André Hirschowitz

Selected papers (here a much longer list in reverse order)

  • A. H. - C. Simpson: Descente pour les n-champs. on alg-geom e-prints: 9807049.
    Etat 0 for a theory of higher stacks. The final version is delayed.
  • J. Alexander-A.H.: An asymptotic vanishing theorem for generic unions of multiple points. Invent. Math. 140 (2000) 2, 303-325.
    We prove by a new differential Horace method that generic unions of sufficiently many fat points of bounded multiplicity in any projective variety have the maximal rank property.
  • Ph. Ellia -A. H.- L. Manivel: Le problème de Brill-Noether pour les fibrés de Steiner et application aux courbes gauches. Annales ENS Paris 32 (1999) 835-857.
    We construct generic space curves with nice resolutions, comme au bon vieux temps.
  • A.H.-S. Ramanan: New evidence for Green's conjecture on syzygies of canonical curves. Ann. ENS Paris 31, 145-152 (1998).
    We make some computations in the Picard group of the moduli stack showing, for odd genus, that if the generic curve has the expected canonical resolution then so does any curve outside the evident (k-gonal) divisor.
  • L. Göttsche-A. H.: Weak Brill-Noether theorem for vector bundles on the projective plane: in Algebraic Geometry: Papers Presented for the Europroj Conferences in Catania and Barcelona, Marcel Dekker(1998) 63-74.
    Dans les bons cas, les fibrés à cohomologie non-naturelle n'apparaissent pas en codimension un dans les modules de fibrés stables sur le plan. Ce résultat avait été commandé par Le Potier (voir ce qu'il en fait dans le même volume).
  • G. Ellingsrud-A.H.: Sur le fibré normal des courbes gauches. C.R.A.S. 299 (1984) 245-248.
    We apply degeneration techniques in order to prove that the normal bundle of most good (eg nonspecial) generic space curves is stable with natural cohomology.
  • R. Hartshorne-A. H.: Cohomology of a general instanton bundle Ann. Sc. ENS Paris,15, 365-390 (1982).
    The scope of the méthode d'Horace is extended to the cohomology of vector bundles and a conjecture of Hartshorne is proved.
  • A. H.: On the convergence of formal equivalence between embeddings. (English) [J] Ann. Math., II. Ser. 113, 501-514 (1981).
    A new geometric method is introduced for proving convergence of formal equivalences, and the so-called formal principle is extended beyond earlier results of Griffiths and Hartshorne (among others).
  • A. H.: Sur la postulation generique des courbes rationnelles. Acta Math. 146, 209-230 (1981).
    In this paper is introduced the so-called "méthode d'Horace" for postulation problems, which will be reused and enlarged many times. Here a conjecture of Hartshorne is settled.
  • A.H.- A. Piriou, A. Propriétés de transmission pour les distributions inté grales de Fourier. Commun. Partial Differ. Equations 4, 113-217 (1979).
    A whole theory is developed for these symmetries of distributions; this theory incorporates original considerations concerning indices (or signatures) associated (à la Maslov) to configurations of Lagrangian subspaces of a symplectic vector space.
  • A. H.: Le problème de Levi pour les espaces homogènes. Bull. Soc. math. France 103, 191-201 (1975).
    A truly geometric (and not constructive) proof of the existence of strictly plurisubharmonic functions on (most) locally pseudoconvex open subsets of homogeneous manifolds.
  • A. H.: Remarques sur les ouverts d'holomorphie d'un produit dénombrable de droites. Ann. Inst. Fourier 19, No.1, 219-229 (1969).
    Could be interesting from an ethnological point of view, or if you want to get a feeling about my mathematical roots. By the way, some results at the very end of the paper are litigious as was pointed out (in 1999 !) by Murielle Mauer (Liege).
  • Dernière mise à jour: 4 mai 00.