction ∧-semigroups), and the role of Boolean spaces by étale topological categories
(C1, C0) where the space C0 is a Boolean space (resp. both of the spaces C1 and C0 are Boolean
spaces).
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Abstract

A number of ways have been devised to associate topological spaces to various algebraic
structures, starting with Stone’s spectrum of a Boolean algebra [6] (or even a general
bounded distributive lattice [7]) and Gelfand’s spectrum of a commutative Banach algebra
[2]. Later Grothendieck defined the Zariski spectrum of a commutative ring and Hofmann
and Lawson described the spectrum of a distributive continuous lattice [4].

These spectra have a lot in common. For instance, the points of Stone’s and
Grothendieck’s spectra correspond to prime ideals of the semirings in question. Gelfand’s
spectrum is usually described in terms of maximal ideals, but at least in the case of C*-
algebras, it can equivalently be phrased in terms of prime ideals which are closed in the
norm topology. Finally, the points of the Hofmann-Lawson spectrum can be thought of
as closed prime ideals with respect to the Scott topology. Furthermore, there are obvious
similarities in the topologies on these sets in the different cases. This suggests that there
might be a single construction encompassing all of these examples.

Constructively, it is better to treat spectra as locales instead of as topological spaces
and then it is reasonable to view the lattices, rings and C*-algebras as localic commutative
semirings (as in [3]). We define the spectrum of a localic semiring as a classifying locale of
closed prime ideals (or equivalently, open prime anti-ideals). For a general localic semiring
such a spectrum might fail to exist, but we provide conditions under which it does. Under
these conditions it is isomorphic to the localic reflection of the quantale of overt weakly
closed ideals.

Let us describe this construction in more detail. Recall from [1] that the overt weakly
closed sublocales of a frame L correspond to suplattice homomorphisms from L to the
frame Ω of truth values. When L is a localic semiring, the suplattice inherits operations
from L and we may take a quotient to obtain a quantale of overt weakly closed ideals. In
the case of a discrete ring, the overt weakly closed ideals are just the usual set-theoretic
ideals and the universal localic quotient of this quantale gives the frame of radical ideals.
But the frame of radical ideals is known to be the frame of the Zariski spectrum (see [5])
and, in fact, this construction yields the usual spectra in all of our core examples.
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Let us write An, n 2 N := {0, 1, 2, . . .}, for n-dimensional real a�ne space. A subset of An

is a polytope if it is the convex hull of a finite set of points. A�ne maps between polytopes
are restrictions of a�ne maps between the ambient a�ne spaces. Let us then write C for the
category of nonempty polytopes and a�ne maps, and bC for the topos of presheaves of sets on
C. While bC receives a fully faithful functor from C (Yoneda embedding), sums—more generally,
colimits—in C are not preserved by the embedding. To remedy this, one equips C with a
Grothendieck topology J that captures some of the content of the a�ne geometry of polytopes,
and then replaces presheaves by sheaves. We define J to be the topology on C generated by

all finite families of injective a�ne maps Ci
fi! D such that their joint image covers D; in

symbols,
Sn

i=1 fi[Ci] = D. That is, we take the smallest topology generated by “covers of a
polytope D by finite families of subpolytopes C1, . . . , Cn”. It turns out this topology is not
subcanonical—i.e., representable presheaves need not be sheaves—which, it will soon transpire,
detracts nothing from its usefulness and mathematical naturality.

Let now P be the topos of sheaves on the site (C, J). We call P the PL (=Piecewise-Linear)
topos, and think of it as a spatial setting wherein to do PL geometry in ways that, conjecturally,
are less a↵ected by the contingent peculiarities of the classical compact PL category P. The
latter, we recall, has as objects the not necessarily convex subsets of a�ne spaces known as the
compact polyhedra—namely, the finite unions of polytopes—and as morphisms the PL maps,
that is, functions f : P ! Q between polyhedra such that f is continuous with respect to the
Euclidean topologies, and there are finitely many a�ne maps a1, . . . , am such that for each
p 2 P there is ip 2 {1, . . . ,m} with f(p) = aip . As a preliminary step towards vindicating
the conjecture just stated, one can prove that P embeds P fully faithfully so as to preserve
“enough finite colimits” to perform the fundamental constructions of polyhedral geometry. The
PL topos P automatically takes care of gluing the a�ne maps in C into PL maps, thanks to
the choice of the topology J .

In fact, more is true. Consider on P the Grothendieck topology J⇤ generated by “covers of
a polyhedron D by finite families of subpolyhedra C1, . . . , Cn”. Theorem: The topos of sheaves
on the site (P, J⇤) is again just the PL topos P (and J⇤, in contrast to J , is subcanonical).
Although the a�ne site of definition (C, J) is conceptually and mathematically much more
economical than (P, J⇤)—note that the latter, unlike the former, presumes knowledge of PL
geometry—we can now use the larger, subcanonical PL site to prove results about P, whenever
convenient; an example of this strategy is given below.

A fuller defence of the conjecture requires considerably deeper developments guided by the
theory of Axiomatic Cohesion (see [5] for the initial paper on the subject). We must gloss over
these geometric aspects, even if they motivate much of the present research. We focus instead
on what we know so far of the connections of P with logic.

Every topos classifies a theory in geometric logic. Question: What is the theory classified
by the PL topos P? Answer (Theorem): The theory of non-trivial linearly ordered Riesz MV-
algebras. Here, MV-algebras are well known and have a prominent rôle in substructural logics;

⇤Presenting author.
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and Riesz MV-algebras are what one obtains upon equipping an MV-algebra A with the action
of [0, 1] ✓ R given by “multiplication of elements of A by scalars in [0, 1]”. The Chang-Mundici
equivalence between MV-algebras and Abelian lattice-groups with a (strong order) unit has
an adaptation to vector lattices (=lattice-ordered real linear spaces) with a unit, yielding an
equivalence with Riesz MV-algebras. Thus, the latter are precisely unit intervals of vector
lattices with a unit. A fundamental result of Beynon [1], inspired by previous work by Baker,
establishes that P is dually equivalent to Vfp, where the latter is the category of finitely presented
vector lattices with a unit. Translating, P is equivalent to the opposite of the category of finitely
presented Riesz MV-algebras. As these form a finitary variety—whereas, note, V is not even

an elementary class—a standard result entails that the presheaf topos dVop
fp = bP classifies the

theory of Riesz MV-algebras. The theorem is now established by proving that the axioms for
total order and non-triviality induce on P precisely the Grothendieck topology J⇤.

As a further step in understanding the relation between P and Riesz MV-algebras one can
contrast polyhedra in P, seen in P as representable sheaves, and the spectral spaces of finitely
presented Riesz MV-algebras. For such an algebra A let us write SpecA for the set of prime
ideals of A. It is known that SpecA coincides with the spectrum of the distributive lattice of
compact congruences on A; thus, SpecA can be equipped with one amongst the Priestley, Stone,
or dual Stone topologies. For our purposes here we choose the dual Stone topology. Then A can
be represented as the algebra of global sections of a sheaf of Riesz MV-algebras over the base
space SpecA with totally ordered stalks, as first proved in [3] and reproved by Priestley duality
in [4]. Heyting algebras of subobjects of a sheafified representable in a Grothendieck topos may
have a complex structure, one that can be hard to relate to a construction in the site that goes
beyond the standard description by closed sieves. Perhaps surprisingly, though, the PL topos
begs to di↵er. Theorem: Pick any polyhedron P in P, and write A for its Beynon-dual Riesz
MV-algebra. Let O (SpecA) denote the frame of open sets of the spectrum of A, and SubP for
the Heyting algebra of subobjects in P of (the sheaf represented by) P . Then O (SpecA) and
SubP are isomorphic Heyting algebras. Open problem: Characterise in a useful manner the
extension of intuitionistic propositional logic jointly determined by the Heyting algebras SubP ,
as P ranges over all polyhedra. At the time of writing it is not known whether the extension at
hand is proper or coincides with intuitionistic logic. Let us note that this is a di↵erent problem
from the one recently solved in [2], where it was shown that the logic determined by the Heyting
algebras of open subpolyhedra of P , as P ranges over all polyhedra, is intuitionistic logic.
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My aim is to present a consistent model-theoretic representation of Frege’s Basic Law V (BLV):
∀F∀G[εF(x) = εG(x)↔ ∀x(F(x)↔ G(x))] with a full-impredicative comprehension schema (CA):
∃X∀x(Xx↔ ϕ(x)) employing a model based on some properties of posets. The resulting theory man-
ages to block the Russell’s Paradox recovering at least Second-Order Peano-Dedekind Frege’s style
axioms. Despite any syntactical predicative restriction, HECK [5], FERREIRA and WEHMEIER [2] and
an impredicative approach based on concepts predicatively defined, FERREIRA [3], my purpose is to
employ a semantical approach where both BLV and CA won’t be syntactically restricted.
In order to retain the consistency, I shall build-up a model for the theory TK based on a poset
M = 〈D ,⊆〉, wherein D = P(ω) and ⊆ is a relation, reflexive, antisymmetric, and transitive over
D . Subsequently, I shall define over M a monotone unary function φ order-preserving. According to
MOSCHOVAKIS [6], φ has least fixed point property. Thus, in agreement with Frege’s definition, I shall
apply φ to N(x), the concept of natural number, and I will show that N(x) is in the least fixed point,
namely, TK manages to recover Second-Order Peano-Dedekind axioms.
In order to carry-out the former challenge, firstly, I have to fix over M an interpretation for the syn-
tax of TK : let M1 be the first-order domain; M2 the second-order domain and V the Universe, the
pair (E ,A ) interprets any second-order variable ϑ(x), with at most one free first-order variable, where
E (ϑ(x)) ⊆ M1 is the extension of the concept; A (ϑ(x)) := V − E is anti-extension of the concept
where, E ∩A = /0 and

⋃
E ,A =V . Moreover, A − ⊆A (ϑ(x)) when E ∩A 6= /0.

The function π : M2→M1 interprets the abstraction operator ε . However, BLV does not delivers always
admissible extensions. Given a characteristic function χ(x) any time defined for a particular concept
ϑ(x), I call admissible extensions those objects that χ(x) = 1 for an x ∈ E (ϑ); I call unadmissible ex-
tensions those objects that χ(x) = 0 for an x ∈ A (ϑ). In agreement with the full-impredicative view,
the interpretation of the quantifier is given in standard SOL definition.
Secondly, I have to construe a hierarchy S of interpretations of ϑ(x) based on (E ). Only at the limit
stage of this hierarchy, the extension and the anti-extension of ϑ will be fixed, namely, ϑ has the corre-
sponding and admissible extension.
It is now clear that TK avoids the Russell’s Paradox. Let me assume that the function π : R→ {R},
delivers to R his extension {R},{R} ∈ {E (R)∪A (R)}: if {R} belongs to A − and then the value of the
characteristic function χ(x) = 0, namely, εR is an unadmissible extension.
Finally, TK results both consistent and strong enough to recover Second-Order Peano-Dedekind axioms.
A poset M = 〈D ,⊆〉 is a model for the former structure: indeed, according to MOSCHOVAKIS [6], the
hierarchy S is a chain, the concept of everything, x = x, namely U = maxD, is the unique maximal
element.
Thus, I may form the concept N(x) =de f Pred+(0,x) because only with a predicative fragment I have
at least Dedekind-infinitely many M1 individuals that fall under it. If Pred+(y,x) = ∃F∃u(Fu∧ y =
#F ∧x = #[λ z.Fz∧ z 6= u]), it easy to show that applying φ to F , F is in the least fixed point of φ . Thus,
by using some Partial Orders properties, I have a model-theoretic representation of Frege’s BLV.
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It is a basic fact about bi-topological spaces that for any bi-topological space (X, τ1, τ2), the
map U 7→ I1C2(U), sending every open set in τ1 to the τ1-interior of its τ2-closure, is a closure
operator on the lattice of open sets in τ1. As a consequence, the fixpoints RO12(X) of this map,
called generalized regular opens, always form a complete lattice. This result can be seen of a
generalization of a celebrated result, attributed to Tarski [8], that the regular open sets of any
topological space always form a complete Boolean algebra. It has been used, particularly in
[9] and [5], to present a duality between bounded lattices and a subcategory of the category of
bi-topological spaces. Tarski’s result also plays an essential role in the choice-free Stone duality
recently presented in [4].

A b-frame is a bi-preodered set (X,≤1,≤2). Any b-frame induces a bi-topological space
(X, τ1, τ2) where each topology is the upset topology induced by the corresponding preordering.
Several representations of complete lattices as generalized regular opens of some b-frame exist
in the literature. In particular, Allwein in [1] and [2] observes that every complete lattice L is
isomorphic to the generalized regular opens of its dual Allwein b-frame (PL,≤1,≤2) defined as:

• PL = {(a, b) ∈ L× L ; a �L b},

• (a, b) ≤1 (c, d) iff a ≥L c, and

• (a, b) ≤2 (c, d) iff b ≤L d.

In the case of Heyting algebras, it has been shown in [3] and [6] that any complete Heyting
algebra A is isomorphic to RO12(X) for some b-frame (X,≤1,≤2) such that ≤1⊆≤2. Given a
Heyting algebra A, a standard way of constructing (X,≤1,≤2) is to define it such that:

• X = {(a, a→ b) ∈ L× L ; a �A b},

• (a, b) ≤1 (c, d) iff a ≥A c, and

• (a, b) ≤2 (c, d) iff a ≥A c and b ≤A d.

It is also well-known, particularly in the forcing literature (see for example [7]), that any
complete Boolean algebra is isomorphic to the regular open sets of some Alexandroff space
(X, τ), which can be regarded as the generalized regular opens of the b-frame (X,≤τ ,≤τ ),
where ≤τ is the specialization order induced by τ . In this case, the dual space of a Boolean
algebra B is simply (B \ 0B ,≥B).

In this talk, I will bring some uniformity to the various representations listed above. First, I
will define the category bFrm of biframes and b-morphisms, and present Allwein’s result as an
idempotent adjunction between bFrm and the category of cLat of complete lattices and com-
plete lattice morphisms. This adjunction restricts to a duality between its fixpoints, complete
lattices and normal b-frames, i.e. b-frames which are the Allwein dual of some complete lattice.
I will give a characterization of normal b-frames in a language with two relational predicates
and monadic second-order quantifiers.
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Finally, I will show how this equivalence restricts to several subcategories of cLat, including
cDL, cHA, cBA and the categories of spatial locales and Kripke frames. In each case, I will
also present first-order characterizations of the dual subcategories of normal b-frames. This can
be seen as a first step towards a correspondence theory between lattice-theoretic notions and
relational properties of b-frames.
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We identify the finitely generated free algebras of the variety generated by algebras of
binary relations equipped with the ‘domain’ operation in addition to the Kleene algebra
operations. Elements of the free algebras are ‘regular’ sets of pointed labelled trees.

Let Rel(;,+, *, 0, 1) denote the isomorphic closure of the class of all algebras of binary
relations, with ; interpreted as relational composition, + as union, * as reflexive, transitive
closure, 0 as the empty relation, and 1 as the universal relation X × X on the base set X.
It is easy to see that Rel(;,+, *, 0, 1) is not a first-order axiomatisable class, not even closed
under elementary equivalence, by a simple argument showing that Rel(;,+, *, 0, 1) is not closed
under ultrapowers. However, if we let V = HSP Rel(;,+, *, 0, 1)—the variety generated by
Rel(;,+, *, 0, 1)—it is well known that the free V-algebra over the finite set Σ is the set of all
regular languages over the alphabet Σ (with the operations of language concatenation, union,
and so on). Although V has no finite equational axiomatisation we do however have Kozen’s
quasivariety of Kleene algebras, defined by a finite number of equations/quasiequations and
generating the same variety [5].

Various unary ‘test’ operations can be defined on binary relations. Here is a selection.

• The unary operation D is the operation of taking the diagonal of the domain of a relation:

D(R) = {(x, x) ∈ X2 | ∃y ∈ X : (x, y) ∈ R}.

• The unary operation R is the operation of taking the diagonal of the range of a relation:

R(R) = {(y, y) ∈ X2 | ∃x ∈ X : (x, y) ∈ R}.

• The unary operation A is the operation of taking the diagonal of the antidomain of a
relation—those points of X at which the image of the relation in empty:

A(R) = {(x, x) ∈ X2 | �∃y ∈ X : (x, y) ∈ R}.

The term Kleene algebra with domain refers to a certain algebraic theory extending Kozen’s
Kleene algebra with a domain operation and some associated algebraic laws [2]. One intended
model for this theory is algebras of binary relations in the signature (;,+, *, 0, 1,D), and it is
hoped that the theory will prove useful for reasoning about the actions of nondeterministic
computer programs [1].

Indeed, one can vary the operations from those of Rel(;,+, *, 0, 1) and/or restrict the binary
relations to some particular form and the resulting class will generate a variety whose free
algebras should be identified.

Restricting the binary relations to be some type of function (total functions, partial func-
tions, or injective partial functions, for example) tends to yield free algebras whose elements
are a ‘single object’, rather than a ‘set of objects’. The class of semigroups, for example, is the
variety generated by Tot(;)—algebras of total functions with composition—and an element of
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a free semigroup is a single string. Similarly, elements of free groups are also strings, groups
forming the variety generated by bijective functions, with the familiar operations.

There is also an observable pattern when tests operations are added to the signature: strings
are replaced by (labelled) trees. The following results are known.

1. The variety generated by Inj(;, -1), algebras of injective partial functions with composition
and inverse, is the variety generated by the inverse semigroups [10, 7]. Elements of free
inverse semigroups are certain trees, so-called Munn trees [6].

2. The isomorphic closure of the class Par(;,D)—partial functions with composition and
domain—is a variety [9], most commonly known as the restriction semigroups. A de-
scription of the free algebras has been given, and again, elements can be viewed as trees
[3].

3. The isomorphic closure of the class Par(;,D,R)—partial functions with composition, do-
main, and range—is a proper quasivariety; a finite quasiequational axiomatisation was
given by Schein [8]. Once more, a description of the free algebras has been given, and
elements can be viewed as trees [4].

Having noted that binary relations ; sets, functions ; singletons, and tests ; trees, one
can anticipate that when tests are added to the case Rel(;,+, *, 0, 1), elements of free algebras
will be sets of labelled trees.

This talk is focused on the free algebras for the Kleene algebra with domain signature. Let
W = HSP Rel(;,+, *, 0, 1,D) and let Σ be a finite alphabet. Let RΣ be the set of reduced
pointed Σ-labelled rooted trees, a pointed tree being one with a distinguished point (in addition
to the root). We will explain how the free W-algebra consists of certain ‘regular’ subsets of RΣ

and describe the proof of this.
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Familiar logics often have an algebraic counterpart that is a quasivariety K of algebras; in
many cases it is a variety. In this situation, the derivable inference rules of the logic may or
may not be determined by a single set of ‘truth tables’, i.e., by the operation tables of a single
algebra A ∈ K. It turns out that if some member of K determines the finite rules of the logic,
then another member determines all of the rules, so what is needed is only that K be generated
by a single algebra—briefly, K = Q(A) for some A ∈ K. Even when K is a variety, it must be
generated as a quasivariety by one of its members, if the generator is to determine rules (as
opposed to theorems only).

Obviously, classical propositional logic has this property: its algebraic counterpart—the
variety of Boolean algebras—is generated as a quasivariety by its unique two-element member.
More surprisingly, the same holds for intuitionistic propositional logic (though not with a finite
algebra), and for the relevance logic R [7], but not for its conservative expansion Rt (with the
so-called Ackermann constants of [1]). In the intuitionistic case, the algebra determining the
(possibly infinite) rules cannot be countable [8].

Maltsev [5] proved that a quasivariety K is generated by a single algebra iff it has the joint
embedding property (JEP), i.e., any two nontrivial members of K can both be embedded into
some third member.  Los and Suszko [4] characterized this demand by a syntactic ‘relevance
principle’. Various strengthenings of the JEP have received attention in the literature. One of
these, called structural completeness, asks (in effect) that a quasivariety be generated by its free
ℵ0-generated member (see [2]). A weaker variant, now called passive structural completeness
(PSC), amounts to the demand that any two nontrivial members of K have the same existential
positive theory [9]. Note that this property is hereditary, unlike structural completeness and
the JEP.

Our original goal was to investigate these completeness properties for classes of De Morgan
monoids (i.e., the models of Rt). It became clear, however, that in many of our results, large
parts of the proofs had a general universal algebraic (or even model-theoretic) character, so the
first half of this talk concerns such generalities. We call K a Kollár quasivariety (after [3]) if its
nontrivial members lack trivial subalgebras. We prove the following.

Theorem 1. If a quasivariety is PSC, then it has the JEP.

Theorem 2. If a Kollár quasivariety K has the JEP, then its relatively simple members all
belong to the universal class generated by one of them. If, in addition, K is relatively semisimple,
then it is generated (as a quasivariety) by one K-simple algebra.

Theorem 3. A quasivariety of finite type with a finite nontrivial member is PSC iff its non-
trivial members have a common retract.

∗Presenter



139

Singly generated quasivarieties and residuated structures Moraschini, Raftery and Wannenburg

The second half of the talk deals with (quasi)varieties of De Morgan monoids. A De Morgan
monoid is a distributive lattice-ordered commutative monoid with a compatible involution ¬,
satisfying x 6 x2 := x · x. It is called an odd Sugihara monoid if its neutral element e is a
fixed point of ¬, in which case it satisfies x = x2. The varieties of odd Sugihara monoids form
a transparent chain of order type ω + 1. There are just two simple 0-generated four-element
De Morgan monoids, C4 and D4. The former is a chain in which e < f := ¬e. In the latter,
e and f are incomparable. There is a largest variety M of De Morgan monoids such that each
member of M has C4 as a retract or is trivial. This M is axiomatized, relative to De Morgan
monoids, by e 6 f and x 6 f2 and f2 · ¬((f · x) ∧ (f · ¬x)) = f2 (see [6]).

Among other results, we describe completely the varieties of De Morgan monoids that are
PSC, and we characterize those with the JEP. Specifically:

Theorem 4. A variety K of De Morgan monoids is PSC iff it is the variety of Boolean algebras
or the variety generated by D4 (briefly, V(D4)) or a variety of odd Sugihara monoids or a
subvariety of M. (In the first three cases, K is structurally complete.)

Theorem 5. A variety K of De Morgan monoids has the JEP iff one of the following (mutually
exclusive) conditions holds: (1) K is PSC; (2) K = V(A) for some simple De Morgan monoid
A such that D4 is a proper subalgebra of A; (3) there exist A,B such that K = Q(B), A is
a simple subalgebra of B, and C4 is a proper subalgebra of A.

It follows from Theorem 4 that the structurally complete varieties of De Morgan monoids fall
into two classes—a denumerable family that is fully transparent and a more opaque collection
of subvarieties of M. In the subvariety lattice of M, the variety V(C4) has just six covers
[6]. In the join of these six covers, every subquasivariety K is a variety (whence every such
K is structurally complete). We prove that M has uncountably many structurally incomplete
subvarieties as well, by exhibiting 2ℵ0 structurally incomplete varieties of Brouwerian algebras
(of depth 3) and applying a suitable ‘reflection’ construction.
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A homomorphism f : A → B between algebras in a variety K is an epimorphism provided
it is right-cancellative, i.e., for every pair of homomorphisms g, h : B→ C with C ∈ K,

if g ◦ f = h ◦ f , then g = h.

Clearly any surjective homomorphism is an epimorphism. We say that K has the epimorphism
surjectivity (ES) property if the converse holds.

When a variety K algebraizes a logic `, then K has the ES property if and only if ` has
the infinite (deductive) Beth (definability) property, i.e., whenever an arbitrarily large set Z of
variables is defined implicitly in terms of other variables by means of some formulas over `,
then it can also be defined explicitly [4]. When this is demanded only for finite Z, then ` is said
to have the finite Beth property, which corresponds similarly to the so-called weak ES property.
This invites us to question which varieties of Heyting algebras have surjective epimorphisms,
or equivalently which intermediate logics have the infinite Beth property.

Classic results of Kreisel and Maksimova, respectively, state that all varieties of Heyting
algebras have the weak ES property [6], while only finitely many of them have a certain stronger
version of it [3, 8, 9]. No simple characterization of the (unqualified) ES property for Heyting
algebra varieties is known, however. One of the few general positive results on the topic yields
a continuum of varieties with the ES property:

Theorem 1 ([2, Thm. 5.3]). If a variety of Heyting algebras has finite depth, then it has
surjective epimorphisms.

In fact, until now, only one variety of Heyting algebras lacking the ES property was identified
in the literature [2, Cor. 6.2]. This variety is generated by an algebra D, whose lattice reduct
is depicted below. Actually, V(D) was the first example showing that the weak ES property
is indeed strictly weaker than the ES property, as conjectured by Blok and Hoogland in [4].
This raises the question: is it rare for varieties of Heyting algebras to have non-surjective
epimorphisms? We demonstrate that this is not the case by disproving the ES property for
a wide range of well-known varieties. Let RN denote the Rieger-Nishimura lattice, which is
depicted below. We prove:
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Theorem 2. The ES property fails for all the varieties in the interval [V(D),V(RN)]. More-
over, this interval contains a continuum of locally finite varieties.

In contrast with Theorem 1, we also prove:

Theorem 3. For every integer n ≥ 2, the variety of all Heyting algebras with width at most n
does not have the ES property.

Recall that the Kuznetsov-Gerčiu variety KG is generated by all finite linear sums of one-
generated Heyting algebras [1, 5, 7]. We describe exactly the subvarieties of KG that have
surjective epimorphisms, and those that do not. Although the ES property is not generally
hereditary, our description implies that, when a variety K ⊆ KG has the ES property, then
so do all subvarieties of K. Another consequence is that all subvarieties of KG with surjective
epimorphisms are locally finite. Finally, our description yields an alternative proof of the well-
known fact that every variety of Gödel algebras has surjective epimorphisms.
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In point-free topology, the sublocales of a frame are the point-free analogues of subspaces.
Ordered to comport with this view, the sublocales of a frame do not constitute a frame, but
rather a coframe S(L). Within S(L), a sublocale is called fitted if it is a meet of open sublocales.
The analogous, seemingly dual, joins of closed sublocales are also important but do not seem
to have a convenient name. In this work, we characterize both sorts of sublocales as arising
from certain filters on the underlying frame. In particular, the filters corresponding to joins of
closed sublocales are themselves the exact filters (defined below). Thus we propose to call these
sublocales exact. On the other hand, fitted, being quite a natural name for meets of opens, is
now also a suitable name for those corresponding filters.

Let SC(L) and SO(L) denote the collections consisting of joins of closed sublocales (exact
sublocales) and meets of open sublocales (fitted sublocales), respectively. Quite a lot is already
known about these (see for example [2, 4, 7]). For example, SC(L) is a frame (appearing as a
join sublattice of S(L)). Under the rather mild condition of subfitness [5] of L, this frame is
in fact Boolean. Also when L is the topology of a T1 space, SC(L) is precisely the frame of
sublocales induced by sets of points. This and other considerations lead some researchers [6],
to take SC(L) to be the natural point-free analogue of a discrete topology over L, so that frame
maps M → SC(L) represent general (non-continuous) point-free maps from L.

Define the following functions P(L)→ S(L):

M(A) =
∧
a∈A

o(a)

J(A) =
∨
a∈A

c(a)

where o(a) denotes the open sublocale and c(a), the closed sublocale determined by a. Evidently,
M is antitonic and J is monotonic. By definition, the image of M is SO(L) and the image of
J(A) is SC(L). Moreover, clearly M(

⋃
iAi) =

∧
iM(Ai); J(

⋃
iAi) =

∨
i J(Ai). Consequently,

M possesses a dual right adjoint and J possesses a right adjoint defined by

M∗(S) = {a ∈ L | S ⊆ o(a)}
J∗(S) = {a ∈ L | c(a) ⊆ L}

So A ⊆M∗(S) if and only if S ⊆M(A), and A ⊆ J∗(S) if and only if J(A) ⊆ S.
In this work, we investigate the kernels of these two adjunctions — that is, the subsets of

L satisfying M∗(M(A)) = A or J∗(J(A)) = A. To start the analysis rather trivially, open
sublocales are closed under finite meets, and closed sublocales are closed under finite joins.
Thus on the face of things, the relevant subsets are always filters in L. This is good news.
In addition to filters being generally well-understood, the filters on any distributive lattice
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constitute a frame. So by characterizing those filters F for which M(F ) ⊆ o(a) implies a ∈ F ,
and separately those for which c(a) ⊂ J(F ) implies a ∈ F , and we can shed light how SC(L)
and SO(L) relate to the frame of general filters.

In a lattice, an exact meet is a meet
∧

i bi for which a∨
∧

i bi =
∧

i a∨ bi for all a. Evidently,
a lattice is distributive if and only if every finite meet is exact, and a lattice is a co-frame if
and only if every meet is exact, and the dual notion of exact join characterizes frames. In the
context of distributive lattices, we can regard exact meets as a generalization of finite ones,
leading naturally to the concept of an exact filter, closed under all the exact meets. The notion
of exactness appeared first (under another name and in its dual formulation) in [3] in the study
of injective hulls of semilattices. Exactness has also proved to be useful for other purposes, for
example in [1, 2].

Our first main result is that the filters of the form J∗(S) are precisely the exact filters, thus
justifying the name exact sublocales. Consequently, SC(L) is not only a frame, but is precisely
a sublocale of the frame of filters, and specifically is the injective hull of the meet semilattice
reduct of Lop. We will discuss some of the applications of this observation.

The second part of our investigation is to characterize the fitted filters, corresponding to
fitted sublocales. The situation here is more complicated. Although meets of sublocales are
merely intersections, a criterion for an open sublocale to contain an intersection of open sublo-
cales is complicated. We discuss a suitable criterion that leads to characterizing the fitted
filters.
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A topological algebra is profinite if it is isomorphic to an inverse limit of finite algebras en-
dowed with the discrete topology. Their topologies are always Boolean, i.e., Hausdorff, compact
and totally disconnected. However, not all Boolean topological algebras are profinite. As an
example, one may take any Boolean topological algebras whose algebraic reduct is subdirectly
irreducible (has a least nontrivial congruence).

Let V be a variety (an equationally defined class of algebras). We consider the class VBt

of Boolean topological algebras with the algebraic reducts in V, and the class VBc of profinite
algebras with the algebraic reducts in V. The class VBc is called the Boolean core of V. A
general problem is the axiomatization of VBc relative to VBt. Or, more precisely, when we can
axiomatize VBc relative to VBt without referring to topology. (Indeed, in [4] a general scheme
for axiomatizations of even more general classes of topological algebras with the use of topology
was given.)

The basic question is simply when VBc = VBt? If it is the case we say that V is standard.
It appears that it is true for many varieties of classical algebras like varieties of groups, rings,
semigroups, distributive lattices or Heyting algebras. A property which implies standardness
and is shared by the listed varieties was discovered in [2]. Let A be an algebra and θ be an
equivalence relation on the carrier of A. Let Syn(θ) be the largest congruence of A contained
in θ. Note that

Syn(θ) = {(a, b) | (t(a, c̄), t(b, c̄)) ∈ θ for every term t and every tuple c̄}.

A variety V has finitely determined syntactic congruences (FDSC for short) if there is a finite
set T of terms such that for every A ∈ V and every equivalence relation θ on the carrier of A
we have

Syn(θ) = {(a, b) | (t(a, c̄), t(b, c̄)) ∈ θ for every term t ∈ T and every tuple c̄}.

Clark, Davey, Freese and Jackson proved in [2] that the property of having FDSC indeed yields
standardness.

Still, already in [6, Section VI.2.6] Johnstone speculated that it may be hard to give a simple
condition for varieties which is both necessary and sufficient for standardness. And, somehow
confirming this speculation, Jackson proved in [5] that there is no algorithm which decides if a
given finite set of identities defines a standard variety or a variety with FDSC. Our main result
is a proof of a similar fact, but for finitely generated varieties [9].

Theorem 1. There is no algorithm which decides if a given finite algebra of a finite type
generates a standard variety or a variety with FDSC.

From the perspective of axiomatization of VBc relative to VBt, standardness describes just
the best (the simplest) possible situation. In [3] a weakening to the first-order axiomatization
was proposed. Also, a technique for showing the lack of such axiomatizations was presented.
With the use of this technique, we obtained the following fact [9].
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Theorem 2. There is no algorithm which decides if a given finite algebra of a finite type
generates a variety V such that VBc is first-order axiomatizable relative to VBt.

Let us say at this place that we would not obtain these results without earlier works of
McKenzie and Moore. In [7] McKenzie presented a construction which effectively assigns to
each Turing machine T the algebra A(T) such that T halts iff there is a finite bound on the
cardinality of subdirectly irreducible algebras in the variety generated by A(T). In [8] Moore
modified this construction to A′(T) and proved that a Turing machine T halts iff the variety
generated by A′(T) has definable principal subcongruences. This property was invented by
Baker and Wang in the context of finitely axiomatizable varieties [1]. As noted in [2], proving
that the variety generated by A(T) or by A′(T) has FDSC when T halts would yield Theorem 1.
Moore observed that it is not true for McKenzie’s algebras A(T). But the question for algebras
A′(T) was open.

We have not worked with the algebra A′(T) directly. Instead, we simply proved that having
definable principal subcongruences yields having FDSC for varieties. It is worth emphasizing
that this connection was not expected.

Let us finish with a remark that in [2, 3] the issue of axiomatization of Boolean cores relative
to the classes of Boolean topological structures was presented for universal Horn classes, not
for varieties. This was more natural from the perspective of duality theory. However, it seems,
today we do not have tools to attack the problem of (un)decidability of standardness for finitely
generated universal Horn classes.
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Overview and perspectives

of the general construction of spectra

Axel Osmond

Some of the most prominent dualities between spaces and algebras, as Stone-like dualities for
ordered structures or scheme construction for commutative rings, are instantiations of a common
construction, namely the spectral construction. The general template is a duality between a
category of algebra-like objects, and a corresponding category of “structured spaces”. Those are
space-like objects (topos, posites, proper spaces...) equipped with a distinguished sheaf of algebras,
with a specific class of “local objects” as stalks. The duality consists of a contravariant adjunction
between:

− a spectrum functor assigning to any algebra a certain structured space,

− and a global sections functor reconstructing algebraic objects from the geometric information
attached to structured spaces.

The exact construction of such a spectrum functor entangles model theoretical, categorical,
toposical and geometric aspects. While the general philosophy was initiated by Hakim[7] in the
specific context of rings, the first general method was suggested by Cole[2] who isolated the central
notion of admissibility and proceeded with the construction in an abstract 2-categorical way. In
Coste[3] the syntactical and toposical aspects were first made explicit. In the more recent works of
Dubuc[6] and Lurie[9] the toposical and geometrical aspects were developed, while Anel[1] provided
a deep topological interpretation. In parallel Diers[4] gave a lesser known yet handy categorical
interpretation of this construction. Here we provide a synthesis of those different methods, identi-
fying the bridges between them. At the end we also give an insight into ongoing developments.

The core concept is that of “structure of admissibility” as defined in the seminal work of Cole[2].
The context to start with is the data of i) a locally finitely presentable category of models of a
given essentially algebraic theory ii) together with a geometric extension of this theory, coding for
local objects iii) and a given factorization system; the morphisms in the left class are therein called
etale transformations while those in the right class are the local transformations.

Then admissibility defines how the “global data” encoded by algebraic objects have to be re-
lated to the “local data” encoded by local objects and local transformations. This relation just
states that in the ambient category, morphisms toward local objects admit an initial factorization
with a local transformation on the right. Equivalently, it can be rephrased, as in Diers[4], as a
situation of multireflectivity of the category made of local objects plus local maps amongst the
ambient category of local objects.

Now it happens that admissibility encodes topological behaviors in the opposite category of the
category of global objects, as described in Anel[1]. Maps that are dual to the etale transformations
behave as open inclusions, and define a generalized specialization order between the points. Then,
if we gather the etale transformations under a given global object B, this defines a site (and some-
times a proper space) associated to B. This is the spectrum of B, and an etale transformation
from B to a local object just exhibits the local object as a “point” of the spectrum of B. The
structural sheaf of the spectrum is then defined from the presheaf returning the codomain of etale
morphisms with domain B. In particular it returns as stalks “local objects under B”.

This spectrum will play the role of a free object for the theory of local objects in the following
sense. The condition of admissibility corresponds in fact to a situation of “almost reflectivity”.
Rather than having a universal free model of the theory of local objects under a global object B,
one has a universal cone of “locally free” local objects that jointly behave as a free object. The
spectrum of B provides then a convenient topos one can construct a free model associated to B
into: this free model is just the structural sheaf that gathers the local objects under B into an
object of the topos Sh(SpecB). Hence, the spectrum deploys a geometry encoded as a solution to
a defect of universality; the bigger the defect of universality, the richer the geometry.



147

Recall that the stalk at a point is obtained as a filtered colimit of the values of the sheaf on
its neighborhoods. This means that local data can be conveniently approximated by global data.
In some situations, the defined geometry enjoys a symmetric property ensuring that any global
object can be reconstructed as a limit over the stalks of its structural sheaf: this is a condition of
representability. As explained in Diers[5] and also in Kennison & Ledbetter[8], representability is
ensured as soon as the class of local objects contains enough cogenerators.

After explaining how this general construction proceeds, we shall address some ongoing devel-
opments and perspectives:

− We will present a functorialization of the process which associates a geometry to a situation
of admissibility, in order to obtain comparison functors, or construct geometries from other
ones. This may be helpful in contexts of residuated lattices where plenty of interrelated
varieties are still to be dualized.

− We want this construction to encompass the functor pt that takes a frame to its set of points,
though the category of frames is not locally finitely presentable. However it enjoys many
algebraic-like properties as a monadic category. We will give some insights into the monadic
aspects of the spectral construction, in order to understand how it should be adapted to
match with properly monadic situations.

− As a perspective, we shall discuss why the 2-categorification of this process is expected
to capture the syntax-semantics dualities corresponding with the propositional Stone-like
dualities. Models of a propositional theory T correspond with the points of the spectrum
Spec(AT ) of its Lindenbaum-Tarski algebra AT . Similarly, consider the 2-functor associating
to a theory T in a certain doctrine its category of modelsMod(T ). The similarities between
these two functors Spec and Mod suggest that semantics functors could be constructed as
2-categorical spectra, exhibiting semantics as some kind of 2-categorical geometry.
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[5] Diers, Yves. Un critère de représentabilité par sections continues de faisceaux. Category Theory:
Applications to Algebra, Logic and Topology. Proceedings of the International Conference Held
at Gummersbach, July 6-10, 1981, pp51-61

[6] Dubuc, Eduardo. Axiomatic etal maps and a theory of spectrum. Journal of pure and Applied
Algebra 149 (2000) pp15-45.

[7] Hakim, Monique. Topos Annelés et schémas relatifs. Springer Heidelberg 1972.
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It is well-known that every poset (P,≤) can be embedded into a complete lattice L. We
frequently take the so-called Dedekind-MacNeille completion DM(P,≤) for this L. By Schmidt
[3] the Dedekind-MacNeille completion of a poset P is (up to isomorphism) any complete
lattice L into which P can be supremum-densely and infimum-densely embedded (i.e., for every
element x ∈ L there exist M,Q ⊆ P such that x =

∨
ϕ(M) =

∧
ϕ(Q), where ϕ : P → L is

the embedding). In this paper we get some classes of pseudo-orthomodular posets for which
their Dedekind-MacNeille completion is an orthomodular lattice. To obtain more information
on these topic or on notions used in this paper, we direct the reader to [1] and [2].

In what follows, we will work with posets P = (P,≤, ′, 0, 1) where ′ is an antitone involution
or a complementation. The precise definition is the following.

A poset with antitone involution is an ordered quintuple P = (P,≤, ′, 0, 1) such that (P, ≤,
0, 1) is a bounded poset and ′ is a unary operation on P satisfying the following conditions for
all x, y ∈ P :

(i) x ≤ y implies y′ ≤ x′,

(ii) (x′)′ ≈ x.

For M ⊆ P denote by U(M) := {x ∈ P | y ≤ x for all y ∈ M} the so-called upper cone of
M , and by L(M) = {x ∈ P | x ≤ y for all y ∈M} the so-called lower cone of M . If M = {a, b}
or M = {a}, we will write simply U(a, b), L(a, b) or U(a), L(a), respectively.

A poset with complementation is a poset with antitone involution P = (P, ≤, ′, 0, 1) satisfying
the following LU-identities:

(iii) L(x, x′) ≈ {0} and U(x, x′) ≈ {1}.

A subset S ⊆ P of a poset P with complementation such that s ≤ t′ for any pair s, t ∈
S, s 6= t is called orthogonal. A poset P with complementation is called an orthocomplete poset
if every orthogonal subset of P has a supremum. A poset P is said to have a finite rank if every
orthogonal subset of P is finite.

A poset with complementation P = (P,≤, ′, 0, 1) is called orthomodular if for all x, y ∈ P
with x ≤ y′ there exists x ∨ y and then P satisfies one of the following equivalent identities:

((x ∧ y) ∨ y′) ∧ y ≈ x ∧ y,
((x ∨ y) ∧ y′) ∨ y ≈ x ∨ y

where x ∧ y stands for (x′ ∨ y′)′ (De Morgan laws).
It is known that for an orthomodular poset (in fact a lattice) P = (P,≤, ′, 0, 1), its Dedekind-

MacNeille completion DM(P) need not be an orthomodular lattice.
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A poset P with complementation is called a pseudo-orthomodular poset (see [1]) if it satisfies
one of the following equivalent conditions:

L(U(L(x, y), y′), y) ≈ L(x, y),

U(L(U(x, y), y′), y) ≈ U(x, y).

Note that that an lattice with complementation is orthomodular if and only if it is pseudo-
orthomodular.

It is easy to find an example of a finite pseudo-orthomodular poset P such that DM(P)
is a nonmodular orthomodular lattice. Conversely, one can assume that DM(P) is really an
orthomodular lattice for a poset P with complementation and ask what is P. The answer is as
follows.

Theorem 1. Let P = (P,≤, ′, 0, 1) be a complemented poset such that DM(P) is an ortho-
modular lattice. Then P is pseudo-orthomodular.

An element a of a poset P with least element 0 is an atom if 0 < a and there is no x ∈ P
such that 0 < x < a. A poset P with a least element 0 is atomic if every element b > 0 has an
atom a below it.

The following series of theorems and their corollaries forms the main results of our paper.

Theorem 2. Let P = (P,≤, ′, 0, 1) be an orthocomplete atomic orthomodular poset. The
following conditions are equivalent:

(i) P is pseudo-orthomodular.

(ii) P is a complete orthomodular lattice.

(iii) DM(P) is orthomodular.

From the following result we see that non-lattice finite orthomodular posets do not have
orthomodular Dedekind-MacNeille completion. Hence the right generalization of orthomodu-
larity for posets in the context of an orthomodular Dedekind-MacNeille completion is pseudo-
orthomodularity.

Corollary 3. Let P = (P,≤, ′, 0, 1) be a finite orthomodular poset which is not a lattice. Then
its Dedekind-MacNeille completion DM(P) is not orthomodular.

Theorem 4. Let P = (P,≤, ′, 0, 1) be an atomic pseudo-orthomodular poset. Then any element
of P is a join of an orthogonal set of atoms lying under it.

Theorem 5. Let P = (P,≤, ′, 0, 1) be an atomic pseudo-orthomodular poset with finite rank.
Then DM(P) is orthomodular.

Getting together the previous results we can formulate our closing corollary.

Corollary 6. Let P = (P,≤, ′, 0, 1) be a finite pseudo-orthomodular poset. Then DM(P) is a
complete orthomodular lattice.
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Let Top denote the category of topological spaces and continuous maps and let Loc denote
the category of locales (=frames) and localic maps ([6]). The structure of their subobject lattices
differ substantially: while the subspaces (=subsets) of a space X form a complete and atomic
Boolean algebra P(X), the lattice of sublocales of a locale L is a coframe S(L). Moreover, a
topological space X (more precisely its associated locale Ω(X) of open sets) has typically more
sublocales than subspaces.

This talk will be about sublocales induced by subspaces ([7]). More specifically, consider
a space X and a subspace Y ⊆ X. The embedding j : Y ⊆ X is represented in Loc via the
‘open-set’ functor Ω by the localic map κ : Ω(Y )→ Ω(X), given by κ(V ) = int((X r Y ) ∪ V ).
The sublocale of Ω(X) induced by subspace Y is

SY = κ[Ω(Y )] = {int((X r Y ) ∪ V ) | V open in Y } =

= {int((X r Y ) ∪ (U ∩ Y )) | U ∈ Ω(X)}.

We say that the representation Y 7→ SY of subspaces is precise if it constitutes a one-to-one
correspondence between subspaces and induced sublocales. it turns out that unless the space
in question satisfies a certain weak separation condition TD ([1, 3]), representation of subspaces
of X by sublocales of Ω(X) is imperfect: distinct subspaces can induce the same sublocale. In
fact, one has the following (see e.g. [6]):

Induced sublocales constitute a precise representation of subspaces of X if and only
if X is TD.

The first result concerning the question when every sublocale is (induced by) a subspace
was presented by Simmons ([8]). Specifically, Simmons proved that

every sublocale of X is complemented in S(Ω(X)) if and only if X is weakly scattered,

providing a necessary and sufficient condition for S(Ω(X)) being Boolean which is slightly
different: if sublocales are in a one-to-one correspondence with subspaces they do form a Boolean
algebra, while the converse implication does not hold.

Later, Niefield and Rosenthal ([5]) treated more directly the question of every sublocale
being spatial and gave a characterization of the respective locales.

In both cases, however, the question of the one-to-one correspondence between subspaces
and sublocales is somehow circumvented. While, as we have already pointed out, typically one
has more sublocales than subspaces, there are already cases when there are less sublocales than
subspaces.

∗Presenter at TACL 2019. A part of the talk is joint work with D. Baboolal and P. Pillay ([2]).
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In this talk, we will present a proof of the following result (the Simmons sublocale theorem
for TD-spaces), included in [7]:

Theorem 1. For a TD-space X, the sublocales are in a one-to-one correspondence with sub-
spaces if and only if X is scattered.

Consequent use of properties of TD-spaces and the sublocale technique makes the proof
simpler, and we think more transparent, than those in [8, 5]. Also, since we do not need the
concept of a minimal prime (and that of an essential one) we can do it without any choice
principle.

We will also present a characteristics of the subspaces that are complemented in S(Ω(X))
and as a consequence obtain the following result ([2]):

Theorem 2. Every subspace of X is complemented in S(Ω(X)) if and only if X is hereditarily
irresolvable.

Thus, using results from [4], we learn that

• in a large class C of spaces (containing e.g. all metrizable spaces, locally compact Hausdorff
spaces, Alexandroff spaces, first countable spaces and spectral spaces), every sublocale is
complemented (that is, S(Ω(X)) is Boolean) if and only if every subspace is complemented
(and, indeed, if every subspace is complemented then each sublocale is a subspace),

• in other words, a space X in C has a sublocale that is not a subspace if and only if it has
a subspace that is not complemented,

• and, on the other hand, there exist spaces such that each of their subspaces is comple-
mented in S(Ω(X)) while this coframe contains also non-complemented elements.
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For a given class of algebras K let Con K be the class of all lattices isomor-
phic to congruence lattices of algebras from K. The problem of describing
Con K is very difficult and there are very few relevant classes K, for which
a satisfactory answer is known. The two most common investigation meth-
ods are based on topological representation of (distributive) algebraic lattices
and on lifting of diagrams of (distributive) semilattices by the Con functor.
(See [2], chapter 3, for some overview.) A considerable part of research in
this direction is aimed at comparing Con K and Con L for different classes
K and L using the concept of critical point. (See [1].)

We concentrate on the case when K is a congruence-distributive variety
(equational class) of algebras. Then the congruence lattice Con A (A ∈ K)
can be regarded as the lattice of all open sets of a suitable topological space
defined on the sets of all subdirectly irreducible quotients of A. And it
turns out that the relationships between subdirectly irreducible members of
K correspond to some separation properties in these topological spaces.

A special attention will be given to varieties K with the Compact Con-
gruence Intersection Property, which means that the intersection of any two
compact congruences in compact. In this case, the compact elements of every
Con A form a distributive lattice, and it is convenient to investigate it using
the Priestley duality. This enables a description of Con K for some K. (See
[3] for some important examples.) Further, we connect topological properties
of dual spaces with the liftability of certain semilattice diagrams by the Con
functor. This is a systematic attempt to link the two previously mentioned
investigation methods.

References

[1] P. Gillibert, Critical points of pairs of varieties of algebras, Interna-
tional Journal of Algebra and Computation 19 (2009), 1–40.



153

[2] G. Grätzer, F. Wehrung (eds.) Lattice Theory: Special Topics and Ap-
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In this talk I will report on recent joint work (see [4]) with Vincenzo Marra on a categorical
characterisation of the category KH of compact Hausdorff spaces and continuous maps.

The characterisation of subcategories of Top, the category of topological spaces and contin-
uous maps, is an important concern of categorical topology. At the same time it can provide,
in some cases, an abstract approach to dualities for categories of spaces.

The discrete case corresponds to Lawvere’s Elementary Theory of the Category of Sets, out-
lined in [1] (see also [2]). Lawvere gives eight elementary axioms (in the language of categories)
such that every complete category satisfying these axioms is equivalent to Set, the category of
sets and functions. His characterisation of Set was later adapted by Schlomiuk in [6] to cap-
ture the category of topological spaces. Concerning the category of compact Hausdorff spaces,
a purely categorical description of it was provided by Richter in [5, Remark 4.7].

Our main result is a new categorical axiomatisation of KH. It relies on two main ingredients.
The first one is the pretopos structure of KH, and the second one is a condition that we call
filtrality. The latter notion makes sense in any coherent category, and is related to (the dual
of) the one introduced by Magari in universal algebra [3]. Filtrality asserts that every object is
covered by one whose lattice of subobjects is isomorphic to the lattice of filters of its Boolean
center. Our main result reads as follows:

Up to equivalence, KH is the unique non-trivial well-pointed pretopos which is filtral and
admits all set-indexed copowers of its terminal object.

In the talk I will argue that, compared to Richter’s, our approach is more natural from a duality
theoretic standpoint. Further, I will indicate how to recover Richter’s characterisation of KH
from ours.

In more detail, under mild hypotheses every positive coherent category X which is well-
pointed admits a topological representation, i.e. a faithful functor X → Top. Coherent cate-
gories (i.e. finitely complete categories with stable images, and stable joins of subobjects) can
be thought of as a categorical abstraction of distributive lattices, and positivity captures the
topological intuition that the coproduct of any two objects is disjoint. Finally, well-pointedness
(or “existence of enough points”) means that two distinct morphisms f, g ∈ homX(X,Y ) can
be separated by a morphism from the terminal object of X into X.

The notion of filtrality is used in order to co-restrict the functor X→ Top to the category
of compact Hausdorff spaces. If we consider those positive coherent categories in which every
internal equivalence relation is effective (hence ensuring a good correspondence between con-
gruences and quotients), we arrive precisely at the notion of pretopos. Our main result shows

∗This work was carried out as part of the project DuaLL which has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No.670624). The author also acknowledges financial support from Sorbonne Paris Cité (PhD agree-
ment USPC IDEX – REGGI15RDXMTSPC1GEHRKE).
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that, under this extra assumption, the topological representation X → KH is an equivalence
of categories.

We also specialise the characterisation of KH to its full subcategory BStone on the Boolean
(Stone) spaces, i.e. compact Hausdorff spaces admitting a basis of clopens. In this framework,
our main result can be exploited to give a proof of the folklore result stating that KH is the
exact (equivalently, pretopos) completion of BStone.

If time allows, I will discuss the possibility of adapting the construction outlined above to
deal with other classes of spaces, e.g. with categories of ordered topological spaces.
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Several algebras related to non-classical logics can be viewed or represented (in
some cases, have originally been introduced) as two-sorted algebras in the sense of
many-sorted universal algebra (see e.g. [4]). This is a (novel) way of stating the main
content of many so-called product or twist-structure representation theorems, which
have been shown to hold for Nelson algebras, N4-lattices (the algebraic counterparts
of, respectively, Nelson’s constructive logic with strong negation [13] and Nelson’s
paraconsistent logic [1]) and bilattices endowed with various extra operations (nega-
tion, implications, modalities); see e.g. [14, 16, 5, 11, 10].

More recently, similar representation results have been established for further
classes of algebras of non-classical logics, which are even more general than the
preceding ones, in that their negation operator is not a “strong negation” (is not
involutive): e.g. the quasi-Nelson algebras of [12, 8] and Sankappanavar’s semi-De
Morgan algebras [17, 8].

The above-mentioned algebras can all in fact be viewed as two-sorted lattices,
i.e. tuples 〈L+,L−, n, p〉 such that L+ and L− are (usually, distributive) lattices,
perhaps endowed with additional operations (e.g. implications, modalities), and
n : L+ → L− and p : L− → L+ are (meet-preserving) maps, in each case satisfy-
ing different additional requirements. From the point of view of many-sorted uni-
versal algebra, the maps n and p can be treated as (unary) many-sorted algebraic
operations, whereas the lattice operations of L+ and L− act within a single sort. Im-
posing restrictions on the structure of the two lattices and/or the maps, one obtains
(tuples corresponding to) the various classes of algebras; as limit cases, requiring
the two maps to be mutually inverse lattice isomorphisms, one recovers standard
bilattices/Nelson/N4-lattices having an involutive negation.

The correspondence between each class of (uni-sorted) algebras and the respective
tuples (viewed as two-sorted lattices) often yields a (co-variant) categorical equiv-
alence between naturally associated categories. This suggests that a Priestley-style
duality approach can be developed for general two-sorted lattices and then spe-
cialised, via the co-variant equivalences, to each of the above-mentioned classes
of algebras. The preceding discussion also indicates that a suitable base cate-
gory to work with is one whose objects are bounded distributive (semi)-lattices
and whose morphisms are meet-preserving maps; this indeed allows us to view tu-
ples 〈L+,L−, n, p〉 as diagrams in the base category. Following this intuition, we
have mainly built on the Priestley-style duality for meet-semilattices (and for meet-
semilattices enriched with an intuitionistic implication) introduced by G. Bezhan-
ishvili and R. Jansana [2, 3].

The strategy outlined above allowed us, in some cases, to establish the only
duality results currently available for these structures (e.g. quasi-Nelson algebras);
but in all cases we have obtained a “two-sorted duality” that is, we believe, neater
and much easier to work with than any of the existing (uni-sorted) approaches (see
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e.g. [9, 6] for semi-De Morgan algebras and [7, 15] for Nelson/N4-lattices).
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Lambek calculus is a non-commutative version of linear logic [2] that was initially proposed
by J. Lambek [4]. The multiplicative and additive Lambek calculus with subexponentials was
introduced by M. Kanovich, A. Scedrov, S. Kuznetsov and V. Nigam [3].

The first is to define a subexponential signature as a quintuple Σ = 〈I,�,W, E , C〉, where
〈I,�〉, and W, E , C are upwardly closed subsets with respect to �. Note that W ∩ C ⊆ E .

Thus, the multiplicative and additive Lambek calculus with subexponentials is defined as
an extension of Lambek calculus with additives with the following inference rules for subexpo-
nentials:

Γ, A,∆→ C
!s →

Γ, !sA,∆→ C

Γ, !sA,∆, !sA,Θ→ B
ncontr1, s ∈ C

Γ, !sA,∆,Θ→ B

Γ,∆, !sA,Θ→ B
ex1, s ∈ E

Γ, !sA,∆,Θ→ B

!s1A1, . . . , !
snAn → A →!s, ∀j, sj � s

!s1A1, . . . , !
snAn →!sA

Γ, !sA,∆, !sA,Θ→ B
ncontr2, s ∈ C

Γ,∆, !sA,Θ→ B

Γ, !sA,∆,Θ→ B
ex2, s ∈ E

Γ,∆, !sA,Θ→ B

Γ,∆→ B
weak!, s ∈W

Γ, !sA,∆→ B

Initially, quantale semantics of linear logic was introduced by D. Yetter [6], where some
connection between linear logic and models of the logic of quantum mechanics was established.

We develop these ideads proposed by Yetter, and also by Brown and Gurr [1], and consider
a quantale model for this extension of Lambek calculus, where subexponential modalities will
be considered as quantic conuclei (or open modalities) [5].

Now, let us define a quantale:

Definition 1. Quantale is a quadruple Q = 〈A, ·,
∨
,
∧
〉, where 〈A, ·〉 is a semigroup, 〈A,

∨
,
∧
, 〉

is a complete lattice with additional axioms for each indexing set I:

a ·
∨
i∈I

bi =
∨
i∈I

(a · bi)∨
i∈I

ai · b =
∨
i∈I

(ai · b)

A quantale Q is called unital, if 〈A, ·, ε〉 is a monoid, where ε is a neutral element.

∗The research is supported by the by the Presidential Council, reseach grant MK-430.2019.1
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Also, we define a quantic conucleus on a unital quantale as a map 2 : Q → Q with the
following data:

2a ≤ a
2a = 22a

a ≤ b⇒ 2a ≤ 2b

2a ·2b ≤ 2(a · b)
2ε = ε

A quantic conucleus is called unital, if for each a ∈ Q, 2a ≤ ε; central, if for all a ∈ Q,
2a ∈ Z(Q) (where Z(Q) is a central subquantale, that is, Z(Q) = {a ∈ Q|∀b ∈ Q, a ·b = b ·a});
non-local weak idempotent, if for all b ∈ Q, 2a · b ≤ 2a · b ·2a and b ·2a ≤ 2a · b ·2a.

Note that, unital (central) conucleus corresponds to weakening rule (exchange) for some !s
subexponential, if s ∈ W (or s ∈ E). We introduce non-local weak idempotent open modalities
as counterparts for non-local contraction rules for !s, such that s ∈ C.

After that, we introduce subexponential interpretation as a special contravariant functor
σ : Σ → 2Q, where Σ = 〈I,�,W,C,E〉 is a subexponential signature and 2Q is a category of
open modalities on a quantale Q. In our report, we define this map in more detail.

Let Q be a quantale, f : Tp→ Q a valuation (where Tp is a set of propositional variables)
and σ : I → 2Q a subexponential interpretation, then interpretation [[A]] is defined by induction
on formula A.

Definition 2. Γ |= A⇔ ∀f, ∀σ, [[Γ]] ≤ [[A]]

There is the following theorem:

Theorem 1. Γ ` A⇔ Γ |= A

Proof. In completeness proof, we modify the technique used by Yetter [6], Brown, and Gurr
[1].

It is easy to see that open modality on some quantale is the special case of comonad. So, we
also will consider the categorical model of this calculus that allows one to generalize quantale
semantics with open modalities.
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The concept of a derivation became from the mathematical analysis. Deriva-
tions on lattices were established by Szász [5] in 1974, formally in the same
manner as derivations on rings. In the last decade, derivations on some kinds of
algebras have been introduced and investigated. More specifically, derivations on
MV-algebras were studied e.g. in [1, 6]. Further, derivations on basic algebras
[3], residuated lattices [2] and on GMV-algebras [4] followed.

Pocrims, i.e. partially ordered commutative residuated integral monoids, form
a large class of algebras that contains, among others, some classes of algebras
behind quantum and fuzzy logics.

In this paper we study derivations on bounded pocrims and on PMV-algebras,
such that they are generalizations of the derivations on MV-algebras. By a deriva-
tion on a bounded pocrim M = (M; �,→, 0, 1) we mean a map d : M → M
satisfying

d(x ⊕ y) = d(x) ⊕ d(y) and d(x � y) = (d(x) � y) ⊕ (x � d(y)), (1)

for all x, y ∈ M , where the addition ⊕ is defined by x ⊕ y = (x− � y−)−.
We first observe that every derivation d on M is completely determined by its

restriction to the set Reg(M) of regular elements in M , since d(x) = d(x=) where
x= ∈ Reg(M), for every x ∈ M . Consequently, there is a one-one correspondence
between the derivations on M and those on Reg(M), and so, roughly speaking, it
suffices to characterize derivations on involutive pocrims.

For any derivation d on an involutive pocrim M we prove that d(x) = x � d(1)
for all x ∈ M , whence it follows that d is a conucleus on M and, in fact, d is
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a homomorphism of M onto Md , the conucleus image of M , which is a Boolean
algebra. Moreover, the derivations d on M with the property that d(1) is a Boolean
element correspond one-one to the direct decompositions M � K × L where K is
a Boolean algebra; the natural derivation on K × L is given by d(x, y) = (x, 0).

As a result we obtain that for any derivation d on an arbitrary bounded pocrim
M we have d(x) = (x � d(1))= for all x ∈ M . This formula can be somewhat
improved when M is divisible or prelinear.

The concept of a coderivation is defined by interchanging ⊕ and � in (1).
We investigate coderivations on the so-called normal pocrims only. For any map
d : M → M we define d̃ : M → M by d̃(x) = d(x−)−. If d is a derivation, then
d̃ is a coderivation, and if d is a coderivation, then d̃ is a derivation. In fact,
when the set of derivations D(M) and the set of coderivations C(M) are equipped
with pointwise order, then the assignment d 7→ d̃ is an antitone Galois connection
between D(M) and C(M). Every derivation on M is closed, but a coderivation d
is closed if and only if d(x) = d(x=) for all x ∈ M , if and only if d is determined
by its restriction to Reg(M).

PMV-algebras are MV-algebras equipped with product · that satisfies a certain
equation that holds in the standard MV-algebra [0, 1]MV with the usual product of
reals. We prove that d is a derivation if and only if d satisfies (1) with · in place of
�, although the two products are distinct.
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Decidability of the equational theory of the natural join

and inner union
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This talk reports on the research available as [5].

The natural join and the inner union are operations that combine relations of a relational
database. Tropashko and Spight realized that these two operations are the meet and join
operations in a class of lattices, known by now as the relational lattices. They proposed then
lattice theory as an algebraic approach to the theory of databases, alternative to the relational
algebra. Previous works [2] proved that the quasiequational theory of these lattices—that is,
the set of definite Horn sentences valid in all the relational lattices–is undecidable, even when
the signature is restricted to the pure lattice signature [4]. These results add up to a long list
of undecidability results in relation algebra [3, 1].

In this talk I’ll show how different ideas (duality for finite lattices, generalized ultrametric
spaces on a powerset algebra, injectivity, . . . ) combine to yield decidability of the equational
theory of relational lattices.

Namely, we provide an algorithm to decide if two lattice theoretic terms t, s are made equal
under all interpretations in some relational lattice. The algorithm stem from a countermodel
construction of bounded size : we show that if an inclusion t ≤ s fails in any of these lattices,
then it fails in a relational lattice whose size is bound by a triple exponential function of the
sizes of t and s.
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This talk reports on the research available as [1, 2].

The set of permutations on a finite set can be given the lattice structure known as the
weak Bruhat order. This lattice structure is generalized to the set of words on a fixed alphabet
Σ = {x, y, z, . . . }, where each letter has a fixed number of occurrences. These lattices are known
as multinomial lattices and, when card(Σ) = 2, as lattices of lattice paths. By interpreting the
letters x, y, z, . . . as axes, these words can be interpreted as discrete increasing paths on a grid
of a d-dimensional cube, with d = card(Σ).

I’ll explain how to extend this order to images of continuous monotone functions from the
unit interval to a d-dimensional cube that preserve the end-points. The order so obtained,
denoted by L(Id), is proved to be a complete lattice.

With respect to previous knowledge on the lattices L(Id), d ≥ 3 (see our TACL 2011 talk),
a main advance is the recognition of the key role in this construction of the quantale L∨(I) of
join-continuous functions from the unit interval to itself. All the construction relies on a few
algebraic properties of this quantale: it is cyclic ?-autonomous and it satisfies the mix rule.
Many generalizations of permutohedra (the permutohedra themselves, the multinomial lattices,
lattices of pseudopermutations) can be constructed from a cyclic/mix ?-autonomous quantale
(or a involutive residuated lattice) in a functorial way.

We begin developing a structural theory of the lattices L(Id): they are self-dual, they are
generated under infinite joins from their join-irreducible elements, they have no completely
irreducible elements, nor compact elements. The colimit of all the d-dimensional multinomial
lattices embeds into L(Id). When d = 2, L(Id) = L∨(I) is the Dedekind-MacNeille completion of
this colimit. When d ≥ 3, every element of L(Id) a join of meets of elements from this colimit.
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PARTIAL FRAMES 

This talk will fit squarely into the topic of pointfree topology, but whereas the usual fundamental 

object under consideration is a frame or locale, I will be discussing partial frames. In his influential 

1991 paper on kappa-frames Jim Madden states: “It will be possible, I believe, to formulate a useful 

notion of a partial frame. This would be a meet-semilattice in which certain distinguished subsets 

would all have suprema and in which meets would distribute over joins of such subsets… My hope is 

that a theory of partial frames could provide substantial insight into large classes of epireflective 

properties and covering properties in locale theory and topology...'' 

It is in this spirit that we proceed, using the concept of a selection function as introduced by Zhao, 

Paseka and Zenk. A selection function must satisfy certain axioms to produce a tractable theory, and 

each of these authors uses different but overlapping collections of such axioms, as do we. Our 

axioms are sufficiently general to include as examples of partial frames meet-semilattices, bounded 

distributive lattices, sigma-frames, kappa-frames and frames. We note that this idea has been used 

by other authors in more general contexts as well; see, for instance, Erné below.  

We have found this to be a rich context in which to do topology, both in the unstructured situation – 

for example, in the construction of compactifications; general, largest and one-point 

compactifications – and in the structured situation, for example in the construction of completions 

of uniform partial frames. Our particular context often brings into relief what is generic and what is 

intrinsic to specific examples. For instance: nuclei and right adjoints of frame maps are extremely 

useful tools in pointfree topology, but they are unavailable to us.  The more algebraic aspects of the 

subject are equally amenable to this approach. For example, we have used Johnstone’s idea of 

coverages to create partial frames freely generated by sites, so that we are able to define objects via 

generators and relations. However, since nuclei cannot be used here, we adapted his technique by 

using congruences instead. We have further considered partial spaces, and accompanying notions of 

soberness and spatiality, and see that a knowledge of (partial) frames is exceedingly useful, even 

when considering compactifications of (partial) spaces. 
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Two semantic approaches to substructural modal logics may be distinguished. Firstly, one
takes Kripke frames 〈S,R〉, where R is a binary relation on the non-empty set S, and extends
the frame to a model by adding an evaluation function from atomic formulas to a residuated
lattice. More generally, one may use any lattice of truth values. The standard approach here
is to define logics semantically by fixing one specific lattice of truth values. Approaches of
this kind, which we may call lattice-valued, go back at least to [11]; see also [7, 2, 8, 6, 1] ,
for example. Secondly, one takes Kripke frames and adds to them additional relations that
yield non-classical behaviour of some propositional connectives in the language (these frames
are known as Routley–Meyer frames); models are obtained by adding a two-valued valuation
function. Approaches of this kind, which we may call relevant, go back to the studies of modal
relevant logics [3, 4, 5, 10], but they can be applied to other substructural logics as well [9].

In this contribution we study the relationship between these two approaches. Using ele-
mentary dualities between frames and residuated lattices we show that logics defined in terms
of classes of Routley–Meyer frames correspond to logics defined semantically by reference to a
class of truth-value lattices, not one specific lattice. Our main result is that the logic of all
Routley–Meyer frames is identical to the logic of all Kripke models evaluated in complete dis-
tributive FL-algebras. In addition, we suggest that an generalized Routley–Meyer frames can
be used as equivalent semantics for logics originally defined in terms of Kripke models evaluated
in one particular lattice of truth values. (Similarly as in classical modal logic, a generalized
frame is a frame with a distinguished subalgebra of its full complex algebra, seen as the algebra
of admissible truth sets of formulas).
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The Gödel-Löb provability logic GL is a modal logic describing all universally valid principles
of the formal provability in Peano arithmetic [9]. While GL is complete with respect to its
Kripke semantics [5], it is not strongly complete. Neighbourhood semantics is a generalization
of Kripke semantics independently developed by D. Scott and R. Montague in [4] and [3]. A
neighbourhood frame can be defined as a pair (X,◻), where X is a set and ◻ is an unary
operation in P(X). The logic GL appeares to be compact with respect to its neighbourhood
interpretation, which immediately implies that it is strongly neighbourhood complete (see [7, 1]).
This completeness result holds for the case of the so-called local semantic consequence relation.
Recall that, over neighbourhood GL-models, a formula A is a local semantic consequent of Γ if
for any neighbourhood GL-model M and any world x of M

(∀B ∈ ΓM, x ⊧ B)⇒M, x ⊧ A.

A formula A is a global semantic consequent of Γ if for any neighbourhood GL-model M

(∀B ∈ ΓM ⊧ B)⇒M ⊧ A.

Notice that this global semantic consequence relation coincides with the following one: A is
a consequent of Γ if for any neighbourhood GL-model M, any world x of M and any open
neighbourhood U of x, that is x ∈ U and U ⊂ ◻U ,

(∀B ∈ Γ ∀y ∈ UM, y ⊧ B)⇒M, x ⊧ A.

In the paper [6], I considered Hilbert-style non-well-founded derivations in GL and established
that GL with the obtained derivability relation is strongly neighbourhood complete in the case of
the global semantic consequence relation. A non-well-founded derivation is defined as a (possibly
infinite) tree whose nodes are marked by modal formulas and that is constructed according to
the rules of modus ponens and necessitation. In addition, any infinite branch in this tree
must contain infinitely many applications of the necessitation rule. The global neighbourhood
completeness result from [6] means that a formula A is a global semantic consequent of Γ if
and only if there is a non-well-founded derivation of the formula A from assumptions Γ. This
completeness result rests on the Boolean ultrafilter theorem.

The Gödel-Löb provability logic GL can be additionally defined as the logic of the class
of all Magari algebras [2, 8]. A Magari algebra A = (Y,∧,∨,→,0,1,◻) is a Boolean algebra
(Y,∧,∨,→,0,1) together with a unary map ◻∶Y → Y satisfying the identities:

◻1 = 1, ◻(x ∧ y) = ◻x ∧ ◻y, ◻(◻x→ x) = ◻x.
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Global algebraic completeness of GL D.S. Shamkanov

A Magari algebra is σ-complete if its every countable subset S has the least upper bound ⋁S.
Over σ-complete Magari algebras, a formula A is a local semantic consequent of Γ if for any
σ-complete Magari algebra A and any valuation θ on A

⋀{θ(B) ∣ B ∈ Γ} ⩽ θ(A).

A formula A is a global semantic consequent of Γ, over σ-complete Magari algebras, if for any
σ-complete Magari algebra A and any valuation θ on A

⋀{θ(B) ∣ B ∈ Γ} ∧ ◻⋀{θ(B) ∣ B ∈ Γ} ⩽ θ(A).

The logic GL enriched with non-well-founded derivations is sound for its algebraic interpreta-
tion over σ-complete Magari algebras in the case of the global semantic consequence relation1.
Together with the global neighbourhood completeness result, it implies global algebraic com-
pleteness of GL with non-well-founded derivations. Moreover, it follows that a Magari algebra
A = (Y,∧,∨,→,0,1,◻) can be embedded into a (σ-)complete Magari algebra if and only if, for
any a ∈ Y , a = 1 whenever there exists a sequence (ai)i∈N in A such that ◻ai+1 ⩽ ai and a0 = a.

In the talk, I would like to discuss another algebraic proof of global completeness of GL en-
riched with non-well-founded derivations for its algebraic interpretation over σ-complete Magari
algebras, which doesn’t rest on the Boolean ultrafilter theorem.
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Glivenko’s theorem for arbitrary finite height Glivenko’s theorem states that a formula
is derivable in the classical propositional logic CL iff under the double negation it is derivable
in the intuitionistic propositional logic IL [Gli29]. Similarly, for modal logics S5 and S4 we
have S5 ` ϕ iff S4 ` ¬2¬2ϕ [Mat55]. In Kripke semantics, IL is the logic of partial orders,
and CL is the logic of partial orders of height 1. Likewise, S4 is the logic of preorders, and S5 is
the logic of equivalence relations, which are preorders of height 1. For a modal or intermediate
logic L, let L[h] be its extension with the formula of height h, restricting the height of a Kripke

frame by the finite h. In the intermediate case, these formulas are defined as B
(i)
0 = ⊥, B

(i)
h =

ph ∨ (ph → B
(i)
h−1), and in the modal transitive case — as B0 = ⊥, Bh = ph → 2(3ph ∨Bh−1).

In particular, IL[1] = CL, S4[1] = S5, and the above translations can be formulated as follows:

IL[1] ` ϕ iff IL ` ¬¬ϕ, S4[1] ` ϕ iff S4 ` 32ϕ. (1)

For finite variable fragments of IL and S4, (1) can be generalized for arbitrary finite height.
A k-formula is a formula in variables p0, . . . pk−1. Consider the k-canonical frame (W,R)

of a logic S4 built from maximal S4-consistent sets of k-formulas. It follows from [She85] that

there exist formulas Bh,k (and their intuitionistic analogs B
(i)
h,k) such that for every x ∈W and

every finite h, Bh,k ∈ x iff the depth of x in W is less than or equal to h.

Theorem 1. Fix a finite k. For all k-formulas ϕ we have:

(a) IL[h+ 1] ` ϕ iff IL `
∧

i≤h((ϕ→ B
(i)
i,k)→ B

(i)
i,k);

(b) S4[h+ 1] ` ϕ iff S4 `
∧

i≤h(2(2ϕ→ Bi,k)→ Bi,k).

In particular, for h = 0 we obtain (1), since for every k, the formulas B0,k and B
(i)
0,k are ⊥.

Modal non-transitive case The proof of Theorem 1 is essentially based on formulas Bh,k.
Sometimes, their analogs exist in the non-transitive case. A modal logic L is pretransitive (or
weakly transitive, in another terminology), if the transitive reflexive closure modality 3∗ is
expressible in L [Kra99]. Namely, for a language with n modalities 3i (i < n), put 30ϕ = ϕ,
3m+1ϕ = 3m ∨i<n 3iϕ, 3≤mϕ = ∨l≤m3lϕ. A logic L is pretransitive if L ` 3m+1p→ 3≤mp
for some finite m. In this case 3≤m plays the role of 3∗. Examples of pretransitive logics are
S4, K5, or the modal product S4 × S4. The height of a polymodal frame (W, (Ri)i<n) is the
height of the preorder (W, (

⋃
i<nRi)

∗). In the pretransitive case, the formulas of finite height
can be defined analogously to the transitive case.

L is said to be k-tabular if, up to the equivalence in L, there exist only finitely many k-
formulas. L is locally tabular (or locally finite) if it is k-tabular for every finite k.

Theorem 2. Let L be a pretransitive logic, h, k < ω. If L[h] is k-tabular, then:

(a) For every i ≤ h, there exists a formula Bi,k such that Bi,k ∈ x iff the depth of x in the
k-canonical frame of L is less than or equal to h.

∗This note is based on the manuscript arxiv.org/abs/1806.06899. This work was supported by the RSF grant
16-11-10252 and performed at Steklov Mathematical Institute of Russian Academy of Sciences.

https://arxiv.org/abs/1806.06899
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(b) For all k-formulas ϕ, L[h+ 1] ` ϕ iff L `
∧

i≤h(2∗(2∗ϕ→ Bi,k)→ Bi,k).

In particular, we have the following generalization of (1): L[1] ` ϕ iff L ` 3∗2∗ϕ for every
pretransitive L, since the inconsistent logic L[0] is locally tabular (for the unimodal case, a more
direct proof of this equivalence is given is [KS17]).

The one-variable fragment of a non-locally tabular modal logic can be finite Theorem
2 generalizes Theorem 1, and has an additional condition, k-tabularity of L[h]. Indeed, a
transitive logic is locally tabular iff it is of finite height iff it is 1-tabular ([Seg71], [Mak75]),
but in the non-transitive case the situation is much more complicated. Every 1-tabular logic is
a pretransitive logic of finite height [SS16], and there exists a pretransitive L such that none of
the logics L[h] are 1-tabular [Mak81]. In general, k-tabularity of L[h] depends on h and k.

For example, let L be the least unimodal logic containing p → 3p, 33p → 32p, and
2232p→ 3222p. One can see that L[1] ` p↔ 2p. Thus, L[1] is locally tabular (and Theorem
2 describes translations from L[2] to L for all k < ω). One can check that L[2] is not 1-tabular.

With the parameter k, the situation is even more interesting. We know that a unimodal
transitive logic is locally tabular iff it is 1-tabular [Mak75]. This equivalence also holds for
other families of modal logics [SS16] (for example, it holds for unimodal logics containing
3m+1p→ 3p∨ p for some m > 0). However, this equivalence does not hold in general. For the
counterexample, consider the frame (ω + 1, R), where xRy iff x ≤ y or x = ω. It can be shown
that its logic is 1-tabular but not locally tabular.

Theorem 3. There exists a unimodal 1-tabular logic which is not locally tabular.

Questions 1. It is unknown whether 2-tabularity of a modal logic implies its local tabularity.
At least, does k-tabularity imply local tabularity, for some fixed k for all modal logics? The
same questions are open in the intuitionistic case. 2. Finite height is not a necessary condition
for local tabularity of intermediate logics. What can an analog of Gliveko’s translation be in the
case of a locally tabular intermediate logic with no finite height axioms? 3. In [Bez01], Glivenko
type theorems were proved for intuitionistic modal logics above MIPC, the intuitionistic variant
of S5. What can be an analog of Theorem 2 for modal intuitionistic logics?
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Simplicial semantics and one-variable fragments

of modal predicate logics

Valentin Shehtman∗

We consider normal 1-modal predicate logics in the signature with predicate
letters of all arities, but without equality, constants or functions letters. A logic
is a set of formulas containing all classical validities and the axioms of K and
closed under the standard rules including the predicate substitution, cf. [2].

QΛ denotes the minimal predicate extension of a propositional modal logic
Λ, and QΛC := QΛ + ∀x�P (x)→ �∀xP (x).

1-variable formulas are constructed from a single variable x and monadic
predicate letters. Every such formula A translates into a bimodal propositional
formula A∗ if every atom Pi(x) is replaced with the proposition letter pi and
every quantifier ∀x with �. The 1-variable fragment of a predicate logic L is the
set L−1 := {A∗ | A ∈ L, A is 1-variable}; this is always a bimodal propositional
logic.

Our goal in this talk is to describe some logics of the form QΛ− 1.
For a monomodal logic Λ (in the language with �), Λ∗S5 denotes its fusion

with S5 (in the language with �), and

Λ |S5 := Λ ∗ S5 + ��p→ ��p, [Λ,S5] := Λ ∗ S5 + ��p ↔ ��p.

A propositional modal logic is Horn axiomatizable if it is axiomatized by
modal axioms corresponding to first-order Horn formulas and (maybe) variable-
free modal axioms, cf. [1]. The following theorem is well-known ([1], [3]):

Theorem 1 If Λ is Horn axiomatizable and Kripke complete, then QΛC−1 =
[Λ,S5].

Our new result is similar:

Theorem 2 If Λ is Horn axiomatizable and Kripke complete, then QΛ− 1 =
Λ |S5.

The proof of Theorem 1 was based on the observation that a predicate Kripke
frame with a constant domain can be regarded as a product of a propositional
frame with a cluster. This method does not work for Theorem 2, because now
we need “expanding products”, and a logic Λ |S5 may not axiomatize them.

So instead of Kripke semantics, we use simplicial semantics of predicate
modal logics. Let us recall related definitions. Let In = {1, . . . , n}, I0 = ∅,
and let Σmn be the set of all maps Im −→ In (Σ0n consists of a single map
∅n, and Σm0 = ∅ for m > 0). Also let Σ =

⋃
m,n Σmn. There are specific

∗Institute for Information Transmission Problems, RAS; Steklov Mathematical Institute;
Moscow State University; National Research University Higher School of Economics
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maps: δni ∈ Σn−1,n sends 1, . . . , n − 1 respectively to 1, . . . , i − 1, i + 1, . . . , n;
σ+ ∈ Σm+1,n+1 prolongs σ ∈ Σmn with σ+(m+ 1) = n+ 1.

A simplicial frame based on a propositional frame F0 is F = ((Fn)n≥0, π),
where each Fn = (Dn, Rn) is a propositional frame, π = (πσ)σ∈Σ is a family of
maps πσ : Dn −→ Dm for σ ∈ Σmn. A valuation in F is a function ξ sending
every predicate letter Pnk to a subset ξ(Pnk ) ⊆ Dn. An assignment in F is a
pair (x,a), where a ∈ Dn, x = (x1, . . . , xn) is a list of different variables. For a
formula A, an assignment (x,a) involving all its parameters and a valuation ξ
the truth relation (F, ξ),a/x � A is defined by induction, in particular

• a/x � Pmk (xσ(1), . . . , xσ(n)) iff πσa ∈ ξ(Pmk ) (for σ ∈ Σmn);

• a/x � �B iff ∀b ∈ Rn(a) b/x � B;

• a/x � ∃yB iff ∃c ∈ Dn+1(πδn+1
n+1

c = a & c/xy � B), where y does not

occur in x;

• M,a/x � ∃xiB iff M,πδni a/(x− xi) � ∃xiB (where x− xi is obtained by
crossing xi out of x).

A formula A is valid in a simplicial frame if it is true under every valuation and
variable assignment (for its parameters); A is strongly valid if all its substitution
instances are valid.

Theorem 3 [4] Let F = ((Fn)n≥0, π) be a simplicial frame such that: (1) π∅1
is

surjective; (2) every πσ for σ ∈ Σmn is a p-morphism from Fn to Fm (perhaps,
not surjective); (3) π reverses composition and sends identity maps to identity
maps; (4) if πδm+1

m+1
(b) = πσ(a), σ ∈ Σmn, then there exists c ∈ Dn+1 such that

πσ+(c) = b, πδn+1
n+1

(c) = a. (Such a frame is called sound).

Then the set of formulas strongly valid in F is a modal predicate logic.

For the proof of Theorem 2, we assume that Λ |S5 6` A∗. By Kripke com-
pleteness of this logic, we obtain a bimodal frame separating A∗ from Λ |S5,
which produces two 1-modal frames F0 and F1. Basing on them we construct a
sound simplicial frame F such that Fn � Λ for every n. Then F refutes A and
strongly validates QΛ, which implies QΛ 6` A.

This work was supported by the Russian Science Foundation, Project No.
16-11-10252 and was carried out at Steklov Mathematical Institute, RAS.
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Many well-known categories, such as semilattices and their homomorphisms, frames and
their homomorphisms, T0 topological spaces and continuous maps, has not only colimits, but
weighted colimits, when regarded as order-enriched categories. We show that in all these, and
many other cases, this is a consequence of a stronger property: all of them are the domain of
an order-solid functor into the category of partially ordered sets and monotone maps.

Solid functors were studied extensively in [13], [15], [14] and [12] under the name of semi-
topological functors, having been previously approached, independently and under different
names, in [8] and [16]. They encompass functors from algebra and topology and enjoy many
good properties including the detection of limits and colimits.

In the general enriched context, solid functors were studied by Anghel [3, 4, 5]. Here we are
interested in the order-enriched version of these functors, continuing the study of order-enriched
categories developed in the papers [6, 2, 10, 7, 1, 9]. Thus the hom-sets of our categories are
equipped with a partial order preserved by the composition of morphisms on the left and on
the right, and by functors between them. We consider order-solid functors, the order-enriched
version of Anghel’s notion, but we pay special attention to a slightly simplified notion, strongly
order-solid functors, which, in some respects, proves to be more fruitful and justifies itself by
a long list of examples. A functor P : A → X is said to be strongly order-solid if, for every
family ξ = (ξi : PDi → X)i∈I in X , there is a family α = (αi : Di → A)i∈I in A and an
X -arrow q : X → PA such that (i) (α,A, q) is a P -extension of ξ, that is, Pα = q · ξ; (ii)
(α,A, q) is universal with respect to property (ii), that is, it is initial in the obvious category of
P -extensions of ξ; and (iii) q : X → PA is order-P -epimorphic, i.e. the inequality Pf ·q ≤ Pg ·q
implies f ≤ g. Every strongly order-solid functor is order-solid, but the question whether the
converse property holds seems to be hard and is left open.

An important goal is the characterization of (strongly) order-solid functors in terms of
their behaviour with respect to weighted limits and colimits. For a codomain category with
inserters, we characterize strongly order solid functors as those which are solid in the ordinary
sense, order-faithful, and have a domain category with inserters which are preserved by P .
And we show that the existence of weighted (co)limits for diagrams of any shape is lifted by
(strongly) order-solid functors.

We prove that algebraic functors between categories of general ordered algebras are always
strongly order-solid provided that they admit free algebras over every ordered set. But not
all examples of order-solid functors with an algebraic flavour fall in the scope of this result, as
shown by the category of ordered vector spaces, considered as an order-enriched category via the
positive cones of its objects: its positive-cone functor to the category of partially ordered sets
is still strongly order-solid. But ordered vector spaces, when considered as a discretely ordered
category, show that the condition of preservation of inserters in the above characterization is
essential.

This presentation is based on the paper [11].

∗Presenter
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In a frame L, from the Modus Ponens a ∧ (a⇒b) ≤ b we can obviously derive the equality

a ∧ (a⇒b) = a ∧ b. (1)

On the left hand side we can read here the interplay between the multiplication ∧ and its
residuation in L, on the right hand side the ∧ plays its role as the infimum in L.

Now let Q be a quantale, i.e. a monoid in the category Sup of complete lattices and
supremum-preserving maps. It still has residuations a · − a a ↘ − and − · a a − ↙ a,
but in general the Modus Ponens no longer implies a suitable equivalent to the equation (1).
Therefore we say that Q is divisible if the equation

a · (a↘b) = a ∧ b = (b↙a) · a (2)

holds in Q. More generally, if we let Q be a quantaloid (i.e. a category enriched in Sup), then it
still makes sense to say that Q is divisible if, for all pairs of parallel arrows f and f ′, we have

f ◦ (f↘f ′) = f ∧ f ′ = (f ′↙f) ◦ f. (3)

To gain a better understanding of this condition, and to make better use of it in applications,
we consider the following: given any two arrows f and g in a quantaloid Q, define a diagonal
d : f → g to be an arrow d : dom(f)→ cod(g) for which the following diagram commutes:

· ·

· ·

d↙f

f
d g

g↘d

(4)

Such diagonals are the arrows of a new quantaloid D(Q) – the composition of diagonals is
done by suitably “pasting” commutative squares as in (4) – which fully faithfully contains Q:
indeed, D(Q) is the universal “splitting-of-everything” completion of Q. It is then a fact that
the quantaloid Q is divisible if and only if

D(Q)(f, f ′) = ↓(f ∧ f ′) (5)

for all pairs of parallel arrows f and f ′.

In this talk, apart from explaining the above, I shall indicate some (easy) consequences of
the divisibility of Q, sketch a useful context for these definitions (“partial enrichment”), and
discuss a few examples (in part. continuous t-norms). This is a continuation of the work that I
presented at TACL 2017 in Prague.
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D-frames are pointfree duals of bitopological spaces; this duality was introduced and explored
in [1]. The aim of the talk is to illustrate applications of both the coproduct of frames and Galois
connections in this theory. A d-frame is a quadruple (L+, L−, con, tot) where L+ and L− are frames,
and con, tot ⊆ L+×L− satisfy certain axioms. The frames L+ and L− represent the two topologies,
the subset con represents all the pairs in L+ × L− that are disjoint, the subset tot all of those
which cover the whole space. The motivation behind the axioms is precisely that con and tot should
reflect the behaviour of disjointness and covering. The work we have been doing centres around
trying to understand bitopological sublocales, which we identify with d-frame surjections. These
come equipped with a natural order which we take as being the ordering of d-sublocales. Under this
ordering, the d-sublocales form a complete lattice, as shown in [2]. There we are also given a notion
of what it means for a d-frame surjection to be generated by updates of the form con 7→ con′ ⊇ con or
tot 7→ tot′ ⊇ tot. These are not all of the sublocales, but the whole lattice of d-sublocales is generated
by them in the subbasis sense. For d-frames of the form (L+, L−, conmin, totmin) the d-sublocales
obtained by updating con are anti-isomorphic to the suitable con subsets of L+×L−, ordered under
set inclusion. These form a frame, which we call con(L+ × L−). The d-sublocales obtained via tot
updates are anti-isomorphic to a simple sublocale of the analogous poset of tot subsets tot(L+×L−)
(this poset of tots is a frame too). So, we study the frames con(L+ ×L−) and tot(L+ ×L−) to gain
insight about these subbasic d-sublocales.

Subsets of L+ × L− such that they satisfy the con axioms are completely determined by their
d-pseudocomplementation maps ∼ : L+ � L− : ∼ mapping each element of a frame to its d-
pseudocomplement, that is the maximal element in the other frame such that it is in con with it.
That this indeed exists in ensured by the defining axioms of a d-frame. Because a pair of monotone
maps f : L+ � L− : g is a d-pseudocomplementation map if and only if it is an antitone Galois
connection, we have an isomorphism con(L+×L−) ∼= Gal(L+, L−), where the second poset is that of
Galois connections between L+ and L−, ordered pointwise. The frame Gal(L+, L−) is also isomorphic
to the coproduct L+ ⊕ L−, as shown in [3].

Let us now look at the main diagram of my talk, shown below. The diagram is in the category
Frm. The frame totFilt(L+ ⊕ L−) is a subframe of Filt(L+ ⊕ L−), consisting of all filters generated
by a collection of elements of the form e+(x+) ∨ e−(x−), where e+,− : L+,− ↪→ L+ ⊕ L− are the
canonical embeddings into the coproduct. The maps i and j are both order isomorphisms. We have
an antitone Galois connection ↑′: L+ ⊕ L− � totFilt(L+ ⊕ L−) :

∧
1, which we lift along the two

isomorphisms to obtain the (−) maps.

con(L+×L−) tot(L+×L−)

L+ ⊕ L− totFilt(L+ ⊕ L−)

(−)

j(∼=)
(−)

i(∼=)

↑′∧
The first relevant fact this tells us is that the coproduct of two frames L+ and L− encodes all

of con(L+ × L−) and tot(L+ × L−). An intuitively appealing way of seeing this is the following:
both con(L+ × L−) and tot(L+ × L−) represent subcollections of S(L+ ⊕ L−), the coframe of all

1Since not all principal filters are tot-filters, we adapt the usual Galois connection and define ↑′(c) =
∨
{F ∈

tFilt(L+ ⊕ L−) : F ⊆ ↑c}, where this join is taken in Filt(L+ ⊕ L−).
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sublocales of L+⊕L− (although this representation is only unique in the case of con). The significance
of L+ ⊕ L− is that it is the pointfree representation of the join topology2 from L+ and L−.

• The con are unique representations of closed sublocales of the coproduct. The main idea is
that each c ∈ con(L+ × L−) represents c(

∨
{a+ ∧ a− : a+a− ∈ c}). The correspondence is an

order anti-isomorphism.

Consider that a certain con subset c imposes that some pairs of abstract patch opens a+a− are
disjoint. But in the pointfree patch topology L+ ⊕ L− these abstract opens appear too, and
imposing those pairs to be disjoint in this setting means identifying each a+∧a− (for a+a− ∈ c)
with the bottom element, which is exactly what our closed sublocale above does. Notice that
this means that the d-sublocales of (L+, L−, conmin, totmin) coming from con updates do not
depend on the frames L+ and L−, but only on their coproduct. These d-sublocales can be
completely described monotopologically, by identifying them when the closed sublocales of
L+ ⊕ L−.

• The tot subsets are representations of certain fitted sublocales of the coproduct. The main idea
is that each t ∈ tot(L+ × L−) represents

∧
{o(a+ ∨ a−) : a+a− ∈ t}.

Any tot subset t imposes a certain collection of pairs of patch opens a+a− to be covering. In
the coproduct this means identifying all the a+ ∨ a−’s with a+a− ∈ t with the top element,
which gives the fitted sublocale above. Each of these sublocales is generated by a tot-filter.
In contrast with the con case, tot(L+ × L−) does depend on the particular frames L+ and
L−, and in this sense the d-sublocales of (L+, L−, conmin, totmin) obtained by tot updates are
genuinely bitopological.

The second main result is that we can get a d-frame canonically whose two frame components
are con(L+ ×L−) and tot(L+ ×L−). We can equip this pair of frames with a suitable con relation,
obtained by taking (the lifting of) the Galois connection (

∧
, ↑′) to be a d-pseudocomplementation

map. One can also define a totality relation Tot, satisfying the balance axiom with Con. So the
structure (con(L+×L−), tot(L+×L−),Con,Tot) is a d-frame. In the “monotopological” case – that
is in the case where the pair of frames is of the form (L, 2) – this d-frame is (L,Filt(L),Con,Tot)
and it was already known to have an interesting property. In fact its patch frame3 is isomorphic to
the frame of nuclei N(L) on L, as explained in [4]. Motivated by this, in our future work we would
like to see whether in general the d-frame (con(L+×L−), tot(L+×L−),Con,Tot) satisfies a similar
universal property, or even whether there is a certain sense in which it acts as the d-frame containing
information about all of the d-sublocales of (L+, L−, conmin, totmin).
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Residuated lattices constitute the equivalent algebraic semantics, in the sense of Blok-Pigozzi
[2], of substructural logics, which encompass most of the interesting nonclassical logics: intu-
itionistic logic, fuzzy logics, relevance logics, linear logic, besides including classical logic as
a limit case. Thus, the investigation of the variety of residuated lattices is a powerful tool
for analyzing such logics comparatively, as deeply explored in [4]. The multitude of different
structures makes the study fairly complicated, and at the present moment large classes of resid-
uated lattices lack a structural understanding. Thus, the study of constructions that allow to
obtain new structures starting from known ones, is extremely important to improve our grasp
of residuated lattices, and as a result of substructural logics.

The construction we introduce glues together two integral residuated lattices that share a
principal filter. Let us call conical an element that is comparable to every other element of a
residuated lattice, while an element x is said idempotent if x ·x = x. Let B = (B, ·, \, /,∧,∨, 1),
C = (C, ·, \, /,∧,∨, 1) be integral residuated lattices, with C having a lower bound 0C , that
have an isomorphic principal filter generated by a conical idempotent element, that we will call
a in both B and C. We assume that the two algebras intersect in the filter generated by a,
Ba ∩ Ca = 〈a〉 (where 〈a〉 coincides with the upset of a, since a is idempotent). Let us call
Ca = C \ 〈a〉, and Ba = B \ 〈a〉.

We define the gluing of B and C with respect to a as the structure

B⊕a C = (B ∪ C, ·a, \a, /a,∧a, ∨a, 1)

Where the operations are defined as follows:

x ·a y =

 x · y if x, y ∈ B, or x, y ∈ C
a · y if x ∈ Ca, y ∈ Ba

x · a if x ∈ Ba, y ∈ Ca

x\a y =

 x\y if x, y ∈ B, or x, y ∈ C
a\y if x ∈ Ca, y ∈ Ba

1 if x ∈ Ba, y ∈ Ca

x/a y =

 x/y if x, y ∈ B, or x, y ∈ C
x/a if x ∈ Ba, y ∈ Ca

1 if x ∈ Ca, y ∈ Ba

x ∧a y =

 x ∧ y if x, y ∈ B, or x, y ∈ C
x if x ∈ Ba, y ∈ Ca

y if y ∈ Ba, x ∈ Ca

x ∨a y =


x ∨ y if x, y ∈ C, or x, y ∈ B with x ∨ y 6= a
0C if x, y ∈ Ba, x ∨ y = a
y if x ∈ Ba, y ∈ Ca

x if y ∈ Ba, x ∈ Ca

Notice that the lattice structure is given by copying Ba below C, and the product and the
residuals between elements in Ca and elements in Ba derive from products and residuals between
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a and the elements in Ba and Ca. We can prove that B⊕a C is an integral residuated lattice,
that has a lower bound if and only if B does. Notice that in general C is a subalgebra of the
gluing B ⊕a C, while B is a subalgebra with respect to all operations except for ∨a. More
precisely, B is a subalgebra iff a is join-irreducible.

The gluing construction generalizes the ordinal sum construction introduced in [3], that has
played an important role in the study of residuated structures, in particular of commutative
integral residuated lattices (or CIRLs) satisfying prelinearity (the equational property that
characterizes CIRLs that are a subdirect product of chains), and the divisibility condition
x ∧ y = x · (x → y) (see [1]). The ordinal sum construction is a special case of the gluing
operation, where the conical idempotent element a is 1. This also means that given any pair of
integral residuated lattices B and C, with B having a lower bound, we can always glue them.

It is worth noticing that the gluing preserves commutativity, prelinearity and divisibility.
Thus, for instance, gluing two GMTL-algebras (prelinear CIRL) gives a GMTL-algebra, and
the gluing of two basic hoops (divisible GMTL-algebras) is a basic hoop. Moreover, it can be
easily shown that in general, the gluing operation preserves all unary equations without join
(e.g. it preserves n-potency, xn = xn+1, for every n ≥ 1). Furthermore, whenever a is join
irreducible in B, any gluing of the kind B ⊕a C will preserve all unary equations satisfied by
both B and C.

The gluing construction can be extended to bounded integral residuated lattices. Then we
get for instance that a gluing of MTL-algebras (prelinear bounded CIRLs) is an MTL-algebra,
and gluings of BL-algebras (divisible MTL-algebras) are BL-algebras. It can further be proved
that a gluing of bounded CIRLs, B⊕aC, is bipartite iff B is bipartite, where we call a bounded
CIRL R bipartite if it is the disjoint union of the intersection of its maximal filters R(R) and
C (R) = {x ∈ R : x → 0R ∈ R(R)}. More interestingly, we can use the gluing construction
to generate and characterize new varieties of bounded CIRLs generated by classes of bipartite
residuated lattices. As a result, interesting subvarieties of n-potent CIRLs can be characterized
using this construction.
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One of the main primitive notions of the standard Euclidean approach to the theory of space
is the notion of point (as well as line and plane). In the beginning of 20 century some philosophers
including mainly Alfred North Whitehead [8] formulated certain criticism to this point-based approach,
because points (lines, planes) are some abstract things which have no separate existence in reality and
consequently should not be put on the base of the theory. Accordingly the theory of space should be
point-free and should be based on some simple spatial relations between things. The same criticism is
given by Whitehead to the theory of time - time points (moments of time) also do not have separate
existence in reality. Influenced by the Relativity theory Whitehead stated that space and time should
be considered as one integrated point-free axiomatic theory. This means that neither space points,
nor time moments should be taken as primitive notions at the beginning of the theory but should be
introduced later on by appropriate formal definitions. In the resulting theory the structure of space-
time should be extracted from some simple spatiotemporal relations between things. Let us note that
till now various point-free formulations of the theory of space have been given (see, for instance, the
survey [4] for some historical information, results and references). One of the main formulation of the
point-free theory of space is based on the abstract notion of contact algebra [2]. A contact algebra
B = (B,C) is a Boolean algebra B with one binary relation C called contact. The elements of the
Boolean algebra are considered as abstractions of spatial regions and its operations are considered as
constructions of new regions by given ones. The relation of Boolean ordering a ≤ b is interpreted as
”the region a is part of the region b”and a 6= 0 is interpreted as ”a exists”. The intuitive meaning of the
contact relation aCb is that a and b has a common point, but as point is not a primitive notion, C is
characterized by several simple axioms. Standard point-based models of contact algebras are Boolean
algebras of regular closed sets of a given topological space with contact non-empty intersection. Detailed
topological representation theory for some classes of contact algebras is given in [2] and duality results
for some categories of contact algebras and some generalizations are presented in [3] with references to
other papers on the same topic.

While the point-free theory of space is developing quite well with some applications in Knowledge
representation, the same cannot be said for the integrated point-free theory of space and time. Accord-
ing to the author’s information only the initial steps have been done in the papers [5,6,7,1]. As a result
several notions of dynamic contact algebra (DCA) have been obtained. These are Boolean alge-
bras whose elements are considered as changing or moving regions, called dynamic regions equipped
with some spatio-temporal relations between them. In [5] these relations are: aC∀b - stable contact
(intuitively a and b are in a contact in all moments of time) and aC∃b - unstable contact (a and b
are in contact in some moments of time. In [6] we consider a different set of spatio-temporal relations:
aCsb - spatial contact (the same as aC∃b), aCtb - time contact - (a and b exist simultaneously
at some moment of time, simultaneity or contemporaneity relation in Whitehead’s terminology ), and
aBb - precedence - ( there is a moment of time in which a is existing and a later moment of time in
which b is existing). In [7] we add to these relations some special regions called representatives of
time one of them called NOW. Intuitively each representative of time exists at exactly one moment
of time (”epoch” in the Whitehead’s terminology) and NOW is existing only at the present epoch.
In the ordinary language we use as time representatives some things identifying the time epoch in
which they are existing. For instance: ”the epoch of Leonardo”, ”the epoch of dinosaurs”. Axioms
for all these versions of DCA are chosen as true sentences from a concrete point-based model, called

This research was supported by Bulgarian National Science Fund, contract no. DN02/15/19.12.2016.
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snapshot model (or cinematographic model). The informal idea of the snapshot model is the
following. If we want to describe an area of changing regions, then for each moment of time we make
a picture (snapshot) of the corresponding spatial configurations of regions at that time assuming that
each picture is a given contact algebra. We identify a given dynamic region a with its time history
< ...at... >t∈T , where at is the region a at the moment t. Formally we start with a given temporal
structure (T,≺,now) where T is the set of time points, ≺ is a time order relation before-after, and
now is the present epoch. Then we associate to each t ∈ T a contact algebra Bt = (Bt, Ct), called the
coordinate contact algebra corresponding to t. Then for each dynamic region a =< ...at... >t∈T

we have that at ∈ Bt. All dynamic regions belong to a (subset) B of the Cartesian product
∏

t∈T Bt

of Boolean algebras Bt, t ∈ T , and B is considered as a Boolean subalgebra of
∏

t∈T Bt. Then all
mentioned above spatio-temporal relations have exact definition in B:

aCsb iff (∃t ∈ T )(atCtbt), aC
tb iff (∃t ∈ T )(at 6= 0t and bt 6= 0t,

aBb iff (∃s, t ∈ T )(s ≺ t and as 6= 0s and bt 6= 0t),
and similarly for the time representatives. A special number of conditions is chosen using only the
spatio-temporal relations and regions called time axioms validity of which in the snapshot model is
equivalent to some good properties of the time-order relation ≺ in the time structure (T,≺,now). For
instance the relation ≺ satisfies the density axiom

(Dens s ≺ t⇒ (∃k)(s ≺ k ≺ t) iff the axiom (dens aBb→ aBp or −pBb) is true in the model.
For all versions of DCA mentioned in [5,6,7] a special representation theorem is proved showing

that each (DCA) is isomorphic with a special DCA obtained by the snapshot construction, showing
in this way that the information of the concrete model is coded by the axioms of the abstract point-
free formulation. This means that a (canonical) time structure (T,≺,now) and (canonical) coordinate
contact algebras has to be extracted from the abstract definition of DCA to build a (canonical) snapshot
model and to show that the obtained model is isomorphic to the given DCA.

In [1] some variations of DCA-s from [7] has been introduced with relational characteristic models
which are used for a complete Kripke style semantics of some spatio-temporal logics based on DCA-
s.The aim of the present talk is to give a short survey of the obtained so far results for DCA-s and to
present a third kind of models of DCA-s - topological models and the expected representation theory.
We will formulate also various open problems for further investigations.
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Several recent publications in the literature address the study of modal expansions of many-
valued logics (see eg. [4, 3], [6], [1], [5], [7]), and it is the aim of the current work to contribute
to the better understanding of this topic. In particular, we close the problem left open in [6]
and [3] of finding an axiomatization for the Gödel Modal Logic with crisp accessibility and the
two usual modal operators 2 and 3.

While in [4] the Gödel modal logics with one modal operator are studied, only the 2 fragment
of the logic1 arising from crisp-accessibility models is axiomatized there (turning out it coincides
with the logic with arbitrary accessibility models). The modal logic with 3 and crisp accessible
relation is axiomatized in [6]. Further, in [3], the authors study the Gödel modal logics with both
2 and 3 usual operators, axiomatizing the logic arising from the class of models with valued
accessibility relation. However, the completeness proof is highly dependant in the possibility of
assigning values strictly in (0, 1) to the accessibility relation, and thus it was not clear how to
face the axiomatization of the restriction to the the model with {0, 1} (crisp) valued accessibility
relation. Further, the addition of the axioms and rules from [6] to the system in [4] was not
clear to be enough to axiomatize the bi-modal (crisp) logic, leaving the axiomatization of the
Bi-modal Gödel logic with crisp accessibility as a non-trivial open problem.

Let us use Fm to denote the set of formulas in the language {∧/2,∨/2,¬/1,→ /2, 0/0, 1/0)}∪
{2/1,3/1} (the formulas in the first set of operations are the propositional ones). A (crisp
accessibility) Gödel-Kripke model M is a tripla 〈W,R, e〉 with W 6= ∅, R ⊆ W × W 2

and a mapping e : W × Vars → [0, 1]. The evaluation e is uniquely extended to a map-
ping W × Fm → [0, 1] by evaluating the propositional connectives by their corresponding
operations in the standard Gödel algebra [0, 1]G, and letting e(v,2ϕ) :=

∧
Rvw e(w,ϕ) and

e(v,3ϕ) :=
∨

Rvw e(w,ϕ).
We write Γ |= ϕ, and say that ϕ follows from Γ (in the crisp Gödel modal logic)

whenever, for any Gödel Kripke model M and any v ∈W , e(v, [Γ]) ⊆ {1} implies e(v, ϕ) = 1.
In their work [3], Caicedo and Rodriguez axiomatize K(G), the minimum Gödel modal logic,

which is the logic arising from Krpke models similar to the above ones but whereR : W 2 → [0, 2])
K(G) and then e(v,2ϕ) :=

∧
w∈W R(v, w)→ e(w,ϕ) and e(v,3ϕ) :=

∨
w∈W R(v, w)∧ e(w,ϕ).

K(G) is axiomatized extending Gödel-Dummet propositional calculus (i.e, Heyting calculus
plus the prelinearity law) with the following additional axioms and rules:

(K2) 2(ϕ→ ψ)→ (2ϕ→ 2ψ) (K3) 3(ϕ ∨ ψ)→ (3ϕ ∨3ψ)
(F2) 2> (P ) 2(ϕ→ ψ)→ (3ϕ→ 3ψ)

(FS2) (3ϕ→ 2ψ)→ 2(ϕ→ ψ) (Nec) from ` ϕ infer ` 2ϕ
The logic we propose now, Kc(G), complete wrt. crisp accessibility Gödel-Kripke models is
defined by adding to K(G) the following axiom schemata:

(Cr) 2(ϕ ∨ ψ)→ (2ϕ ∨3ψ)
(A<

23) ((2ϕ→ 2ψ)→ 2ψ)→ 3((ϕ→ ψ)→ ψ) ∨2 ⊥
1It is the case that in Gödel modal logic 2 and 3 are not interdefinable.
2A usual accessibility relation, for which we will write Rab ⇔ 〈a, b〉 ∈ R.
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(A<
2) ((2ϕ→ 2ψ)→ 2ψ)→ ((2((ϕ→ ψ)→ ψ)→ 2ψ)→ 2ψ)

(A<
3) ((3ϕ→ 3ψ)→ 3ψ)→ 3((ϕ→ ψ)→ ψ)

In what follows, for any formula ϕ we denote by SFm(ϕ) ⊆ Fm the set of subformulas
of ϕ and containing the formulas ⊥ and >. Further, as usual, let us denote by Fm] the set
of sentences built only with propositional connectives over an extended set of variables which
denote the formulas in Fm starting by a modality. For checking the previous system is complete
w.r.t |=, it suffices to do that for theorems (since the logic enjoys the DT). A relevant observation
is that the canonical model arising in the proof depends on the formula being studied; namely,
if 6`Kc(G) ϕ, we let the canonical model Mϕ be
• Wϕ := {h ∈ hom(Fm], [0, 1]G) : h(Th(Kc(G))) ⊆ {1}},
• Rϕhg ⇐⇒ h(2χ) ≤ g(χ) and h(3χ) ≥ g(χ) for all χ ∈ SFm(ϕ),
• eϕ(h, p) = h(p) for any p propositional variable.

The Truth Lemma, which easily implies completeness, is formulated as h(2ψ) =
∧

Rϕhg g(ψ)
for all 2ψ ∈ SFm(ϕ), and the analogous result for 3 formulas. The following can be proven
by relying in the proposed axiomatic system and dividing the proof in two cases depending on
the behaviour of v. It is the key result to check the Truth Lemma over 2-formulas:
Lemma. Let v ∈ Wϕ, and ψ ∈ Fm(ϕ) such that v(2ψ) < 1. Then there exists a G-
homomorphism u from Fm] into [0, 1]G such that

1. u(Th(Kc(G))) = 1,
2. u(θ) = 1 for all θ ∈ SFm(ϕ) such that v(2θ) = 1,
3. u(χ) < 1 for all χ ∈ SFm(ϕ) such that v(3χ) < 1,
4. u(ψ) < u(χ) for all χ ∈ SFm(ϕ) such that v(2ψ) < v(2χ) (in particular, u(2ψ) < 1).
Now, for an arbitrary ε > 0, it can be defined, in a similar fashion to [3], a standard Gödel

endomorphism σ such that Rϕv(σ ◦ u), and σ ◦ u(ϕ) ∈ [v(2ϕ), v(2ϕ) + ε], proving the Truth
Lemma. The proof for the 3 formulas can be done in a dual way.
Theorem. Kc(G) is sound an complete with respect to |=.

Interestingly enough, this approach also provides a new axiomatization of the 3 fragment
of the (crisp) Gödel modal logic, different from the one in [6]. For the interested reader, the
logic Gc(G) is proven complete (via its semantics) in [2].
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Monotonic modal logics generalize normal modal logics by dropping the K axiom
2(p → q) → (2p → 2q) and instead requiring only that ` φ → ψ imply ` 2φ → 2ψ.
There are a number of reasons for relaxing the axioms of normal modal logics and considering
monotonic modal logics. For instance, monotonic modal logics are considered more appropriate
to describe the ability of agents or systems to make certain propositions true in the context
of games and open systems [4, 5, 1]. The standard semantics for monotonic modal logics is
provided by monotonic neighborhood frames (see, e.g., [2]).

Just as the first-order language with a relation symbol is a useful correspondence language
for Kripke frames, it is natural to consider what would be a useful correspondence language for
monotonic neighborhood frames. Litak et al. [3] studied coalgebraic predicate logic (CPL) as a
logic that plays that role and proved a characterization theorem in the style of van Benthem and
Rosen [6]. In this article, we continue that path for monotonic neighborhood frames and prove
variants of the Goldblatt-Thomason theorem and the Fine canonicity theorem in the setting of
coalgebraic predicate logic.

Subclass Closed under ...

monotonic supersets
quasi-filter supersets, intersections of nonempty finite families of neighborhoods
augmented quasi-filter supersets, intersections of nonempty families of neighborhoods
filter supersets, intersections of finite families of neighborhoods
augmented filter supersets, intersections of families of neighborhoods

Table 1: Classes of monotonic neighborhood frames and their definitions

The analogue of the Goldblatt-Thomason theorem in this article is that a class of monotonic
neighborhood frames closed under CPL-elementarity relative to any of the classes of neighborhood
frames in Table 1 is modally definable if and only if it is closed under disjoint unions, bounded
morphic images, and generated subframes, and it reflects ultrafilter extensions; and the analogue
of Fine’s theorem we will prove states that a sufficient condition for the canonicity of a monotonic
modal logic is that it is complete with respect to the class of monotonic neighborhood frames it
defines and that that class is closed under CPL-elementarity relative to any of the classes of
neighborhood frames in Table 1.

Definition 1. Let L0 be a language of first-order logic. The language of coalgebraic predicate
logic L based on L0 is the least set of formulas containing L0 and closed under Boolean
combinations, existential quantification, and formation of formulas of the form x2y φ where
φ ∈ L, x is a term, and y is a variable. An L-structure F = (F,NF ) is an L0-structure F with
an additional datum NF : F →P(P(F )), where P is the powerset operation.
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Definition 2. Let L be a language of coalgebraic predicate logic and F an L-structure. We
define the satisfaction predicate F |= φ for a sentence φ ∈ L. It is convenient to define the
predicate for the expanded language L(F ) of coalgebraic predicate logic. In general, for A ⊆ F ,
we define L(A) to be the language of coalgebraic predicate logic that has all symbols of L and
for each w ∈ A a constant symbol w that is intended to be interpreted as w itself. Now, F is an
L(F )-structure in the obvious way. We define the satisfaction predicate F |= φ for φ ∈ L(F ).
The predicate is defined by recursion on φ. For symbols of first-order logic in L, the predicate is
defined in the ordinary way. For φ = w2y φ0, we define F |= w2y φ0(y) ⇐⇒ φ0(F ) ∈ NF (w),
where φ0(F ) = {v ∈ F | F |= φ0(v)} and φ0(v) stands for the substitution instance of φ0(y)
with v substituted for y.

Definition 3. Let K0 be a class of monotonic neighborhood frames. A class K of monotonic
neighborhood frames is CPL-elementary relative to K0 if there is a set of T of sentences of L= with
K = {F ∈ K0 | F |= T}. Two monotonic neighborhood frames F and F ′ are CPL-elementarily
equivalent relative to K0 if F, F ′ ∈ K0 and ThL=(F ) = ThL=(F ).

Theorem 4. Let K be a class of monotonic neighborhood frames that is closed under CPL-
elementary equivalence relative to any of the classes in Table 1. K is modally definable if and
only if it is closed under bounded morphic images, generated subframes, and disjoint unions,
and it reflects ultrafilter extensions. Moreover, if such a class is modally definable, then it is
definable by a canonical set of formulas.

Theorem 5. A set Σ of modal formulas is canonical if it is complete with respect to the class
K of monotonic neighborhood frames that it defines, and K is closed under CPL-elementary
equivalence relative to any of the classes in Table 1.
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For any (discrete) semigroup S, its Stone-Čech compactification

βS = {u | u is an ultrafilter on the set S} ,
endowed with the topology given by the base of clopen sets

{u ∈ βS | X ∈ u}
where X ⊆ S, admits a semigroup operation (u, v) 7→ uv given by

A ∈ uv ⇔
{
s ∈ S

∣∣ s−1A ∈ v
}
∈ u ,

for u, v ∈ βS, A ⊆ S, where

s−1A = L−1
s [A] = {x ∈ S | sx ∈ A} ,

for s ∈ S. Then βS becomes a compact right topological semigroup, i.e., all the
right shifts Rv : βS → βS where Rv(u) = uv are continuous, densely extending S.
Moreover, βS can be characterized by the following universal property:

Every homomorphism h : S → K from S to a compact hausdorff right topological

semigroup K extends to a unique continuous homomorphism eh : βS → K; eh is onto
if and only if h[S] is dense in K.

For an abelian group G, its dual Ĝ = Hom(G,T), where T ⊆ C is the unit circle,

is again an abelian group under the pointwise multiplication of characters γ, χ ∈ Ĝ
given by

(γχ)(x) = γ(x)χ(x) (x ∈ G) .

Being a closed subgroup of TG, Ĝ is a compact hausdorff topological group.

Let Ĝd denote the dual of G endowed with the discrete topology. Using the
Pontryagin-van Kampen duality theory for locally compact abelian groups, the Bohr

compactification of G can be defined as the dual bG =
ĉ
Gd of Ĝd.

Then bG is a compact topological group and G can be canonically embedded into

bG as a dense subset, identifying any x ∈ G with the character x : Ĝd → T of

Ĝd, given by x(γ) = γ(x) for γ ∈ Ĝd. This is justified by the following universal
property of bG, characterizing the Bohr compactification in category-theoretical
terms:

Every homomorphism h : G→ K from G to a compact hausdorff topological group
K Then the description of extends to a unique continuous homomorphism h] : bG→
K; h] is onto if and only if h[G] is dense in K.

Since the Stone-Čech compactification is “more universal” than the Bohr one, there
is a canonical continuous map ξG : βG→ bG from the Stone-Čech compactification
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βG of G to its Bohr compactfication bG, such that ξG(x) = x for x ∈ G. Obviously,
ξG is surjective and it can be easily shown that it is a homomorphism with respect
to the semigroup operation on βG, extending the multiplication on G, and the
group operation on bG. Hence the description of bG as a quotient of βG reduces
to the description of the equivalence relation

Eq(ξG) =
{

(u, v) ∈ βG× βG
∣∣ ξG(u) = ξG(v)

}
on βG.

An ultrafilter u ∈ βG is called a Schur ultrafilter if, for any set A ∈ u, there exist
elements a, b ∈ A such that ab ∈ A, as well. Let Ξ(G) denote the least closed
congruence relation on βG merging all the Schur ultrafilters on G to the unit of G.

Theorem. For any (discrete) abelian group G we have Eq(ξG) = Ξ(G), hence the
Bohr compactification bG of G is isomorphic (both algebraically and topologically)
to the quotient βG/Ξ(G) of the Stone-Čech compactification βG.

The proof relies on the fact that every idempotent ultrafilter on G is Schur and
on the two Ellis’ theorems, the first one of which states that every compact right
topological semigroup contains an idempotent, while, according to the second one,
every locally compact right and left topological group is already a topological group.
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A variety with ~0 and ~1 is a variety V in which there are 0-ary terms 01, ..., 0N , 11, ..., 1N
such that V |= ~0 = ~1 → x = y, where ~0 = (01, ..., 0N ) and ~1 = (11, ..., 1N ). The terms ~0 and ~1
are analogous, in a rather general manner, to identity (top) and null (bottom) elements in rings
(lattices), and their existence in a variety, when the language has at least a constant symbol, is
equivalent to the fact that no non-trivial algebra in the variety has a trivial subalgebra [9]. In
order to simplify and clarify our treatment we will assume that N = 1 (i.e. V |= 0 = 1→ x = y,
for some 0-ary terms 0 and 1). The results exposed remain valid in the general case.

If A ∈ V, then we say that e ∈ A is a central element of A if there exists an isomorphism
A→ A1 ×A2 such that e 7→ (0, 1). We use Z(A) to denote the set of central elements of A.
Central elements are a generalization of both central idempotent elements in rings with identity
and neutral complemented elements in a bounded lattice. In these classical cases it is well
known that the central elements concentrate the information concerning the direct product
representations. This happen when V has the Fraser-Horn property (FHP) [8]. Let A be an
algebra. By Con(A) we denote the congruence lattice of A. It is well known that the set of
factor congruences of an algebra A in a variety with the Fraser-Horn property forms a Boolean
algebra FC(A) which is a sublattice of Con(A) (see [1]). In [8] it is proved that if V has the
Fraser-Horn property, then for A ∈ V, the map

λ : FC(A) → Z(A)
θ → unique e satisfying 0 θ e θ∗ 1

(where θ∗ is the complement of θ in FC(A)) is bijective. Thus via the above bijection we
can give to Z(A) a Boolean algebra structure.

Many of the usual properties of central elements in rings with identity or bounded lattices
hold when V has the Fraser-Horn property. For example, there is a set {ζr(z) : r ∈ R} of
(∀∃

∧
p = q)-formulas such that for any A ∈ V, we have that e ∈ Z(A) iff A |= ζr(z), for every

r ∈ R. Also in [8] it is proved that there is a (∃
∧
p = q)-formula ε(x, y, z) such that for all

A,B ∈ V , A×B |= ε((a, b), (c, d), (0, 1)) if and only if a = c. The formula ε(−,−, e) defines the
factor congruence associated (via the map λ−1) with the central element e. Also we note that
the existence of ε(x, y, z) and {ζr(z) : r ∈ R} implies that the central elements (and its Boolean
algebra structure) are preserved by surjective homomorphisms and products.

Let A ⊆ Π{Ai : i ∈ I} be a subdirect product. Given x, y ∈ Π{Ai : i ∈ I}, the equalizer
of x and y is the set E(x, y) = {i ∈ I : x(i) = y(i)}. We say that the subdirect product
A ⊆ Π{Ai : i ∈ I} is global if there is a topology τ on I such that E(x, y) ∈ τ for every x, y ∈ A
and the following property holds:



191

PP (Patchwork Property) For every {Fr : r ∈ R} ⊆ τ such that
⋃
{Fr : r ∈ R} = I, and

{xr : r ∈ R} ⊆ A such that for every r, s ∈ R, xr and xs match in Fr ∩ Fs, there exists
x ∈ A such that x(i) = xr(i), provided that i ∈ Fr and r ∈ R.

Let M be a class of algebras and let us assume that A is a global subdirect product of
{Ai : i ∈ I}. We say that A is a global subdirect product with factors in M if Ai ∈ M, for
every i ∈ I.

An algebra A is directly indecomposable is FC(A) = {∆A,∇A}. Given a variety V, we write
VDI for the class of all directly indecomposable members of V.

Theorem 1. Let L be a language of algebras with at least a constant symbol. Let V be a
variety of L-algebras with the FHP. Suppose that there is a universal class F ⊆ VDI such that
every member of V is isomorphic to a global subdirect product with factors in F . Then there
exists a (n+ 2)-ary term u(x, y, ~z) and 0-ary terms 01, . . . , 0n, 11, . . . , 1n such that

V � u(x, y,~0) = x ∧ u(x, y,~1) = y.

An algebra P is called preprimal if P is finite and Clo(P ) is a maximal clone. For each
preprimal algebra P , Rosenberg [6] described an m-ary relation σ on P such that the n-ary
term-operations of P are precisely the n-ary functions f on P that preserve σ. He gives seven
types of relations which are sufficient to describe all preprimal algebras. A preprimal variety is
a variety generated by a preprimal algebra.

In [5] Knoebel studies the Pierce sheaf ([4], [2], [3]) of the different preprimal varieties and
he asks for a description of the Pierce stalks. He solves this problem for some of the Rosenberg
types and left open some other types such as those of a central relation and of a non-trivial
proper equivalence relation. In this paper we use the above Theorem and some results of [7] to
give important information on the Pierce stalks for these two unsolved types.

References
[1] D. Bigelow and S. Burris, Boolean algebras of factor congruences, Acta Sci. Math. (Szeged) 54:1-

2(1990).
[2] S. Comer, Representations by algebras of sections over Boolean spaces, Pacific Journal of Mathe-

matics 38 (1971), no. 1, 29–38.
[3] B. A. Davey, m-Stone lattices, Can. J. Math., Vol. XXIV, No. 6, (1972), 1027-1032.
[4] K. Keimel, Darstellung von Halbgruppen und universellen Algebren durch Schnitte in Garben;

bireguläre Halbgruppen, Math. Nachrichten 45 (1970), 81-96.
[5] A. Knoebel, Sheaves of algebras over Boolean spaces, Birkhauser, (2012).
[6] I. Rosenberg, Uber die funktionale Vollstandigkeit in den mehrwertigen Logiken, Rozpr. CSAV

Rada Mat. Pfir. Ved, 80 (1970), 3-93.
[7] D. Vaggione, Varieties in which the Pierce stalks are directly indecomposable, Journal of Algebra

184 (1996), 424-434.
[8] D. Vaggione, Central elements in varieties with the Fraser-Horn property, Advances in Mathemat-

ics 148, 193-202, 1999.
[9] D. Vaggione, Varieties of shells, Algebra Universalis, 36 (1996) 483-487.



 
 
 
 
 
 

            
 

    
	


