2 Optimality conditions

Elementary remark: \[
\min_{[a, b] \subset \mathbb{R}} J
\]

if \(x_0\) is a local minimum of \(J\), then (necessary condition):

- \(J'(x_0) \geq 0\) if \(x_0 = a\),
- \(J'(x_0) = 0\) if \(x_0 \in]a, b[\),
- \(J'(x_0) \leq 0\) if \(x_0 = b\).

Indeed, if \(x_0 \in [a, b]\), we can consider \(x = x_0 + h\) for some \(h > 0\) small enough.
\[
J(x) = J(x_0) + h J'(x_0) + o(h) \geq J(x_0) \quad \rightarrow \quad J'(x_0) \geq 0.
\]

If \(x_0 \in]a, b]\), \(x = x_0 - h\) and then \(J'(x_0) \leq 0\). Note that if \(x_0 \in]a, b]\),
\[
J(x_0) + \frac{h^2}{2} J''(x_0) + o(h^2) \geq J(x_0)
\]

and then \(J''(x_0) \geq 0\).

One must take into account the constraints \((x \in [a, b])\) in order to test the optimality: there are admissible directions.

2.1 Fréchet and Gâteaux differentiability

For clarity purpose, we may denote by \(dJ\) the Fréchet derivative, and by \(J'\) the Gâteaux derivative.

Definition 2.1 \(J : V \to H\) has a directional derivative at point \(u \in V\) along the direction \(v \in V\) if
\[
\lim_{\theta \to 0^+} \frac{J(u + \theta v) - J(u)}{\theta}
\]
exists, and we denote by \(J'(u; v)\) the limit.

Example: \(V = \mathbb{R}^n\) and \(H = \mathbb{R}\), partial derivatives of \(J\):
\[
\frac{J(u + \theta e_i) - J(u)}{\theta} \to \frac{\partial J}{\partial x_i}(u).
\]

Definition 2.2 \(J : V \to H\) is Gâteaux differentiable at point \(u\) if

- \(J'(u; v)\) exists, \(\forall v \in V\),
- and \(v \mapsto J'(u; v)\) is a linear continuous function:
\[
J'(u; v) = (J'(u), v), \quad J'(u) \in \mathcal{L}(V, H)
\]

and we denote by \(J'(u)\) the Gâteaux derivative of \(J\) at \(u\).

Definition 2.3 \(J : V \to H\) is Fréchet differentiable at point \(u\) if there exists \(J'(u) \in \mathcal{L}(V, H)\) such that
\[
J(u + v) = J(u) + (J'(u), v) + \|v\| \varepsilon(v),
\]
where \(\varepsilon(v) \to 0\) when \(v \to 0\).
Proposition 2.1 If \(J \) is Fréchet differentiable at \(u \), then \(J \) is Gâteaux differentiable, and the two derivatives are equal.

Proof
\[
J(u+\theta v) = J(u) + (J'(u), \theta v) + \|\theta v\| \varepsilon(\theta v),
\]
and \(\varepsilon(\theta v) \to 0 \) when \(\theta \to 0 \). Then the directional derivative exists everywhere, and \(J'(u) \) is the Gâteaux derivative. \(\square \)

Remark: the converse proposition is not true. Consider the following function in \(\mathbb{R}^2 \):
\[
J(x, y) = \begin{cases}
1 & \text{if } y = x^2 \text{ and } x \neq 0; \\
0 & \text{otherwise.}
\end{cases}
\]
This function is Gâteaux differentiable. But it is not continuous, and hence cannot have a Fréchet derivative at 0.

Finite-dimensional case: \(V = \mathbb{R}^n \) and \(H = \mathbb{R} \). If all partial derivatives of \(J \) exist at \(u \), then
\[
(J'(u), v) = \sum_{i=1}^{n} \frac{\partial J}{\partial x_i}(u)v_i = \langle \nabla J(u), v \rangle.
\]

Example 1: \(J(v) = Av \) where \(A \in \mathcal{L}(V, H) \). Then \(J'(u) = A, \forall u \).

Example 2: \(J(v) = \frac{1}{2} a(v, v) - L(v) \), where \(a \) is a continuous symmetric bilinear form, and \(L \) is a continuous linear form.
\[
J(u+v) = J(u) + (J'(u), v) + \frac{1}{2} a(v, v).
\]
As \(a \) is continuous, \(a(v, v) \leq M\|v\|^2 \) and then
\[
(J'(u), v) = a(u, v) - L(v).
\]

Second (Gâteaux) derivative: If \(\frac{J'(u+\theta v; w) - J'(u; w)}{\theta} \) has a finite limit \(\forall u, w, v \in V \) when \(\theta \to 0^+ \), then we denote this limit by \(J''(u; v, w) \), and it is the second directional derivative at point \(u \) in the directions \(v \) and \(w \).

If \(J''(u; v, w) \) is a continuous bilinear form, then \(J''(u) \) is called the second derivative of \(J \), or hessian of \(J \).

Finite increments and Taylor formula:

Proposition 2.2 If \(J : V \to \mathbb{R} \) is Gâteaux differentiable \(\forall u + \theta v \), where \(\theta \in [0, 1] \), then \(\exists \theta_0 \in [0, 1] \) such that
\[
J(u+v) = J(u) + J'(u+\theta_0 v, v).
\]

Proof
Let \(f(\theta) = J(u+\theta v) \). \(f : \mathbb{R} \to \mathbb{R} \).
\[
f'(\theta) = \lim_{\varepsilon \to 0} \frac{f(\theta + \varepsilon) - f(\theta)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{J(u+\theta v + \varepsilon v) - J(u+\theta v)}{\varepsilon} = (J'(u+\theta v), v).
\]
Moreover, \(\exists \theta_0 \in [0, 1] \) such that \(f(1) = f(0) + f'(\theta_0) \). \(\square \)
Proposition 2.3 If \(J : V \to \mathbb{R} \) is twice Gâteaux differentiable \(\forall u + \theta v, \theta \in [0, 1] \), then
\[
J(u + v) = J(u) + (J'(u), v) + \frac{1}{2}J''(u + \theta_0 v; v, v).
\]

Proof
Same as before, with \(f''(\theta) = (J''(u + \theta v); v, v) \). \(\square \)

2.2 Convexity and Gâteaux differentiability

Let \(V \) be a Banach space on \(\mathbb{R} \), and \(K \subset V \) a convex subset.

Definition 2.4 \(J : K \to \mathbb{R} \) is a convex function if
\[
J((1 - \theta)u + \theta v) \leq (1 - \theta)J(u) + \theta J(v), \quad \forall \theta \in [0, 1], \forall u, v \in K.
\]

\(J \) is called strictly convex if
\[
J((1 - \theta)u + \theta v) < (1 - \theta)J(u) + \theta J(v), \quad \forall \theta \in [0, 1], \forall u \neq v \in K.
\]

\(J \) is \(\alpha \)-convex \((\alpha > 0) \), or strongly convex, if
\[
J((1 - \theta)u + \theta v) \leq (1 - \theta)J(u) + \theta J(v) - \frac{\alpha}{2}\theta(1 - \theta)\|u - v\|^2, \quad \forall \theta \in [0, 1], \forall u, v \in K.
\]

Proposition 2.4 \(\alpha \)-convex \(\Rightarrow \) strictly convex \(\Rightarrow \) convex.

Proposition 2.5 Let \(J : K \to \mathbb{R} \) be a convex function, then every local minimum of \(J \) is a global minimum.

Proof
Let \(u \) be a local minimum of \(J \). Then \(J(u) \leq J(v), \forall v \in V(u) \cap K \). If \(u \) is not a global minimum, \(\exists w \in K \) such that \(J(w) < J(u) \). Then, for \(\theta > 0 \), by convexity,
\[
J((1 - \theta)u + \theta w) < J(u).
\]

For \(\theta > 0 \) small enough, \((1 - \theta)u + \theta w \in V(u) \cap K \), and there is a contradiction. \(\square \)

Proposition 2.6 If \(J \) is strictly convex, then \(J \) has at most one minimum.

Proof
Let \(u_1 \) and \(u_2 \) be two (local \(\Rightarrow \) global) minima of \(J \). Then \(J(u_1) = J(u_2) \). By strict convexity, \(J(w) < J(u_1) \) for all \(w \in [u_1, u_2] \). \(\square \)

Proposition 2.7 If \(J : V \to \mathbb{R} \) is Gâteaux-differentiable in \(V \), then:

i. \(J \) is convex in \(V \) \(\iff \) \(J(v) \geq J(u) + (J'(u), v - u), \forall u, v \)

ii. \(J \) is strictly convex in \(V \) \(\iff \) \(J(v) > J(u) + (J'(u), v - u), \forall u \neq v \)

iii. \(J \) is \(\alpha \)-convex in \(V \) \(\iff \) \(J(v) \geq J(u) + (J'(u), v - u) + \frac{\alpha}{2}\|v - u\|^2, \forall u, v \)

Proof
i) If J is convex:

$$J(u + \theta(v - u)) \leq J(u) + \theta (J(v) - J(u))$$

$$\frac{J(u + \theta(v - u)) - J(u)}{\theta} \leq J(v) - J(u)$$

and consider the limit when $\theta \to 0^+$. Conversely,

$$J(u) \geq J(u + \theta(v - u)) - \theta (J'(u + \theta(v-u)), v-u)$$

and

$$J(v) \geq J(u + \theta(v - u)) + (1 - \theta) (J'(u + \theta(v-u)), v-u)$$

Let us multiply the first inequality by $(1 - \theta)$ and the second by θ, and then

$$(1 - \theta)J(u) + \theta J(v) \geq J(u + \theta(v - u))$$

ii) If J is strictly convex: then J is convex, and by (i) between u and $u + \theta(v - u),

$$(J'(u), \theta(v - u)) \leq J(u + \theta(v - u)) - J(u)$$

$$(J'(u), v - u) \leq \frac{J(u + \theta(v - u)) - J(u)}{\theta} < J(v) - J(u)$$

by strict convexity. Conversely, see (i).

iii) Same as (ii). \qed

Geometric interpretation: J is convex if the function lies above its tangent.

Proposition 2.8 If J is Gâteaux-differentiable, then:

i) J is convex iff J' is monotonic, i.e.

$$(J'(u) - J'(v), u - v) \geq 0$$

ii) J is strictly convex iff J' is strictly monotonic, i.e.

$$(J'(u) - J'(v), u - v) > 0, \ u \neq v$$

iii) J is α-convex iff

$$(J'(u) - J'(v), u - v) \geq \alpha \|u - v\|^2$$

Proof

i) If J is convex, $J(v) \geq J(u) + (J'(u), v-u)$ and $J(u) \geq J(v) + (J'(v), u-v)$. Conversely, let $\phi(\theta) = J(u + \theta(v - u))$. Then $\phi'(u) = (J'(u + \theta(v-u)), v-u)$. We have $\phi'(\theta) - \phi'(0) \geq 0$, and by integrating between 0 and θ, $\phi(\theta) - \theta \phi'(0) - \phi(0) \geq 0$. $\theta = 1 \Rightarrow J$ is convex.

ii) Same as (i).

iii) Add $\frac{\alpha}{2} \theta^2 \|v - u\|^2$. \qed

Proposition 2.9 If $J : V \rightarrow \mathbb{R}$ is twice Gâteaux-differentiable, then

i) J is convex in V iff $(J''(u)w, w) \geq 0$, $\forall u, w$.

ii) J is α-convex in V iff $(J''(u)w, w) \geq \alpha \|w\|^2$, $\forall u, w$.

10
Proof
If \(J \) is convex, \((J'(u + \theta w) - J'(u), \theta w) \geq 0\). Let \(\theta \to 0^+ \), and then \((J''(u)w, w) \geq 0\).
Conversely: Taylor formula.

Geometric interpretation: if \(J \) is \(\alpha \)-convex, the function \(J \) has a curvature larger than (or equal to) the curvature of \(w \mapsto \frac{1}{2}w^2 \).

Remark: \(J \) strictly convex \(\iff \) \((J''(u)w, w) > 0\), this is a sufficient condition, but not a necessary condition!

2.3 Optimality conditions
2.3.1 First-order necessary optimality conditions

Proposition 2.10 Let \(V \) be a Banach space, and \(J : \Omega \to \mathbb{R} \), where \(\Omega \) is an open subset of \(V \). Let \(u \in \Omega \) be a local extremum of \(J \), and assume that \(J \) is Fréchet-differentiable at \(u \).
Then,
\[
J'(u) = 0.
\]
This is the Euler’s equation.

Proof
For all \(v \), for \(\theta > 0 \) small enough, \(u + \theta v \in \mathcal{V}(u) \subset \Omega \). Then \(J(u) \leq J(u + \theta v) \). Then \((J'(u), v) \geq 0\). But \((J'(u), -v) \geq 0\), and then \((J'(u), v) = 0, \forall v \). Then \(J'(u) = 0 \).

Remark: This proposition is not true if \(\Omega \) is not an open subset! For instance, consider \(J(x) = x \) on \(\Omega = [0, 1] \). 0 is a minimum of \(J \), but \(J'(0) = 1 \). The proposition is usually applied to \(\Omega = V \), or to an inner point of a subset.

Notation: The points \(u \) where \(J'(u) = 0 \) are called the critical points of \(J \).

Proposition 2.11 Let \(V \) be a Banach space, and \(K \) a convex subset of \(V \). If \(u \) is a local minimum of \(J \) on \(K \), and if \(J \) is Fréchet-differentiable at \(u \), then
\[
(J'(u), v - u) \geq 0, \forall v \in K.
\]
This is the Euler’s inequality.

Proof
For all \(v \in K \), for all \(\theta > 0 \) small enough, \(u + \theta (v - u) \in \mathcal{V}(u) \cap K \) as long as \(\theta \leq 1 \). Then \(J(u) \leq J(u + \theta (v - u)) \), and with \(\theta \to 0^+ \), \((J'(u), v - u) \geq 0\).

Particular cases:

i) \(K \) is a sub-vector space of \(V \): then \((J'(u), w) = 0, \forall w \in K\).

ii) \(K \) is a sub-affine space of \(V \): \(v = a + v_0, v_0 \in \) sub-vector space \(V_0 \) of \(V \). Then \((J'(u), w) = 0, \forall w \in V_0\).
iii) **Projection on a closed convex set:**

Let K be a closed convex subset of a Hilbert space V. Let $J(v) = \|v-f\|^2$, for a given $f \in V \setminus K$. Let u be the projection of f on K. Then $(J'(u), v) = 2(u-f, v)$. Then $(J'(u), v-u) = 2(u-f, v-u) \geq 0$. Then

$$\langle f-u, v-u \rangle \leq 0, \forall v \in K.$$

This property characterizes the projection on a closed convex set.

iv) **Least-square estimation:**

$$y(x) = \sum_{j=1}^{p} v_j w_j(x)$$

The goal is to approximate the b_i’s: $y(x_i) \approx b_i$.

Define

$$J(v) = \sum_{i=1}^{n} \left[y(x_i) - b_i \right]^2 = \sum_{i=1}^{n} \left[\sum_{j=1}^{p} v_j w_j(x_i) - b_i \right]^2 = \|Av-b\|^2.$$

Then $(J'(u), v) = \langle Au-b, Av \rangle = \langle tA(Au-b), v \rangle$ and then

$$tAAu = tAb$$

This equality is called the normal equation of the least-square estimation problem. The same idea can be used for estimating the solution of an overdetermined system of linear equations.

2.3.2 **Convex case: sufficient optimality conditions**

Let V be a Banach space, and K a convex subset of V.

Proposition 2.12 Let $J : V \to \mathbb{R}$ Gâteaux-differentiable and convex on K, where K is an open convex subset of V. If $J'(u) = 0$, where $u \in K$, then u is a global minimum of J on K.

Proof

$J(v) \geq J(u) + (J'(u), v-u) = J(u).$

□

Proposition 2.13 If $J : K \to \mathbb{R}$ is convex, Gâteaux-differentiable, and if $(J'(u), v-u) \geq 0$, $\forall v \in K$, then u is a global minimum of J on K.

These are necessary conditions in a general case, and necessary and sufficient conditions in the convex case.

Particular case: $K = V$: $J'(u) = 0$ is the Euler’s equation.

Application to the minimization of quadratic cost functions

Let a be a continuous symmetric bilinear coercive form: $a(v,v) \geq \alpha \|v\|^2$, $\alpha > 0$, $\forall v \in V$, and L be a continuous linear form on V. We define

$$J(v) = \frac{1}{2} a(v,v) - L(v).$$
\textbf{Proposition 2.14} \(J \) is Fréchet-differentiable, and \(\alpha \)-convex.

\textbf{Proof}

\(J(u + h) = J(u) + (J'(u), h) + \frac{1}{2} a(h, h) \) and \((J'(u), h) = a(u, h) - L(h) \).

\((J'(v) - J'(u), v - u) = a(v - u, v - u) \geq \alpha \| v - u \|^2 \), then \(J \) is \(\alpha \)-convex. \(\square \)

Euler’s inequality for the optimization problem \(\inf_{v \in K} J(v) \) is

\[a(u, v - u) \geq L(v - u), \ \forall v \in K. \]

If \(K = V \), then \(a(u, v) = L(v), \ \forall v \in V. \)

In the particular case where \(V = \mathbb{R}^n \), then \(a(v, v) = (Av, v) \) where \(A \) is a symmetric positive definite matrix \((\alpha = \inf \lambda_i) \). And \(L(v) = (b, v) \), with \(b \in \mathbb{R}^n \). In this case, the Euler’s equation is:

\[Au = b. \]

\textbf{Non-differentiable convex cost functions} \ Let \(J(v) = j_0(v) + j_1(v) \), where \(j_0 \) is convex and Gâteaux-differentiable, and \(j_1 \) is convex. If \(J(u) = \inf_{v \in K} J(v) \), with \(u \in K \) a nonempty closed convex subset of \(V \):

\textbf{Proposition 2.15} \(u \) is characterized by the following inequality:

\[(j_0'(u), v - u) + j_1(v) - j_1(u) \geq 0, \ \forall v \in K. \]

\textbf{Proof}

Sufficient condition:

\[j_0(v) + j_1(v) - j_0(u) - j_1(u) = J(v) - J(u) \geq (j_0'(u), v - u) + j_1(v) - j_1(u) \geq 0. \]

Necessary condition:

\[j_0(u) + j_1(u) \leq j_0(u + \theta(v - u)) + j_1(u + \theta(v - u)) \leq j_1(u) + \theta(j_1(v) - j_1(u)) + j_0(u + \theta(v - u)) \]

and then \((j_0'(u), v - u) + j_1(v) - j_1(u) \geq 0. \) \(\square \)

\textbf{2.3.3 Second-order optimality conditions}

\textbf{Proposition 2.16} Necessary condition for a local minimum: let \(\Omega \) be an open subset of a normed vector space \(V \), and \(J : \Omega \to \mathbb{R} \) a differentiable function in \(\Omega \), twice differentiable at \(u \in \Omega \). If \(u \) is a local minimum of \(J \), then

\[J''(u)(w, w) \geq 0, \ \forall w \in V. \]

\textbf{Proof}

Taylor-Young:

\[J(u + \theta w) = J(u) + \theta(J'(u), w) + \frac{\theta^2}{2} [J''(u)(w, w) + \varepsilon(\theta)] \]

where \(\varepsilon(\theta) \to 0 \) when \(\theta \to 0 \). As \(u \) is a local minimum of \(J \), \(J'(u) = 0 \) and \(J(u + \theta w) \geq J(u) \) for all \(w \), for \(\theta \geq 0 \) small enough. Then \(J''(u)(w, w) \geq 0. \) \(\square \)
Definition 2.5 u is a strict local minimum of J if there exists a neighborhood $\mathcal{V}(u)$ such that

$$J(u) < J(v), \forall v \in \mathcal{V}(u) \setminus \{u\}.$$

Proposition 2.17 Sufficient condition for a strict local minimum: let Ω be an open subset of V, and $J : \Omega \rightarrow \mathbb{R}$ a differentiable function such that $J'(u) = 0$. If J is twice differentiable at u, and if there exists $\alpha > 0$ such that $J''(u)(w, w) \geq \alpha \|w\|^2$, $\forall w \in V$, then u is a strict local minimum of J.

Proof

$$J(u + w) - J(u) = \frac{1}{2} J''(u)(w, w) + \|w\|^2 \varepsilon(w) \geq \frac{\alpha - \varepsilon(w)}{2} \|w\|^2 > 0$$

in an open ball centered at u, of radius r (small enough) such that $\|\varepsilon(w)\| < \alpha$ if $\|w\| \leq r$. □

Proposition 2.18 Let Ω be an open subset of V, J a differentiable function such that $J'(u) = 0$. If J is twice differentiable in Ω, and if there exists a ball B centered at u in Ω such that

$$J''(v)(w, w) \geq 0, \forall v \in B, \forall w \in V,$$

then u is a local minimum of J.

Proof

Taylor Mac Laurin: $\exists v \in [u, u + w]$ such that

$$J(u + w) = J(u) + \frac{1}{2} J''(v)(w, w) \geq J(u)$$

for all $u + w \in B$. □

Remark: Straightforward application to a convex function.