
2 Optimality conditions

Elementary remark:
min

[a,b]⊂R
J

if x0 is a local minimum of J , then (necessary condition):

• J ′(x0) ≥ 0 if x0 = a,

• J ′(x0) = 0 if x0 ∈]a, b[,

• J ′(x0) ≤ 0 if x0 = b.

Indeed, if x0 ∈ [a, b[, we can consider x = x0 + h for some h > 0 small enough.

J(x) = J(x0) + hJ ′(x0) + o(h) ≥ J(x0) → J ′(x0) ≥ 0.

If x0 ∈]a, b], x = x0 − h and then J ′(x0) ≤ 0. Note that if x0 ∈]a, b[,

J(x0) +
h2

2
J ′′(x0) + o(h2) ≥ J(x0)

and then J ′′(x0) ≥ 0.
One must take into account the constraints (x ∈ [a, b]) in order to test the optimality: there
are admissible directions.

2.1 Fréchet and Gâteaux differentiability

For clarity purpose, we may denote by dJ the Fréchet derivative, and by J ′ the Gâteaux
derivative.

Definition 2.1 J : V → H has a directional derivative at point u ∈ V along the direction
v ∈ V if

lim
θ→0+

J(u + θv)− J(u)
θ

exists, and we denote by J ′(u; v) the limit.

Example: V = Rn and H = R, partial derivatives of J :

J(u + θei)− J(u)
θ

→ ∂J

∂xi
(u).

Definition 2.2 J : V → H is Gâteaux differentiable at point u if

• J ′(u; v) exists, ∀v ∈ V ,

• and v 7→ J ′(u; v) is a linear continuous function:

J ′(u; v) = (J ′(u), v), J ′(u) ∈ L(V,H)

and we denote by J ′(u) the Gâteaux derivative of J at u.

Definition 2.3 J : V → H is Fréchet differentiable at point u if there exists J ′(u) ∈ L(V,H)
such that

J(u + v) = J(u) + (J ′(u), v) + ‖v‖ε(v),

where ε(v) → 0 when v → 0.
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Proposition 2.1 If J is Fréchet differentiable at u, then J is Gâteaux differentiable, and
the two derivatives are equal.

Proof

J(u+θv) = J(u)+(J ′(u), θv)+‖θv‖ε(θv), and then
J(u + θv)− J(u)

θ
= (J ′(u), v)+‖v‖ε(θv),

and ε(θv) → 0 when θ → 0. Then the directional derivative exists everywhere, and J ′(u) is
the Gâteaux derivative. �

Remark: the converse proposition is not true. Consider the following function in R2:

J(x, y) = 1 if y = x2 and x 6= 0; J(x, y) = 0 otherwise.

This function is Gâteaux differentiable. But it is not continuous, and hence cannot have a
Fréchet derivative at 0.

Finite-dimensional case: V = Rn and H = R. If all partial derivatives of J exist at u,
then

(J ′(u), v) =
n∑

i=1

∂J

∂xi
(u).vi = 〈∇J(u), v〉.

Example 1: J(v) = Av where A ∈ L(V,H). Then J ′(u) = A, ∀u.

Example 2: J(v) =
1
2
a(v, v)− L(v), where a is a continuous symmetric bilinear form, and

L is a continuous linear form.

J(u + v) = J(u) + (J ′(u), v) +
1
2
a(v, v).

As a is continuous, a(v, v) ≤ M‖v‖2 and then

(J ′(u), v) = a(u, v)− L(v).

Second (Gâteaux) derivative: If
J ′(u + θv;w)− J ′(u;w)

θ
has a finite limit ∀u, w, v ∈ V

when θ → 0+, then we denote this limit by J ′′(u; v, w), and it is the second directional
derivative at point u in the directions v and w.
If J ′′(u; v, w) is a continuous bilinear form, then J ′′(u) is called the second derivative of J ,
or hessian of J .

Finite increments and Taylor formula:

Proposition 2.2 If J : V → R is Gâteaux differentiable ∀u + θv, where θ ∈ [0, 1], then
∃θ0 ∈]0, 1[ such that

J(u + v) = J(u) + J ′(u + θ0v, v).

Proof
Let f(θ) = J(u + θv). f : R → R.

f ′(θ) = lim
f(θ + ε)− f(θ)

ε
= lim

J(u + θv + εv)− J(u + θv)
ε

= (J ′(u + θv), v).

Moreover, ∃θ0 ∈]0, 1[ such that f(1) = f(0) + f ′(θ0). �
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Proposition 2.3 If J : V → R is twice Gâteaux differentiable ∀u + θv, θ ∈ [0, 1], then
∃θ0 ∈]0, 1[ such that

J(u + v) = J(u) + (J ′(u), v) +
1
2
J ′′(u + θ0v; v, v).

Proof
Same as before, with f ′′(θ) = (J ′′(u + θv); v, v). �

2.2 Convexity and Gâteaux differentiability

Let V be a Banach space on R, and K ⊂ V a convex subset.

Definition 2.4 J : K → R is a convex function if

J ((1− θ)u + θv) ≤ (1− θ)J(u) + θJ(v), ∀θ ∈ [0, 1], ∀u, v ∈ K.

J is called strictly convex if

J ((1− θ)u + θv) < (1− θ)J(u) + θJ(v), ∀θ ∈]0, 1[, ∀u 6= v ∈ K.

J is α-convex (α > 0), or strongly convex, if

J ((1− θ)u + θv) ≤ (1− θ)J(u) + θJ(v)− α

2
θ(1− θ)‖u− v‖2, ∀θ ∈ [0, 1], ∀u, v ∈ K.

Proposition 2.4 α-convex ⇒ strictly convex ⇒ convex.

Proposition 2.5 Let J : K → R be a convex function, then every local minimum of J is a
global minimum.

Proof
Let u be a local minimum of J . Then J(u) ≤ J(v), ∀v ∈ V(u) ∩ K. If u is not a global
minimum, ∃w ∈ K such that J(w) < J(u). Then, for θ > 0, by convexity,

J((1− θ)u + θw) < J(u).

For θ > 0 small enough, (1− θ)u + θw ∈ V(u) ∩K, and there is a contradiction. �

Proposition 2.6 If J is strictly convex, then J has at most one minimum.

Proof
Let u1 and u2 be two (local ⇒ global) minima of J . Then J(u1) = J(u2). By strict convexity,
J(w) < J(u1) for all w ∈]u1, u2[. �

Proposition 2.7 If J : V → R is Gâteaux-differentiable in V , then:

i J is convex in V ⇔ J(v) ≥ J(u) + (J ′(u), v − u), ∀u, v

ii J is strictly convex in V ⇔ J(v) > J(u) + (J ′(u), v − u), ∀u 6= v

iii J is α-convex in V ⇔ J(v) ≥ J(u) + (J ′(u), v − u) + α
2 ‖v − u‖2, ∀u, v

Proof
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i) If J is convex:
J(u + θ(v − u)) ≤ J(u) + θ(J(v)− J(u))

J(u + θ(v − u))− J(u)
θ

≤ J(v)− J(u)

and consider the limit when θ → 0+. Conversely,

J(u) ≥ J(u + θ(v − u))− θ (J ′(u + θ(v − u)), v − u)

and
J(v) ≥ J(u + θ(v − u)) + (1− θ) (J ′(u + θ(v − u)), v − u)

Let us multiply the first inequality by (1− θ) and the second by θ, and then

(1− θ)J(u) + θJ(v) ≥ J(u + θ(v − u))

ii) If J is strictly convex: then J is convex, and by (i) between u and u + θ(v − u),

(J ′(u), θ(v − u)) ≤ J(u + θ(v − u))− J(u)

(J ′(u), v − u) ≤ J(u + θ(v − u))− J(u)
θ

< J(v)− J(u)

by strict convexity. Conversely, see (i).

iii) Same as (ii). �

Geometric interpretation: J is convex if the function lies above its tangent.

Proposition 2.8 If J is Gâteaux-differentiable, then:

i) J is convex iff J ′ is monotonic, i.e.

(J ′(u)− J ′(v), u− v) ≥ 0

ii) J is strictly convex iff J ′ is strictly monotonic, i.e.

(J ′(u)− J ′(v), u− v) > 0, u 6= v

iii) J is α-convex iff
(J ′(u)− J ′(v), u− v) ≥ α‖u− v‖2

Proof

i) If J is convex, J(v) ≥ J(u)+(J ′(u), v−u) and J(u) ≥ J(v)+(J ′(v), u−v). Conversely, let
φ(θ) = J(u+θ(v−u)). Then φ′(u) = (J ′(u + θ(v − u)), v − u). We have φ′(θ)−φ′(0) ≥ 0,
and by integrating between 0 and θ, φ(θ)− θφ′(0)− φ(0) ≥ 0. θ = 1 ⇒ J is convex.

ii) Same as (i).

iii) Add α
2 θ2‖v − u‖2. �

Proposition 2.9 If J : V → R is twice Gâteaux-differentiable, then

i) J is convex in V iff (J ′′(u)w,w) ≥ 0, ∀u, w.

ii) J is α-convex in V iff (J ′′(u)w,w) ≥ α‖w‖2, ∀u, w.
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Proof
If J is convex, (J ′(u + θw)− J ′(u), θw) ≥ 0. Let θ → 0+, and then (J ′′(u)w,w) ≥ 0.
Conversely: Taylor formula. �

Geometric interpretation: if J is α-convex, the function J has a curvature larger than
(or equal to) the curvature of w 7→ 1

2w2.

Remark: J strictly convex ⇐ (J ′′(u)w,w) > 0, this is a sufficient condition, but not a
necessary condition!

2.3 Optimality conditions

2.3.1 First-order necessary optimality conditions

Proposition 2.10 Let V be a Banach space, and J : Ω → R, where Ω is an open subset of
V . Let u ∈ Ω be a local extremum of J , and assume that J is Gâteaux-differentiable at u.
Then,

J ′(u) = 0.

This is the Euler’s equation.

Proof
For all v, for θ > 0 small enough, u + θv ∈ V(u) ⊂ Ω. Then J(u) ≤ J(u + θv). Then
(J ′(u), v) ≥ 0. But (J ′(u),−v) ≥ 0, and then (J ′(u), v) = 0, ∀v. Then J ′(u) = 0. �

Remark: This proposition is not true if Ω is not an open subset! For instance, consider
J(x) = x on Ω = [0, 1]. 0 is a minimum of J , but J ′(0) = 1. The proposition is usually
applied to Ω = V , or to an inner point of a subset.

Notation: The points u where J ′(u) = 0 are called the critical points of J .

Proposition 2.11 Let V be a Banach space, and K a convex subset of V . If u is a local
minimum of J on K, and if J is Gâteaux-differentiable at u, then

(J ′(u), v − u) ≥ 0, ∀v ∈ K.

This is the Euler’s inequality.

Proof
For all v ∈ K, for all θ > 0 small enough, u + θ(v − u) ∈ V(u) ∩K as long as θ ≤ 1. Then
J(u) ≤ J(u + θ(v − u)), and with θ → 0+, (J ′(u), v − u) ≥ 0. �

Particular cases:

i) K is a sub-vector space of V : then (J ′(u), w) = 0, ∀w ∈ K.

ii) K is a sub-affine space of V : v = a+v0, v0 ∈ sub-vector space V0 of V . Then (J ′(u), w) =
0, ∀w ∈ V0.
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iii) Projection on a closed convex set:

Let K be a closed convex subset of a Hilbert space
V . Let J(v) = ‖v−f‖2, for a given f ∈ V \K. Let
u be the projection of f on K. Then (J ′(u), v) =
2〈u−f, v〉. Then (J ′(u), v−u) = 2〈u−f, v−u〉 ≥
0. Then

〈f − u, v − u〉 ≤ 0, ∀v ∈ K.

This property characterizes the projection on a
closed convex set.

iv) Least-square estimation:

y(x) =
p∑

j=1

vjwj(x)

The goal is to approximate the bi’s: y(xi) ≈ bi.
Define

J(v) =
n∑

i=1

[y(xi)−bi]2 =
n∑

i=1

 p∑
j=1

vjwj(xi)− bi

2

= ‖Av − b‖2.

Then (J ′(u), v) = 〈Au− b, Av〉 = 〈tA(Au− b), v〉
and then

tAAu = tAb
This equality is called the normal equation of the least-square estimation problem.
The same idea can be used for estimating the solution of an overdetermined system of
linear equations.

2.3.2 Convex case: sufficient optimality conditions

Let V be a Banach space, and K a convex subset of V .

Proposition 2.12 Let J : V → R Gâteaux-differentiable and convex on K, where K is an
open convex subset of V . If J ′(u) = 0, where u ∈ K, then u is a global minimum of J on K.

Proof
J(v) ≥ J(u) + (J ′(u), v − u) = J(u). �

Proposition 2.13 If J : K → R is convex, Gâteaux-differentiable, and if (J ′(u), v−u) ≥ 0,
∀v ∈ K, then u is a global minimum of J on K.

These are necessary conditions in a general case, and necessary and sufficient conditions in
the convex case.

Particular case: K = V : J ′(u) = 0 is the Euler’s equation.

Application to the minimization of quadratic cost functions Let a be a continuous
symmetric bilinear coercive form: a(v, v) ≥ α‖v‖2, α > 0, ∀v ∈ V , and L be a continuous
linear form on V . We define

J(v) =
1
2
a(v, v)− L(v).
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Proposition 2.14 J is Fréchet-differentiable, and α-convex.

Proof
J(u + h) = J(u) + (J ′(u), h) + 1

2a(h, h) and (J ′(u), h) = a(u, h)− L(h).
(J ′(v)− J ′(u), v − u) = a(v − u, v − u) ≥ α‖v − u‖2, then J is α-convex. �

Euler’s inequality for the optimization problem inf
v∈K

J(v) is

a(u, v − u) ≥ L(v − u), ∀v ∈ K.

If K = V , then a(u, v) = L(v), ∀v ∈ V .

In the particular case where V = Rn, then a(v, v) = (Av, v) where A is a symmetric positive
definite matrix (α = inf λi). And L(v) = (b, v), with b ∈ Rn. In this case, the Euler’s
equation is:

Au = b.

Non-differentiable convex cost functions Let J(v) = j0(v) + j1(v), where j0 is convex
and Gâteaux-differentiable, and j1 is convex. If J(u) = inf

v∈K
J(v), with u ∈ K a nonempty

closed convex subset of V :

Proposition 2.15 u is characterized by the following inequality:

(j′0(u), v − u) + j1(v)− j1(u) ≥ 0, ∀v ∈ K.

Proof
Sufficient condition:

j0(v) + j1(v)− j0(u)− j1(u) = J(v)− J(u) ≥ (j′0(u), v − u) + j1(v)− j1(u) ≥ 0.

Necessary condition:

j0(u)+ j1(u) ≤ j0(u+θ(v−u))+ j1(u+θ(v−u)) ≤ j1(u)+θ(j1(v)− j1(u))+ j0(u+θ(v−u))

and then (j′0(u), v − u) + j1(v)− j1(u) ≥ 0. �

2.3.3 Second-order optimality conditions

Proposition 2.16 Necessary condition for a local minimum: let Ω be an open subset of a
normed vector space V , and J : Ω → R a differentiable function in Ω, twice differentiable at
u ∈ Ω. If u is a local minimum of J , then

J ′′(u)(w,w) ≥ 0, ∀w ∈ V.

Proof
Taylor-Young:

J(u + θw) = J(u) + θ(J ′(u), w) +
θ2

2
[J ′′(u)(w,w) + ε(θ)]

where ε(θ) → 0 when θ → 0. As u is a local minimum of J , J ′(u) = 0 and J(u + θw) ≥ J(u)
for all w, for θ ≥ 0 small enough. Then J ′′(u)(w,w) ≥ 0. �
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Definition 2.5 u is a strict local minimum of J if there exists a neighborhood V(u) such
that

J(u) < J(v), ∀v ∈ V(u)\{u}.

Proposition 2.17 Sufficient condition for a strict local minimum: let Ω be an open subset
of V , and J : Ω → R a differentiable function such that J ′(u) = 0. If J is twice differentiable
at u, and if there exists α > 0 such that J ′′(u)(w,w) ≥ α‖w‖2, ∀w ∈ V , then u is a strict
local minimum of J .

Proof
J(u + w)− J(u) =

1
2
[J ′′(u)(w,w) + ‖w‖2ε(w)] ≥ α− ε(w)

2
‖w‖2 > 0

in an open ball centered at u, of radius r (small enough) such that ‖ε(w)‖ < α if ‖w‖ ≤ r. �

Proposition 2.18 Let Ω be an open subset of V , J a differentiable function such that
J ′(u) = 0. If J is twice differentiable in Ω, and if there exists a ball B centered at u in
Ω such that

J ′′(v)(w,w) ≥ 0, ∀v ∈ B, ∀w ∈ V,

then u is a local minimum of J .

Proof
Taylor Mac Laurin: ∃v ∈]u, u + w[ such that

J(u + w) = J(u) +
1
2
J ′′(v)(w,w) ≥ J(u)

for all u + w ∈ B. �

Remark: Straightforward application to a convex function.
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