2 Optimality conditions

Elementary remark:

 $\min_{[a,b]\subset\mathbb{R}}J$

if x_0 is a local minimum of J, then (necessary condition):

- $J'(x_0) \ge 0$ if $x_0 = a$,
- $J'(x_0) = 0$ if $x_0 \in]a, b[,$
- $J'(x_0) \le 0$ if $x_0 = b$.

Indeed, if $x_0 \in [a, b]$, we can consider $x = x_0 + h$ for some h > 0 small enough.

$$J(x) = J(x_0) + hJ'(x_0) + o(h) \ge J(x_0) \quad \to \quad J'(x_0) \ge 0.$$

If $x_0 \in]a, b]$, $x = x_0 - h$ and then $J'(x_0) \leq 0$. Note that if $x_0 \in]a, b[$,

$$J(x_0) + \frac{h^2}{2}J''(x_0) + o(h^2) \ge J(x_0)$$

and then $J''(x_0) \ge 0$.

One must take into account the constraints $(x \in [a, b])$ in order to test the optimality: there are **admissible directions**.

2.1 Fréchet and Gâteaux differentiability

For clarity purpose, we may denote by dJ the Fréchet derivative, and by J' the Gâteaux derivative.

Definition 2.1 $J: V \to H$ has a directional derivative at point $u \in V$ along the direction $v \in V$ if

$$\lim_{\theta \to 0^+} \frac{J(u+\theta v) - J(u)}{\theta}$$

exists, and we denote by J'(u; v) the limit.

Example: $V = \mathbb{R}^n$ and $H = \mathbb{R}$, partial derivatives of J:

$$\frac{J(u+\theta e_i) - J(u)}{\theta} \to \frac{\partial J}{\partial x_i}(u).$$

Definition 2.2 $J: V \to H$ is Gâteaux differentiable at point u if

- J'(u; v) exists, $\forall v \in V$,
- and $v \mapsto J'(u; v)$ is a linear continuous function:

$$J'(u;v) = (J'(u), v), \qquad J'(u) \in \mathcal{L}(V, H)$$

and we denote by J'(u) the Gâteaux derivative of J at u.

Definition 2.3 $J: V \to H$ is Fréchet differentiable at point u if there exists $J'(u) \in \mathcal{L}(V, H)$ such that

$$J(u+v) = J(u) + (J'(u), v) + ||v||\varepsilon(v),$$

where $\varepsilon(v) \to 0$ when $v \to 0$.

Proposition 2.1 If J is Fréchet differentiable at u, then J is Gâteaux differentiable, and the two derivatives are equal.

Proof

 $J(u+\theta v) = J(u) + (J'(u), \theta v) + \|\theta v\| \varepsilon(\theta v), \text{ and then } \frac{J(u+\theta v) - J(u)}{\theta} = (J'(u), v) + \|v\| \varepsilon(\theta v),$ and $\varepsilon(\theta v) \to 0$ when $\theta \to 0$. Then the directional derivative exists everywhere, and J'(u) is the Gâteaux derivative.

Remark: the converse proposition is not true. Consider the following function in \mathbb{R}^2 :

J(x,y) = 1 if $y = x^2$ and $x \neq 0$; J(x,y) = 0 otherwise.

This function is Gâteaux differentiable. But it is not continuous, and hence cannot have a Fréchet derivative at 0.

Finite-dimensional case: $V = \mathbb{R}^n$ and $H = \mathbb{R}$. If all partial derivatives of J exist at u, then

$$(J'(u), v) = \sum_{i=1}^{n} \frac{\partial J}{\partial x_i}(u) \cdot v_i = \langle \nabla J(u), v \rangle.$$

Example 1: J(v) = Av where $A \in \mathcal{L}(V, H)$. Then $J'(u) = A, \forall u$.

Example 2: $J(v) = \frac{1}{2}a(v,v) - L(v)$, where *a* is a continuous symmetric bilinear form, and *L* is a continuous linear form.

$$J(u+v) = J(u) + (J'(u), v) + \frac{1}{2}a(v, v).$$

As a is continuous, $a(v, v) \leq M ||v||^2$ and then

$$(J'(u), v) = a(u, v) - L(v).$$

Second (Gâteaux) derivative: If $\frac{J'(u+\theta v; w) - J'(u; w)}{\theta}$ has a finite limit $\forall u, w, v \in V$ when $\theta \to 0^+$, then we denote this limit by J''(u; v, w), and it is the second directional derivative at point u in the directions v and w.

If J''(u; v, w) is a continuous bilinear form, then J''(u) is called the second derivative of J, or **hessian** of J.

Finite increments and Taylor formula:

Proposition 2.2 If $J : V \to \mathbb{R}$ is Gâteaux differentiable $\forall u + \theta v$, where $\theta \in [0,1]$, then $\exists \theta_0 \in]0,1[$ such that

$$J(u+v) = J(u) + J'(u+\theta_0 v, v).$$

Proof

Let $f(\theta) = J(u + \theta v)$. $f : \mathbb{R} \to \mathbb{R}$.

$$f'(\theta) = \lim \frac{f(\theta + \varepsilon) - f(\theta)}{\varepsilon} = \lim \frac{J(u + \theta v + \varepsilon v) - J(u + \theta v)}{\varepsilon} = (J'(u + \theta v), v).$$

Moreover, $\exists \theta_0 \in]0, 1[$ such that $f(1) = f(0) + f'(\theta_0)$.

Proposition 2.3 If $J : V \to \mathbb{R}$ is twice Gâteaux differentiable $\forall u + \theta v, \theta \in [0,1]$, then $\exists \theta_0 \in]0,1[$ such that

$$J(u+v) = J(u) + (J'(u), v) + \frac{1}{2}J''(u+\theta_0 v; v, v).$$

Proof

Same as before, with $f''(\theta) = (J''(u + \theta v); v, v)$.

2.2 Convexity and Gâteaux differentiability

Let V be a Banach space on \mathbb{R} , and $K \subset V$ a convex subset.

Definition 2.4 $J: K \to \mathbb{R}$ is a convex function if

$$J\left((1-\theta)u+\theta v\right) \le (1-\theta)J(u)+\theta J(v), \quad \forall \theta \in [0,1], \ \forall u, v \in K.$$

J is called strictly convex if

$$J\left((1-\theta)u+\theta v\right) < (1-\theta)J(u)+\theta J(v), \quad \forall \theta \in]0,1[, \ \forall u \neq v \in K]$$

J is α -convex ($\alpha > 0$), or strongly convex, if

$$J\left((1-\theta)u+\theta v\right) \le (1-\theta)J(u)+\theta J(v)-\frac{\alpha}{2}\theta(1-\theta)\|u-v\|^2, \quad \forall \theta \in [0,1], \ \forall u,v \in K.$$

Proposition 2.4 α -convex \Rightarrow strictly convex \Rightarrow convex.

Proposition 2.5 Let $J : K \to \mathbb{R}$ be a convex function, then every local minimum of J is a global minimum.

Proof

Let u be a local minimum of J. Then $J(u) \leq J(v)$, $\forall v \in \mathcal{V}(u) \cap K$. If u is not a global minimum, $\exists w \in K$ such that J(w) < J(u). Then, for $\theta > 0$, by convexity,

$$J((1-\theta)u + \theta w) < J(u).$$

For $\theta > 0$ small enough, $(1 - \theta)u + \theta w \in \mathcal{V}(u) \cap K$, and there is a contradiction.

Proposition 2.6 If J is strictly convex, then J has at most one minimum.

Proof

Let u_1 and u_2 be two (local \Rightarrow global) minima of J. Then $J(u_1) = J(u_2)$. By strict convexity, $J(w) < J(u_1)$ for all $w \in]u_1, u_2[$.

Proposition 2.7 If $J: V \to \mathbb{R}$ is Gâteaux-differentiable in V, then:

i J is convex in $V \Leftrightarrow J(v) \ge J(u) + (J'(u), v - u), \ \forall u, v$

ii J is strictly convex in $V \Leftrightarrow J(v) > J(u) + (J'(u), v - u), \ \forall u \neq v$

iii J is α -convex in $V \Leftrightarrow J(v) \ge J(u) + (J'(u), v - u) + \frac{\alpha}{2} ||v - u||^2, \forall u, v$

Proof

i) If J is convex:

$$J(u + \theta(v - u)) \le J(u) + \theta(J(v) - J(u))$$
$$\frac{J(u + \theta(v - u)) - J(u)}{\theta} \le J(v) - J(u)$$

and consider the limit when $\theta \to 0^+$. Conversely,

$$J(u) \ge J(u + \theta(v - u)) - \theta \left(J'(u + \theta(v - u)), v - u\right)$$

and

$$J(v) \ge J(u+\theta(v-u)) + (1-\theta) \left(J'(u+\theta(v-u)), v-u\right)$$

Let us multiply the first inequality by $(1 - \theta)$ and the second by θ , and then

$$(1-\theta)J(u) + \theta J(v) \ge J(u + \theta(v - u))$$

ii) If J is strictly convex: then J is convex, and by (i) between u and $u + \theta(v - u)$,

$$(J'(u), \theta(v-u)) \le J(u+\theta(v-u)) - J(u)$$
$$(J'(u), v-u) \le \frac{J(u+\theta(v-u)) - J(u)}{\theta} < J(v) - J(u)$$

by strict convexity. Conversely, see (i).

iii) Same as (ii).

Geometric interpretation: J is convex if the function lies above its tangent.

Proposition 2.8 If J is Gâteaux-differentiable, then:

i) J is convex iff J' is monotonic, i.e.

$$(J'(u) - J'(v), u - v) \ge 0$$

ii) J is strictly convex iff J' is strictly monotonic, i.e.

$$(J'(u) - J'(v), u - v) > 0, \ u \neq v$$

iii) J is α -convex iff

$$(J'(u) - J'(v), u - v) \ge \alpha ||u - v||^2$$

Proof

- i) If J is convex, $J(v) \ge J(u) + (J'(u), v-u)$ and $J(u) \ge J(v) + (J'(v), u-v)$. Conversely, let $\phi(\theta) = J(u+\theta(v-u))$. Then $\phi'(u) = (J'(u+\theta(v-u)), v-u)$. We have $\phi'(\theta) \phi'(0) \ge 0$, and by integrating between 0 and θ , $\phi(\theta) \theta\phi'(0) \phi(0) \ge 0$. $\theta = 1 \Rightarrow J$ is convex.
- ii) Same as (i).

iii) Add
$$\frac{\alpha}{2}\theta^2 ||v-u||^2$$
.

Proposition 2.9 If $J: V \to \mathbb{R}$ is twice Gâteaux-differentiable, then

- i) J is convex in V iff $(J''(u)w, w) \ge 0, \forall u, w.$
- ii) J is α -convex in V iff $(J''(u)w, w) \ge \alpha ||w||^2, \forall u, w.$

Proof

If J is convex, $(J'(u + \theta w) - J'(u), \theta w) \ge 0$. Let $\theta \to 0^+$, and then $(J''(u)w, w) \ge 0$. Conversely: Taylor formula.

Geometric interpretation: if J is α -convex, the function J has a curvature larger than (or equal to) the curvature of $w \mapsto \frac{1}{2}w^2$.

Remark: J strictly convex $\leftarrow (J''(u)w, w) > 0$, this is a sufficient condition, but not a necessary condition!

2.3 Optimality conditions

2.3.1 First-order necessary optimality conditions

Proposition 2.10 Let V be a Banach space, and $J : \Omega \to \mathbb{R}$, where Ω is an open subset of V. Let $u \in \Omega$ be a local extremum of J, and assume that J is Gâteaux-differentiable at u. Then,

$$J'(u) = 0.$$

This is the Euler's equation.

Proof

For all v, for $\theta > 0$ small enough, $u + \theta v \in \mathcal{V}(u) \subset \Omega$. Then $J(u) \leq J(u + \theta v)$. Then $(J'(u), v) \geq 0$. But $(J'(u), -v) \geq 0$, and then $(J'(u), v) = 0, \forall v$. Then J'(u) = 0. \Box

Remark: This proposition is not true if Ω is not an open subset! For instance, consider J(x) = x on $\Omega = [0, 1]$. 0 is a minimum of J, but J'(0) = 1. The proposition is usually applied to $\Omega = V$, or to an inner point of a subset.

Notation: The points u where J'(u) = 0 are called the **critical points** of J.

Proposition 2.11 Let V be a Banach space, and K a convex subset of V. If u is a local minimum of J on K, and if J is Gâteaux-differentiable at u, then

$$(J'(u), v - u) \ge 0, \ \forall v \in K.$$

This is the Euler's inequality.

Proof

For all $v \in K$, for all $\theta > 0$ small enough, $u + \theta(v - u) \in \mathcal{V}(u) \cap K$ as long as $\theta \leq 1$. Then $J(u) \leq J(u + \theta(v - u))$, and with $\theta \to 0^+$, $(J'(u), v - u) \geq 0$.

Particular cases:

- i) K is a sub-vector space of V: then $(J'(u), w) = 0, \forall w \in K$.
- ii) K is a sub-affine space of V: $v = a + v_0$, $v_0 \in$ sub-vector space V_0 of V. Then (J'(u), w) = 0, $\forall w \in V_0$.

iii) Projection on a closed convex set:

Let K be a closed convex subset of a Hilbert space V. Let $J(v) = ||v-f||^2$, for a given $f \in V \setminus K$. Let u be the projection of f on K. Then $(J'(u), v) = 2\langle u-f, v \rangle$. Then $(J'(u), v-u) = 2\langle u-f, v-u \rangle \ge 0$. Then

$$\langle f - u, v - u \rangle \le 0, \ \forall v \in K.$$

This property characterizes the projection on a closed convex set.

iv) Least-square estimation:

$$y(x) = \sum_{j=1}^{p} v_j w_j(x)$$

The goal is to approximate the b_i 's: $y(x_i) \approx b_i$. Define

$$J(v) = \sum_{i=1}^{n} [y(x_i) - b_i]^2 = \sum_{i=1}^{n} \left[\sum_{j=1}^{p} v_j w_j(x_i) - b_i \right]^2$$
$$= ||Av - b||^2.$$

Then $(J'(u), v) = \langle Au - b, Av \rangle = \langle {}^t\!A(Au - b), v \rangle$ and then

 ${}^{t}AAu = {}^{t}Ab$ This equality is called the **normal equation** of the least-square estimation problem. The same idea can be used for estimating the solution of an overdetermined system of linear equations.

2.3.2 Convex case: sufficient optimality conditions

Let V be a Banach space, and K a convex subset of V.

Proposition 2.12 Let $J: V \to \mathbb{R}$ Gâteaux-differentiable and convex on K, where K is an open convex subset of V. If J'(u) = 0, where $u \in K$, then u is a global minimum of J on K.

Proof

 $J(v) \ge J(u) + (J'(u), v - u) = J(u).$

Proposition 2.13 If $J : K \to \mathbb{R}$ is convex, Gâteaux-differentiable, and if $(J'(u), v - u) \ge 0$, $\forall v \in K$, then u is a global minimum of J on K.

These are necessary conditions in a general case, and necessary and sufficient conditions in the convex case.

Particular case: K = V: J'(u) = 0 is the Euler's equation.

Application to the minimization of quadratic cost functions Let a be a continuous symmetric bilinear coercive form: $a(v,v) \ge \alpha ||v||^2$, $\alpha > 0$, $\forall v \in V$, and L be a continuous linear form on V. We define

$$I(v) = \frac{1}{2}a(v, v) - L(v).$$

Proposition 2.14 J is Fréchet-differentiable, and α -convex.

Proof

 $J(u+h) = J(u) + (J'(u), h) + \frac{1}{2}a(h, h) \text{ and } (J'(u), h) = a(u, h) - L(h).$ (J'(v) - J'(u), v - u) = $a(v - u, v - u) \ge \alpha ||v - u||^2$, then J is α -convex.

Euler's inequality for the optimization problem $\inf_{v \in K} J(v)$ is

$$a(u, v - u) \ge L(v - u), \ \forall v \in K.$$

If K = V, then $a(u, v) = L(v), \forall v \in V$.

In the particular case where $V = \mathbb{R}^n$, then a(v, v) = (Av, v) where A is a symmetric positive definite matrix ($\alpha = \inf \lambda_i$). And L(v) = (b, v), with $b \in \mathbb{R}^n$. In this case, the Euler's equation is:

$$Au = b.$$

Non-differentiable convex cost functions Let $J(v) = j_0(v) + j_1(v)$, where j_0 is convex and Gâteaux-differentiable, and j_1 is convex. If $J(u) = \inf_{v \in K} J(v)$, with $u \in K$ a nonempty closed convex subset of V:

Proposition 2.15 *u* is characterized by the following inequality:

$$(j'_0(u), v - u) + j_1(v) - j_1(u) \ge 0, \ \forall v \in K.$$

Proof

Sufficient condition:

$$j_0(v) + j_1(v) - j_0(u) - j_1(u) = J(v) - J(u) \ge (j'_0(u), v - u) + j_1(v) - j_1(u) \ge 0.$$

Necessary condition:

$$j_0(u) + j_1(u) \le j_0(u + \theta(v - u)) + j_1(u + \theta(v - u)) \le j_1(u) + \theta(j_1(v) - j_1(u)) + j_0(u + \theta(v - u))$$

and then $(j'_0(u), v - u) + j_1(v) - j_1(u) \ge 0.$

2.3.3 Second-order optimality conditions

Proposition 2.16 Necessary condition for a local minimum: let Ω be an open subset of a normed vector space V, and $J : \Omega \to \mathbb{R}$ a differentiable function in Ω , twice differentiable at $u \in \Omega$. If u is a local minimum of J, then

$$J''(u)(w,w) \ge 0, \ \forall w \in V$$

Proof

Taylor-Young:

$$J(u+\theta w) = J(u) + \theta(J'(u), w) + \frac{\theta^2}{2} [J''(u)(w, w) + \varepsilon(\theta)]$$

where $\varepsilon(\theta) \to 0$ when $\theta \to 0$. As u is a local minimum of J, J'(u) = 0 and $J(u + \theta w) \ge J(u)$ for all w, for $\theta \ge 0$ small enough. Then $J''(u)(w, w) \ge 0$.

Definition 2.5 u is a strict local minimum of J if there exists a neighborhood $\mathcal{V}(u)$ such that

$$J(u) < J(v), \forall v \in \mathcal{V}(u) \setminus \{u\}.$$

Proposition 2.17 Sufficient condition for a strict local minimum: let Ω be an open subset of V, and $J : \Omega \to \mathbb{R}$ a differentiable function such that J'(u) = 0. If J is twice differentiable at u, and if there exists $\alpha > 0$ such that $J''(u)(w, w) \ge \alpha ||w||^2$, $\forall w \in V$, then u is a strict local minimum of J.

Proof

$$J(u+w) - J(u) = \frac{1}{2} [J''(u)(w,w) + ||w||^2 \varepsilon(w)] \ge \frac{\alpha - \varepsilon(w)}{2} ||w||^2 > 0$$

in an open ball centered at u, of radius r (small enough) such that $\|\varepsilon(w)\| < \alpha$ if $\|w\| \le r$. \Box

Proposition 2.18 Let Ω be an open subset of V, J a differentiable function such that J'(u) = 0. If J is twice differentiable in Ω , and if there exists a ball \mathcal{B} centered at u in Ω such that

$$J''(v)(w,w) \ge 0, \ \forall v \in \mathcal{B}, \ \forall w \in V,$$

then u is a local minimum of J.

Proof

Taylor Mac Laurin: $\exists v \in]u, u + w[$ such that

$$J(u+w) = J(u) + \frac{1}{2}J''(v)(w,w) \ge J(u)$$

for all $u + w \in \mathcal{B}$.

Remark: Straightforward application to a convex function.