1 Introduction to optimization

1.1 Notations and definitions

- 1. a **criterion**, or **cost function**, or **objective function**: a function J defined over V with values in \mathbb{R} , where V is the space (normed vector space) in which the problem lies, also called the space of *command variables*.
- 2. some **constraints**: for example,
 - (a) $v \in K$, where K is a subset of V
 - (b) equality constraints: F(v) = 0, where $F: V \to \mathbb{R}^m$ (*m real* constraints: $F_i(v) = 0$)
 - (c) inequality constraints: $G(v) \leq 0$, where $G: V \to \mathbb{R}^p$ (p constraints $G_i(v) \leq 0$). If $G_i(v) = 0$, the constraint is **active**, or **saturated**. If $G_i(v) < 0$, the constraint is **inactive**.
 - (d) Functional equation: the constraint is given by an ODE, or a PDE, to be satisfied
 → optimal command of an evolutive problem.

The different types of constraints can be mixed: $v \in K$ and F(v) = 0 and $G(v) \le 0$.

We denote by U the set of **admissible** elements of the problem:

$$U = \{v \in V; v \text{ satisfies all the constraints}\}.$$

Minimization problem:

(P) Find
$$u \in U$$
 such that $J(u) < J(v), \forall v \in U$

Maximization problem: idem.

u is the **optimal** solution, or the solution of the optimization problem. J(u) is the optimal value of the criterion.

Local optimum: \bar{u} is a local optimum if there exists a neighborhood $\mathcal{V}(\bar{u})$ such that $J(\bar{u}) \leq J(v), \forall v \in \mathcal{V}(\bar{u}).$

Note that a global optimum is a local optimum, but the converse proposition is not true (except in a convex case).

1.2 Examples

• Finite dimension: $J: \mathbb{R}^n \to \mathbb{R}$

• Infinite dimension: $J:V\to\mathbb{R}$

Finite dimension:

1.2.1 Example 1: linear problem

Food rationing (e.g. during wars): n types of food m food components (proteins, vitamins, ...) c_i : unitary price of food j

 v_j : quantity of food j

 a_{ij} quantity of component i per unit of food j

 b_i : minimal (vital) quantity of component i

Food ration of minimal cost: minimize

$$J(v) = \sum_{j=1}^{n} c_j v_j,$$

under the constraints $v_j \ge 0$, $\sum_{j=1}^n a_{ij}v_j \ge b_i$, i = 1, ..., m.

1.2.2 Example 2: least squares problem

Av = b, where A is a $m \times n$ matrix, of rank n < m, and $v \in \mathbb{R}^n$.

$$J(v) = ||Av - b||_{\mathbb{R}^m}^2$$

Infinite dimension:

1.2.3 Calculus of variations

V functional space,

$$J(v) = \int_{\Omega} L(x, v(x), Pv(x), \dots) dx,$$

where P is a differential operator.

Problem: $\inf_{v \in V} J(v)$.

1.2.4 Example 3: optimal trajectory

From point (a, y_0) , reach (b, y_1) as soon as possible. The speed at point (x, y(x)) is c(x, y(x)). Boundary conditions: $y(a) = y_0, y(b) = y_1$.

$$c(x, y(x)) = \frac{\sqrt{dx^2 + y'^2 dx^2}}{dt} = \frac{dx}{dt} \sqrt{1 + y'^2}$$
$$dt = \frac{\sqrt{1 + y'^2} dx}{c(x, y(x))}$$

and then

$$J(y) = \int_{a}^{b} \frac{\sqrt{1 + y'^{2}}}{c(x, y(x))} dx$$

to be minimized under the constraint $y(a) = y_0$, $y(b) = y_1$, and $y \in V = C^1([a, b])$.

1.2.5 Example 4: geodesic

A geodesic is the shortest path between points on a given space (e.g. on the Earth's surface). $x=x(u,v),\ y=y(u,v),\ z=z(u,v)\Rightarrow ds^2=dx^2+dy^2+dz^2=(x_udu+x_vdv)^2+(y_udu+y_vdv)^2+(z_udu+z_vdv)^2=e\,du^2+2f\,dudv+g\,dv^2,$ where $e=x_u^2+y_u^2+z_u^2,\ f=x_ux_v+y_uy_v+z_uz_v,\ g=x_v^2+y_v^2+z_v^2.$

The shortest path between points (u_0, v_0) and (u_1, v_1) is given by a function $v : [u_0, u_1] \to \mathbb{R}$ solution of

$$\inf J(v) = \int_{u_0}^{u_1} \sqrt{e + 2fv' + gv'^2} \, du$$

under the constraints $v(u_0) = v_0$, $v(u_1) = v_1$, and $v \in C^1([u_0, u_1])$.

1.2.6 Other examples

• Energy principle (or variational principle) for a PDE:

$$\inf J(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx - \int_{\Omega} f v dx$$

• Inverse problems: identification and estimation of parameters:

$$-div(K(x)\nabla u) = f$$

where K is unknown:

$$J = \sum_{i} [u(x_i) - u_i]^2$$