Generic Models for Topological Evidence Logics

Alexandru Baltag · Nick Bezhanishvili (ILLC, Universiteit van Amsterdam)
Saúl Fernández González (IRIT, Université de Toulouse)
TACL · June 18, 2019
1. Topological models for epistemic logics
2. Topological evidence logics
3. Generic models
4. Multi-agent topo-e-models
Topological models for epistemic logics
• Let \((X, \tau)\) be a topological space, \(\text{Prop}\) a set of propositional variables and \(V : \text{Prop} \rightarrow \mathcal{P}(X)\) a valuation.

• Let us start with a language \(\mathcal{L}\) defined as follows:

\[
\phi ::= p | \phi \land \psi | \neg \phi | K\phi,
\]

with \(p \in \text{Prop}\).

Interior semantics

- \(\|p\| = V(p)\);
- \(\|\phi \land \psi\| = \|\phi\| \cap \|\psi\|\);
- \(\|\neg \phi\| = X \backslash \|\phi\|\);
- \(\|K\phi\| = \text{Int} \|\phi\|\).
• Let \((X, \tau)\) be a topological space, Prop a set of propositional variables and \(V : \text{Prop} \to \mathcal{P}(X)\) a valuation.

• Let us start with a language \(L\) defined as follows:

\[
\phi ::= p | \phi \land \psi | \neg \phi | K\phi,
\]

with \(p \in \text{Prop}.

<table>
<thead>
<tr>
<th>Interior semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
</tr>
<tr>
<td>(</td>
</tr>
<tr>
<td>(</td>
</tr>
<tr>
<td>(</td>
</tr>
</tbody>
</table>
• Let \((X, \tau)\) be a topological space, Prop a set of propositional variables and
\(V : \text{Prop} \rightarrow \mathcal{P}(X)\) a valuation.
• Let us start with a language \(\mathcal{L}\) defined as follows:

\[
\phi ::= p \mid \phi \land \phi \mid \neg \phi \mid K\phi,
\]

with \(p \in \text{Prop}.

Interior semantics

- \(\|p\| = V(p)\);
- \(\|\phi \land \psi\| = \|\phi\| \cap \|\psi\|\);
- \(\|\neg \phi\| = X \setminus \|\phi\|\);
- \(\|K\phi\| = \text{Int} \|\phi\|\).
The interior semantics

• Generalisation of Kripke semantics for preordered frames: preorders are Alexandroff topologies.
 From \((X, \leq)\) consider the topology \(\tau = \text{Up}(\leq)\).
 We have: \(x \in \text{Int} \|\phi\|\) iff \(y \in \|\phi\|\) for all \(y \geq x\).

• Evidential view of knowledge: knowing a proposition amounts to having a piece of evidence (i.e. an open set) than entails it.

• McKinsey & Tarski (1944) proved two important results to this respect:
 • The logic of topological spaces under this semantics is \(S_4\);
 • The logic of a single dense-in-itself metrisable space (such as \(\mathbb{R}\)) under this semantics is \(S_4\).

But:

• The interior semantics equates “knowing” to “having evidence”.

• Some attempts at introducing belief (Steinsvold, 2006; Baltag et al., 2013) equate true belief to knowledge or confine us to work with really weird spaces.
• Generalisation of Kripke semantics for preordered frames: preorders are Alexandroff topologies.

 From (X, \leq) consider the topology $\tau = \text{Up}(\leq)$.
 We have: $x \in \text{Int} \parallel \phi \parallel$ iff $y \in \parallel \phi \parallel$ for all $y \geq x$.

• **Evidential** view of knowledge: knowing a proposition amounts to having a piece of evidence (i.e. an open set) than entails it.

• McKinsey & Tarski (1944) proved two important results to this respect:
 • The logic of topological spaces under this semantics is S_4;
 • The logic of a single dense-in-itself metrisable space (such as \mathbb{R}) under this semantics is S_4.

But:

• The interior semantics equates “knowing” to “having evidence”.

• Some attempts at introducing belief (Steinsvold, 2006; Baltag et al., 2013) equate true belief to knowledge or confine us to work with really weird spaces.
The interior semantics

• Generalisation of Kripke semantics for preordered frames: preorders are Alexandroff topologies.

 From \((X, \leq)\) consider the topology \(\tau = \text{Up}(\leq)\).

 We have: \(x \in \text{Int} \parallel \phi \parallel \iff \exists y \geq x\) for all \(y \geq x\).

• **Evidential** view of knowledge: knowing a proposition amounts to having a piece of evidence (i.e. an open set) than entails it.

• McKinsey & Tarski (1944) proved two important results to this respect:

 • The logic of topological spaces under this semantics is \(S_4\);

 • The logic of a single dense-in-itself metrisable space (such as \(\mathbb{R}\)) under this semantics is \(S_4\).

But:

• The interior semantics equates “knowing” to “having evidence”.

• Some attempts at introducing belief (Steinsvold, 2006; Baltag et al., 2013) equate true belief to knowledge or confine us to work with really weird spaces.
The interior semantics

• Generalisation of Kripke semantics for preordered frames: preorders are Alexandroff topologies.

 From \((X, \leq)\) consider the topology \(\tau = \text{Up}(\leq)\).

 We have: \(x \in \text{Int} \lVert \phi \rVert \iff y \in \lVert \phi \rVert \) for all \(y \geq x\).

• **Evidential** view of knowledge: knowing a proposition amounts to having a piece of evidence (i.e. an open set) than entails it.

• McKinsey & Tarski (1944) proved two important results to this respect:
 • The logic of topological spaces under this semantics is \(S_4\);
 • The logic of a single dense-in-itself metrisable space (such as \(\mathbb{R}\)) under this semantics is \(S_4\).

But:

• The interior semantics equates “knowing” to “having evidence”.

• Some attempts at introducing belief (Steinsvold, 2006; Baltag et al., 2013) equate true belief to knowledge or confine us to work with really weird spaces.
• Generalisation of Kripke semantics for preordered frames: preorders are Alexandroff topologies.

 From \((X, \leq)\) consider the topology \(\tau = \text{Up}(\leq)\).
 We have: \(x \in \text{Int} \|\phi\| \iff \exists y \geq x \text{ such that } y \in \|\phi\|\) for all \(y \geq x\).

• **Evidential** view of knowledge: knowing a proposition amounts to having a piece of evidence (i.e. an open set) that entails it.

• McKinsey & Tarski (1944) proved two important results to this respect:
 - The logic of topological spaces under this semantics is \(S_4\);
 - The logic of a **single** dense-in-itself metrisable space (such as \(\mathbb{R}\)) under this semantics is \(S_4\).

But:

• The interior semantics equates “knowing” to “having evidence”.

• Some attempts at introducing belief (Steinsvold, 2006; Baltag et al., 2013) equate true belief to knowledge or confine us to work with really weird spaces.
• Generalisation of Kripke semantics for preordered frames: preorders are Alexandroff topologies.

 From (X, \leq) consider the topology $\tau = \text{Up}(\leq)$. We have: $x \in \text{Int} \| \phi \|$ iff $y \in \| \phi \|$ for all $y \geq x$.

• **Evidential** view of knowledge: knowing a proposition amounts to having a piece of evidence (i.e. an open set) than entails it.

• McKinsey & Tarski (1944) proved two important results to this respect:
 • The logic of topological spaces under this semantics is S_4;
 • The logic of a single dense-in-itself metrisable space (such as \mathbb{R}) under this semantics is S_4.

But:

• The interior semantics equates “knowing” to “having evidence”.

• Some attempts at introducing belief (Steinsvold, 2006; Baltag et al., 2013) equate true belief to knowledge or confine us to work with really weird spaces.
Topological evidence models
Stalnaker (2006) proposes a logic for knowledge and belief.

Following this and building on evidence models (van Benthen & Pacuit, 2011) a new framework is introduced by Baltag, Bezhanishvili, Özgün & Smets (2016).

The dense interior semantics allows us to talk about concepts such as basic and combined evidence, justification, defeasible vs infallible knowledge...

Sentences are interpreted on topological evidence models.

A topo-e-model is a tuple

$$(X, \tau, E_0, V)$$

where (X, τ) is a topological space, E_0 a subbasis and V a valuation.
• Stalnaker (2006) proposes a logic for knowledge and belief.
• Following this and building on evidence models (van Benthem & Pacuit, 2011) a
 new framework is introduced by Baltag, Bezhanishvili, Özgün & Smets (2016).
• The dense interior semantics allows us to talk about concepts such as basic and
 combined evidence, justification, defeasible vs infallible knowledge...
• Sentences are interpreted on topological evidence models.

A topo-e-model is a tuple

\((X, \tau, E_0, V)\)

where \((X, \tau)\) is a topological space, \(E_0\) a subbasis and \(V\) a valuation.
The dense interior semantics

• Stalnaker (2006) proposes a logic for knowledge and belief.
• Following this and building on evidence models (van Benthem & Pacuit, 2011) a new framework is introduced by Baltag, Bezhanishvili, Özgün & Smets (2016).
• The dense interior semantics allows us to talk about concepts such as basic and combined evidence, justification, defeasible vs infallible knowledge...
• Sentences are interpreted on topological evidence models.

A topo-e-model is a tuple

\((X, \tau, E_0, V)\)

where \((X, \tau)\) is a topological space, \(E_0\) a subbasis and \(V\) a valuation.
• Stalnaker (2006) proposes a logic for knowledge and belief.
• Following this and building on evidence models (van Benthem & Pacuit, 2011) a new framework is introduced by Baltag, Bezhanishvili, Özgün & Smets (2016).
• The dense interior semantics allows us to talk about concepts such as basic and combined evidence, justification, defeasible vs infallible knowledge...
• Sentences are interpreted on topological evidence models.

A topo-e-model is a tuple

$$(X, \tau, E_0, V)$$

where (X, τ) is a topological space, E_0 a subbasis and V a valuation.
Let \((X, \tau, E_0, V)\) be a topo-e-model. We now have a language including the following modalities:

- \(K\): defeasible knowledge;
- \(B\): belief;
- \(\forall\): infallible knowledge;
- \(\Box\): having evidence;
- \(\Box_0\): having basic evidence.
Let (X, τ, E_0, V) be a topo-e-model. We now have a language including the following modalities:

- K: defeasible knowledge;
- B: belief;
- $[\forall]$: infallible knowledge;
- \Box: having evidence;
- \Box_0: having *basic* evidence.
... and a new semantics:

The dense interior semantics

- $x \in \|K\phi\|$ iff $x \in \text{Int } \|\phi\|$ and $\text{Int } \|\phi\|$ is dense;
- $x \in \|B\phi\|$ iff $\text{Int } \|\phi\|$ is dense;
- $x \in \|[\forall]\phi\|$ iff $\|\phi\| = X$;
- $x \in \|\Box\phi\|$ iff $x \in \text{Int } \|\phi\|$;
- $x \in \|\Box_0\phi\|$ iff $x \in e \subseteq \|\phi\|$ for some $e \in E_0$.

In this framework, knowing $P = \text{having an evidence for } P$ that can’t be defeated by any other evidence (i.e. a dense evidence).
... and a new semantics:

The dense interior semantics

- $x \in \|K\phi\|$ iff $x \in \text{Int} \|\phi\|$ and $\text{Int} \|\phi\|$ is dense;
- $x \in \|B\phi\|$ iff $\text{Int} \|\phi\|$ is dense;
- $x \in \|[\forall]\phi\|$ iff $\|\phi\| = X$;
- $x \in \|\Box\phi\|$ iff $x \in \text{Int} \|\phi\|$;
- $x \in \|\Box_0\phi\|$ iff $x \in e \subseteq \|\phi\|$ for some $e \in E_0$.

In this framework, knowing P = having an evidence for P that can’t be defeated by any other evidence (i.e. a dense evidence).
... and a new semantics:

The dense interior semantics

- $x \in \|K\phi\|$ iff $x \in \text{Int} \|\phi\|$ and $\text{Int} \|\phi\|$ is dense;
- $x \in \|B\phi\|$ iff $\text{Int} \|\phi\|$ is dense;
- $x \in \|[\forall]\phi\|$ iff $\|\phi\| = X$;
- $x \in \|\Box\phi\|$ iff $x \in \text{Int} \|\phi\|$;
- $x \in \|\Box_0\phi\|$ iff $x \in e \subseteq \|\phi\|$ for some $e \in E_0$.

In this framework, knowing P = having an evidence for P that can’t be defeated by any other evidence (i.e. a dense evidence).
The logic of some fragments

The knowledge fragment \mathcal{L}_K: $S4.2$.

The knowledge-belief fragment \mathcal{L}_{KB}: $S4.2$ axioms for K, $KD45$ axioms for B plus:

- (PI) $B\phi \rightarrow KB\phi$;
- (NI) $\neg B\phi \rightarrow K\neg B\phi$;
- (KB) $K\phi \rightarrow B\phi$;
- (CB) $B\phi \rightarrow \neg B\neg \phi$;
- (FB) $B\phi \rightarrow BK\phi$.

(This is the logic outlined in Stalnaker, 2006.)

The evidence fragment $\mathcal{L}_{\forall\Box\Box}$: $S5$ for $[\forall]$, plus $S4$ for \Box, plus:

- ($4\Box_0$) $\Box_0\phi \rightarrow \Box_0\Box_0\phi$;
- (Universality) $[\forall]\phi \rightarrow \Box_0\phi$;
- (Factive evidence) $\Box_0\phi \rightarrow \Box\phi$;
- (Pullout) $(\Box_0\phi \land [\forall]\psi) \rightarrow \Box_0(\phi \land [\forall]\psi)$;
The logic of some fragments

The knowledge fragment L_K: S4.2.

The knowledge-belief fragment L_{KB}: S4.2 axioms for K, KD45 axioms for B plus:

- (PI) $B\phi \rightarrow KB\phi$;
- (NI) $\neg B\phi \rightarrow K\neg B\phi$;
- (KB) $K\phi \rightarrow B\phi$;
- (CB) $B\phi \rightarrow \neg B\neg \phi$;
- (FB) $B\phi \rightarrow BK\phi$.

(This is the logic outlined in Stalnaker, 2006.)

The evidence fragment $L_{\forall \Box \Box}$: S5 for $[\forall]$, plus S4 for \Box, plus:

- (4$_{\Box\Box}$) $\Box\Box\phi \rightarrow \Box\Box\Box\Box\Box\Box\phi$;
- (Universality) $[\forall]\phi \rightarrow \Box\Box\phi$;
- (Factive evidence) $\Box\Box\phi \rightarrow \Box\phi$;
- (Pullout) $(\Box\Box\phi \land [\forall]\psi) \rightarrow \Box\Box(\phi \land [\forall]\psi)$;
The logic of some fragments

The knowledge fragment L_K: S4.2.

The knowledge-belief fragment L_{KB}: S4.2 axioms for K, KD45 axioms for B plus:

- (PI) $B\phi \to KB\phi$;
- (NI) $\neg B\phi \to K\neg B\phi$;
- (KB) $K\phi \to B\phi$;
- (CB) $B\phi \to \neg B\neg \phi$;
- (FB) $B\phi \to BK\phi$.

(This is the logic outlined in Stalnaker, 2006.)

The evidence fragment $L_{\forall\Box\Box}$: S5 for $[\forall]$, plus S4 for \Box, plus:

- ($4\Box_0$) $\Box_0\phi \to \Box_0\Box_0\phi$;
- (Universality) $[\forall]\phi \to \Box_0\phi$;
- (Factive evidence) $\Box_0\phi \to \Box\phi$;
- (Pullout) $(\Box_0\phi \land [\forall]\psi) \to \Box_0(\phi \land [\forall]\psi)$;
Generic models
• Recall:

McKinsey & Tarski (1944)
The logic of topological spaces under the interior semantics is S_4, and so is the logic of \mathbb{R} under the interior semantics.

• This result tells us that \mathbb{R}, as a topological space, is generic enough to capture the logic of topological spaces.

• How to apply this idea to our framework? First, let us formalise:

A topological space (X, τ) is a **generic model** for a language \mathcal{L} if the sound and complete \mathcal{L}-logic of topo-e-models is precisely the logic of the class

\[
\{(X, \tau, E_0) : E_0 \text{ is a subbasis of } (X, \tau)\}.
\]
• Recall:

McKinsey & Tarski (1944)

The logic of topological spaces under the interior semantics is S_4, and so is the logic of \mathbb{R} under the interior semantics.

• This result tells us that \mathbb{R}, as a topological space, is generic enough to capture the logic of topological spaces.

• How to apply this idea to our framework? First, let us formalise:

A topological space (X, τ) is a **generic model** for a language \mathcal{L} if the sound and complete \mathcal{L}-logic of topo-e-models is precisely the logic of the class

$$\{(X, \tau, E_0) : E_0 \text{ is a subbasis of } (X, \tau)\}.$$
Generic models

- Recall:

McKinsey & Tarski (1944)
The logic of topological spaces under the interior semantics is S_4, and so is the logic of \mathbb{R} under the interior semantics.

- This result tells us that \mathbb{R}, as a topological space, is generic enough to capture the logic of topological spaces.
- How to apply this idea to our framework? First, let us formalise:

A topological space (X, τ) is a **generic model** for a language \mathcal{L} if the sound and complete \mathcal{L}-logic of topo-e-models is precisely the logic of the class

$$\{(X, \tau, E_0) : E_0 \text{ is a subbasis of } (X, \tau)\}.$$
Theorems

• Any dense-in-itself metrisable space \((X, \tau)\) is a generic model for the knowledge fragment \(\mathcal{L}_K\) and the knowledge-belief fragment \(\mathcal{L}_{KB}\).

Examples: \(\mathbb{R}, \mathbb{Q}, \mathbb{I}\), the Baire space, the Cantor space, the binary tree...

The \(\mathcal{L}_K\)-logic of any of these spaces is S4.2.

• Any dense-in-itself metrisable space \((X, \tau)\) which is idempotent (i.e. homeomorphic to \((X, \tau) \oplus (X, \tau)\)) is a generic model for the fragments \(\mathcal{L}_\forall\Box\), \(\mathcal{L}_\forall K\) and \(\mathcal{L}_\forall\Box\Box\Box\).

Examples: all of the above except \(\mathbb{R}\) and the binary tree.

So:

• Whatever is true in any of the logics defined earlier is true in any topo-e-model whose topological space is \(\mathbb{Q}\), and conversely,

• Whatever is not provable in these logics has a countermodel based on \(\mathbb{Q}\).
Theorems

- Any dense-in-itself metrisable space \((X, \tau)\) is a generic model for the knowledge fragment \(L_K\) and the knowledge-belief fragment \(L_{KB}\).

 Examples: \(\mathbb{R}, \mathbb{Q}, \mathbb{I}\), the Baire space, the Cantor space, the binary tree...

 The \(L_K\)-logic of any of these spaces is \(S4.2\).

- Any dense-in-itself metrisable space \((X, \tau)\) which is idempotent (i.e. homeomorphic to \((X, \tau) \oplus (X, \tau))\) is a generic model for the fragments \(L_\forall \Box, L_\forall K\) and \(L_\forall \Box \Box \Box\).

 Examples: all of the above except \(\mathbb{R}\) and the binary tree.

So:

- Whatever is true in any of the logics defined earlier is true in any topo-e-model whose topological space is \(\mathbb{Q}\), and conversely,

- Whatever is not provable in these logics has a countermodel based on \(\mathbb{Q}\).
Theorems

• Any dense-in-itself metrisable space \((X, \tau)\) is a generic model for the knowledge fragment \(\mathcal{L}_K\) and the knowledge-belief fragment \(\mathcal{L}_{KB}\).

 Examples: \(\mathbb{R}, \mathbb{Q}, I\), the Baire space, the Cantor space, the binary tree...

 The \(\mathcal{L}_K\)-logic of any of these spaces is S4.2.

• Any dense-in-itself metrisable space \((X, \tau)\) which is idempotent (i.e. homeomorphic to \((X, \tau) \oplus (X, \tau)\)) is a generic model for the fragments \(\mathcal{L}_{\forall \square}, \mathcal{L}_{\forall K}\) and \(\mathcal{L}_{\forall \square \square \square}\).

 Examples: all of the above except \(\mathbb{R}\) and the binary tree.

So:

• Whatever is true in any of the logics defined earlier is true in any topo-e-model whose topological space is \(\mathbb{Q}\), and conversely,

• Whatever is not provable in these logics has a countermodel based on \(\mathbb{Q}\).
S4.2 is complete with respect to \mathbb{R} as a topo-e-model.

We use this (from Bezhanishvili $\times 2$, Lucero-Bryan & van Mill, 2018):

- Completeness wrt finite rooted S4.2 Kripke frames (rooted preorder $B \cup$ final cluster A).
- Partition lemma: for each $n \geq 1$, \mathbb{R} can be partitioned in $\{U_1, ..., U_n, G\}$, where G is a dense-in-itself set with dense complement and each U_i is open.
- There exists an open, continuous and surjective map $f : G \to B$.

We can extend f to a surjective map $\tilde{f} : \mathbb{R} \to B \cup A$ such that:

- The preimage of an upset is a dense open set (dense-continuous);
- The image of a dense open set is an upset (dense-open).

If something can be refuted in $B \cup A$, we can construct a valuation using \tilde{f} that refutes it in \mathbb{R}. Completeness follows.
S4.2 is complete with respect to \mathbb{R} as a topo-e-model.

We use this (from Bezhanishvili \& 2, Lucero-Bryan & van Mill, 2018):

- Completeness wrt finite rooted S4.2 Kripke frames (rooted preorder $B \cup$ final cluster A).
- Partition lemma: for each $n \geq 1$, \mathbb{R} can be partitioned in $\{U_1, ..., U_n, G\}$, where G is a dense-in-itself set with dense complement and each U_i is open.
- There exists an open, continuous and surjective map $f : G \rightarrow B$.

We can extend f to a surjective map $\bar{f} : \mathbb{R} \rightarrow B \cup A$ such that:

- The preimage of an upset is is dense open set (dense-continuous);
- The image of a dense open set is an upset (dense-open).

If something can be refuted in $B \cup A$, we can construct a valuation using \bar{f} that refutes it in \mathbb{R}. Completeness follows.
S4.2 is complete with respect to \mathbb{R} as a topo-e-model.

$S_4.2$ is complete with respect to \mathbb{R} as a topo-e-model.

\[x \in U_i \mapsto a_i \]

\[f \text{ open and cont.} \]

\[\tilde{f} : \mathbb{R} \to A \cup B. \]
Two-agent topo-e-models
Let us make this framework multi-agent.

We will consider two epistemic agents (1 and 2) each of them having different sets of evidence on a common space X (τ_1 and τ_2).

How do we account for defeasibility and infallible knowledge?

A first naive approach would be to just use density as in the single agent case:

$$x \in \|K_i\phi\| \text{ iff } \exists U \in \tau_i, \text{ dense such that } x \in U \subseteq \|\phi\|.$$

Two issues with this approach:

- Same set of worlds is compatible with both agents’ information.
- The logic of this semantics contains theorems like

$$\hat{K}_1K_1p \to K_2\hat{K}_1K_1p.$$

If agent 1 doesn’t know that she doesn’t know p, then agent 2 knows this fact. We don’t want this!
Let us make this framework multi-agent.

We will consider two epistemic agents (1 and 2) each of them having different sets of evidence on a common space X (τ_1 and τ_2).

How do we account for defeasibility and infallible knowledge?

A first naive approach would be to just use density as in the single agent case:

$$x \in \|K_i\phi\| \text{ iff } \exists U \in \tau_i, \text{ dense such that } x \in U \subseteq \|\phi\|.$$

Two issues with this approach:

- Same set of worlds is compatible with both agents’ information.
- The logic of this semantics contains theorems like

$$\hat{K}_1 K_1 p \rightarrow K_2 \hat{K}_1 K_1 p.$$

If agent 1 doesn’t know that she doesn’t know p, then agent 2 knows this fact. We don’t want this!
Let us make this framework multi-agent.
We will consider two epistemic agents (1 and 2) each of them having different sets of evidence on a common space X (τ_1 and τ_2).
How do we account for defeasibility and infallible knowledge?
A first naive approach would be to just use density as in the single agent case:

$$ x \in \|K_i \phi\| \iff \exists U \in \tau_i, \text{ dense such that } x \in U \subseteq \|\phi\|. $$

Two issues with this approach:

- Same set of worlds is compatible with both agents’ information.
- The logic of this semantics contains theorems like

$$ \hat{K}_1 K_1 p \rightarrow K_2 \hat{K}_1 K_1 p. $$

If agent 1 doesn’t know that she doesn’t know p, then agent 2 knows this fact. We don’t want this!
• Let us make this framework multi-agent.
• We will consider two epistemic agents (1 and 2) each of them having different sets of evidence on a common space X (τ_1 and τ_2).
• How do we account for defeasibility and infallible knowledge?
• A first naive approach would be to just use density as in the single agent case:

$$x \in \|K_i \phi\| \text{ iff } \exists U \in \tau_i, \text{ dense such that } x \in U \subseteq \|\phi\|.$$

• Two issues with this approach:
 • Same set of worlds is compatible with both agents’ information.
 • The logic of this semantics contains theorems like

$$\hat{K}_1 K_1 p \rightarrow K_2 \hat{K}_1 K_1 p.$$

If agent 1 doesn’t know that she doesn’t know p, then agent 2 knows this fact. We don’t want this!
Let us make this framework multi-agent.

We will consider two epistemic agents (1 and 2) each of them having different sets of evidence on a common space X (τ_1 and τ_2).

How do we account for defeasibility and infallible knowledge?

A first naive approach would be to just use density as in the single agent case:

$$x \in \|K_i\phi\| \iff \exists U \in \tau_i, \text{ dense such that } x \in U \subseteq \|\phi\|.$$

Two issues with this approach:

- Same set of worlds is compatible with both agents’ information.
- The logic of this semantics contains theorems like

$$\hat{K}_1K_1p \rightarrow K_2\hat{K}_1K_1p.$$

If agent 1 doesn’t know that she doesn’t know p, then agent 2 knows this fact. We don’t want this!
We want to account for defeasibility of knowledge (through some notion of density) that gives us a reasonable logic and doesn’t present this issues while being defined on a common space X.

To solve this, we make explicit which is the subset of X which is compatible with each agent’s information at a world.

We make this through the use of partitions Π_1 and Π_2.

A topological partitional model is a tuple

$$(X, \tau_1, \tau_2, \Pi_1, \Pi_2, V)$$

where X is a set, V is a valuation, each τ_i is a topology and each $\Pi_i \subseteq \tau_i$ is an open partition of X.

Topological-partitional models
• We want to account for defeasibility of knowledge (through some notion of density) that gives us a reasonable logic and doesn’t present this issues while being defined on a common space X.

• To solve this, we make explicit which is the subset of X which is compatible with each agent’s information at a world.

• We make this through the use of partitions Π_1 and Π_2.

A topological partitional model is a tuple

$$(X, \tau_1, \tau_2, \Pi_1, \Pi_2, V)$$

where X is a set, V is a valuation, each τ_i is a topology and each $\Pi_i \subseteq \tau_i$ is an open partition of X.
• We want to account for defeasibility of knowledge (through some notion of density) that gives us a reasonable logic and doesn’t present this issues while being defined on a common space X.
• To solve this, we make explicit which is the subset of X which is compatible with each agent’s information at a world.
• We make this through the use of partitions Π_1 and Π_2.

A topological partitional model is a tuple

$$(X, \tau_1, \tau_2, \Pi_1, \Pi_2, V)$$

where X is a set, V is a valuation, each τ_i is a topology and each $\Pi_i \subseteq \tau_i$ is an open partition of X.
• We want to account for defeasibility of knowledge (through some notion of density) that gives us a reasonable logic and doesn’t present this issues while being defined on a common space X.

• To solve this, we make explicit which is the subset of X which is compatible with each agent’s information at a world.

• We make this through the use of partitions Π_1 and Π_2.

A topological partitional model is a tuple

$$(X, \tau_1, \tau_2, \Pi_1, \Pi_2, V)$$

where X is a set, V is a valuation, each τ_i is a topology and each $\Pi_i \subseteq \tau_i$ is an open partition of X.
Our density condition is not global (relative to the whole space X) but local (relative to the cell of the partition):

For $U \subseteq X$ and $\pi \in \Pi_i$ we say that U is π-locally dense whenever $U \cap \pi$ is dense in the subspace topology

$$\tau_i|_{\pi} = \{ V \cap \pi : V \in \tau_i \}.$$

Semantics for knowledge in topological-partitional models

For $i = 1, 2$ and $x \in X$, let $\pi \in \Pi_i$ be the unique cell with $x \in \pi$. We have:

$$x \in \|K_i \phi\| \iff \exists U \in \tau_i, \pi \text{-locally dense such that } x \in U \subseteq \|\phi\|.$$

The logic of knowledge in this setting is $S_{4.2K_1} + S_{4.2K_2}$.
Our density condition is not global (relative to the whole space X) but local (relative to the cell of the partition):

For $U \subseteq X$ and $\pi \in \Pi_i$ we say that U is π-locally dense whenever $U \cap \pi$ is dense in the subspace topology

$$\tau_i|_\pi = \{V \cap \pi : V \in \tau_i\}.$$

Semantics for knowledge in topological-partitional models

For $i = 1, 2$ and $x \in X$, let $\pi \in \Pi_i$ be the unique cell with $x \in \pi$. We have:

$$x \in \|K_i \phi\| \text{ iff } \exists U \in \tau_i, \text{ } \pi\text{-locally dense such that } x \in U \subseteq \|\phi\|.$$

The logic of knowledge in this setting is $S_{4.2K_1} + S_{4.2K_2}$.
Our density condition is not global (relative to the whole space X) but local (relative to the cell of the partition):

For $U \subseteq X$ and $\pi \in \Pi_i$ we say that U is π-locally dense whenever $U \cap \pi$ is dense in the subspace topology

$$\tau_i|_\pi = \{V \cap \pi : V \in \tau_i\}.$$

Semantics for knowledge in topological-partitional models

For $i = 1, 2$ and $x \in X$, let $\pi \in \Pi_i$ be the unique cell with $x \in \pi$. We have:

$$x \in \|K_i \phi\| \iff \exists U \in \tau_i, \text{ π-locally dense such that } x \in U \subseteq \|\phi\|.$$

The logic of knowledge in this setting is $S_{4.2K_1} + S_{4.2K_2}$.

Our density condition is not global (relative to the whole space X) but local (relative to the cell of the partition):

For $U \subseteq X$ and $\pi \in \Pi_i$ we say that U is π-locally dense whenever $U \cap \pi$ is dense in the subspace topology

$$\tau_i|_{\pi} = \{V \cap \pi : V \in \tau_i\}.$$

Semantics for knowledge in topological-partitional models

For $i = 1, 2$ and $x \in X$, let $\pi \in \Pi_i$ be the unique cell with $x \in \pi$. We have:

$$x \in \|K_i \phi\| \iff \exists U \in \tau_i, \pi\text{-locally dense such that } x \in U \subseteq \|\phi\|.$$

The logic of knowledge in this setting is $S4.2_{K_1} + S4.2_{K_2}$.
$$x_{11} \models K_1 p \land \neg K_2 p$$
Theorem

The logic of the knowledge-only fragment of topological parititional models is the fusion logic $S_{4.2K_1} + S_{4.2K_1}$.

The infinite branching quaternary tree is an example of a generic model for this fragment.

- Each topology τ_i is given by the set of R_i-upsets.
- The open partitions are given by the equivalence relation: $x \sim_i y$ iff there exists a z (zR_ix and zR_iy).
Theorem

The logic of the knowledge-only fragment of topological parititonal models is the fusion logic $S_{4.2K_1} + S_{4.2K_1}$.

The infinite branching quaternary tree is an example of a generic model for this fragment.

- Each topology τ_i is given by the set of R_i-upsets.
- The open partitions are given by the equivalence relation: $x \sim_i y$ iff there exists a z (zR_ix and zR_iy).
Theorem

The logic of the knowledge-only fragment of topological parititional models is the fusion logic $S_{4.2K_1} + S_{4.2K_1}$.

The infinite branching *quaternary tree* is an example of a generic model for this fragment.

- Each topology τ_i is given by the set of R_i-upsets.
- The open partitions are given by the equivalence relation: $x \sim_i y$ iff there exists a z ($z R_i x$ and $z R_i y$).
Theorem

The logic of the knowledge-only fragment of topological parititonal models is the fusion logic $S_{4.2K_1} + S_{4.2K_1}$.

The infinite branching **quaternary tree** is an example of a generic model for this fragment.

- Each topology τ_i is given by the set of R_i-upsets.
- The open partitions are given by the equivalence relation: $x \sim_i y$ iff there exists a z ($zR_i x$ and $zR_i y$).
• Another generic model is found on the rational plane $\mathbb{Q} \times \mathbb{Q}$.

• The horizontal topology τ_H is originated by the family of sets

\[\{ U \times \{x\} : U \text{ open}, x \in \mathbb{Q} \}. \]

Similarly, the vertical topology τ_V is originated by the sets $\{x\} \times U$.

• We prove that there exists an open partition on $\mathbb{Q} \times \mathbb{Q}$ making it into a generic model for the knowledge fragment.
• Another generic model is found on the rational plane $\mathbb{Q} \times \mathbb{Q}$.

• The horizontal topology τ_H is originated by the family of sets

$$\{U \times \{x\} : U \text{ open }, x \in \mathbb{Q}\}.$$

Similarly, the vertical topology τ_V is originated by the sets $\{x\} \times U$.

• We prove that there exists an open partition on $\mathbb{Q} \times \mathbb{Q}$ making it into a generic model for the knowledge fragment.
Another generic model is found on the rational plane $\mathbb{Q} \times \mathbb{Q}$.

The horizontal topology τ_H is originated by the family of sets

$$\{U \times \{x\} : U \text{ open}, x \in \mathbb{Q}\}.$$

Similarly, the vertical topology τ_V is originated by the sets $\{x\} \times U$.

We prove that there exists an open partition on $\mathbb{Q} \times \mathbb{Q}$ making it into a generic model for the knowledge fragment.
• Another generic model is found on the rational plane $\mathbb{Q} \times \mathbb{Q}$.
• The horizontal topology τ_H is originated by the family of sets

$$\{U \times \{x\} : U \text{ open}, x \in \mathbb{Q}\}.$$

Similarly, the vertical topology τ_V is originated by the sets $\{x\} \times U$.

• We prove that there exists an open partition on $\mathbb{Q} \times \mathbb{Q}$ making it into a generic model for the knowledge fragment.
• Certain topological spaces are generic enough to capture the logic of topo-e-models.
• A framework for multi-agent topological evidence logics that generalises the one agent case.
• Finding generic models with a designated subbasis.
• Strong completeness?
• Characterising a class of generic models for the two-agent logic.
• Complete logic of common knowledge for topological-partitional models.
• Dynamic two-agent topological-partitional models.
I never know how to end talks. Please clap now.
Alexandru Baltag, Nick Bezhanishvili, Aybüke Özgün, and Sonja Smets.
The topology of belief, belief revision and defeasible knowledge.

Alexandru Baltag, Nick Bezhanishvili, Aybüke Özgün, and Sonja Smets.
Justified belief and the topology of evidence.

G. Bezhanishvili, N. Bezhanishvili, J. Lucero-Bryan, and J. van Mill.
A new proof of the McKinsey–Tarski theorem.

John Charles Chenoweth McKinsey and Alfred Tarski.
The algebra of topology.

Robert Stalnaker.
On logics of knowledge and belief.

Chris Steinsvold.
Topological models of belief logics.
City University of New York, 2006.

Johan van Benthem and Eric Pacuit.
Dynamic logics of evidence-based beliefs.