next up previous contents
Next: Inpainting Up: Topological asymptotic analysis Previous: Presentation of the method   Contents

Main result

In the following, we will consider several times this main result [8]:

Theorem 2.1   If there exists a linear form $ L_\rho$ defined on $ \mathcal{V}_\rho$ , a function $ f:\mathbb{R}^+\to\mathbb{R}^+$ , and four real numbers $ \delta J_1$ , $ \delta J_2$ , $ \delta a$ and $ \delta l$ such that
$ \bullet$
$ \displaystyle \lim_{\rho\to 0} f(\rho) = 0$ ,
$ \bullet$
$ J(\Omega_\rho,u_\rho) - J(\Omega_\rho,u_0) = L_\rho(u_\rho-u_0)+f(\rho)\delta J_1+o(f(\rho)),$
$ \bullet$
$ J(\Omega_\rho,u_0) - J(\Omega,u_0) = f(\rho)\delta J_2+o(f(\rho)),$
$ \bullet$
$ (a_\rho-a_0)(u_0,p_\rho) = f(\rho)\delta a + o(f(\rho)),$
$ \bullet$
$ (l_\rho-l_0)(p_\rho) = f(\rho)\delta l + o(f(\rho))$ ,
where the adjoint state $ p_\rho$ is the solution of the adjoint equation

$\displaystyle a_\rho(w,p_\rho)=-L_\rho(w),\forall w\in\mathcal{V}_\rho,$ (2.5)

and $ u_\rho$ is the solution of the direct equation (2.2), then the cost function $ j$ has the asymptotic expansion (2.4), where the topological gradient $ G(x)$ is given by

$\displaystyle G(x) = \delta J_1 + \delta J_2 + \delta a - \delta l.$ (2.6)



Back to home page