Symmetry-preserving observers for water tank problems: theory and application to an oceanography data assimilation example

Silvère Bonnabel
Co-workers: Didier Auroux. Pierre Rouchon

Mines ParisTech
Centre de Robotique
Mathématiques et Systèmes
silvere.bonnabel@mines-paristech.fr

29 sept 2009
Outline

Introduction and motivations

Water tank systems, symmetries, and observer design

Application to an oceanography example

Numerical simulations

Conclusion
Symmetries have been used in control for feedback design for non-linear systems but much less for the design of non-linear observers to our knowledge.

In control theory, a state observer is a system that uses

- a model of the real system
- noisy measurements of the input and output of the real system
- Goal: provide a real-time estimate of the internal state

It is typically a computer-implemented mathematical model (preferably low cost of computation). Exemple: Kalman filter
Linear observers

Consider the linear system

\[
\frac{d}{dt} x = Ax + Bu, \quad y = Cx
\]

where \(x \in \mathbb{R}^n \) is the state, \(u \in \mathbb{R}^m \) the input, and \(y \in \mathbb{R}^p \) the output; \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, \) and \(C \in \mathbb{R}^{p \times n} \).

Luenberger Observer or Kalman filter

\[
\frac{d}{dt} \hat{x} = A\hat{x} + Bu + L(C\hat{x} - y)
\]

Copy + correction term \(L(C\hat{x} - y) \) equal to 0 when \(\hat{x} = x \).

L is the gain matrix
Non-linear observers

\[\frac{d}{dt} x = f(x, u), \quad y = h(x, u) \quad y, u \text{ known signals} \]

Estimator, observer, filter, etc:

\[\frac{d}{dt} \hat{x} = f(\hat{x}, u(t)) - L(\hat{x}, y(t)) \cdot (h(\hat{x}, u(t)) - y(t)) \]

- Luenberger observer, gain scheduling, high gains, ...
- Extended Kalman Filter (\(M, N\) "tuning" matrices)

\[A = \frac{\partial f}{\partial x}(\hat{x}, u) \quad L = -PC^TN \]

\[C = \frac{\partial h}{\partial x}(\hat{x}, u) \quad \frac{d}{dt} P = AP + PA^T + M^{-1} - PC^TNCP \]

- Tuning? Domain of convergence? Computational cost?
Non-linear symmetry-preserving observers

What can we do when the model

$$\frac{d}{dt}x = f(x, u), \quad y = h(x, u)$$

admits symmetries? ¹

- The linear system $\frac{d}{dt}x = Ax + Bu$ is invariant by scaling

 $$\forall \lambda > 0 \quad \frac{d}{dt}(\lambda x) = A(\lambda x) + B(\lambda u)$$

- so is the correction term in $\frac{d}{dt}\hat{x} = A\hat{x} + Bu + L(C\hat{x} - y)$

When $f(x, u)$ is not linear why should the correction term be linear??

- Redemption by geometry \rightarrow make

 $$L(\hat{x}, y(t)) \cdot (h(\hat{x}, u(t)) - y(t))$$

respect the symmetries.

System considered and motivations of the talk

The amount of available data has drastically increased in the last years.

- **Measurement**: height of the ocean
- **Goal**: Estimate the marine streams.

Symmetries?

- Invariance by \(SE(2) \) (2D rotations and translations).
Water tank systems, symmetries, and observer design
The Saint-Venant equations write on the rectangular domain

\[\frac{\partial}{\partial t} h = -\nabla (hv), \quad \frac{\partial}{\partial t} v = -v\nabla v - g\nabla h \]

where \(hv = h(v_x \mathbf{i} + v_y \mathbf{j}) \) is the horizontal transport.

There has been theoretical work on motion planning and feedback for this system but much less on observers.\(^2\)

The Saint-Venant equations write on the rectangular domain

\[\frac{\partial}{\partial t} h = - \nabla (hv), \quad \frac{\partial}{\partial t} v = -v \nabla v - g \nabla h \]

where \(hv = h(v_x i + v_y j) \) is the horizontal transport.

- **Assumption**: \(h(x, y, t) \) is measured (with noise) for all \(x, y, t \).
- **Goal**: Estimate all the state variables \(v(x, y) \) and \(h(x, y) \) at any point \((x, y) \in [0, L]^2 \) of the domain.
Model symmetries : SE(2)-invariance

Take R_θ rotation of angle θ, then the transformations

$$ (X, Y) = R_\theta(x, y) + (x_0, y_0) $$

$$ H(X, Y) = h(x, y) $$

$$ V(X, Y) = R_\theta v(x, y) $$

leave the system unchanged

$$ \frac{\partial}{\partial t} V = - V \nabla V - g \nabla H $$

$$ \frac{\partial}{\partial t} H = - \nabla \cdot (HV) $$

This results from : $\nabla h(x, y) = R_\theta \nabla H(X, Y)$.

Note that the domain becomes $\left(R_\theta D + (x_0, y_0) \right) \subset \mathbb{R}^2$.
Observer design

We consider asymptotic observer of the form

\[
\frac{\partial}{\partial t} \hat{v} = -\hat{v} \nabla \hat{v} - g \nabla \hat{h} + N_v(h, \hat{v}, \hat{h})
\]

\[
\frac{\partial \hat{h}}{\partial t} = -\nabla \cdot (\hat{h} \hat{v}) + N_h(h, \hat{v}, \hat{h})
\]

where \(N_h \) and \(N_v \) are operators (versus space variables) such that

\[
N_v(h, \hat{v}, h) = 0, \quad N_h(h, \hat{v}, h) = 0
\]

\(N_v(h, \hat{v}, \hat{h}) \) is a vector and \(N_h(h, \hat{v}, \hat{h}) \) a scalar.

How to preserve \(SE(2) \) invariance in the choice of \(N_h \) and \(N_v \) ?
Symmetry-preserving observer: scalar differential terms

- Classical result: any differential scalar operator, $SE(2)$ invariant, is polynomial in Δ.
- Scalar invariant correction N_h:

$$N_h = Q_1(\Delta, h, \hat{v}^2, \hat{h} - h) + \nabla \left(Q_2(\Delta, h, \hat{v}^2, \hat{h} - h) \right) \cdot \hat{v}$$

where Q_1 and Q_2 of the form

$$Q_i(\Delta, h, \hat{v}^2, \hat{h} - h) = \sum_{k=0}^{N} a^i_k(h, \hat{v}^2, \hat{h} - h) \Delta^k \left(b^i_k(h, \hat{v}^2, \hat{h} - h) \right)$$

the functions a^i_k and b^i_k being smooth functions of their arguments such that

$$a^i_k(h, \hat{v}^2, 0) = b^i_k(h, \hat{v}^2, 0) = 0.$$
Symmetry-preserving observer: vectorial differential terms

- Vector invariant correction terms N_v:

$$N_v = P_1(\Delta, h, \hat{v}^2, \hat{h} - h)\hat{v} + \nabla P_2(\Delta, h, \hat{v}^2, \hat{h} - h)$$

where P_1 and P_2 are similar to the Q_i used for N_h:

$$P_i(\Delta, h, \hat{v}^2, \hat{h} - h) = \sum_{k=0}^{N} c_k^i(h, \hat{v}^2, \hat{h} - h) \Delta^k \left(d_k^i(h, \hat{v}^2, \hat{h} - h) \right)$$
symmetry-preserving observer: integral terms

\[N_v(x, y, t) = \int \int \left[R_1(\Delta, h, \hat{v}^2, \hat{h} - h)\hat{v} + \nabla R_2(\Delta, h, \hat{v}^2, \hat{h} - h) \right] (x - \xi, y - \zeta, t) \phi_v(\xi^2 + \zeta^2) \, d\xi \, d\zeta \]

\[N_h(x, y, t) = \int \int \left[S_1(\Delta, h, \hat{v}^2, \hat{h} - h) + \nabla S_2(\Delta, h, \hat{v}^2, \hat{h} - h) \cdot \hat{v} \right] (x - \xi, y - \zeta, t) \phi_h(\xi^2 + \zeta^2) \, d\xi \, d\zeta \]

where \(\phi_v \) and \(\phi_h \) are convolution kernels and the \(R_i \)'s and \(S_i \)'s are polynomials versus \(\Delta \).
Chosen observer

\[\frac{\partial}{\partial t} h = -\nabla (hv), \quad \frac{\partial}{\partial t} \hat{v} = -\hat{v} \nabla \hat{v} - g \nabla h \]

Simplest symmetry-preserving observer (with integral corrections):

\[\frac{\partial}{dt} \hat{h} = -\nabla (\hat{h} \hat{v}) + \int \int \phi_h(\xi^2 + \zeta^2)(h - \hat{h})(x-\xi, y-\zeta, t) \, d\xi d\zeta \]
\[= -\nabla (\hat{h} \hat{v}) + \varphi_h \ast (h - \hat{h}) \]

\[\frac{\partial}{dt} \hat{\hat{v}} = -\hat{v} \nabla \hat{\hat{v}} - g \nabla \hat{h} + \int \int \phi_v(\xi^2 + \zeta^2) \nabla (h - \hat{h})(x-\xi, y-\zeta, t) \, d\xi d\zeta \]
\[= -\hat{v} \nabla \hat{\hat{v}} - g \nabla \hat{h} + \varphi_v \ast \nabla (h - \hat{h}) \]

where \(\phi_h \) and \(\phi_v \) have to be designed to ensure convergence
Comparison with Nudging

Here the 2D image \((h - \hat{h})\) is filtered with an isotropic smooth kernel (heat equation filtering) before being fed in the observer.

\[
\begin{align*}
\frac{\partial}{\partial t} \hat{h} &= -\nabla (\hat{h} \hat{v}) + \varphi_h * (h - \hat{h}) \\
\frac{\partial}{\partial t} \hat{v} &= -\hat{v} \nabla \hat{v} - g \nabla \hat{h} + \varphi_v * \nabla (h - \hat{h})
\end{align*}
\]
Let us linearize the system around the steady-state
\((h, \nu) = (\bar{h}, 0)\), where the equilibrium height \(\bar{h}\) is constant.

It means we only consider small velocities \(\delta \nu = \nu - \bar{\nu} \ll \sqrt{g\bar{h}}\) and heights \(\delta h = h - \bar{h} \ll \bar{h}\).
Design of ϕ_h and ϕ_v

The estimation errors, $\tilde{h} = \delta\hat{h} - \delta h$ and $\tilde{v} = \delta\hat{v} - \delta v$, obey the following linearized equations:

$$\frac{\partial}{\partial t} \tilde{h} = -\bar{h}\nabla\tilde{v} - \varphi_h * \tilde{h}, \quad \frac{\partial}{\partial t} \tilde{v} = -g\nabla\tilde{h} - \varphi_v * \nabla\tilde{h}.$$

Eliminating \tilde{v} leads to the following modified damped wave equation with external viscous damping

$$\frac{\partial^2}{\partial t^2} \tilde{h} = gh\Delta\tilde{h} + \varphi_v * \Delta\tilde{h} - \varphi_h * \frac{\partial}{\partial t} \tilde{h}$$

since $\nabla(\varphi_v * \nabla h) = \varphi_v * \Delta h$

where $\tilde{h} = \hat{h} - h$ and $\tilde{v} = \hat{v} - v$ are the estimation errors.
Theorem

If \(\varphi_v \) and \(\varphi_h \) are defined by

\[
\varphi_v(x, y) = \beta_v \exp(-\alpha_v(x^2 + y^2)),
\]

\[
\varphi_h(x, y) = \beta_h \exp(-\alpha_h(x^2 + y^2)),
\]

with \(\beta_v, \beta_h, \alpha_v, \alpha_h > 0 \), then the first order approximation of the error system around the equilibrium \((h, v) = (\bar{h}, 0)\) is strongly asymptotically convergent. Indeed if we consider the following Hilbert space and norm:

\[
\mathcal{H} = H^1(\Omega) \times L^2(\Omega), \quad \|(u, w)\|_\mathcal{H} = \left(\int_\Omega \|\nabla u\|^2 + |w|^2 \right)^{1/2},
\]

then, for every \(\tilde{h} \) solution of the error equation,

\[
\lim_{t \to \infty} \left\| \left(\tilde{h}(t), \frac{\partial \tilde{h}}{\partial t}(t) \right) \right\|_{\mathcal{H}} = 0.
\]
Convergence study

We have the equation in 2D (where $\psi_v := g\bar{h}\delta_0 + \varphi_v$)

$$\frac{\partial^2}{\partial t^2} u = \psi_v \ast \Delta u - \varphi_h \ast \frac{\partial}{\partial t} u$$

in $\mathbb{R}^+ \times \Omega = \mathbb{R}^+ \times [0, \pi]^2$, $u = 0$

on $\mathbb{R}^+ \times \partial\Omega$,

$u(0) = u_0$, $u_t(0) = u_1$

in Ω,

(5)

where $u(t, x, y) = \tilde{h}$.

Dirichlet boundary condition \leftrightarrow we set $\hat{h} = h$ on the boundary.

Let (e_{pq}) be the orthonormal basis of $H^1_0(\Omega)$ composed of eigenfunctions of the unbounded operator Δ:

$$e_{pq} = \frac{2}{\pi} \sin(px) \sin(qy).$$

(6)
Convergence study - Gain design

For the kernels ϕ_v and ϕ_h we choose:

$$\phi_v(x, y) = (f(x) \ast f(x)) (f(y) \ast f(y)),$$
$$\phi_h(x, y) = (g(x) \ast g(x)) (g(y) \ast g(y)),$$

where f and g are smooth even functions.

To respect the symmetries $\phi_v(x, y)$ and $\phi_h(x, y)$ must be functions of $x^2 + y^2$.

Take for instance

$$\phi_v(x, y) = \beta_v \exp(-\alpha_v(x^2 + y^2)),$$
$$\phi_h(x, y) = \beta_h \exp(-\alpha_h(x^2 + y^2)).$$
Convergence study - Gain design

We have

\[\varphi_v(x, y) = \psi_v(x^2 + y^2) = (f(x) \ast f(x)) (f(y) \ast f(y)) \quad (11) \]
\[\varphi_h(x, y) = \psi_h(x^2 + y^2) = (g(x) \ast g(x)) (g(y) \ast g(y)) \quad (12) \]

Take \(f \) and \(g \) smooth even functions. The Fourier coefficients are real

\[\hat{c}_{pq} = \hat{f}_p\hat{f}_q \quad \text{and} \quad \hat{g}_p\hat{g}_q \]

We have

\[(\varphi_v \ast \Delta) e_{pq} = -(p^2 + q^2)\hat{f}_p\hat{f}_q e_{pq} = -(p^2 + q^2)f_{pq} e_{pq} \]

So the convolution products lead to a frequency-modified damped wave equation,

\(e_{pq} \) are still eigenvectors of the modified Laplacian operator.
Convergence study - back to convergence

\[\frac{\partial^2}{\partial t^2} u = \psi_v \ast \Delta u - \varphi_h \ast \frac{\partial}{\partial t} u \]
\[\text{in } \mathbb{R}^+ \times \Omega = \mathbb{R}^+ \times [0, \pi]^2, \]
\[u = 0 \]
\[\text{on } \mathbb{R}^+ \times \partial \Omega, \]
\[u(0) = u_0, \quad u_t(0) = u_1 \]
\[\text{in } \Omega, \] (13)

rewrites

\[\frac{d}{dt} U = AU \]

where \(U = (u, u_t) = (u, v) \) and \(A \) is the unbounded linear operator
\[A(u, v) = (v, \varphi_h \ast \Delta u - \varphi_v \ast v) \]

\[E_{pq} = \begin{pmatrix} 1 \\ \lambda_{\pm pq} \end{pmatrix} e_{pq} \] (14)

form a Riesz basis of \(\mathcal{H} \) and are eigenvectors of \(A \) associated to the eigenvalues \(\lambda_{\pm pq} \), solutions of

\[\lambda^2_{\pm pq} + g^2_{pq} \lambda_{\pm pq} + f^2_{pq} (p^2 + q^2) = 0. \] (15)
Convergence study - Form of the solution

The solution u is given by the series

$$u(t, x, y) = \frac{2}{\pi} \sum_{1 \leq p, q} u_{pq}(t) \sin(px) \sin(qy),$$

with either

$$u_{pq}(t) = e^{-\frac{g_{pq}^2}{2} t} (A_{pq} \cos(\omega_{pq} t) + B_{pq} \sin(\omega_{pq} t)),\quad (16)$$

or

$$u_{pq}(t) = e^{-\frac{g_{pq}^2}{2} t} (A_{pq} \cosh(\tilde{\omega}_{pq} t) + B_{pq} \sinh(\tilde{\omega}_{pq} t)).$$

with

$$\omega_{pq} = \sqrt{4(p^2 + q^2)f_{pq}^2 - g_{pq}^4}$$

$$\tilde{\omega}_{pq} = \sqrt{g_{pq}^4 - 4(p^2 + q^2)f_{pq}^2}$$

but

- g_{pq}^2 are the Fourier coefficients of $\beta_h \exp(-\alpha_v (x^2 + y^2))$
- f_{pq}^2 coefficients of $g\bar{h}\delta_0 + \beta_v \exp(-\alpha_v (x^2 + y^2))$
Finally, the coefficients can be found using the Fourier series of
the initial condition. We have

\[
A_{pq} = \frac{4}{\pi^2} \int_{[0, \pi]^2} u(0, x, y) \sin(px) \sin(qy) dxdy,
\]

\[
B_{pq} = \frac{4}{\omega_{pq} \pi^2} \int_{[0, \pi]^2} \left(u_t(0, x, y) + \frac{g_{pq}^2}{2} u(0, x, y) \right) \sin(px) \sin(qy) dxdy.
\]
Convergence study

Let

\[u_N(t, x, y) = \frac{2}{\pi} \sum_{p+q \leq N} e^{-g_{pq}^2 t} \left(A_{pq} \cos(\omega_{pq} t) \right. \]
\[\left. + B_{pq} \sin(\omega_{pq} t) \right) \sin(p x) \sin(q y) \]

\[\| u_N, \frac{d}{dt} u_N \|_H \rightarrow 0 \text{ exponentially (cf numerical simus).} \]

\[\| u - u_N, \frac{d}{dt} (u - u_N) \|_H \] can be arbitrarily small for \(N \) large enough because of Parseval’s lemma (\(u_0 \in H^1_0(\Omega) \) and \(u_1 \in L^2(\Omega) \))

We proved the strong convergence of the linearized error system \(u = \tilde{h} \):

\[\lim_{t \to \infty} \| \tilde{h}, \frac{d}{dt} \tilde{h} \|_H = 0 \]
Application to an oceanography exemple
Single layer model model

\[
\frac{\partial (hv)}{\partial t} + (\nabla \cdot (hv) + (hv) \cdot \nabla)v = \ldots
\]
\[
\ldots - g' h \nabla h - k \times f(hv) + (\alpha_A \mathbf{A} \nabla^2 - R)(hv) + \alpha_{\tau u} \tilde{\tau} \mathbf{i}/\rho
\]
\[
\frac{\partial h}{\partial t} = -\nabla \cdot (hv)
\]

where

- density \(\rho \), layer height \(h(x, y, t) \), fluid velocity \(v(x, y, t) \), rectangular domain \(0 < x < L, 0 < y < L \) where \(x \) and \(y \) point east and north
- \(f \) represents Coriolis effect, \(k \) points upward, \(g' \) is the reduced gravity
- \(\tilde{\tau} \mathbf{i} \) wind term of intensity \(\tilde{\tau} \)
- \(R \) and \(A \) known damping coefficients.

The Goal: to estimate \(v(x, y, t) \) from the satellite data \(h(x, y, t) \).

SE(2) invariance

i and j point respectively towards East and North...

Take R_θ rotation of angle θ, then the transformations

$$(X, Y) = R_\theta(x, y) + (x_0, y_0)$$

$H(X, Y) = h(x, y)$

$V(X, Y) = R_\theta v(x, y)$

leave the dynamics unchanged

$$\frac{\partial (HV)}{\partial t} + (\nabla \cdot (HV) + (HV) \cdot \nabla)V = -g' H \nabla H - K \times F(HV)$$

$$+ (\alpha_A A \nabla^2 - R)(HV) + \alpha_{\tau u} \tilde{r} l / \rho$$

$$\frac{\partial H}{\partial t} = -\nabla \cdot (HV)$$

This results from : $\nabla h(x, y) = R_\theta \nabla H(X, Y)$, $K = k$, $l = R_\theta i$. ...
Symmetry-preserving observers

As in the case of Saint-Venant equations, we take

\[
\frac{\partial (\hat{h}\hat{v})}{\partial t} + (\nabla \cdot (\hat{h}\hat{v}) + (\hat{h}\hat{v}) \cdot \nabla)\hat{v} = -g'\hat{h}\nabla\hat{h} - \mathbf{k} \times f(\hat{h}\hat{v})
\]

\[
+ (\alpha_A A\nabla^2 - R)(\hat{h}\hat{v}) + \alpha_{\text{tau}} \tilde{\tau}_i / \rho + \varphi_v \ast \left(\nabla(h - \hat{h})\right)
\]

\[
\frac{\partial \hat{h}}{\partial t} = -\nabla \cdot (\hat{h}\hat{v}) + \phi_h \ast (h - \hat{h})
\]

and we use a heuristic gain tuning on the linearized simplified system.
Heuristic gain tuning on the linearized simplified model

Reminding

\[\varphi_h(x, y) = \beta_h \exp(-\alpha_h(x^2 + y^2)) \]
\[\varphi_v(x, y) = g\bar{h}\delta_0 + \beta_v \exp(-\alpha_v(x^2 + y^2)) \]

The error system can be approximated by the following system \((\alpha = +\infty)\):

\[\frac{\partial^2 \tilde{h}}{\partial t^2} + 2\xi_0\omega_0 \frac{\partial \tilde{h}}{\partial t} = (L_0\omega_0)^2 \Delta \tilde{h}. \]

where \(L_0^2\omega_0^2 = g\bar{h} + \bar{h}\beta_v, 2\xi_0\omega_0 = \beta_h, \)

A dimensional analysis allows to choose :

- \(\omega_0\) and \(L_0\) the characteristic pulsation and length
- \(\alpha_h^{-2} = \alpha_v^{-2}\) is the size of the region of influence.
Numerical simulations

1. Saint-Venant system (water tank)
2. Full non-linear shallow water model (ocean)
Model parameters and gain tuning

- Domain = square box, of dimension 2000 km \(\times \) 2000 km.
- equilibrium height \(\bar{h} = 500 \text{ m} \),
- regular spatial discretization with 81 \(\times \) 81 gridpoints \(\rightarrow \) space step of 25 km. The time step 30 mn, time periods of 1 to 4 months (1440 to 5760 time steps).
- height varies between 497.7 and 501.9 m, transversal velocity in \(\pm 0.008 \text{ m.s}^{-1} \).
- \(\alpha = 1 \text{ m}^{-2} \).
- frequency for the error system \(\omega_0 \sqrt{1 - \xi_0^2} \) chosen close to the natural frequency \(\sqrt{g\bar{h}/L_0} \) of the physical system
- Truncation of the Gaussian at 10 pixels away from center
1) Saint-Venant system

we consider the Saint-Venant system with small velocities
\(\delta v = v - \bar{v} \ll \sqrt{gh} \) and heights \(\delta h = h - \bar{h} \ll \bar{h} \)

\[e_h = \frac{\|(\hat{h} - \bar{h}) - (h - \bar{h})\|}{\|h - \bar{h}\|}, \quad e_v = \frac{\|(\hat{v} - \bar{v}) - (v - \bar{v})\|}{\|v - \bar{v}\|} \quad (17) \]

where \(\| . \| \) is the standard \(L^2 \) norm. We observe

\[e_h(t) = e_h(0) \exp(-c_h t), \quad e_v(t) = e_v(0) \exp(-c_v t) \quad (18) \]

With a 20% noise:
1) Comparison with the standard Nudging technique

The nudging algorithm (Luenberger observer) writes

\[
\frac{\partial \hat{h}}{\partial t} = -\nabla (\hat{h} \hat{v}) + K_h (h - \hat{h}), \tag{19}
\]

\[
\frac{\partial \hat{v}}{\partial t} = -\hat{v} \nabla \hat{v} - g \nabla \hat{h} + K_v \nabla (h - \hat{h}). \tag{20}
\]

It corresponds to \(\varphi_v = \varphi_h = \delta_0 \), i.e. \(\alpha = +\infty \).

<table>
<thead>
<tr>
<th>Size of the Gaussian kernel</th>
<th>Decrease rate ((h, v_x, v_y))</th>
<th>Estimation error at convergence ((h, v_x, v_y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_h = \alpha_v = 0.5)</td>
<td>(1.49 \times 10^{-6})</td>
<td>(4.43 \times 10^{-3})</td>
</tr>
<tr>
<td></td>
<td>(1.40 \times 10^{-6})</td>
<td>(7.51 \times 10^{-3})</td>
</tr>
<tr>
<td></td>
<td>(1.42 \times 10^{-6})</td>
<td>(4.06 \times 10^{-3})</td>
</tr>
<tr>
<td>(\alpha_h = \alpha_v = 1)</td>
<td>(7.55 \times 10^{-7})</td>
<td>(5.92 \times 10^{-3})</td>
</tr>
<tr>
<td></td>
<td>(7.44 \times 10^{-7})</td>
<td>(1.04 \times 10^{-2})</td>
</tr>
<tr>
<td></td>
<td>(7.44 \times 10^{-7})</td>
<td>(5.53 \times 10^{-3})</td>
</tr>
<tr>
<td>(\alpha_h = \alpha_v = 10^3)</td>
<td>(2.45 \times 10^{-7})</td>
<td>(1.70 \times 10^{-2})</td>
</tr>
<tr>
<td></td>
<td>(2.49 \times 10^{-7})</td>
<td>(3.02 \times 10^{-2})</td>
</tr>
<tr>
<td></td>
<td>(2.48 \times 10^{-7})</td>
<td>(1.59 \times 10^{-2})</td>
</tr>
</tbody>
</table>
2) Full non-linear oceanographic shallow water model

\[e_h = \frac{\|(\hat{h} - \bar{h}) - (h - \bar{h})\|}{\|h - \bar{h}\|}, \quad e_v = \frac{\|(\hat{v} - \bar{v}) - (v - \bar{v})\|}{\|v - \bar{v}\|} \]

(21)

where \(\| . \|\) is the standard \(L^2\) norm. We observe

\[e_h(t) = e_h(0) \exp(-c_h t), \quad e_v(t) = e_v(0) \exp(-c_v t) \]

(22)

only at the beginning.

With a 20 % noise:
2) Comparison with the standard Nudging technique

<table>
<thead>
<tr>
<th>Size of the Gaussian kernel</th>
<th>Decrease rate (h, v_x, v_y)</th>
<th>Estimation error at convergence (h, v_x, v_y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_h = \alpha_v = 0.5$</td>
<td>2.74×10^{-6}</td>
<td>1.71×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>1.87×10^{-6}</td>
<td>1.72×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>1.62×10^{-6}</td>
<td>2.21×10^{-1}</td>
</tr>
<tr>
<td>$\alpha_h = \alpha_v = 1$</td>
<td>1.36×10^{-6}</td>
<td>1.57×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>9.65×10^{-7}</td>
<td>1.30×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>8.38×10^{-7}</td>
<td>1.59×10^{-1}</td>
</tr>
<tr>
<td>$\alpha_h = \alpha_v = 10^3$</td>
<td>4.42×10^{-7}</td>
<td>2.26×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>2.98×10^{-7}</td>
<td>2.25×10^{-1}</td>
</tr>
<tr>
<td></td>
<td>2.55×10^{-7}</td>
<td>3.04×10^{-1}</td>
</tr>
</tbody>
</table>

Table: Full non-linear model: decrease rate and value at convergence of the estimation error, for the three variables h, v_x and v_y, in the case of noisy observations (20% noise).

In the next slide we will see that the observer allows to identify very well the main currents in a realistic setting (e.g. gulf stream).
2) Results with the chosen observer

- **Initial guess**
- **Noisy observation**
- **Identified height**
- **True height**
2) Results with the chosen observer
Conclusion

We designed an observer

- Much more economical computationally than EKF or variational methods.
- Gives better results than the nudging (Luenberger). Especially much more robust to gaussian noise.
- Gain design based on heuristic arguments on the linear first order system (easy to tune).
- Practical gain design in two steps:
 1. Convergence analysis easy around a steady state: linear and local gain design.
 2. Gain extrapolations to the nonlinear regime becomes natural via invariance.

Here we consider space-continuous and time-continuous measurements: other situations of practical interest exist: boundary measures, discrete-time and/or discrete-space measurements.
Other possibilities

\[\frac{\partial}{\partial t} \hat{h} = -\nabla(\hat{h}\hat{v}) + \phi_h \ast (h - \hat{h}) + \phi_h^\Delta \ast \Delta(\hat{h} - h) \]

\[\frac{\partial}{\partial t} \hat{v} = -\hat{v}\nabla\hat{v} - g\nabla\hat{h} + \phi_v \ast \nabla(h - \hat{h}) \]

Then the first variation around \(h = \bar{h} \) and \(v = 0 \), can be identified to the wave equation

\[\frac{\partial^2}{\partial t^2} \tilde{h} = (g\bar{h} + \beta_v)\Delta \tilde{h} - \beta_h \frac{\partial}{\partial t} \tilde{h} + \beta_h^\Delta \Delta \left(\frac{\partial}{\partial t} \tilde{h} \right) \]

An additional **structural damping** changes drastically the spectrum.
Dimensional analysis design:

\[\beta_h = \omega_0, \quad K \beta_v = \max(0, (L_0\omega_0)^2 - g\bar{h}), \quad \beta_h^\Delta = L_0^2\omega_0. \]
Back to the single layer system

Forward Nudging

\[
\frac{\partial (\hat{h}\hat{v})}{\partial t} + (\nabla \cdot (\hat{h}\hat{v}) + (\hat{h}\hat{v}) \cdot \nabla)\hat{v} = -g' \hat{h} \nabla \hat{h} - k \times f(\hat{h}\hat{v}) \\
+ (\alpha_A A \nabla^2 - R)(\hat{h}\hat{v}) + \alpha_{\text{tau}} \tilde{\tau}i/\rho + \phi_v * \left(h \nabla (h - \hat{h})\right)
\]

\[
\frac{\partial \hat{h}}{\partial t} = -\nabla \cdot (\hat{h}\hat{v}) + \phi_h * (h - \hat{h}) + \phi_h^A * \Delta(\hat{h} - h)
\]

For backward nudging: $\phi_h \mapsto -\phi_h$, $K_h^A \mapsto -\phi_h^A$ and ϕ_v unchanged.