2 Optimality conditions
Elementary remark:

min J
[a,b]CR

if 2o is a local minimum of J, then (necessary condition):
o J'(x9) >0if zg =a,
o J'(zg) =0if zg €la, b,
o J'(x0) <0if zg =b.
Indeed, if 29 € [a,b], we can consider x = 29 + h for some h > 0 small enough.
J(z) = J(xo) + hJ'(x9) + o(h) > J(z0) — J'(xo) > 0.

If 2y €la,b], x = xg — h and then J'(z¢) < 0. Note that if xo €]a, b],

h2
J (o) + 7]'(%) +o(h?) > J (o)

and then J"(z9) > 0.
One must take into account the constraints (z € [a, b]) in order to test the optimality: there
are admissible directions.

2.1 Fréchet and Gateaux differentiability

For clarity purpose, we may denote by dJ the Fréchet derivative, and by .J’' the Gateaux
derivative.

Definition 2.1 J : V — H has a directional derivative at point uw € V' along the direction

veVif
lim J(u+ 6v) — J(u)

0—0+ 0

exists, and we denote by J'(u;v) the limit.

Example: V =R" and H = R, partial derivatives of J:

J(u+ 0e;) — J(u) oJ
0 = o W

Definition 2.2 J:V — H is Gateaux differentiable at point u if
o J'(u;v) exists, Vv € V,
e and v — J'(u;v) is a linear continuous function:

J(usv) = (J'(u),v),  J'(u) € L(V,H)

and we denote by J'(u) the Gdteauz derivative of J at u.

Definition 2.3 J:V — H is Fréchet differentiable at point u if there exists J'(u) € L(V, H)
such that
J(u+v) = J()+ (J'(u),v) + [[v]le(v),

where e(v) — 0 when v — 0.



Proposition 2.1 If J is Fréchet differentiable at u, then J is Gateaux differentiable, and
the two derivatives are equal.

Proof

J Ov) —J
J(uA00) = J(w)+(J (), 80)-+]|0v]=(0v), and then "2 W) (7 (w), v) 4o ]le(0v),
and £(fv) — 0 when § — 0. Then the directional derivative exists everywhere, and J'(u) is
the Gateaux derivative. O

Remark: the converse proposition is not true. Consider the following function in R?:
J(x,y) =1 if y=2 and = #0; J(z,y) =0 otherwise.

This function is Gateaux differentiable. But it is not continuous, and hence cannot have a
Fréchet derivative at 0.

Finite-dimensional case: V = R"™ and H = R. If all partial derivatives of J exist at u,
then

X

(J'(u),v) = Z E?Ji (w).v; = (VJ(u),v).

Example 1: J(v) = Av where A € L(V, H). Then J'(u) = A, Vu.

1
Example 2: J(v) = §a(v, v) — L(v), where a is a continuous symmetric bilinear form, and

L is a continuous linear form.

J(u+v)=Ju)+ (J'(u),v) + %a(v,v).

As a is continuous, a(v,v) < M||v||? and then

(J'(u),v) = a(u,v) — L(v).

J (u+ Qv w) — J (u;w)

Second (Géateaux) derivative: If has a finite limit Vu, w,v € V

0
when § — 0T, then we denote this limit by J”(u;v,w), and it is the second directional
derivative at point u in the directions v and w.
If J”(u;v,w) is a continuous bilinear form, then J”(u) is called the second derivative of J,
or hessian of J.

Finite increments and Taylor formula:

Proposition 2.2 If J : V — R is Gdteaux differentiable Yu + v, where 6 € [0,1], then
300 €]0, 1] such that
J(u+v) = J(u) + J (u+ pv,v).

Proof
Let f(6) = J(u+6v). f:R—R.

f@+e)— f(0) J(u+ v+ ev) — J(u+ 6v)

e

f'(0) = lim = (J'(u+06v),v).

= lim

Moreover, 30y €]0, 1] such that f(1) = £(0) + f/(6o). O



Proposition 2.3 If J : V — R is twice Gdteaux differentiable Yu + 6v, 6 € [0,1], then
36y €]0,1[ such that

1
J(u+v)=Ju)+ (J'(u),v) + 5J”(u—|— Bov;v,v).
Proof

Same as before, with f”(6) = (J" (u + 6v);v,v). O

2.2 Convexity and Gateaux differentiability

Let V be a Banach space on R, and K C V a convex subset.
Definition 2.4 J: K — R is a convex function if
J((1—-0)u+0v) <(1-6)J(u)+6J(v), VOe€[0,1], Yu,ve K.
J is called strictly convex if
J((1=0)u+0v) < (1—-6)J(u)+6J(v), VO€0,1], Yu#veK.
J is a-convez (o > 0), or strongly convez, if
J((1=0u+6v)<(1—-0)J(u)+0J(v)— %0(1 —0)||u—|? VOe€](0,1], Yu,v € K.
Proposition 2.4 a-convexr = strictly convexr = convez.

Proposition 2.5 Let J : K — R be a convez function, then every local minimum of J is a
global minimum.

Proof
Let u be a local minimum of J. Then J(u) < J(v), Yv € V(u) N K. If u is not a global
minimum, Jw € K such that J(w) < J(u). Then, for § > 0, by convexity,

J((1 = 0)u + Ow) < J(u).

For 6 > 0 small enough, (1 — 0)u + 0w € V(u) N K, and there is a contradiction. O

Proposition 2.6 If J is strictly convez, then J has at most one minimum.

Proof
Let uq and ug be two (local = global) minima of J. Then J(u1) = J(uz). By strict convexity,
J(w) < J(uy) for all w €Juy, us|. O

Proposition 2.7 If J: V — R is Gateaux-differentiable in V', then:
i Jis convex in V & J(v) > J(u) + (J'(u),v —u), Yu,v
it J is strictly convex in V < J(v) > J(u) + (J'(u),v —u), Yu # v
it J is a-conver in V & J(v) > J(u) + (J'(v),v —u) + $[jv — ul|?, Vu,v

Proof



i) If J is convex:
Ju+0(v—u)) < Ju)+0(J(v)— J(u))
Ju+0(v—u))—

0

and consider the limit when § — 0%. Conversely,

J(w) < J(w) = J(u)

J(u) > J(u+0v—u)—0(J (u+0(v—u)),v—u)

and
J)>Ju+0w—u)+ 1 —=0)(J (u+0(v—u)),v—u)

Let us multiply the first inequality by (1 — 8) and the second by 6, and then
(1-0)J(u)+0J(v) > J(u+0(v—u))
ii) If J is strictly convex: then J is convex, and by (i) between u and u + 6(v — u),
(J'(u),0(v —u)) < J(u+0(v—u))— J(u)

J(u+ 0w —u)) — J(u)

(J (u),v —u) < 7

by strict convexity. Conversely, see (i).
iii) Same as (ii). 0
Geometric interpretation: J is convex if the function lies above its tangent.
Proposition 2.8 If J is Gateaux-differentiable, then:
i) J is convez iff J' is monotonic, i.e.
(J'(u) = J'(v),u—v) >0
ii) J is strictly convex iff J' is strictly monotonic, i.e.
(J'(u) — J'(v),u—v) >0, u#v
iii) J is a-convez iff
(J'(w) = J'(v),u = v) = aflu— vl

Proof

i) If J is convex, J(v) > J(u)+(J' (u),v—u) and J(u) > J(v)+(J' (v),u—v). Conversely, let
¢(0) = J(u+6(v—u)). Then ¢'(u) = (J' (v + (v — u)),v — u). We have ¢'(0)—¢'(0) > 0,
and by integrating between 0 and 6, ¢(6) — 0¢'(0) — $(0) > 0. § =1 = J is convex.

ii) Same as (i).

iii) Add §6%||v — ul*. 0

Proposition 2.9 If J: V — R is twice Gateaux-differentiable, then
i) J is convex in V iff (J"(v)w,w) >0, Yu,w.

ii) J is a-convex in V iff (J" (u)w,w) > a|wl||?, Vu,w.
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Proof
If J is convex, (J'(u+ 0w)— J'(u),0w) > 0. Let § — 0T, and then (J”(u)w,w) > 0.
Conversely: Taylor formula. O

Geometric interpretation: if J is a-convex, the function J has a curvature larger than

(or equal to) the curvature of w — fw?.

Remark: J strictly convex < (J”(u)w,w) > 0, this is a sufficient condition, but not a
necessary condition!

2.3 Optimality conditions
2.3.1 First-order necessary optimality conditions

Proposition 2.10 Let V be a Banach space, and J : Q — R, where € is an open subset of
V. Let u € Q be a local extremum of J, and assume that J is Gateauz-differentiable at u.
Then,

J'(u) = 0.
This is the Fuler’s equation.
Proof
For all v, for @ > 0 small enough, u + 6v € V(u) C Q. Then J(u) < J(u + 6v). Then
(J'(uw),v) > 0. But (J'(u), —v) > 0, and then (J'(u),v) = 0, Vv. Then J'(u) = 0. O

Remark: This proposition is not true if 2 is not an open subset! For instance, consider
J(x) =z on Q = [0,1]. 0is a minimum of J, but J'(0) = 1. The proposition is usually
applied to €2 =V, or to an inner point of a subset.

Notation: The points u where J'(u) = 0 are called the critical points of J.

Proposition 2.11 Let V be a Banach space, and K a convex subset of V. If u is a local
minimum of J on K, and if J is Gateauz-differentiable at u, then

(J' (u),v —u) >0, Vv € K.

This is the Fuler’s inequality.

Proof
For all v € K, for all > 0 small enough, v + 6(v —u) € V(u) N K as long as § < 1. Then
J(w) < J(u+60(v—u)), and with 6§ — 0%, (J'(u),v —u) > 0. O

Particular cases:
i) K is a sub-vector space of V: then (J'(u),w) =0, Vw € K.

ii) K is a sub-affine space of V: v = a+wvyp, vg € sub-vector space Vy of V. Then (J'(u),w) =
0, Yw € V.
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iii) Projection on a closed convex set:

Let K be a closed convex subset of a Hilbert space
V. Let J(v) = |Jv—f]?, for a given f € V\K. Let
u be the projection of f on K. Then (J'(u),v) =
2(u— f,v). Then (J'(u),v—u) = 2{u— f,v—u) >
0. Then

(f —u,v—u) <0, Vv € K.

This property characterizes the projection on a
closed convex set.

iv) Least-square estimation:
P

y(@) = vjuw;()

Jj=1

The goal is to approximate the b;’s: y(z;) = b;.
Define

=1 =1 |j=1
— v — o]
Then (J'(u),v) = (Au — b, Av) = ("A(Au —b),v)
and then
tAAu = tAb

This equality is called the normal equation of the least-square estimation problem.
The same idea can be used for estimating the solution of an overdetermined system of
linear equations.

2.3.2 Convex case: sufficient optimality conditions

Let V' be a Banach space, and K a convex subset of V.

Proposition 2.12 Let J : V — R Gateauz-differentiable and conver on K, where K is an
open convex subset of V. If J'(u) =0, where u € K, then u is a global minimum of J on K.

Proof
JW) > J(u) + (J'(u),v —u) = J(u). O

Proposition 2.13 If J : K — R is conver, Gateauz-differentiable, and if (J'(u),v—u) >0,
Vv € K, then u is a global minimum of J on K.

These are necessary conditions in a general case, and necessary and sufficient conditions in
the convex case.

Particular case: K =V: J'(u) = 0 is the Euler’s equation.

Application to the minimization of quadratic cost functions Let a be a continuous
symmetric bilinear coercive form: a(v,v) > «a|v[|?, @ > 0, Vo € V, and L be a continuous
linear form on V. We define

J(w) = %a(v,v) — L(v).
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Proposition 2.14 J is Fréchet-differentiable, and a-convex.

Proof
J(u+h) = J(u) + (J'(u),h) + a(h,h) and (J'(u), h) = a(u, h) — L(h).
(J'(v) — J(u),v —u) = a(v — u,v — u) > aljv — ul|?, then J is a-convex. O

Euler’s inequality for the optimization problem in]f( J(v) is
ve

a(u,v —u) > L(v —u), Yv € K.
If K =V, then a(u,v) = L(v), Yv € V.

In the particular case where V' = R", then a(v,v) = (Av,v) where A is a symmetric positive
definite matrix (o = inf\;). And L(v) = (b,v), with b € R™. In this case, the Euler’s
equation is:

Au =b.

Non-differentiable convex cost functions Let J(v) = jo(v) + j1(v), where jg is convex
and Gateaux-differentiable, and j; is convex. If J(u) = in}f( J(v), with v € K a nonempty
veE

closed convex subset of V:
Proposition 2.15 u is characterized by the following inequality:
(Jo(w), v —u) +j1(v) = ji(u) >0, Vo € K.

Proof
Sufficient condition:

Jo(v) + j1(v) = Jo(u) = jr(u) = J(v) = J(u) = (jo(u),v —u) + ji(v) — ji(u) = 0.
Necessary condition:
Jo(u) +j1(u) < jo(u+0(v—u))+j1(u+0(v—u)) < ji(u) +0(j1(v) —ji(u)) +jo(u+0(v—u))

and then (jp(u), v — u) + j1(v) — ju (u) = 0. 0

2.3.3 Second-order optimality conditions

Proposition 2.16 Necessary condition for a local minimum: let Q) be an open subset of a
normed vector space V, and J : Q — R a differentiable function in Q, twice differentiable at
u € Q. If u is a local minimum of J, then

J" (u)(w,w) >0, Yw € V.

Proof
Taylor-Young:

2
J(u+bw) = J(u) + 0(J' (u), w) + %[J"(U)(MW) +2(0)]

where £() — 0 when 6 — 0. As u is a local minimum of J, J'(u) = 0 and J(u+ 0w) > J(u)
for all w, for @ > 0 small enough. Then J" (u)(w,w) > 0. O
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Definition 2.5 u is a strict local minimum of J if there exists a neighborhood V(u) such
that
J(u) < J(v), Yo € V(u)\{u}.

Proposition 2.17 Sufficient condition for a strict local minimum: let € be an open subset
of V, and J : Q — R a differentiable function such that J'(u) = 0. If J is twice differentiable
at u, and if there exists a > 0 such that J"(u)(w,w) > a|jw||?, Yw € V, then u is a strict
local minimum of J.

Proof

Tt w) — I() = L"), w) + fofPe(w)] = I a2 > 0

- 2

in an open ball centered at u, of radius r (small enough) such that ||e(w)| < a if ||w| < 7. O

Proposition 2.18 Let Q be an open subset of V, J a differentiable function such that
J'(w) = 0. If J is twice differentiable in Q, and if there exists a ball B centered at u in
Q such that

J"(v)(w,w) >0, Yo e B, YweV,

then u is a local minimum of J.

Proof
Taylor Mac Laurin: Jv €]u, u + w[ such that

Tt w) = J(u) + 50" () (w,w) > J(w)
for all u +w € B. O

Remark: Straightforward application to a convex function.
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