Holomorphic symplectic geometry

Arnaud Beauville

Université de Nice

Lisbon, March 2011
I. Symplectic structure

Definition

A **symplectic form** on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in \text{Alt}(T_x(X))$ non-degenerate $\forall x \in X$.

- \iff locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, φ) is a **symplectic manifold**.

(In mechanics, typically $q_i \leftrightarrow$ positions, $p_i \leftrightarrow$ velocities)

\[\implies\] Unlike Riemannian geometry, symplectic geometry is locally trivial; the interesting problems are **global**.

All this makes sense with X complex manifold, φ holomorphic. global \[\implies\] X compact, usually projective or Kähler.
Holomorphic symplectic manifolds

Definition: holomorphic symplectic manifold

- X compact, Kähler, simply-connected;
- X admits a (holomorphic) symplectic form, unique up to \mathbb{C}^\ast.

Consequences: $\dim_{\mathbb{C}} X = 2r$; the canonical bundle $K_X := \Omega^2_X$ is trivial, generated by $\varphi \wedge \ldots \wedge \varphi$ (r times).

(Note: on X compact Kähler, holomorphic forms are closed)

Why is it interesting?
The Decomposition theorem

Decomposition theorem

Let X be a compact Kähler manifold with $K_X = O_X$. There exists a finite étale cover $\tilde{X} \to X$, such that

$$\tilde{X} = T \times \prod_i Y_i \times \prod_j Z_j$$

- T is a complex torus (equal to $\mathbb{C}^g / \text{lattice}$);
- Y_i are holomorphic symplectic manifolds;
- Z_j are simply-connected, projective, with $\dim \geq 3$,

$$H^0(Z_j, \Omega^*) = \mathbb{C} \oplus \mathbb{C} \omega,$$

where ω is a generator of K_{Z_j}.

(These are the Calabi-Yau manifolds)

Thus holomorphic symplectic manifolds (also called hyperkähler) are building blocks for manifolds with K trivial, which are themselves building blocks in the classification of projective (or compact Kähler) manifolds.
Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- \(\dim 2: X \) simply-connected, \(K_X = \mathcal{O}_X \iff X \) K3 surface. (Example: \(X \subset \mathbb{P}^3 \) of degree 4, etc.)

- \(\dim > 2? \) Idea: take \(S^r \) for \(S \) K3. Many symplectic forms:

\[
\varphi = \lambda_1 p_1^* \varphi_S + \ldots + \lambda_r p_r^* \varphi_S , \quad \text{with} \quad \lambda_1, \ldots, \lambda_r \in \mathbb{C}^* .
\]

Try to get unicity by imposing \(\lambda_1 = \ldots = \lambda_r \), i.e.

\(\varphi \) invariant under \(S_r \), i.e. \(\varphi \) comes from \(S^{(r)} := S^r / S_r = \{ \text{subsets of } r \text{ points of } S, \text{ counted with multiplicities} \} \)

- \(S^{(r)} \) is singular, but admits a natural desingularization \(S^{[r]} := \{ \text{finite analytic subspaces of } S \text{ of length } r \} \) (Hilbert scheme)
Examples

Theorem

*For S K3, $S^{[r]}$ is holomorphic symplectic, of dimension $2r$.***

Other examples

1. Analogous construction with $S = $ complex torus (dim. 2); gives **generalized Kummer manifold** K_r of dimension $2r$.

2. Two isolated examples by O’Grady, of dimension 6 and 10.

All other known examples belong to one of the above families!

Example: $V \subset \mathbb{P}^5$ cubic fourfold. $F(V) := \{\text{lines contained in } V\}$ is holomorphic symplectic, deformation of $S^{[2]}$ with S K3.
A fundamental tool to study holomorphic symplectic manifolds is the period map, which describes the position of $[\phi]$ in $H^2(X, \mathbb{C})$.

Proposition

1. \(\exists \ q : H^2(X, \mathbb{Z}) \rightarrow \mathbb{Z} \) quadratic and \(f \in \mathbb{Z} \) such that
 \[
 \int_X \alpha^{2r} = f \ q(\alpha)^r \quad \text{for} \quad \alpha \in H^2(X, \mathbb{Z}).
 \]

2. For \(L \) lattice, there exists a complex manifold \(\mathcal{M}_L \) parametrizing isomorphism classes of pairs \((X, \lambda)\), where \(\lambda : (H^2(X, \mathbb{Z}), q) \overset{\sim}{\rightarrow} L \).

(Beware that \(\mathcal{M}_L \) is non Hausdorff in general.)
\((X, \lambda) \in \mathcal{M}_L, \lambda_C : H^2(X, \mathbb{C}) \simarrow L_\mathbb{C}; \) put \(\wp(X, \lambda) := \lambda_C(\mathbb{C}\wp).\)

\(\wp : \mathcal{M}_L \longrightarrow \mathbb{P}(L_\mathbb{C})\) is the period map.

Theorem

Let \(\Omega := \{x \in \mathbb{P}(L_\mathbb{C}) \mid q(x) = 0, q(x, \bar{x}) > 0\}\).

1. (AB) \(\wp\) is a local isomorphism \(\mathcal{M}_L \rightarrow \Omega\).
2. (Huybrechts) \(\wp\) is surjective.
3. (Verbitsky) The restriction of \(\wp\) to any connected component of \(\mathcal{M}_L\) is generically injective.

Gives very precise information on the structure of \(\mathcal{M}_L\) and the geometry of \(X\).
Completely integrable systems

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

M real symplectic manifold; φ defines $\varphi^\# : T^*(M) \to T(M)$.

For h function on M, $X_h := \varphi^\#(dh)$: hamiltonian vector field of h.

$X_h \cdot h = 0$, i.e. h constant along trajectories of X_h ("integral of motion")

$\dim(M) = 2r$. $h : M \to \mathbb{R}^r$, $h = (h_1, \ldots, h_r)$. Suppose:

$h^{-1}(s)$ connected, smooth, compact, Lagrangian ($\varphi|_{h^{-1}(s)} = 0$).

Arnold-Liouville theorem

$h^{-1}(s) \cong \mathbb{R}^r$/lattice; X_{h_i} tangent to $h^{-1}(s)$, constant on $h^{-1}(s)$.

\Rightarrow explicit solutions of the ODE X_{h_i} (e.g. in terms of θ functions): "algebraically completely integrable system". Classical examples: geodesics of the ellipsoid, Lagrange and Kovalevskaya tops, etc.
Holomorphic set-up

No global functions \(\rightsquigarrow \) replace \(\mathbb{R}^r \) by \(\mathbb{P}^r \).

Definition

\(X \) holomorphic symplectic, \(\dim(X) = 2r \). Lagrangian fibration:

\(h : X \rightarrow \mathbb{P}^r \), general fiber connected Lagrangian.

\(\Rightarrow \) on \(h^{-1}(\mathbb{C}^r) \rightarrow \mathbb{C}^r \), Arnold-Liouville situation.

Theorem

\(f : X \rightarrow B \) surjective with connected fibers \(\Rightarrow \)

1. \(h \) is a Lagrangian fibration (Matsushita);

2. If \(X \) projective, \(B \cong \mathbb{P}^r \) (Hwang).

Is there a simple characterization of Lagrangian fibration?

Conjecture

\(\exists X \rightarrow \mathbb{P}^r \) Lagrangian \(\iff \exists L \) on \(X \), \(q(c_1(L)) = 0 \).
Many examples of such systems. Here is one:

\[S \subset \mathbb{P}^5 \text{ given by } P = Q = R = 0, \ P, Q, R \text{ quadratic} \Rightarrow S \text{ K3.} \]

\[\Pi = \{ \text{quadrics } \supset S \} = \{ \lambda P + \mu Q + \nu R \} \cong \mathbb{P}^2 \]

\[\Pi^* = \text{dual projective plane } = \{ \text{pencils of quadrics } \supset S \}. \]

\[h : S^{[2]} \rightarrow \Pi^* : h(x, y) = \{ \text{quadrics of } \Pi \supset \langle x, y \rangle \}. \]

By the theorem, \(h \) Lagrangian fibration \(\Rightarrow \]

\[h^{-1}(\langle P, Q \rangle) = \{ \text{lines } \subset \{ P = Q = 0 \} \subset \mathbb{P}^5 \} \cong 2\text{-dim'l complex torus}, \]

a classical result of Kummer.
II. Contact geometry

What about odd dimensions?

Definition

A contact form on a manifold X is a 1-form η such that:

- $\text{Ker } \eta(x) = H_x \subsetneq T_x(X)$ and $d\eta|_{H_x}$ non-degenerate $\forall x \in X$;
- \iff locally $\eta = dt + p_1 dq_1 + \ldots + p_r dq_r$.

- A contact structure on X is a family $H_x \subsetneq T_x(X)$ $\forall x \in X$, defined locally by a contact form.

Again the definition makes sense in the holomorphic set-up \rightsquigarrow holomorphic contact manifold. We will be looking for projective contact manifolds.

Arnaud Beauville
Holomorphic symplectic geometry
Examples

Examples of contact projective manifolds

1. $\mathbb{P} T^*(M)$ for every projective manifold M

 ($= \{(m, H) \mid H \subset T_m(M)\}$: “contact elements”);

2. \mathfrak{g} simple Lie algebra; $\mathcal{O}_{\text{min}} \subset \mathbb{P}(\mathfrak{g})$ unique closed adjoint orbit.

 (example: rank 1 matrices in $\mathbb{P}(\mathfrak{sl}_r)$.)

Conjecture

These are the only contact projective manifolds.

(\Rightarrow classical conjecture in Riemannian geometry: classification of compact quaternion-Kähler manifolds (LeBrun, Salamon).)
Definition: A projective manifold X is Fano if K_X negative, i.e. K_X^{-N} has “enough sections” for $N \gg 0$.

X contact manifold; $L := T(X)/H$ line bundle; then $K_X \cong L^{-k}$ with $k = \frac{1}{2}(\dim(X) + 1)$. Thus X Fano $\iff L^N$ has enough sections for $N \gg 0$.

Theorem

1. If X is not Fano, $X \cong \mathbb{P}T^*(M)$
 (Kebekus, Peternell, Sommese, Wiśniewski + Demailly)

2. X Fano and L has “enough sections” $\Rightarrow Z \cong \mathcal{O}_{\text{min}} \subset \mathbb{P}(g)$
 (AB)
Few symplectic or contact manifolds look for weaker structure.

\[\varphi \text{ symplectic} \implies \varphi^\# : T(X) \overset{\sim}{\longrightarrow} T^*(X) \overset{\sim}{\longrightarrow} \tau \in \wedge^2 T(X) \overset{\sim}{\longrightarrow} \]

\[(f, g) \mapsto \{f, g\} := \langle \tau, df \wedge dg \rangle \text{ for } f, g \text{ functions on } U \subset X . \]

Fact: \(d\varphi = 0 \iff \text{Lie algebra structure (Jacobi identity)} \).

Definition

Poisson structure on \(X \): bivector field \(\tau : x \mapsto \tau(x) \in \wedge^2 T_x(X) \), such that \((f, g) \mapsto \{f, g\} \) Lie algebra structure.

Again this makes sense for \(X \) complex manifold, \(\tau \) holomorphic.
Examples

1. \(\dim(X) = 2 \): any global section of \(\wedge^2 T(X) = K_X^{-1} \) is Poisson.

2. \(\dim(X) = 3 \); wedge product \(\wedge^2 T(X) \otimes T(X) \to K_X^{-1} \) gives \(\wedge^2 T(X) \sim \Omega^1_X \otimes K_X^{-1} \). Then \(\alpha \in H^0(\Omega^1_X \otimes K_X^{-1}) \) is Poisson \(\iff \alpha \wedge d\alpha = 0 \iff \text{locally } \alpha = fdg \).

3. On \(\mathbb{P}^3 \), \(P \), \(Q \) quadratic
 \(\sim \alpha = PdQ - QdP \in \Omega^1_{\mathbb{P}^3}(4) = \Omega^1_{\mathbb{P}^3} \otimes K_{\mathbb{P}^3}^{-1} \) Poisson.

4. A holomorphic symplectic manifold is Poisson.

5. If \(X \) is Poisson, any \(X \times Y \) is Poisson.
The Bondal conjecture

\(\tau \) Poisson, \(x \in X \). \(\tau_x : T^*_x(X) \to T_x(X) \) skew-symmetric, rk even.

\[
X_r := \{ x \in X \mid \text{rk}(\tau_x) = r \} \quad (r \text{ even}) \quad X = \bigsqcup X_r
\]

Proposition
If \(X_r \neq \emptyset \), \(\dim X_r \geq r \).

Proof: \(X_r \) is a Poisson submanifold, i.e. at a smooth \(x \in X_r \)
\(\tau_x \in \wedge^2 T_x(X_r) \subset \wedge^2 T_x(X) \implies \text{rk}(\tau_x) \leq \dim X_r. \)

Conjecture (Bondal)
\(X \) compact Poisson manifold, \(X_r \neq \emptyset \) \(\Rightarrow \) \(\dim X_r > r. \)

Example: \(X_0 = \{ x \in X \mid \tau_x = 0 \} \) contains a curve.

(e.g.: on \(\mathbb{P}^3 \), \(PdQ - QdP \) vanishes on the curve \(P = Q = 0. \))
Some evidence

1. True for X projective threefold (Druel: $X_0 = \emptyset$ or $\dim \geq 1$).

2. $\text{rk}(\tau_x) = r$ for x general \Rightarrow true for X_{r-2} if $c_1(X)^q \neq 0$, $q = \dim X - r + 1$.

Proposition (Polishchuk)

τ Poisson on \mathbb{P}^3, vanishes along smooth curve C. Then C elliptic, $\deg(C) = 3$ or 4; if $= 4$, $\tau = PdQ - QdP$ and $C : P = Q = 0$.

THE END