1 Introduction to optimization

1.1 Notations and definitions

1. a criterion, or cost function, or objective function: a function J defined over V with values in \mathbb{R}, where V is the space (normed vector space) in which the problem lies, also called the space of command variables.
2. some constraints: for example,
(a) $v \in K$, where K is a subset of V
(b) equality constraints: $F(v)=0$, where $F: V \rightarrow \mathbb{R}^{m}\left(m\right.$ real constraints: $F_{i}(v)=$ 0)
(c) inequality constraints: $G(v) \leq 0$, where $G: V \rightarrow \mathbb{R}^{p}\left(p\right.$ constraints $\left.G_{i}(v) \leq 0\right)$. If $G_{i}(v)=0$, the constraint is active, or saturated. If $G_{i}(v)<0$, the constraint is inactive.
(d) Functional equation: the constraint is given by an ODE, or a PDE, to be satisfied \rightsquigarrow optimal command of an evolutive problem.

The different types of constraints can be mixed: $v \in K$ and $F(v)=0$ and $G(v) \leq 0$.
We denote by U the set of admissible elements of the problem:

$$
U=\{v \in V ; v \text { satisfies all the constraints }\}
$$

Minimization problem:

$(\mathcal{P}) \quad$ Find $u \in U$ such that $\quad J(u) \leq J(v), \quad \forall v \in U$
Maximization problem: idem.
u is the optimal solution, or the solution of the optimization problem. $J(u)$ is the optimal value of the criterion.

Local optimum: \bar{u} is a local optimum if there exists a neighborhood $\mathcal{V}(\bar{u})$ such that $J(\bar{u}) \leq J(v), \forall v \in \mathcal{V}(\bar{u})$.

Note that a global optimum is a local optimum, but the converse proposition is not true (except in a convex case).

1.2 Examples

- Finite dimension: $J: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Infinite dimension: $J: V \rightarrow \mathbb{R}$

Finite dimension:

1.2.1 Example 1: linear problem

Food rationing (e.g. during wars):
n types of food
m food components (proteins, vitamins, ...)
c_{j} : unitary price of food j
v_{j} : quantity of food j
$a_{i j}$ quantity of component i per unit of food j
b_{i} : minimal (vital) quantity of component i
Food ration of minimal cost: minimize

$$
J(v)=\sum_{j=1}^{n} c_{j} v_{j}
$$

under the constraints $v_{j} \geq 0, \sum_{j=1}^{n} a_{i j} v_{j} \geq b_{i}, i=1, \ldots, m$.

1.2.2 Example 2: least squares problem

$A v=b$, where A is a $m \times n$ matrix, of rank $n<m$, and $v \in \mathbb{R}^{n}$.

$$
J(v)=\|A v-b\|_{\mathbb{R}^{m}}^{2}
$$

Infinite dimension:

1.2.3 Calculus of variations

V functional space,

$$
J(v)=\int_{\Omega} L(x, v(x), P v(x), \ldots) d x
$$

where P is a differential operator.
Problem: $\inf _{v \in V} J(v)$.

1.2.4 Example 3: optimal trajectory

From point $\left(a, y_{0}\right)$, reach $\left(b, y_{1}\right)$ as soon as possible.
The speed at point $(x, y(x))$ is $c(x, y(x))$.
Boundary conditions: $y(a)=y_{0}, y(b)=y_{1}$.

$$
\begin{gathered}
c(x, y(x))=\frac{\sqrt{d x^{2}+y^{\prime 2} d x^{2}}}{d t}=\frac{d x}{d t} \sqrt{1+y^{\prime 2}} \\
d t=\frac{\sqrt{1+y^{\prime 2}} d x}{c(x, y(x))}
\end{gathered}
$$

and then

$$
J(y)=\int_{a}^{b} \frac{\sqrt{1+y^{\prime 2}}}{c(x, y(x))} d x
$$

to be minimized under the constraint $y(a)=y_{0}, y(b)=y_{1}$, and $y \in V=C^{1}([a, b])$.

1.2.5 Example 4: geodesic

A geodesic is the shortest path between points on a given space (e.g. on the Earth's surface). $x=x(u, v), y=y(u, v), z=z(u, v) \Rightarrow d s^{2}=d x^{2}+d y^{2}+d z^{2}=\left(x_{u} d u+x_{v} d v\right)^{2}+\left(y_{u} d u+\right.$ $\left.y_{v} d v\right)^{2}+\left(z_{u} d u+z_{v} d v\right)^{2}=e d u^{2}+2 f d u d v+g d v^{2}$, where $e=x_{u}^{2}+y_{u}^{2}+z_{u}^{2}, f=x_{u} x_{v}+y_{u} y_{v}+$ $z_{u} z_{v}, g=x_{v}^{2}+y_{v}^{2}+z_{v}^{2}$.
The shortest path between points $\left(u_{0}, v_{0}\right)$ and $\left(u_{1}, v_{1}\right)$ is given by a function $v:\left[u_{0}, u_{1}\right] \rightarrow \mathbb{R}$ solution of

$$
\inf J(v)=\int_{u_{0}}^{u_{1}} \sqrt{e+2 f v^{\prime}+g v^{\prime 2}} d u
$$

under the constraints $v\left(u_{0}\right)=v_{0}, v\left(u_{1}\right)=v_{1}$, and $v \in C^{1}\left(\left[u_{0}, u_{1}\right]\right)$.

1.2.6 Other examples

- Energy principle (or variational principle) for a PDE:

$$
\inf J(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} f v d x
$$

- Inverse problems: identification and estimation of parameters:

$$
-\operatorname{div}(K(x) \nabla u)=f
$$

where K is unknown:

$$
J=\sum_{i}\left[u\left(x_{i}\right)-u_{i}\right]^{2}
$$

