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In this paper, we present an overview of various data assimilation methods, in order to identify
the initial condition of a geophysical system and reconstruct its evolution in time and space. We
first present the well known four dimensional variational adjoint method, the 4D-VAR algorithm,
and then the four dimensional variational dual method, the 4D-PSAS algorithm, extended to
nonlinear models. We present then an improved sequentﬁal data assimilation algorithm, the SEEK
filter. We finally introduce a new simple algorithm, the Back and Forth Nudging. Some theoretical
and numerical results about the BFN algorithm are finally given. -
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1. INTRODUCTION

It is now well established that the quality of weather and ocean circulation forecasts is highly
dependent on the quality of the initial conditions. Geophysical fluids (air, atmospheric, oceanic,
surface or underground water) are governed by the general equations of fluid dynamics. Geophysical
processes are hence non linear because of their fluid component. Such non linearities impose a huge
sensitivity to the initial conditions, and then an ultimate limit to deterministic prediction (estimated
to be about two weeks for weather prediction for example). This limit is still far from being reached,
and substantial gain can still be obtained in the quality of forecasts. This can be obtained through
improvement of the observing system itself, but also through improvement of the geophysical models
used to modelize the geophysical processes. For example, a major problem comes from the fact that
sub-scales processes could be associated with extremely large fluxes of energy. Seeking a numerical
solution to the equations requires discfetizing the equations, and therefore cutting off in the scales.
It will be crucial to represent the fluxes of energy associated to sub-grid processes by some additional
terms in the equations [23, 35].

Over the past twenty years, observations of ocean and atmosphere circulation have become much
more readily available, as a result of new satellite techniques and international field programs (MER-
CATOR, CLIPPER, GODAE, ...). In the case of the ocean modelling, the use of altimeter mea=—————
surements has provided extremely valuable information about the sea-surface height, and then has
allowed the oceanographic community to study more precisely both the general circulation of the

“ocean and the local dynamics of some particular regions (the Gulf Stream area, for example, but also
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the Kuroshio extension, the Antarctic circumpolar current and the tropical oceans). Geostationnary
satellites also provide information on the wind by estimating the shifting of clouds considered as
lagrangian tracers. Polar orbiting satellites are used for the estimation of the atmospheric vertical
temperature profiles. Genei‘ally, radiances are measured and then temperatures are estimated as the
solution of an inverse problem. »

Meteorologic and oceanographic data are currently extremely heterogeneous, both in nature,
density and quality, but their number is still smaller than the degree of freedom of the models. The
growth of the available computing ressources indeed allows refinements of the grld size of general
circulation models. .

Environmental scientists are increasingly turning to inverse methods for combining in an opti-
mal manner all the sources of information coming from theory, numerical models and data. Data
assimilation (DA) is precisely the domain at the interface between observations and models which
makes it possible to identify the global structure of a system from a set of discrete space-time data.
DA covers all the mathematical and numerical techniques in which the observed information is ac-
cumulated into the model state by ‘takingv advantage of consistency constraints with laws of time
evolution and physical properties, and which allow us to blend as optimally as possible all the sources
of information coming from theory, models and other types of data.

There are two main categories of data assimilation techniques [43], variational methods based on
the optimal control theory [29] and statistical methods based on the theory of optimal statistical
estimation (see, for example, [6, 26] for an overview of inverse methods; both for oceanography and
meteorology). The first class of methods (3D-VAR, 4D-VAR, 4D-PSAS, ...) was first introduced in
meteorology [28, 27, 42] and more recently for oceanic data [44, 39, 33, 38, 34, 31]. The statistical
(or sequential) methods (optimal interpolation, Kalman filter, SEEK filter, ...) were introduced
in oceanography roughly fifteen years ago [19, 20]. The Kalman filter was extended to nonlinear .
cases [25, 17] but it has been mostly applied in oceanography to quasi-linear situations, in particular
tropical oceans [22, 14, 15, 8, 47].

In practice, all data assimilation techniques encounter inajor difficulties due to computational
reasons. The full Kalman filter would, in principle, require the manipulation of matrices with a
dimension of typically 107 or 10% in an oceanic problem. The optimal control adjoint method
‘often requires several hundred iterations of the minimization process to converge, thus implying an
'equlvalent number of model runs. In this context, it is important to find new data ass1m11at10n
algorithms allowing in particular a reduction of the problem dimension.

In this paper, we focus our interest on various data assimilation algorithms in order to identify
the initial condition of a geophysical system and reconstruct its evolution in time and space.

“We first study in Section 2 the four dimensional variational adjoint method (named 4D-VAR),
using a strong constraint hypothesis (the ocean circulation model is assumed to be exact). The
use of a cost function, measuring the mean-square difference between the observations and the
corresponding model variables, allows us to carry out the assimilation process by an identification
of the initial state of the ocean which minimizes the cost function. '

Then, in Section 3, it is then possible to consider the model as a weak constraint, the adjoint state
being 1nterpreted as the Lagrange multiplier of the model equations. The linear theory of duality,
extended to a nonlinear case, allows us to consider the minimization problem in a dual way. The
minimization of the dual cost function is then performed in the observation space, which is smaller
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than the state space. Moreover, there is no more need to assume that the ocean model is exact.
This dual variational method is called 4D-PSAS (Physical Space Assimilation System).

We will then study in Section 4 one of the most recent and powerful sequential DA methods, the
SEEK (Singular Extended Evolutive Kalman) filter. Sequential methods are mostly based on the
Kalman filtering theory, which consists in a forecast step and an analysis (or correction) step. The
dimension of the error covariance matrices is a main issue, and the idea of the SEEK filter is to use
low rank error covariance matrices. This allows to reduce considerably the computational cost of
the filter, but this filter is also known to reduce the propagation of errors from one step to the next.

We finally introduce in Section 5 the Back and Forth Nudging (BFN) algorithm, which is a
prototype of a new class of data assimilation methods, although the standard nudging algorithm
is known for a couple of decades. It consists in adding a feedback term in the model equations,
measuring the difference between the observations and the corresponding space states. The idea
is to apply the standard nudging algorithm to the backward (in time) nonlinear model in order to

 stabilize it. The BFN algorithm is an iterative sequence of forward and backward resolutions, all
of them being performed with an additional nudging feedback term in the model equations. As
the BFN algorithm is completely new, we will give at the end of Section 5 some numerical results
illustrating the convergence of the algorithm and the reconstruction of the initial condition.

9. FOUR DIMENSIONAL VARIATIONAL ADJOINT METHOD: 4D-VAR

Variational methods consider the equations governing the geophysical flow as constraints, and the
problem is closed by using a variational principle, e.g. the minimization of the discrepancy between
the model and the observatlons We will first assume in this section that the model is a strong
constraint.

2.1. Model and observations. Every DA method needs both a model describing the evolution
of the fluid, basically a system of non linear partial differential equations, and a set of discrete
‘ observations. Firstly, we assume that the model can be written: '

E:F(X,U), 0<t<T,
X(0) =V, '

where X is the state variable which describes the evolution of the system at each grid point. X
depends on'time, and is for operational models of large dimension (107 to 10°). F is a non linear
differential operator, describing the dynamics of the system. U corresponds to some internal variables .
of the model (parameters or boundary conditions) and may be time dependent Finally, V is the
initial condition of the system state, which is unknown. In order to use optimal control techniques,
we have to define a control variable that should be identified. Most of the time, the control is (U, V),
. the initial condition and the model parameters.

Secondly, we suppose that we have an observation vector Xop; which gathers all the data we want
to assimilate. These observartions are discrete in time and space, distributed all over the assimilation
period [0,T], and are not in the same space as the state variable, from a geographieal or a physical
point of view. Therefore, we will need an observation operator C' mapping the space of state into
the space of observations. This operator can be non linear in some cases.
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2.2. Cost function. It is now possible to define a cost function J measuring the discrepancy of
the solution of the model associated to the control vector (U, V) and the observations X ops:

1 T
JOV) = 3 / (R™H(CX = Xopa), CX = Xopa)dt
. 0
' T
+ 3@+ [ QU @)

where X is the solution of (1). Py, R and Q are covariance matrices, allowing us to introduce some
a priori information about the statistics of the ﬁelds Xobs, V and U respectively. (.,.) is most of the
time the canonical real scalar product.

The first part of the cost function quantifies the difference between the observations and the state
function, and the two others act like a regularization term in the sense of Tykhonov. It is sometimes
'replaced by the so-called background term, which is the quadratic (with respect to the covariance
matrix norm) difference between the initial optimal variable and the last prediction [31].

The inverse problem which consists in the minimization of the cost function J is then generally
well—posed The variational formulation of our DA problem can then be wrltten as:

{ Find (U*, V‘) such that )
* * 3
Ju*,v) = (llfr’l‘f,)J,(U,V)- -

2.3. Gradient step. In order to minimize the cost function, we need its gradient V7. Because of
the large dimension of the model state vector (usually more than 107), it is not possible to compute
directly the gradient by using finite difference methods. The gradient vector of the functional is
then obtained by the adjoint method [27, 9]. Let X be the derivative of X with respect to (U, V) in
the direction (u,v). Then X is solution of the following set of partial differential equations, known
as the linear tangent model: _

dX O8F , OF

o~ ox* tao™ @
X(0) = v,
OF o . .
where —— % & and 3T represent the jacobian of the model with respect to the state variable and the

model parameters respectively. :
The derivative of J with respect to (U, V') in the direction (u,v) is then

T
(F(U,V), (u,v)) = /0 (R-Y(CX = Xop,), CX)dt

T
PV, v) + / (Q7U, u)dt.
0
If we assume that the operator C is linear (otherwise, we have to linearize it), we can introduce the
so called adjoint. state P (which lives in the same space as X), solution of the adjoint model [27):
_dP_(oF
dt - \ox
P(T)=0.

T
) P—-C R (CX — Xobs),. 5)

We have then:

o T T
G [+ (gg) po
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T
+mﬁum+L(Q4mma

and an integration by part shows that, using (4):

o T
GOV [ (P ggud - (PO),)

. . r
BV, ) + / (Q U, wydt.
. ’ 0
Finally, the gradient of J is given by:
T N
- (B_F) P+QU
vIU,V) = U .
—P(0)+ Py'V
Therefore, the gradient is obtained by a backward integration of the adjoint model, which has the
same computational cost as one evaluation of J. '

(6)

2.4. Optimality system. The minimization problem (3) is then equivalent to the following opti-
- mality system:

% = F(X,U"),
X(0) = V¥,
P (8F\T |
4P (a_x) P — CTR™(CX — Xobs), -
P(T) =0,
P(0)=F5'v. |

2.5. 4D-Var algorithm computation. The determination of (U*, V™), solution of (3) and (7), is
carried out by running a descent-type optimization method. We may use as a first guess (Uo, Vo)
the result of the minimization process at the last prediction. Then, given the first guess, we use an
iterative algorithm [21]: '

(Un, Vn) = -(Un-—l,Vn—l) + ann
where D,, is a gradient descent direction, and p,, is the step size.

The knowledge of (Un—1,Vn—1) allows us to compute the corresponding solution X,_; of the
direct model (1), and consequently to evaluate the cost function J (Un-1, Va-1). Then we solve the
adjoint model (5) and coxhpute the adjoint solution P,_;, and using (6), the gradient of the cost
function V.7 (Un—1,Va-1). The computation of the descent direction Dy, is usually performed using
conjugate gradient or Newton type methods. Finally, the step size py is choosen to be the step size
which minimizes

J’((Un-—la Va-1) + pDn)
with respect to p. This is a one-dimensional minimization, but in case the problem is non lineé.r, we

can get a high computational cost because it will require several evaluations of J, and hence several
integrations of the model (1) [7, 21, 30, 45].
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2.6. Computational issues. One of the most difficult steps in the 4D-Var algorithm is the imple-
mentation of the adjoint model. Numerically, the goal is to solve the discrete optimality system,
which gives the solution of the discrete direct problem, and the discrete gradient is given by the
discrete adjoint model, which- has to be derived from the discrete direct model, and not from the
continuous adjoint model. A bad solution would be to derive the adjoint model from the continuous
“direct model, and then to discretize it. The good solution is to first derive the tangent linear model
from the direct model. This can be done by differentiating the direct code line by line. And then one
has to trauspose the linear tangent model in order to get the adjoint of the discrete direct model.
To carry out the transposition, one should start from the last statement of the linear tangent code
and transpose each statement. The derivation of the adjoint model can be long. Sometimes, it
is possible to use some automatic differentiation codes (the direct differentiation gives the tangent
linear model, and the inverse differentiation provides the adjoint model) [37, 32].

Another isswe is the relative ill-posedness of the problem when the model is non linear. The cost
function 7 is hence not convex, and may have plenty of local minima. The optimization algorithm
may then converge toward a local minimum and not the global minimum. For this reason, the choice
of the initial guess is extremely important, because if it is located in the vicinity of the global mini-
mum, one can expect a convergence toward the global minimum. Another solution is to increase the
weight of the two last terms of J in (2), which correspond to two regularization terms with respect to
the two control variables. This has to be done carefully because it can provide a physically incorrect
solution: if Py and @ are too small, the regularization of J is indeed a penalization. But usually,
these regularization terms are used to force the model to verify some additional physical constraints
or/and to take into account some statistical information on model/ observation/background errors.

2.7. Reduced-order 4D-Var. If in equation (1) the model parameters U are time dependent,
the numerical implementation of the 4D-Var algorithm will consist in identifying the control .vector
-(U,V), where V has typically a dimension of 107 — 108 and U might have the same dimension at
‘each time step. If there are one thousand time steps in the numerical scheme, the size of the control
vector can reach 10'° — 10'!. This is not computationally realistic. It is clearly not possible to take
into account the model errors in such a way. Even it can be very costly to minimize the cost function
in the entire space state. , : ’
The main idea of the reduced-order 4D-Var is to find a vector X* which minimizes the cost
function J in a smaller space. X* is defined as follows:

T
X' = Xbackground + z AiLi, (8)

i=1
where \; are chosen so that J is minimum, and (L;) are orthogonal vectors of the state space.
These vectors are supposed to modelize as well as possible the variability of the system. Most of
the time, one uses empirical orthogonal functions (EOFs) for the choice of such vectors. Then, the

minimization of the cost function takes place in a space of dimension r [11].
'The same idea is used for the model parameters:

8
U=U+ Zaiui, 9)

i=1

where U is an estimation of the parameters, (a;) are the new scalar control variables (instead of the
vector U) and (u;) are orthogonal vectors.



SEVERAL DATA ASSIMILATION METHODS FOR GEOPHYSICAL PROBLEMS 47

This allows to take into account the unknown terms of the model for a reasonable computational
cost 11, 48].

3. FOUR DIMENSIONAL DUAL METHOD: 4D-PSAS

In this section, we will now consider the model as a weak constraint. It is then possible to
introduce a Lagrange multiplier for this constraint [5, 1, 10, 6].

3.1. Lagrangian. Let us consider a model operator called M defined on the space of the control
vector by

MU,V)=X (10)

where X is the solution of (1). We would like that CX = X5, and we will hence impose (as a weak
constraint) that CM(U, V) = Xobs. Let m be the Lagrange multiplier for this constraint, m lives
in the same space as the observation vector X s, and we can define the following Lagrangian:

L(U,V),m) =JU,V)+ (m,CMU,V) — Xobs). (1)

If the model M and the observation operator C are linear, then we have the following well known
duality result for convex functions:
min J = min max £ = max min £
(V) uyv) m m (U,V)
3.2. Dual cost function. It is then possible to define on the observation space a dual cost function
Jp in the following way:

JIp(m) = — (r&l‘gl) L((U,V),m). (12)
We have then the following result:

min J(U,V) = max(~Jp(m)) = — min Jp (m). (13)

Mathematically, the minimization of .7, and hence the resolution of problems (3) and (7), is strictly
equivalent to the minimization of the dual cost function Jp. Numerically, the minimization of the
dual cost function should be faster because the size of the observation space is usually 10° — 10°
whereas the state space has a dimension of 107 — 108. The minimization of Jp is then performed
on a space of much smaller dimension. v ‘

By minimizing the Lagrangian £ with respect to (U, V), it is quite easy to obtain an explicit
definition of Jp:

Tp(m) = 3{(D+ Bym,m) — (d,m) (14

where d is the innovation vector: d = Xops — C Xpackground- The matrix D is called the representers’
matrix [5, 6], and has the following definition:

D=CMBMTCT + cQcT (15)

where M is still the direct model, and M7 represents the adjoint model. The matrix D quantifies
the impact of each specific observation on the others. The minimization of Jp can be performed in -
the same way as the minimization of J, using an iterative descent algorithm. In each iteration, one
has to first compute the solution of the adjoint model, and then the solution of the direct model in
order to evaluate the dual cost function and its gradient.
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3.3. Nonlinear extended 4D-PSAS algorithm computation. When the model (and/or the
observation operator) is non linear, it is possible to extend the previous duality results in an empirical

way [3]. Let m be a vector of the observation space, we first have to solve an adjoint (backward)
model:

_dP _ (oF\T _——
3 (B_X-> P —C"R™(m — Xobs), 16)
P(T) =
and then the direct model, forced by the adjoint state:
X _ Fx,P),
dt (17)

X(O) = Xbackgr-ound + P_(O);
where Xpockground iS an approximation of the initial condition and usually results from a previous
prediction. '
Thé extended 4D-PSAS algorithm computation is then performed in the following way: we first

need an initial guess mg (which can be taken equal to X, for example) Then, given the first guess,
we use as in the 4D-Var algorlthm an iterative algorithm:

Mp = Mp_1 + prDy.

The knowledge of m,_; allows us to compute the corresponding solution P,_; of (16) and then
the solution X,_; of (17) It is then easy to evaluate Jp(m,—;) and its gradient, and given a
descent-type algorlthm, to define a descent direction D, and the corresponding step size Pn-

Once the minimization of the dual cost function Jp is achleved we immediately obtain the
corresponding trajectory X (t) in the state space, thanks to (17).

3.4. Advantages and concerns. One of the main concerns of this extended algorithm is the loss
of equivalence with the 4D-Var algorithm when the model is not linear. Therefore, it is difficult to
compare theoretically the two algonthms because of the empirical extension of 4D- PSAS to nonlinear
problems.

Hopefully, the extended 4D-PSAS afgorithm has numerous advé,ntages. First of all, it inherently
takes into account the unknown model parameters. The adjoint model provides an estimation of the
.model parameters with no additional computational cost. The size of the control vector m is then
exactly the size of the observation space, whereas in the 4D-Var algorithm, the size of the control
vector (U, V) is at least a few times the size of the state space (and in the worst case, with a non
reduced order 4D-Var, the size of the state space multiplied by the number of time steps, which can
be about 103).

Moreover, the computational cost of one 4D-PSAS iteration is almost the same as one 4D-Var
iteration, but the minimization of the dual cost function takes place on a space of smaller dimension.
The minimization is hence generally faster and needs a smaller number of iterations.

4. AN IMPROVED SEQUENTIAL DA ALGORITHM: THE SEEK FILTER

In this section, we will study data assxmﬂatxon methods based on the statistical estimation theory,
in which the Kalman filtering theory is the primary framework. But the application of this theory
encounters enormous difficulties due to the huge dimension of the state vector of the considered
system. A further major difficulty is caused by its non linear nature. To deal with this, one usually
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linearizes the ordinary Kalman filter (KF) leading to the so-called extended Kalman filter (EKF)
[18, 12, 16, 47]. One way to get rid of the issue of dimension is to.use singular low rank error
covariance matrices. The resulting filter, called the singular evolutive extended Kalman (SEEK)
filter, not only solves the practical problem of reducing the computationél cost to an acceptable
level, but in addition reduces the propagation of error from one step to the next (8, 36].

4.1. The extended Kalman filter. Consider a physical system described by
X(t:) = M(ti-1,t:) X (ti-1) + Us : (18)

where M(t;—1,t;) is an operator describing the system transition .from time ¢;—; to t;, usually
obtained from the integration of a partial differential system, and U; is the unknown term of the
model (it can be a noise term, used to modelize the unknown parameters of the model). We suppose
that at each time ¢;, we have an observation vector X,ps(t;). Let us denote by ¢; the observation
error, i.e. the difference between the observation vector and the corresponding state vector:

€ = Xovs(ti) — CiX (t:), 19)

where C; is the observation operator at time ¢;, mapping the state space into the space of observa-
tions. Q; and R; will be the covariance matrices of the model error (U;) and the observation error
(i) respectively. .

The extended Kalman filter operates sequentially: from an analysis state vector X,(t;—1) and its
error covariance matrix P%(t;_;), it constructs the next analysis state vector X,(t;) and P°(t;) in
two steps, a forecasting step and a correction step. '

The first step is used to forecast the state at time ¢;:

X7 (t:) = M(tio1, t)X°(tim1), @)

where M (t;-1,t;) is the linearized model around X*(¢;—1). The forecast error covariance matrix is
then approxirriately : _ :
PI(t;) = M(ti-1,t:) P*(8:) M (ti1,t:)" + Qi - (21)

The second step is an analysis step, the newly available observation X,p,(t;) is used to correct
the forecast state vector X/ (t;) in order to define a new analysis vector:

X%t:) = Xf(ti) + Ki(Xobg(ti) - C,-Xf(t{)), » (22)
where K is a gain matrix, called the Kalman matrix. The optixﬁal gain is given by
| K; = P/(t)CT (GiPY (t)CT + Re) ™ (23)

The corresponding analysis error covariance matrix is given by
Pe(t;) = P*(t;) — P/ (t;)CT (CiP! (t:)CT + R:)) ™' CiP/(t:). . (24)

One main issue of the EKF is that the covariance matrices R;, Q; and P§ have to be known. Some
statistical information can be obtained for observation error from the knowledge of the instrumental

' error variances in situations such as altimetric observations from satellites over the ocean, for which
the error estimates have become fairly solidly established. But it is not clear how the correlations.
of these errors can be obtained. The covariances matrices @; and P§ are much more difficult to
obtain, because very little is known concerning the true initial state of the system. These matrices
are of vefy large dimension, and usually have a quite large number of independent elements. Is it -

~ really useful to estimate such a huge number of parameters? The theory for such equations (Eqs.'
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(21) and (24)) state that for linear autonomous systems, even if FP§ is poorly specified, one may
hopefully still have a good approximation to P? in the long term. The Kalman filter is optimal only ‘
if the covariance matrices R; and Q; are correctly specified. Thus, in practice, the Kalman filter is
suboptimal.

4.2. The SEEK (Singular Evolutive Extended Kalman) filter. It seems that a relatively
optimal Kalman filter is quite ambitious. Therefore, one can only impose that the filtering error
‘should remain bounded. The propragation of the filter error is given by

(ti) - Xt (ti) = (I - K,'Ci) M(ti_l,ti) (Xa(ti._1 - Xt(ti_l))
- KiEi - (I - K,C,)U,, (25)
This clearly shows that the stability of the filter depends essentially on the matrices (I-K;C;)M (t;—1,t;,
Therefore, it is necessary that all eigenvalues of these matrices have modulus smaller than 1.

For computational reasons, it is also crucial to use low rank error covariance matrices P;'. Hence,
the initialization of the SEEK filter is performed with matrices of the form LULT: one may first
choose an initial analysis state X%(t), and a low rank error covariance matrix

| P¢ = LyUoLT

where Ly is a column vector and Uy is a positive definite matrix with dimension equal to the rank
of F§, this being low in practical applications.
The forecasting step is then given by

XF () = M(tioy, t:) X% (8i1) (26)
and '
Li = M(t;—1,t;)Liy. (27)
The correction step is the following: compute U; by the following way
U7t = (Uit + (LT L) LT QuLy(LT L) ™) ™ + LTCTR'CL, (28)
and then compute the new analysis x;ector . _ ‘
X%(t:) = X7 (t:) + (LULT)CT R (Xoba(t:) — CiX (1)) - (29)

Finally, there is an additional step, the renormalization. One can change L; to NL; and U; to
“(NT)=1U; N-! without changing the algorithm. This should be done periodically to avoid the column
of L from becoming large and nearly parallel each to the others, and U; becoming ill conditioned.
One usually takes N to be the Cholesky factor of U, "1, so as to change U; to the identity matrix.
- From these equations, one sees that corrections are made parallel to the space spanned by the
columns of L;. Moreover, it is possible to prove that this filter is stable.

'4.3. Initialization of the SEEK filter. The initialization of the filter is one of the largest issues
of this algorithm. To initialize the SEEK filter (but also any other Kalman filter), one needs an
initial analysis state vector X%(t,) and its error covariance matrix FP§. The most frequent way to
choose them is the EOFs (Empirical Orthogonal Functions) technique. The initial state may be set
arbitrarily. if one has taken care to wait until the model has been settled into a stable regime. It
- 18 quite easy to generate long sequences of state vectors from the model equation (18). Then, it
_is possible to take as X%(tp) the average of the simulated state vectors, and as P§ the low rank
-.approximation of the sample covariance matrix Py of these vectors. The EOFs technique provides
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such an estimation. Let V; be the eigenvectors of Py, ordered according to their eigenvalues \; (where
A is the largest). One has then to choose the rank r of the covariance matrix approximation, and
then set

Lo = [Vl,,V,-] .
and .
Uo = diag(Dy, ..., Ar)-
The ratio
Ej>r Aj
Tr(Po)

represents the relative error and can be used to assess the accuracy of the apprommatxon for choosing
the appropriate value of = [36]. » :

One also needs to specify the matrices R; and Q; in order to apply the SEEK filter. These matrices
are generally unknown, and R; can be taken as o2 times a constant matrix, often an identity matrix
(for computational reasons). Then, using such matrices R; in the SEEK equations, one can easily

see that only — = > has to be known, and hence, using equation (28), it is enough to spec1fy

Consequently, 1f Us is carefully choosen, it is no more necessary to know o?. Usually, o2 is very
small with respect to Up, and then, it is safe to take Up very large for stabihty reasons.

5. A NEW SIMPLE DA ALGORITHM: THE BACK AND FORTH NUDGING

The main issues of data assimilation for geophysical systems are the huge dimension of the control
vectors (and hence of the covariance matrices) and the non linearities (most of the time, one has to
linearize the model and/or some operators). The computation of the adjoint model is for example
a difficult step in the variational algorithms. To get rid of these difficulties, we have very recently
introduced a new algorithm, based on the nudging technique.

'5.1. The nudging algorithm. The standard nudging algorithm consists in adding to the state
equations a feedback term, which is proportiona.l to the difference between the observation and its
equivalent quantity computed by the resolution of the state equations. The model appears then as
a weak constraint, and the nudging term forces the state variables to fit as well as possible to the
observations. » ’

Let us remind the model
dX

dt
X(0) =

We still suppose that we have an observation Xops(t) of the state variable X (t). The nudging
algorithm simply gives

=F(X,U), 0<t<T, N
(30)

dX
“dt

X(0) =

=F(X,U) + K(Xo,,, CX), 0<t<T,
| (31)

"where C is still the observation operator, and K is the nudging matrix. It is quite easy to see
that if K is large enough, then the state vector transposed into the observation space (through the
observation operator) C X (t) will tend towards the observation vector X,ps(t).
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This algorithm was first used in meteorology [24], and then has been used with success in ocea.nog;
raphy [46] and applied to a mesoscale model of the atmosphere [40]. Many results have also been
carried out on the optimal determination of the nudgiﬁg coefficients K [50, 41, 49).

. The nudging algorithm is usually considered as a sequential data assimilation method. If one
solves equation (31) with a numerical scheme, then it is equivalent with the following algorithm:

X,{ = Xn-—l + dt x F(Xn_.l,U),
Xn = Xr{ + Kn(Xobs(tn) - CnX,{),

which is exactly the Kalman filter’s algorithm. Then, if at any time the nudging matrix K is set in
an optimal way, it is quite easy to see that K will be exactly the Kalman gain matrix.

(32)

5.2. Backward nudging. The backward nudging algorithm consists in solving the state equations
“of the model backwards in time, starting from the observation of the state of the system at the final
instant. A nudging term, with the opposite sign compared to the standard nudging algorithm, is
added to the state equations, and the final obtained state is in fact the initial state of the system
(2, 4]. '
.We now assume that we have a final condition in (30) instead of an initial condition. This leads
t0 the following backward equation

ax =F(X,U), T>t>0,
dt (33)
X(T)=V. '

_If we apply nudging to this backward model with the opposite sign of the feedback term (in order
to have a well posed problem), we obtain '

ax _ F(X,U) - K(Xops — CX), T >t>0,
dt (34)
X([T)=V. '

" Once again, it is easy to see that if K is large enough, the state vector X (t) will tend (through
the observation operator) towards the observation vector Xobs (1).

5.3. The BFN algorithm. The back and forth nudging (BFN) algorithm consists in solving first
the forward (standard) nudging equation, and then the direct system backwards in time with a
feedback term. After resolution of this backward equation, one obtains an estimate of the initial

state of the éystem. We repeat these forward and backward resolutions with the feedback terms
“until convergence of the algorithm [4].

The BFN algoritﬁhm is then the following:
' dX;

2 = FXeU) + K(Xops — CXp),
Xk(0) = Xi1(0),
; (35)
dXy ~ -
7 = F(X}, U) - K(Xops — CXy),

Xk(T) = Xi(T),

‘with X_100) = V. Then, X(0) = V, and a resolution of the direct model gives Xo(T') and hence
Xo(T). A resolution of the backward model provides Xo(0), which is equal to X;(0), and so on.
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This algorithm can be compared to the 4D-Var algorithm, which alsc consists in a sequence of
forward and backward resolutions. In the BFN algorithm, even for nonlinear problems, it is useless
to linearize the system and the backward system is not the adjoint equation but the direct system,

with an extra feedback term that stabilizes the resolution of this ill-posed backward resolution.
It can also be compared to the 4D-PSAS algorithm, because it provides automatically a corrective
term in the model equatlons which can play the role of the unknown parameters of the model. It is
then nearly useless to consider U as a part of the control vector, and one simply sets U as a constant .
variable (either 0 or some estimation of the model parameters) and looks only for V.

5.4. Theoretical results. Some theoretical results can be proved for a linear model. If F is a
linear operator, i.e. F(X,U) can be written FX (as previously said, there is no more need to take
into account the model parameters U), it is straight forward to prove the following result [4].

_ If n = +o0, we have convergence of X,(0) and if KC is a definite positive matrix,

T
= (I-e2KOT)™! / ( e—(KC+A)s | efzKCTe(KC—A)s) K Xops(s)ds
0
Moreover, it T > 0, for any t € [0, T,

m X (t) = Xoot) .(37)

T
— e—(KC—A)t/ e(KC‘A)SKXobs(s)ds+e_(KC—A)tho(0)-
0

- Under the same hypothesis, we have a sxm1lar result for backward trajectories, e.g. there exists -
a function X (¢) so that hm Xn(t) = Xoo(t), for any ¢ € [0,T]. This proves the convergence of
the BFN algorithm. '

5.5. Numerical results. We consider in this subsection a very simple nonlinear geophysical model,
often used as a simplified model for turbulence, shock wave formation, and mass transport. The
evolution model is the viscous Burgers’ equation over a cyclic one-dimensional domain:

2 2 : .
N -2 -, | (39)
where X is the state variable, s represents the distance in meters around the 45°N constant-latitude
circle and ¢ is the time. The period of the domain is roughly 28.3 x 106m. The diffusion coefficient
v is set to 10° m2.s™! [13]. The assimilation period is roughly one month and the time step is one
.hour. ) :
The experimental approach consists in performing twin experiments with simulated data. First, - -
a reference experiment is run and the corresponding data are extracted. This reference trajectory
. will be further called the exact solution. Experimental data are supposed to be obtained on every
fifth gridpoint of the model, with a time sampling of 10 hours (every 10 time steps). This provides a
spatial density nearly similar to the longitudinal distribution of the mid-latitude radiosonde network.
Simulated data are then noised with a blank Gaussian distribution, with a 5% root mean square
(RMS) error. The first guess of the assimilation experiments is chosen as a constant field (X=0
everywhere). The results of the identification process are then compared to the reference experiment.
We first focus our interest on the numerical convergence of the BFN algorithm we have proposed
because, currently, the mathematical convergence is only valid for a linear model.
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FIGURE 1. RMS relative difference between two consecutwe iterates of the BFN
algorithm versus the number of xteratlons

1 Xe+1 = Xell
1 Xell
(see (35) for the notations) versus the number of iterations. We can clearly see that in less than 5

xteratlons, the difference between two iterates is smaller than 1%. The numerical convergence of the
algorithm is then obvious, and very quickly achieved.

We have then compared the BFN iterates with the exact solution (or reference trajectory) w1th
the anm of qua.nmfymg the identification of the true initial state.

Flgure 1 shows the RMS relative dxﬁ’erence between two iterates of the BFN algorithm

- Figure 2-a shows the RMS relative difference between the BFN iterates at time ¢t = 0 and the exact
"ch (0) Vtrue"

Viruell
in less than 5 iterations. The identification error is nearly 12% at the end of the process. This seems

huge, but compared to the other DA techmques, the BFN algorithm is not supposed to identify
precisely the initial condition but the reference trajectory as a whole. Figure 2-b shows indeed the
RMS difference between the BFN iterates and the exact final condition (i.e. the reference trajectory
- at the end of the assimilation period) versus the number of iterations. We can see that the difference
between the true final solution and the identified final solution is about 5%.
. We finally focus our interest on the forecast of the system evolution after the assimilation period.
-This is the most frequent application of data assimilation. We have consider on one hand the final
solution (at time ¢ = T') provided by the BFN algorithm and on the other hand an interpolation in
the state space of the last available observation (still at time t = T). We use these two states as
two initial conditions for the exact model (38) and we compute the two corresponding trajectories
on a 3 months time period after the end of the assimilation period. It corresponds to a 3 months
prediction.

Figure 3 shows the RMS relative difference between the BFN trajectory (computed with the
final BFN state as an initial condition) and the reference trajectory, and between the observation
trajectory (computed with the interpolation of the last available observation as an initial condition)

- and the reference tra.jeccory, versus the time steps. We can see that the observation trajectory has
an error of about 6% at the end of the assimilation period (or at the beginning of the prediction

1mtlal condition versus the number of iterations. We still observe the convergence
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FiGURE 2. RMS relative difference between the BFN iterates and the exact solution

versus the number of iterations, at time ¢t = 0 (a) and at time ¢t = T (b).

period). Then, the stable modes of the model make the error decrease, and then, after a few days
(200 time steps, nearly 6 days), the unstable modes make it increase all the time. If we look at the
BFN trajectory, we can see that at the beginning of the prediction period, the error is nearly the.
" same as for the observation trajectory, nearly 6%, but after one week, the error is smaller than 1%,
even after 4 months, the error is still much smaller than 1% whereas the error of the observation
trajectory has nearly reached 15%. This clearly proves the usefulness of the BFN algorithm, which
makes it possible to reconstruct a trajectory over a 4 months period with an assimilation period of .
only one month, with less than 1% RMS error using noised observations with a 5% RMS error.

6. CONCLUSION

Geophysical flows are governed by complex equations and present -certain typical characteristics
- of turbulent flows.. Besides, in practice, the observation data are of various natures and should be
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FIGURE 3. RMS relative difference between the reference trajectory and the pre-
diction trajectories provided by the interpolated observations (plain line) and by
the BFN algorithm (dashed line), versus the time steps.

combined together into a single data assimilation system. Presently, data assimilation is a very
active domain of research with extensions toward several directions. :

We have presented in this paper a small ovetview of data assimilation, in introducing the most
common variational and sequential algorithms: 4D-VAR, 4D-PSAS, SEEK filter. We also introduced
a new DA method, the BFN algorithm. This algorithm is hence very promising to obtain an
estimation of the initial state of a system and especially some good predictions of its evolution, with
a very easy implementation because it requires neither the linearization of the equatlons, nor any
minimization process. It also does not require the use of large covariance matrices.

Data assimilation has become an essential tool for modelling and prediction of the evolution
of geophysical fluids. In many other domains for which data and models are the main sources of
information, these methods could be developed in the near future.
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