2 Optimality conditions

Elementary remark:

$$
\min _{[a, b] \subset \mathbb{R}} J
$$

if x_{0} is a local minimum of J, then (necessary condition):

- $J^{\prime}\left(x_{0}\right) \geq 0$ if $x_{0}=a$,
- $J^{\prime}\left(x_{0}\right)=0$ if $\left.x_{0} \in\right] a, b[$,
- $J^{\prime}\left(x_{0}\right) \leq 0$ if $x_{0}=b$.

Indeed, if $x_{0} \in\left[a, b\left[\right.\right.$, we can consider $x=x_{0}+h$ for some $h>0$ small enough.

$$
J(x)=J\left(x_{0}\right)+h J^{\prime}\left(x_{0}\right)+o(h) \geq J\left(x_{0}\right) \quad \rightarrow \quad J^{\prime}\left(x_{0}\right) \geq 0
$$

If $\left.\left.x_{0} \in\right] a, b\right], x=x_{0}-h$ and then $J^{\prime}\left(x_{0}\right) \leq 0$. Note that if $\left.x_{0} \in\right] a, b[$,

$$
J\left(x_{0}\right)+\frac{h^{2}}{2} J^{\prime \prime}\left(x_{0}\right)+o\left(h^{2}\right) \geq J\left(x_{0}\right)
$$

and then $J^{\prime \prime}\left(x_{0}\right) \geq 0$.
One must take into account the constraints $(x \in[a, b])$ in order to test the optimality: there are admissible directions.

2.1 Fréchet and Gâteaux differentiability

For clarity purpose, we may denote by $d J$ the Fréchet derivative, and by J^{\prime} the Gâteaux derivative.

Definition 2.1 $J: V \rightarrow H$ has a directional derivative at point $u \in V$ along the direction $v \in V$ if

$$
\lim _{\theta \rightarrow 0^{+}} \frac{J(u+\theta v)-J(u)}{\theta}
$$

exists, and we denote by $J^{\prime}(u ; v)$ the limit.
Example: $V=\mathbb{R}^{n}$ and $H=\mathbb{R}$, partial derivatives of J :

$$
\frac{J\left(u+\theta e_{i}\right)-J(u)}{\theta} \rightarrow \frac{\partial J}{\partial x_{i}}(u) .
$$

Definition 2.2 $J: V \rightarrow H$ is Gâteaux differentiable at point u if

- $J^{\prime}(u ; v)$ exists, $\forall v \in V$,
- and $v \mapsto J^{\prime}(u ; v)$ is a linear continuous function:

$$
J^{\prime}(u ; v)=\left(J^{\prime}(u), v\right), \quad J^{\prime}(u) \in \mathcal{L}(V, H)
$$

and we denote by $J^{\prime}(u)$ the Gâteaux derivative of J at u.
Definition 2.3 $J: V \rightarrow H$ is Fréchet differentiable at point u if there exists $J^{\prime}(u) \in \mathcal{L}(V, H)$ such that

$$
J(u+v)=J(u)+\left(J^{\prime}(u), v\right)+\|v\| \varepsilon(v)
$$

where $\varepsilon(v) \rightarrow 0$ when $v \rightarrow 0$.

Proposition 2.1 If J is Fréchet differentiable at u, then J is Gâteaux differentiable, and the two derivatives are equal.

Proof
Proof
$J(u+\theta v)=J(u)+\left(J^{\prime}(u), \theta v\right)+\|\theta v\| \varepsilon(\theta v)$, and then $\frac{J(u+\theta v)-J(u)}{\theta}=\left(J^{\prime}(u), v\right)+\|v\| \varepsilon(\theta v)$, and $\varepsilon(\theta v) \rightarrow 0$ when $\theta \rightarrow 0$. Then the directional derivative exists everywhere, and $J^{\prime}(u)$ is the Gâteaux derivative.

Remark: the converse proposition is not true. Consider the following function in \mathbb{R}^{2} :

$$
J(x, y)=1 \text { if } y=x^{2} \text { and } x \neq 0 ; \quad J(x, y)=0 \text { otherwise. }
$$

This function is Gâteaux differentiable. But it is not continuous, and hence cannot have a Fréchet derivative at 0 .

Finite-dimensional case: $V=\mathbb{R}^{n}$ and $H=\mathbb{R}$. If all partial derivatives of J exist at u, then

$$
\left(J^{\prime}(u), v\right)=\sum_{i=1}^{n} \frac{\partial J}{\partial x_{i}}(u) \cdot v_{i}=\langle\nabla J(u), v\rangle .
$$

Example 1: $J(v)=A v$ where $A \in \mathcal{L}(V, H)$. Then $J^{\prime}(u)=A, \forall u$.
Example 2: $J(v)=\frac{1}{2} a(v, v)-L(v)$, where a is a continuous symmetric bilinear form, and L is a continuous linear form.

$$
J(u+v)=J(u)+\left(J^{\prime}(u), v\right)+\frac{1}{2} a(v, v)
$$

As a is continuous, $a(v, v) \leq M\|v\|^{2}$ and then

$$
\left(J^{\prime}(u), v\right)=a(u, v)-L(v)
$$

Second (Gâteaux) derivative: If $\frac{J^{\prime}(u+\theta v ; w)-J^{\prime}(u ; w)}{\theta}$ has a finite limit $\forall u, w, v \in V$ when $\theta \rightarrow 0^{+}$, then we denote this limit by $J^{\prime \prime}(u ; v, w)$, and it is the second directional derivative at point u in the directions v and w.
If $J^{\prime \prime}(u ; v, w)$ is a continuous bilinear form, then $J^{\prime \prime}(u)$ is called the second derivative of J, or hessian of J.

Finite increments and Taylor formula:

Proposition 2.2 If $J: V \rightarrow \mathbb{R}$ is Gâteaux differentiable $\forall u+\theta v$, where $\theta \in[0,1]$, then $\left.\exists \theta_{0} \in\right] 0,1[$ such that

$$
J(u+v)=J(u)+J^{\prime}\left(u+\theta_{0} v, v\right)
$$

Proof

Let $f(\theta)=J(u+\theta v) . f: \mathbb{R} \rightarrow \mathbb{R}$.

$$
f^{\prime}(\theta)=\lim \frac{f(\theta+\varepsilon)-f(\theta)}{\varepsilon}=\lim \frac{J(u+\theta v+\varepsilon v)-J(u+\theta v)}{\varepsilon}=\left(J^{\prime}(u+\theta v), v\right) .
$$

Moreover, $\left.\exists \theta_{0} \in\right] 0,1\left[\right.$ such that $f(1)=f(0)+f^{\prime}\left(\theta_{0}\right)$.

Proposition 2.3 If $J: V \rightarrow \mathbb{R}$ is twice Gâteaux differentiable $\forall u+\theta v, \theta \in[0,1]$, then $\left.\exists \theta_{0} \in\right] 0,1[$ such that

$$
J(u+v)=J(u)+\left(J^{\prime}(u), v\right)+\frac{1}{2} J^{\prime \prime}\left(u+\theta_{0} v ; v, v\right)
$$

Proof
Same as before, with $f^{\prime \prime}(\theta)=\left(J^{\prime \prime}(u+\theta v) ; v, v\right)$.

2.2 Convexity and Gâteaux differentiability

Let V be a Banach space on \mathbb{R}, and $K \subset V$ a convex subset.
Definition 2.4 $J: K \rightarrow \mathbb{R}$ is a convex function if

$$
J((1-\theta) u+\theta v) \leq(1-\theta) J(u)+\theta J(v), \quad \forall \theta \in[0,1], \forall u, v \in K .
$$

J is called strictly convex if

$$
J((1-\theta) u+\theta v)<(1-\theta) J(u)+\theta J(v), \quad \forall \theta \in] 0,1[, \quad \forall u \neq v \in K
$$

J is α-convex $(\alpha>0)$, or strongly convex, if

$$
J((1-\theta) u+\theta v) \leq(1-\theta) J(u)+\theta J(v)-\frac{\alpha}{2} \theta(1-\theta)\|u-v\|^{2}, \quad \forall \theta \in[0,1], \forall u, v \in K
$$

Proposition 2.4α-convex \Rightarrow strictly convex \Rightarrow convex.
Proposition 2.5 Let $J: K \rightarrow \mathbb{R}$ be a convex function, then every local minimum of J is a global minimum.

Proof

Let u be a local minimum of J. Then $J(u) \leq J(v), \forall v \in \mathcal{V}(u) \cap K$. If u is not a global minimum, $\exists w \in K$ such that $J(w)<J(u)$. Then, for $\theta>0$, by convexity,

$$
J((1-\theta) u+\theta w)<J(u) .
$$

For $\theta>0$ small enough, $(1-\theta) u+\theta w \in \mathcal{V}(u) \cap K$, and there is a contradiction.
Proposition 2.6 If J is strictly convex, then J has at most one minimum.

Proof

Let u_{1} and u_{2} be two (local \Rightarrow global) minima of J. Then $J\left(u_{1}\right)=J\left(u_{2}\right)$. By strict convexity, $J(w)<J\left(u_{1}\right)$ for all $\left.w \in\right] u_{1}, u_{2}[$.

Proposition 2.7 If $J: V \rightarrow \mathbb{R}$ is Gâteaux-differentiable in V, then:
$i J$ is convex in $V \Leftrightarrow J(v) \geq J(u)+\left(J^{\prime}(u), v-u\right), \forall u, v$
ii J is strictly convex in $V \Leftrightarrow J(v)>J(u)+\left(J^{\prime}(u), v-u\right), \forall u \neq v$
iii J is α-convex in $V \Leftrightarrow J(v) \geq J(u)+\left(J^{\prime}(u), v-u\right)+\frac{\alpha}{2}\|v-u\|^{2}, \forall u, v$
Proof
i) If J is convex:

$$
\begin{aligned}
& J(u+\theta(v-u)) \leq J(u)+\theta(J(v)-J(u)) \\
& \frac{J(u+\theta(v-u))-J(u)}{\theta} \leq J(v)-J(u)
\end{aligned}
$$

and consider the limit when $\theta \rightarrow 0^{+}$. Conversely,

$$
J(u) \geq J(u+\theta(v-u))-\theta\left(J^{\prime}(u+\theta(v-u)), v-u\right)
$$

and

$$
J(v) \geq J(u+\theta(v-u))+(1-\theta)\left(J^{\prime}(u+\theta(v-u)), v-u\right)
$$

Let us multiply the first inequality by $(1-\theta)$ and the second by θ, and then

$$
(1-\theta) J(u)+\theta J(v) \geq J(u+\theta(v-u))
$$

ii) If J is strictly convex: then J is convex, and by (i) between u and $u+\theta(v-u)$,

$$
\begin{gathered}
\left(J^{\prime}(u), \theta(v-u)\right) \leq J(u+\theta(v-u))-J(u) \\
\left(J^{\prime}(u), v-u\right) \leq \frac{J(u+\theta(v-u))-J(u)}{\theta}<J(v)-J(u)
\end{gathered}
$$

by strict convexity. Conversely, see (i).
iii) Same as (ii).

Geometric interpretation: J is convex if the function lies above its tangent.
Proposition 2.8 If J is Gâteaux-differentiable, then:
i) J is convex iff J^{\prime} is monotonic, i.e.

$$
\left(J^{\prime}(u)-J^{\prime}(v), u-v\right) \geq 0
$$

ii) J is strictly convex iff J^{\prime} is strictly monotonic, i.e.

$$
\left(J^{\prime}(u)-J^{\prime}(v), u-v\right)>0, u \neq v
$$

iii) J is α-convex iff

$$
\left(J^{\prime}(u)-J^{\prime}(v), u-v\right) \geq \alpha\|u-v\|^{2}
$$

Proof

i) If J is convex, $J(v) \geq J(u)+\left(J^{\prime}(u), v-u\right)$ and $J(u) \geq J(v)+\left(J^{\prime}(v), u-v\right)$. Conversely, let $\phi(\theta)=J(u+\theta(v-u))$. Then $\phi^{\prime}(u)=\left(J^{\prime}(u+\theta(v-u)), v-u\right)$. We have $\phi^{\prime}(\theta)-\phi^{\prime}(0) \geq 0$, and by integrating between 0 and $\theta, \phi(\theta)-\theta \phi^{\prime}(0)-\phi(0) \geq 0 . \theta=1 \Rightarrow J$ is convex.
ii) Same as (i).
iii) Add $\frac{\alpha}{2} \theta^{2}\|v-u\|^{2}$.

Proposition 2.9 If $J: V \rightarrow \mathbb{R}$ is twice Gâteaux-differentiable, then

i) J is convex in V iff $\left(J^{\prime \prime}(u) w, w\right) \geq 0, \forall u, w$.
ii) J is α-convex in V iff $\left(J^{\prime \prime}(u) w, w\right) \geq \alpha\|w\|^{2}, \forall u, w$.

Proof

If J is convex, $\left(J^{\prime}(u+\theta w)-J^{\prime}(u), \theta w\right) \geq 0$. Let $\theta \rightarrow 0^{+}$, and then $\left(J^{\prime \prime}(u) w, w\right) \geq 0$. Conversely: Taylor formula.

Geometric interpretation: if J is α-convex, the function J has a curvature larger than (or equal to) the curvature of $w \mapsto \frac{1}{2} w^{2}$.

Remark: J strictly convex $\Leftarrow\left(J^{\prime \prime}(u) w, w\right)>0$, this is a sufficient condition, but not a necessary condition!

2.3 Optimality conditions

2.3.1 First-order necessary optimality conditions

Proposition 2.10 Let V be a Banach space, and $J: \Omega \rightarrow \mathbb{R}$, where Ω is an open subset of V. Let $u \in \Omega$ be a local extremum of J, and assume that J is Gâteaux-differentiable at u. Then,

$$
J^{\prime}(u)=0 .
$$

This is the Euler's equation.
Proof
For all v, for $\theta>0$ small enough, $u+\theta v \in \mathcal{V}(u) \subset \Omega$. Then $J(u) \leq J(u+\theta v)$. Then $\left(J^{\prime}(u), v\right) \geq 0$. But $\left(J^{\prime}(u),-v\right) \geq 0$, and then $\left(J^{\prime}(u), v\right)=0, \forall v$. Then $J^{\prime}(u)=0$.

Remark: This proposition is not true if Ω is not an open subset! For instance, consider $J(x)=x$ on $\Omega=[0,1] .0$ is a minimum of J, but $J^{\prime}(0)=1$. The proposition is usually applied to $\Omega=V$, or to an inner point of a subset.

Notation: The points u where $J^{\prime}(u)=0$ are called the critical points of J.
Proposition 2.11 Let V be a Banach space, and K a convex subset of V. If u is a local minimum of J on K, and if J is Gâteaux-differentiable at u, then

$$
\left(J^{\prime}(u), v-u\right) \geq 0, \forall v \in K
$$

This is the Euler's inequality.
Proof
For all $v \in K$, for all $\theta>0$ small enough, $u+\theta(v-u) \in \mathcal{V}(u) \cap K$ as long as $\theta \leq 1$. Then $J(u) \leq J(u+\theta(v-u))$, and with $\theta \rightarrow 0^{+},\left(J^{\prime}(u), v-u\right) \geq 0$.

Particular cases:

i) K is a sub-vector space of V : then $\left(J^{\prime}(u), w\right)=0, \forall w \in K$.
ii) K is a sub-affine space of $V: v=a+v_{0}, v_{0} \in \operatorname{sub}$-vector space V_{0} of V. Then $\left(J^{\prime}(u), w\right)=$ $0, \forall w \in V_{0}$.
iii) Projection on a closed convex set:

Let K be a closed convex subset of a Hilbert space V. Let $J(v)=\|v-f\|^{2}$, for a given $f \in V \backslash K$. Let u be the projection of f on K. Then $\left(J^{\prime}(u), v\right)=$ $2\langle u-f, v\rangle$. Then $\left(J^{\prime}(u), v-u\right)=2\langle u-f, v-u\rangle \geq$ 0 . Then

$$
\langle f-u, v-u\rangle \leq 0, \forall v \in K
$$

This property characterizes the projection on a closed convex set.

iv) Least-square estimation:

$$
y(x)=\sum_{j=1}^{p} v_{j} w_{j}(x)
$$

The goal is to approximate the b_{i} 's: $y\left(x_{i}\right) \approx b_{i}$. Define

$$
\begin{gathered}
J(v)=\sum_{i=1}^{n}\left[y\left(x_{i}\right)-b_{i}\right]^{2}=\sum_{i=1}^{n}\left[\sum_{j=1}^{p} v_{j} w_{j}\left(x_{i}\right)-b_{i}\right]^{2} \\
=\|A v-b\|^{2} .
\end{gathered}
$$

Then $\left(J^{\prime}(u), v\right)=\langle A u-b, A v\rangle=\left\langle{ }^{t} A(A u-b), v\right\rangle$ and then

$$
{ }^{t} A A u={ }^{t} A b
$$

This equality is called the normal equation of the least-square estimation problem. The same idea can be used for estimating the solution of an overdetermined system of linear equations.

2.3.2 Convex case: sufficient optimality conditions

Let V be a Banach space, and K a convex subset of V.
Proposition 2.12 Let $J: V \rightarrow \mathbb{R}$ Gâteaux-differentiable and convex on K, where K is an open convex subset of V. If $J^{\prime}(u)=0$, where $u \in K$, then u is a global minimum of J on K.
Proof
$J(v) \geq J(u)+\left(J^{\prime}(u), v-u\right)=J(u)$.
Proposition 2.13 If $J: K \rightarrow \mathbb{R}$ is convex, Gâteaux-differentiable, and if $\left(J^{\prime}(u), v-u\right) \geq 0$, $\forall v \in K$, then u is a global minimum of J on K.

These are necessary conditions in a general case, and necessary and sufficient conditions in the convex case.

Particular case: $K=V: J^{\prime}(u)=0$ is the Euler's equation.
Application to the minimization of quadratic cost functions Let a be a continuous symmetric bilinear coercive form: $a(v, v) \geq \alpha\|v\|^{2}, \alpha>0, \forall v \in V$, and L be a continuous linear form on V. We define

$$
J(v)=\frac{1}{2} a(v, v)-L(v)
$$

Proposition $2.14 J$ is Fréchet-differentiable, and α-convex.

Proof

$J(u+h)=J(u)+\left(J^{\prime}(u), h\right)+\frac{1}{2} a(h, h)$ and $\left(J^{\prime}(u), h\right)=a(u, h)-L(h)$. $\left(J^{\prime}(v)-J^{\prime}(u), v-u\right)=a(v-u, v-u) \geq \alpha\|v-u\|^{2}$, then J is α-convex.

Euler's inequality for the optimization problem $\inf _{v \in K} J(v)$ is

$$
a(u, v-u) \geq L(v-u), \forall v \in K
$$

If $K=V$, then $a(u, v)=L(v), \forall v \in V$.
In the particular case where $V=\mathbb{R}^{n}$, then $a(v, v)=(A v, v)$ where A is a symmetric positive definite matrix $\left(\alpha=\inf \lambda_{i}\right)$. And $L(v)=(b, v)$, with $b \in \mathbb{R}^{n}$. In this case, the Euler's equation is:

$$
A u=b .
$$

Non-differentiable convex cost functions Let $J(v)=j_{0}(v)+j_{1}(v)$, where j_{0} is convex and Gâteaux-differentiable, and j_{1} is convex. If $J(u)=\inf _{v \in K} J(v)$, with $u \in K$ a nonempty closed convex subset of V :

Proposition $2.15 u$ is characterized by the following inequality:

$$
\left(j_{0}^{\prime}(u), v-u\right)+j_{1}(v)-j_{1}(u) \geq 0, \forall v \in K
$$

Proof
Sufficient condition:

$$
j_{0}(v)+j_{1}(v)-j_{0}(u)-j_{1}(u)=J(v)-J(u) \geq\left(j_{0}^{\prime}(u), v-u\right)+j_{1}(v)-j_{1}(u) \geq 0 .
$$

Necessary condition:
$j_{0}(u)+j_{1}(u) \leq j_{0}(u+\theta(v-u))+j_{1}(u+\theta(v-u)) \leq j_{1}(u)+\theta\left(j_{1}(v)-j_{1}(u)\right)+j_{0}(u+\theta(v-u))$
and then $\left(j_{0}^{\prime}(u), v-u\right)+j_{1}(v)-j_{1}(u) \geq 0$.

2.3.3 Second-order optimality conditions

Proposition 2.16 Necessary condition for a local minimum: let Ω be an open subset of a normed vector space V, and $J: \Omega \rightarrow \mathbb{R}$ a differentiable function in Ω, twice differentiable at $u \in \Omega$. If u is a local minimum of J, then

$$
J^{\prime \prime}(u)(w, w) \geq 0, \forall w \in V
$$

Proof

Taylor-Young:

$$
J(u+\theta w)=J(u)+\theta\left(J^{\prime}(u), w\right)+\frac{\theta^{2}}{2}\left[J^{\prime \prime}(u)(w, w)+\varepsilon(\theta)\right]
$$

where $\varepsilon(\theta) \rightarrow 0$ when $\theta \rightarrow 0$. As u is a local minimum of $J, J^{\prime}(u)=0$ and $J(u+\theta w) \geq J(u)$ for all w, for $\theta \geq 0$ small enough. Then $J^{\prime \prime}(u)(w, w) \geq 0$.

Definition $2.5 u$ is a strict local minimum of J if there exists a neighborhood $\mathcal{V}(u)$ such that

$$
J(u)<J(v), \forall v \in \mathcal{V}(u) \backslash\{u\}
$$

Proposition 2.17 Sufficient condition for a strict local minimum: let Ω be an open subset of V, and $J: \Omega \rightarrow \mathbb{R}$ a differentiable function such that $J^{\prime}(u)=0$. If J is twice differentiable at u, and if there exists $\alpha>0$ such that $J^{\prime \prime}(u)(w, w) \geq \alpha\|w\|^{2}, \forall w \in V$, then u is a strict local minimum of J.

Proof

$$
J(u+w)-J(u)=\frac{1}{2}\left[J^{\prime \prime}(u)(w, w)+\|w\|^{2} \varepsilon(w)\right] \geq \frac{\alpha-\varepsilon(w)}{2}\|w\|^{2}>0
$$

in an open ball centered at u, of radius r (small enough) such that $\|\varepsilon(w)\|<\alpha$ if $\|w\| \leq r$.
Proposition 2.18 Let Ω be an open subset of V, J a differentiable function such that $J^{\prime}(u)=0$. If J is twice differentiable in Ω, and if there exists a ball \mathcal{B} centered at u in Ω such that

$$
J^{\prime \prime}(v)(w, w) \geq 0, \forall v \in \mathcal{B}, \quad \forall w \in V,
$$

then u is a local minimum of J.

Proof

Taylor Mac Laurin: $\exists v \in] u, u+w[$ such that

$$
J(u+w)=J(u)+\frac{1}{2} J^{\prime \prime}(v)(w, w) \geq J(u)
$$

for all $u+w \in \mathcal{B}$.
Remark: Straightforward application to a convex function.

