Holomorphic symplectic geometry

Arnaud Beauville

Université de Nice

Lisbon, March 2011
I. Symplectic structure

Definition
A symplectic form on a manifold X is a 2-form ϕ such that:

- $d\phi = 0$
- $\phi(x) \in \text{Alt}(T_x(X))$ non-degenerate $\forall x \in X$.

\iff locally $\phi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, ϕ) is a symplectic manifold.

(In mechanics, typically $q_i \leftrightarrow$ positions, $p_i \leftrightarrow$ velocities)

\Rightarrow Unlike Riemannian geometry, symplectic geometry is locally trivial; the interesting problems are global.

\Rightarrow All this makes sense with X complex manifold, ϕ holomorphic.

\Rightarrow Global $\Rightarrow X$ compact, usually projective or Kähler.

Arnaud Beauville

Holomorphic symplectic geometry
I. Symplectic structure

Definition

A *symplectic form* on a manifold X is a 2-form φ such that:

- $d\varphi = 0$
- $\varphi(x) \in \text{Alt}(T_x(X))$ is non-degenerate for all $x \in X$.

\Rightarrow locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, φ) is a symplectic manifold.

(In mechanics, typically $q_i \leftrightarrow$ positions, $p_i \leftrightarrow$ velocities)

\Rightarrow Unlike Riemannian geometry, symplectic geometry is locally trivial; the interesting problems are global.

All this makes sense with X complex manifold, φ holomorphic.

\Rightarrow X compact, usually projective or Kähler.

Arnaud Beauville

Holomorphic symplectic geometry
I. Symplectic structure

Definition

A symplectic form on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in \text{Alt}(T_x(X))$ non-degenerate $\forall x \in X$.

Then (X, φ) is a symplectic manifold.

(In mechanics, typically $q_i \leftrightarrow$ positions, $p_i \leftrightarrow$ velocities)

Unlike Riemannian geometry, symplectic geometry is locally trivial; the interesting problems are global.

All this makes sense with X complex manifold, φ holomorphic.

Arnaud Beauville

Holomorphic symplectic geometry
I. Symplectic structure

Definition

A **symplectic form** on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in \text{Alt}(T_x(X))$ non-degenerate $\forall x \in X$.
- \iff locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, φ) is a symplectic manifold.

(In mechanics, typically $q_i \leftrightarrow$ positions, $p_i \leftrightarrow$ velocities)

Unlike Riemannian geometry, symplectic geometry is locally trivial; the interesting problems are global.

All this makes sense with X complex manifold, φ holomorphic.

Global $\iff X$ compact, usually projective or Kähler.

Arnaud Beauville

Holomorphic symplectic geometry
A symplectic form on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in \text{Alt}(T_x(X))$ non-degenerate $\forall x \in X$.
- \iff locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, φ) is a symplectic manifold.
I. Symplectic structure

Definition

A symplectic form on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in \text{Alt}(T_x(X))$ non-degenerate $\forall x \in X$.
- \iff locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, φ) is a symplectic manifold.

(In mechanics, typically $q_i \leftrightarrow$ positions, $p_i \leftrightarrow$ velocities)
I. Symplectic structure

Definition

A symplectic form on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in \text{Alt}(T_x(X))$ non-degenerate $\forall x \in X$.
- \iff locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, φ) is a symplectic manifold.

(In mechanics, typically $q_i \leftrightarrow$ positions, $p_i \leftrightarrow$ velocities)

\leadsto Unlike Riemannian geometry, symplectic geometry is locally trivial; the interesting problems are global.

Arnaud Beauville

Holomorphic symplectic geometry
I. Symplectic structure

Definition

A **symplectic form** on a manifold \(X \) is a 2-form \(\varphi \) such that:

- \(d\varphi = 0 \) and \(\varphi(x) \in \text{Alt}(T_x(X)) \) non-degenerate \(\forall x \in X \).
- \(\iff \) locally \(\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r \) (Darboux)

Then \((X, \varphi) \) is a **symplectic manifold**.

(In mechanics, typically \(q_i \leftrightarrow \text{positions}, \ p_i \leftrightarrow \text{velocities} \))

\(\rightsquigarrow \) Unlike Riemannian geometry, symplectic geometry is locally trivial; the interesting problems are **global**.

All this makes sense with \(X \) complex manifold, \(\varphi \) holomorphic.
I. Symplectic structure

Definition

A **symplectic form** on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in \text{Alt}(T_x(X))$ non-degenerate $\forall x \in X$.
- \iff locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, φ) is a **symplectic manifold**.

(In mechanics, typically $q_i \leftrightarrow$ positions, $p_i \leftrightarrow$ velocities)

\Rightarrow Unlike Riemannian geometry, symplectic geometry is locally trivial; the interesting problems are **global**.

All this makes sense with X complex manifold, φ holomorphic.

\Rightarrow Global $\Rightarrow X$ compact, usually projective or Kähler.
Holomorphic symplectic manifolds

Definition: holomorphic symplectic manifold X compact, Kähler, simply-connected; X admits a (holomorphic) symplectic form, unique up to C^*.

Consequences: $\dim \mathbb{C} X = 2r$; the canonical bundle $K_X := \Omega^2 X$ is trivial, generated by $\phi \wedge \ldots \wedge \phi$ (r times).

(Note: on X compact Kähler, holomorphic forms are closed)

Why is it interesting?

Arnaud Beauville

Holomorphic symplectic geometry
Definition: holomorphic symplectic manifold

X is compact, Kähler, simply-connected; X admits a (holomorphic) symplectic form, unique up to \mathbb{C}^\ast.

Consequences: $\dim \mathbb{C}^X = 2r$; the canonical bundle $K^X := \Omega^2_X$ is trivial, generated by $\varphi \wedge ... \wedge \varphi$ (r times).

(Note: on X compact Kähler, holomorphic forms are closed)

Why is it interesting?

Arnaud Beauville Holomorphic symplectic geometry
Holomorphic symplectic manifolds

Definition: holomorphic symplectic manifold

- X compact, Kähler, simply-connected;

Consequences: $\dim \mathbb{C}X = 2r$;

- the canonical bundle $K_X := \Omega^{2r}_X$ is trivial, generated by $\phi \wedge ... \wedge \phi$ (r times).

(Nota: on X compact Kähler, holomorphic forms are closed)

Why is it interesting?

Arnaud Beauville

Holomorphic symplectic geometry
Holomorphic symplectic manifolds

Definition: holomorphic symplectic manifold

- X compact, Kähler, simply-connected;
- X admits a (holomorphic) symplectic form, unique up to \mathbb{C}^*.

Consequences: $\dim \mathbb{C} X = 2r$; the canonical bundle $K_X := \Omega^2 X$ is trivial, generated by $\phi \wedge \ldots \wedge \phi$ (r times).

Note: on X compact Kähler, holomorphic forms are closed.

Why is it interesting?

Arnaud Beauville

Holomorphic symplectic geometry
Definition: holomorphic symplectic manifold

- X compact, Kähler, simply-connected;
- X admits a (holomorphic) symplectic form, unique up to \mathbb{C}^*.

Consequences: $\dim_{\mathbb{C}} X = 2r$;
Definition: holomorphic symplectic manifold

- X compact, Kähler, simply-connected;
- X admits a (holomorphic) symplectic form, unique up to \mathbb{C}^*.

Consequences: $\dim_{\mathbb{C}} X = 2r$; the canonical bundle $K_X := \Omega^2_X$ is trivial, generated by $\varphi \wedge \ldots \wedge \varphi$ (r times).
Holomorphic symplectic manifolds

Definition: holomorphic symplectic manifold

- X compact, Kähler, simply-connected;
- X admits a (holomorphic) symplectic form, unique up to \mathbb{C}^*.

Consequences: $\dim_{\mathbb{C}} X = 2r$; the canonical bundle $K_X := \Omega^2_X$ is trivial, generated by $\varphi \wedge \ldots \wedge \varphi$ (r times).

(Note: on X compact Kähler, holomorphic forms are closed)
Holomorphic symplectic manifolds

Definition: holomorphic symplectic manifold

- X compact, Kähler, simply-connected;
- X admits a (holomorphic) symplectic form, unique up to \mathbb{C}^*.

Consequences: $\dim_{\mathbb{C}} X = 2r$; the canonical bundle $K_X := \Omega_X^{2r}$ is trivial, generated by $\varphi \wedge \ldots \wedge \varphi$ (r times).

(Note: on X compact Kähler, holomorphic forms are closed)

Why is it interesting?
The Decomposition theorem

Decomposition theorem

\[X \text{ compact Kähler with } \text{K}(X) = 0. \]

\[\exists \tilde{X} \to X \text{ étale finite and } \tilde{X} = T \times \prod_i Y_i \times \prod_j Z_j. \]

\(T \) complex torus (= \(\mathbb{C}^g / \text{lattice} \)); \(Y_i \) holomorphic symplectic manifolds; \(Z_j \) simply-connected, projective, \(\text{dim} \geq 3 \), \(H^0(Z_j, \Omega^\ast) = \mathbb{C} \oplus \mathbb{C} \omega \), where \(\omega \) is a generator of \(K_{Z_j} \). (these are the Calabi-Yau manifolds)

Thus holomorphic symplectic manifolds (also called hyperkähler) are building blocks for manifolds with \(\text{K} \) trivial, which are themselves building blocks in the classification of projective (or compact Kähler) manifolds.

Arnaud Beauville

Holomorphic symplectic geometry
The Decomposition theorem

<table>
<thead>
<tr>
<th>Decomposition theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>X compact Kähler with $K_X = \mathcal{O}_X$. $\exists \tilde{X} \rightarrow X$ étale finite and $\tilde{X} = T \times \prod_i Y_i \times \prod_j Z_j$</td>
</tr>
</tbody>
</table>

Thus holomorphic symplectic manifolds (also called hyperkähler) are building blocks for manifolds with K trivial, which are themselves building blocks in the classification of projective (or compact Kähler) manifolds.
The Decomposition theorem

Decomposition theorem

\(X \) compact Kähler with \(K_X = \mathcal{O}_X \). \(\exists \tilde{X} \rightarrow X \) étale finite and

\[
\tilde{X} = T \times \prod_i Y_i \times \prod_j Z_j
\]

- \(T \) complex torus (= \(\mathbb{C}^g \)/lattice);
The Decomposition theorem

Decomposition theorem

X compact Kähler with $K_X = O_X$. $\exists \tilde{X} \to X$ étale finite and

$$\tilde{X} = T \times \prod_i Y_i \times \prod_j Z_j$$

- T complex torus ($= \mathbb{C}^g$/lattice);
- Y_i holomorphic symplectic manifolds;
- Z_j simply-connected, projective, $\text{dim} \geq 3$, $H^0(Z_j, \Omega^*) = \mathbb{C} \oplus \mathbb{C} \omega$, where ω is a generator of K_{Z_j}.

These are the Calabi-Yau manifolds. Thus holomorphic symplectic manifolds (also called hyperkähler) are building blocks for manifolds with K trivial, which are themselves building blocks in the classification of projective (or compact Kähler) manifolds.
The Decomposition theorem

X compact Kähler with \(K_X = \mathcal{O}_X \). \(\exists \tilde{X} \rightarrow X \) étale finite and

\[
\tilde{X} = T \times \prod_{i} Y_i \times \prod_{j} Z_j
\]

- \(T \) complex torus (= \(\mathbb{C}^g \)/lattice);
- \(Y_i \) holomorphic symplectic manifolds;
- \(Z_j \) simply-connected, projective, \(\dim \geq 3 \),

\(H^0(Z_j, \Omega^*) = \mathbb{C} \oplus \mathbb{C} \omega \), where \(\omega \) is a generator of \(K_{Z_j} \).

(These are the Calabi-Yau manifolds)
The Decomposition theorem

X compact Kähler with $K_X = O_X$. $\exists \tilde{X} \rightarrow X$ étale finite and

$$\tilde{X} = T \times \prod_i Y_i \times \prod_j Z_j$$

- T complex torus ($= \mathbb{C}^g$/lattice);
- Y_i holomorphic symplectic manifolds;
- Z_j simply-connected, projective, dim ≥ 3,

$$H^0(Z_j, \Omega^*) = \mathbb{C} \oplus \mathbb{C}\omega,$$

where ω is a generator of K_{Z_j}.

(These are the Calabi-Yau manifolds)

Thus holomorphic symplectic manifolds (also called hyperkähler) are building blocks for manifolds with K trivial,
The Decomposition theorem

X compact Kähler with $K_X = \mathcal{O}_X$. $\exists \tilde{X} \rightarrow X$ étale finite and

$$\tilde{X} = T \times \prod_i Y_i \times \prod_j Z_j$$

- T complex torus ($= \mathbb{C}^g$/lattice);
- Y_i holomorphic symplectic manifolds;
- Z_j simply-connected, projective, $\dim \geq 3$,

$$H^0(Z_j, \Omega^*) = \mathbb{C} \oplus \mathbb{C}\omega$$, where ω is a generator of K_{Z_j}.

(these are the Calabi-Yau manifolds)

Thus holomorphic symplectic manifolds (also called hyperkähler) are building blocks for manifolds with K trivial, which are themselves building blocks in the classification of projective (or compact Kähler) manifolds.
Examples?

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

\[\dim 2: X \text{ simply-connected}, \ K_X = \mathcal{O}_X \]
\[\iff X \text{ K3 surface.} \]
(Example: \(X \subset \mathbb{P}^3\) of degree 4, etc.)

\[\dim > 2? \text{ Idea: take } S_r \text{ for } S \text{ K3. Many symplectic forms: } \]
\[\phi = \lambda_1 p^* \phi_S + \ldots + \lambda_r p^* \phi_S, \]
with \(\lambda_1, \ldots, \lambda_r \in \mathbb{C}^\ast\).

Try to get unicity by imposing \(\lambda_1 = \ldots = \lambda_r\), i.e. \(\phi\) invariant under \(S_r\), i.e. \(\phi\) comes from \(S_r^r := S_r / S_r = \{\text{subsets of } r \text{ points of } S\}, \text{ counted with multiplicities}\)
\(S_r^r\) is singular, but admits a natural desingularization
\(S[r] := \{\text{finite analytic subspaces of } S \text{ of length } r\}\) (Hilbert scheme)
Examples?

Many examples of Calabi-Yau manifolds,
Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.
Examples?

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- \textbf{dim 2: } X simply-connected, $K_X = \mathcal{O}_X \overset{\text{def}}{\iff} X$ K3 surface.
Examples?

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- dim 2: X simply-connected, $K_X = \mathcal{O}_X \overset{\text{def}}{\iff} X$ K3 surface.
 (Example: $X \subset \mathbb{P}^3$ of degree 4, etc.)
Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- **dim 2:** X simply-connected, $K_X = \mathcal{O}_X \overset{\text{def}}{\leftrightarrow} X$ K3 surface. (Example: $X \subset \mathbb{P}^3$ of degree 4, etc.)

- **dim > 2?** Idea: take S' for S K3. Many symplectic forms:

 $$\varphi = \lambda_1 p_1^* \varphi_S + \ldots + \lambda_r p_r^* \varphi_S , \quad \text{with} \quad \lambda_1, \ldots, \lambda_r \in \mathbb{C}^* .$$
Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- dim 2: X simply-connected, $K_X = \mathcal{O}_X \overset{\text{def}}{\leftrightarrow} X$ K3 surface.
 (Example: $X \subset \mathbb{P}^3$ of degree 4, etc.)

- dim > 2? Idea: take S^r for S K3. Many symplectic forms:
 \[\varphi = \lambda_1 p_1^* \varphi_S + \ldots + \lambda_r p_r^* \varphi_S , \quad \text{with } \lambda_1, \ldots, \lambda_r \in \mathbb{C}^* . \]

 Try to get unicity by imposing $\lambda_1 = \ldots = \lambda_r$,

Arnaud Beauville
Holomorphic symplectic geometry
Examples?

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- **dim 2**: X simply-connected, $K_X = \mathcal{O}_X \overset{\text{def}}{\leftrightarrow} X$ K3 surface.
 (Example: $X \subset \mathbb{P}^3$ of degree 4, etc.)

- **dim > 2?** Idea: take S' for S K3. Many symplectic forms:
 \[\varphi = \lambda_1 p_1^* \varphi_S + \ldots + \lambda_r p_r^* \varphi_S , \quad \text{with} \quad \lambda_1, \ldots, \lambda_r \in \mathbb{C}^* . \]

 Try to get unicity by imposing $\lambda_1 = \ldots = \lambda_r$, i.e.

 \(\varphi \) invariant under \mathcal{S}_r.

Arnaud Beauville Holomorphic symplectic geometry
Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- **dim 2**: X simply-connected, $K_X = \mathcal{O}_X \overset{\text{def}}{\leftrightarrow} X$ K3 surface. (Example: $X \subset \mathbb{P}^3$ of degree 4, etc.)

- **dim > 2?** Idea: take S^r for S K3. Many symplectic forms:

 \[\varphi = \lambda_1 p_1^* \varphi_S + \ldots + \lambda_r p_r^* \varphi_S, \quad \text{with} \quad \lambda_1, \ldots, \lambda_r \in \mathbb{C}^* . \]

 Try to get unicity by imposing $\lambda_1 = \ldots = \lambda_r$, i.e.

 \[\varphi \text{ invariant under } \mathcal{G}_r, \text{ i.e. } \varphi \text{ comes from } S^{(r)} := S^r / \mathcal{G}_r = \{ \text{subsets of } r \text{ points of } S, \text{ counted with multiplicities} \} \]
Examples?

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- **dim 2**: X simply-connected, $K_X = \mathcal{O}_X \iff X$ K3 surface. (Example: $X \subset \mathbb{P}^3$ of degree 4, etc.)

- **dim > 2**: Idea: take S^r for S K3. Many symplectic forms:

\[\varphi = \lambda_1 p_1^* \varphi_S + \ldots + \lambda_r p_r^* \varphi_S \], \text{ with } \lambda_1, \ldots, \lambda_r \in \mathbb{C}^* .

Try to get unicity by imposing $\lambda_1 = \ldots = \lambda_r$, i.e. φ invariant under \mathcal{G}_r, i.e. φ comes from $S^{(r)} := S^r / \mathcal{G}_r = \{ \text{subsets of } r \text{ points of } S, \text{ counted with multiplicities} \}$

- $S^{(r)}$ is singular, but admits a natural desingularization $S^{[r]} := \{ \text{finite analytic subspaces of } S \text{ of length } r \}$ (Hilbert scheme).
Examples

Theorem

For $S K^3$, $S[r]$ is holomorphic symplectic, of dimension $2r$.

Other examples

1. Analogous construction with $S = $ complex torus (dim. 2); gives generalized Kummer manifold $K[r]$ of dimension $2r$.

2. Two isolated examples by O'Grady, of dimension 6 and 10.

All other known examples belong to one of the above families!

Example:

$V \subset P^5$ cubic fourfold.
$F(V) := \{ \text{lines contained in } V \}$ is holomorphic symplectic, deformation of $S[2]$ with $S K^3$.

Arnaud Beauville Holomorphic symplectic geometry
Examples

Theorem

For S K3, $S^{[r]}$ is holomorphic symplectic, of dimension $2r$.

Other examples

1. Analogous construction with S complex torus (dim. 2); gives generalized Kummer manifold K^r of dimension 2^r.

2. Two isolated examples by O'Grady, of dimension 6 and 10.

All other known examples belong to one of the above families!

Example:

$V \subset P^5$ cubic fourfold. $F(V) = \{\text{lines contained in } V\}$ is holomorphic symplectic, deformation of S^2 with S K3.
Examples

Theorem

For $S \ K3$, $S^{[r]}$ is holomorphic symplectic, of dimension $2r$.

Other examples

1. Analogous construction with S = complex torus (dim. 2); gives generalized Kummer manifold K^r of dimension $2r$.

2. Two isolated examples by O'Grady, of dimension 6 and 10.

All other known examples belong to one of the above families!

Example: $V \subset \mathbb{P}_5$ cubic fourfold.

$F(V) := \{\text{lines contained in } V\}$ is holomorphic symplectic, deformation of S^2 with $S \ K3$.

Arnaud Beauville Holomorphic symplectic geometry
Examples

Theorem

For $S \text{ K3}, S^{[r]}$ *is holomorphic symplectic, of dimension* $2r$.

Other examples

1. Analogous construction with $S = \text{ complex torus (dim. 2)}$; gives *generalized Kummer manifold* K_r *of dimension* $2r$.
Theorem

For S K3, $S^{[r]}$ is holomorphic symplectic, of dimension $2r$.

Other examples

1. Analogous construction with $S = \text{complex torus (dim. 2)}$; gives \textbf{generalized Kummer manifold K_r} of dimension $2r$.

2. Two isolated examples by O’Grady, of dimension 6 and 10.
Examples

Theorem

For S K3, $S^{[r]}$ is holomorphic symplectic, of dimension $2r$.

Other examples

1. Analogous construction with $S = \text{complex torus (dim. 2)}$; gives generalized Kummer manifold K_r of dimension $2r$.

2. Two isolated examples by O’Grady, of dimension 6 and 10.

All other known examples belong to one of the above families!
For S K3, $S^{[r]}$ is holomorphic symplectic, of dimension $2r$.

Other examples

1. Analogous construction with $S = \text{complex torus (dim. 2)}$; gives generalized Kummer manifold K_r of dimension $2r$.

2. Two isolated examples by O’Grady, of dimension 6 and 10.

All other known examples belong to one of the above families!

Example: $V \subset \mathbb{P}^5$ cubic fourfold. $F(V) := \{\text{lines contained in } V\}$ is holomorphic symplectic, deformation of $S^{[2]}$ with S K3.
The period map

A fundamental tool to study holomorphic symplectic manifolds is the period map, which describes the position of φ in $H^2(X, C)$.

Proposition 1

$\exists q : H^2(X, Z) \to Z$ quadratic and $f \in Z$ such that

$$\int_X \alpha^2 r = f q(\alpha) r$$

for $\alpha \in H^2(X, Z)$.

2 For L lattice, there exists a complex manifold M_L parametrizing isomorphism classes of pairs (X, λ), where $\lambda : (H^2(X, Z), q) \to -L$.

(Beware that M_L is non Hausdorff in general.)
A fundamental tool to study holomorphic symplectic manifolds is the period map, which describes the position of $[\varphi]$ in $H^2(X, \mathbb{C})$.

Proposition 1: There exists a quadratic form $q: H^2(X, \mathbb{Z}) \to \mathbb{Z}$ such that

$$\int_X \alpha^2 \sim f(q(\alpha))$$

for $\alpha \in H^2(X, \mathbb{Z})$.

For a lattice, there exists a complex manifold M_L parametrizing isomorphism classes of pairs (X, λ), where $\lambda: (H^2(X, \mathbb{Z}), q) \to L$.

(Beware that M_L is non Hausdorff in general.)
A fundamental tool to study holomorphic symplectic manifolds is the period map, which describes the position of \([\varphi]\) in \(H^2(X, \mathbb{C})\).

Proposition

\[\exists q : H^2(X, Z) \rightarrow Z \text{ quadratic and } f \in Z \text{ such that } \int_X \alpha^2 = f(q(\alpha)) \text{ for } \alpha \in H^2(X, Z). \]

For a lattice, there exists a complex manifold \(M_L\) parametrizing isomorphism classes of pairs \((X, \lambda)\), where \(\lambda : (H^2(X, Z), q) \rightarrow L\).

(Beware that \(M_L\) is non Hausdorff in general.)
A fundamental tool to study holomorphic symplectic manifolds is the period map, which describes the position of $[\varphi]$ in $H^2(X, \mathbb{C})$.

Proposition

1. \[\exists \ q : H^2(X, \mathbb{Z}) \rightarrow \mathbb{Z} \quad \text{quadratic and } f \in \mathbb{Z} \quad \text{such that} \]

\[\int_X \alpha^{2r} = f \ q(\alpha)^r \quad \text{for } \alpha \in H^2(X, \mathbb{Z}). \]
A fundamental tool to study holomorphic symplectic manifolds is the period map, which describes the position of $[\varphi]$ in $H^2(X, \mathbb{C})$.

Proposition

1. $\exists \ q : H^2(X, \mathbb{Z}) \rightarrow \mathbb{Z}$ quadratic and $f \in \mathbb{Z}$ such that

$$\int_X \alpha^{2r} = f q(\alpha)^r \quad \text{for} \ \alpha \in H^2(X, \mathbb{Z}).$$

2. For L lattice, there exists a complex manifold \mathcal{M}_L parametrizing isomorphism classes of pairs (X, λ), where $\lambda : (H^2(X, \mathbb{Z}), q) \overset{\sim}{\longrightarrow} L$.

(Beware that \mathcal{M}_L is non Hausdorff in general.)
A fundamental tool to study holomorphic symplectic manifolds is the \textbf{period map}, which describes the position of $[\varphi]$ in $H^2(X, \mathbb{C})$.

\begin{itemize}
 \item \textbf{Proposition}
 \begin{enumerate}
 \item $\exists \ q : H^2(X, \mathbb{Z}) \rightarrow \mathbb{Z}$ quadratic and $f \in \mathbb{Z}$ such that
 \[
 \int_X \alpha^{2r} = f \ q(\alpha)^r \ \text{for} \ \alpha \in H^2(X, \mathbb{Z}).
 \]
 \item For L lattice, there exists a complex manifold M_L parametrizing isomorphism classes of pairs (X, λ), where
 \[
 \lambda : (H^2(X, \mathbb{Z}), q) \xrightarrow{\sim} L.
 \]
 (Beware that M_L is non Hausdorff in general.)
 \end{enumerate}
\end{itemize}
The period package

\[(X, \lambda) \in M_L, \lambda C : H^2(X, C) \sim \rightarrow L_C; \text{ put } \wp(X, \lambda) := \lambda C(C \phi). \]

\(\wp : M_L \rightarrow P(L_C) \) is the period map.

Theorem

Let \(\Omega := \{ x \in P(L_C) | q(x) = 0, q(x, \bar{x}) > 0 \} \).

1. \(\wp \) is a local isomorphism \(M_L \rightarrow \Omega \).
2. (Huybrechts) \(\wp \) is surjective.
3. (Verbitsky) The restriction of \(\wp \) to any connected component of \(M_L \) is generically injective.

Gives very precise information on the structure of \(M_L \) and the geometry of \(X \).

Arnaud Beauville

Holomorphic symplectic geometry
The period package

\[(X, \lambda) \in \mathcal{M}_L, \lambda_C : H^2(X, \mathbb{C}) \rightarrow L_\mathbb{C}; \text{ put } \wp(X, \lambda) := \lambda_C(\mathbb{C}\phi).\]
\[(X, \lambda) \in \mathcal{M}_L, \lambda_C : H^2(X, \mathbb{C}) \sim \to L_{\mathbb{C}}; \text{ put } \wp(X, \lambda) := \lambda_C(\mathbb{C} \varphi).\]

\[\wp : \mathcal{M}_L \longrightarrow \mathbb{P}(L_{\mathbb{C}}) \text{ is the period map.}\]
(X, \lambda) \in M_L, \lambda_C : H^2(X, \mathbb{C}) \sim L_{\mathbb{C}}; \text{ put } \wp(X, \lambda) := \lambda_C(\mathbb{C}\varphi).

\wp : M_L \longrightarrow \mathbb{P}(L_{\mathbb{C}}) \text{ is the period map.}

Theorem

Let \(\Omega := \{ x \in \mathbb{P}(L_{\mathbb{C}}) \mid q(x) = 0 , q(x, \bar{x}) > 0 \} \).
The period package

\((X, \lambda) \in \mathcal{M}_L, \lambda_C : H^2(X, \mathbb{C}) \xrightarrow{\sim} L_{\mathbb{C}}; \text{ put } \wp(X, \lambda) := \lambda_C(\mathbb{C}\varphi).\)

\(\wp : \mathcal{M}_L \longrightarrow \mathbb{P}(L_{\mathbb{C}})\) is the period map.

Theorem

Let \(\Omega := \{x \in \mathbb{P}(L_{\mathbb{C}}) \mid q(x) = 0, q(x, \bar{x}) > 0\}.\)

1. \((AB)\) \(\wp\) is a local isomorphism \(\mathcal{M}_L \rightarrow \Omega.\)
(X, λ) ∈ M_L, λ_C : H^2(X, ℂ) → L_ℂ; put ϕ(X, λ) := λ_C(ℂϕ).

ϕ : M_L → ℙ(L_ℂ) is the period map.

Theorem

Let Ω := \{x ∈ ℙ(L_ℂ) | q(x) = 0 , q(x, ¯x) > 0\}.

1. (AB) ϕ is a local isomorphism M_L → Ω.

2. (Huybrechts) ϕ is surjective.
(X, λ) ∈ M_L, λ_C : H^2(X, C) → L_C; put φ(X, λ) := λ_C(\mathcal{C}φ).

φ : M_L → \mathbb{P}(L_C) is the period map.

Theorem

Let Ω := \{x ∈ \mathbb{P}(L_C) \mid q(x) = 0, q(x, \bar{x}) > 0\}.

1. **(AB)** φ is a local isomorphism M_L → Ω.
2. **(Huybrechts)** φ is surjective.
3. **(Verbitsky)** The restriction of φ to any connected component of M_L is generically injective.
The period package

\((X, \lambda) \in \mathcal{M}_L, \lambda_C : H^2(X, \mathbb{C}) \longrightarrow L_\mathbb{C}; \) put \(\wp(X, \lambda) := \lambda_C(\mathbb{C}\wp).\)

\(\wp : \mathcal{M}_L \longrightarrow \mathbb{P}(L_\mathbb{C})\) is the period map.

Theorem

Let \(\Omega := \{x \in \mathbb{P}(L_\mathbb{C}) \mid q(x) = 0, \ q(x, \bar{x}) > 0\}.\)

1. **(AB)** \(\wp\) is a local isomorphism \(\mathcal{M}_L \rightarrow \Omega.\)
2. **(Huybrechts)** \(\wp\) is surjective.
3. **(Verbitsky)** The restriction of \(\wp\) to any connected component of \(\mathcal{M}_L\) is generically injective.

Gives very precise information on the structure of \(\mathcal{M}_L\) and the geometry of \(X.\)
Completely integrable systems

Symplectic geometry provides a set-up for the differential equations of classical mechanics: M real symplectic manifold; ϕ defines $\phi^\sharp: T^* (M) \xrightarrow{\sim} T (M)$.

For h function on M, $X_h := \phi^\sharp (dh)$: hamiltonian vector field of h.

$X_h \cdot h = 0$, i.e. h constant along trajectories of X_h ("integral of motion").

$\dim (M) = 2^r$. $h: M \rightarrow \mathbb{R}^r$, $h = (h_1, \ldots, h_r)$. Suppose:

$h^{-1}(s)$ connected, smooth, compact, Lagrangian ($\phi|_{h^{-1}(s)} = 0$).

Arnold-Liouville theorem $h^{-1}(s) \sim \mathbb{R}^r / \text{lattice}$; X_{hi} tangent to $h^{-1}(s)$, constant on $h^{-1}(s)$.

\Rightarrow explicit solutions of the ODE X_{hi} (e.g. in terms of θ functions): "algebraically completely integrable system".

Classical examples: geodesics of the ellipsoid, Lagrange and Kovalevskaya tops, etc.

Arnaud Beauville

Holomorphic symplectic geometry
Completely integrable systems

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

\[M \text{ real symplectic manifold; } \phi \text{ defines } \phi^\#: T^* (M) \to T (M). \]

For \(h \) function on \(M \), \(X_h := \phi^\# (dh) \) hamiltonian vector field of \(h \).

\[X_h \cdot h = 0, \text{ i.e. } h \text{ constant along trajectories of } X_h \text{ ("integral of motion")}. \]

\[\dim (M) = 2r. \] \(h \): \(M \to \mathbb{R} \), \(h = (h_1, \ldots, h_r) \).

Suppose:

\[h^{-1} (s) \text{ connected, smooth, compact, Lagrangian (} \phi|_{h^{-1} (s)} = 0). \]

Arnold-Liouville theorem

\[h^{-1} (s) \sim = \mathbb{R}^r / \text{lattice}; X_{h_i} \text{ tangent to } h^{-1} (s), \text{ constant on } h^{-1} (s). \]

\[\Rightarrow \text{ explicit solutions of the ODE } X_{h_i}(e.g. \text{ in terms of } \theta \text{ functions): "algebraically completely integrable system".} \]

Classical examples: geodesics of the ellipsoid, Lagrange and Kovalevskaya tops, etc.
Completely integrable systems

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

M real symplectic manifold; φ defines $\varphi^\sharp : T^*(M) \simrightarrow T(M)$.

h function on M, $X_h := \varphi^\sharp (dh)$: hamiltonian vector field of h.

$X_h \cdot h = 0$, i.e. h constant along trajectories of X_h ("integral of motion").

$\dim(M) = 2\cdot r$.

$h : M \rightarrow \mathbb{R}$, $h = (h_1, \ldots, h_r)$.

Suppose:

$h^{-1}(s)$ connected, smooth, compact, Lagrangian ($\varphi|_{h^{-1}(s)} = 0$).

Arnold-Liouville theorem $h^{-1}(s) \sim = \mathbb{R}^r / \text{lattice}$; X_{h_i} tangent to $h^{-1}(s)$, constant on $h^{-1}(s)$.

\Rightarrow explicit solutions of the ODE X_{h_i} (e.g. in terms of θ functions):

"algebraically completely integrable system".

Classical examples: geodesics of the ellipsoid, Lagrange and Kovalevskaya tops, etc.

Arnaud Beauville

Holomorphic symplectic geometry
Symplectic geometry provides a set-up for the differential equations of classical mechanics:

- M, real symplectic manifold; φ defines $\varphi^\#: T^*(M) \sim \longrightarrow T(M)$.
- For h function on M, $X_h := \varphi^#(dh)$: hamiltonian vector field of h.

Arnold-Liouville theorem: $h^{-1}(s)$ connected, smooth, compact, Lagrangian ($\varphi|_{h^{-1}(s)} = 0$).

\Rightarrow explicit solutions of the ODE X_{h^i} tangent to $h^{-1}(s)$, constant on $h^{-1}(s)$.

Classical examples: geodesics of the ellipsoid, Lagrange and Kovalevskaya tops, etc.

Arnaud Beauville

Holomorphic symplectic geometry
Completely integrable systems

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

\(M \) real symplectic manifold; \(\varphi \) defines \(\varphi^\#: T^*(M) \sim T(M) \).

For \(h \) function on \(M \), \(X_h := \varphi^\#(dh) \): hamiltonian vector field of \(h \).

\(X_h \cdot h = 0 \), i.e. \(h \) constant along trajectories of \(X_h \)

(“integral of motion”)

Classical examples: geodesics of the ellipsoid, Lagrange and Kovalevskaya tops, etc.
Completely integrable systems

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

\(M \) real symplectic manifold; \(\varphi \) defines \(\varphi^\# : T^*(M) \sim \rightarrow T(M) \).

For \(h \) function on \(M \), \(X_h := \varphi^\#(dh) \): hamiltonian vector field of \(h \).

\(X_h \cdot h = 0 \), i.e. \(h \) constant along trajectories of \(X_h \)

(“integral of motion”)

\(\dim(M) = 2r \). \(h : M \rightarrow \mathbb{R}^r \), \(h = (h_1, \ldots, h_r) \). Suppose:

\(h^{-1}(s) \) connected, smooth, compact, Lagrangian \((\varphi|_{h^{-1}(s)} = 0) \).
Symplectic geometry provides a set-up for the differential equations of classical mechanics:

\[M \text{ real symplectic manifold; } \varphi \text{ defines } \varphi^\#: T^*(M) \supseteq T(M). \]

For \(h \) function on \(M \), \(X_h := \varphi^#(dh) \): hamiltonian vector field of \(h \).

\[X_h \cdot h = 0, \text{ i.e. } h \text{ constant along trajectories of } X_h \]

(“integral of motion”)

\[\dim(M) = 2r, \quad h : M \to \mathbb{R}^r, \quad h = (h_1, \ldots, h_r). \]

Suppose:

\(h^{-1}(s) \) connected, smooth, compact, Lagrangian \((\varphi|_{h^{-1}(s)} = 0) \).

Arnold-Liouville theorem

\(h^{-1}(s) \cong \mathbb{R}^r/\text{lattice}; \quad X_{h_i} \text{ tangent to } h^{-1}(s), \text{ constant on } h^{-1}(s). \)
Completely integrable systems

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

\(M \) real symplectic manifold; \(\varphi \) defines \(\varphi^\#: T^*(M) \sim T(M) \).

For \(h \) function on \(M \), \(X_h := \varphi^#(dh) \): hamiltonian vector field of \(h \).

\(X_h \cdot h = 0 \), i.e. \(h \) constant along trajectories of \(X_h \)

(“integral of motion”)

\(\dim(M) = 2r. h: M \to \mathbb{R}^r, h = (h_1, \ldots, h_r) \). Suppose:

\(h^{-1}(s) \) connected, smooth, compact, Lagrangian \((\varphi|_{h^{-1}(s)} = 0) \).

Arnold-Liouville theorem

\(h^{-1}(s) \cong \mathbb{R}^r/lattice; X_{h_i} \) tangent to \(h^{-1}(s) \), constant on \(h^{-1}(s) \).

\(\Rightarrow \) explicit solutions of the ODE \(X_{h_i} \) (e.g. in terms of \(\theta \) functions):

“algebraically completely integrable system”.
Completely integrable systems

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

M real symplectic manifold; φ defines $\varphi^\#: T^*(M) \sim \rightarrow T(M)$.

For h function on M, $X_h := \varphi^#(dh)$: hamiltonian vector field of h.

$X_h \cdot h = 0$, i.e. h constant along trajectories of X_h ("integral of motion")

$\dim(M) = 2r. \ h : M \rightarrow \mathbb{R}^r, \ h = (h_1, \ldots, h_r)$. Suppose:

$h^{-1}(s)$ connected, smooth, compact, Lagrangian ($\varphi|_{h^{-1}(s)} = 0$).

Arnold-Liouville theorem

$h^{-1}(s) \cong \mathbb{R}^r / \text{lattice}; \ X_{h_i}$ tangent to $h^{-1}(s)$, constant on $h^{-1}(s)$.

\leadsto explicit solutions of the ODE X_{h_i} (e.g. in terms of θ functions):

"algebraically completely integrable system". Classical examples:

geodesics of the ellipsoid, Lagrange and Kovalevskaya tops, etc.
Holomorphic set-up

No global functions \(\Rightarrow \) replace \(R \) by \(P \).

Definition

\(X \) holomorphic symplectic, \(\dim(X) = 2r \).

Lagrangian fibration:

\(h: X \to P^r \), general fiber connected Lagrangian.

\(\Rightarrow \) on \(h^{-1}(C^r) \to C^r \), Arnold-Liouville situation.

Theorem

\(f: X \to B \) surjective with connected fibers

1. \(h \) is a Lagrangian fibration (Matsushita);
2. If \(X \) projective, \(B \sim = P^r \) (Hwang).

Is there a simple characterization of Lagrangian fibration?

Conjecture

\(\exists X \) such that \(P^r \) Lagrangian \(\iff \exists L \) on \(X \), \(q(c_1(L)) = 0 \).

Arnaud Beauville

Holomorphic symplectic geometry
Holomorphic set-up

No global functions \rightsquigarrow replace \mathbb{R}^r by \mathbb{P}^r.

Definition

X holomorphic symplectic, $\dim(X) = 2^r$. Lagrangian fibration: $\varphi : X \to \mathbb{P}^r$, general fiber connected Lagrangian.

\Rightarrow on $\varphi^{-1}(C^r) \to C^r$, Arnold-Liouville situation.

Theorem

$f : X \to B$ surjective with connected fibers \Rightarrow

1. φ is a Lagrangian fibration (Matsushita);
2. If X projective, $B \cong P^r$ (Hwang).

Is there a simple characterization of Lagrangian fibration?

Conjecture

$\exists X \overset{99K}{\cong} P^r$ Lagrangian $\iff \exists L$ on X, $q(c_1(L)) = 0$.

Arnaud Beauville

Holomorphic symplectic geometry
Holomorphic set-up

No global functions \(\rightsquigarrow\) replace \(\mathbb{R}^r\) by \(\mathbb{P}^r\).

Definition

\(X\) holomorphic symplectic, \(\dim(X) = 2r\). **Lagrangian fibration:**
\(h : X \to \mathbb{P}^r\), general fiber connected Lagrangian.
Holomorphic set-up

No global functions \(\leadsto \) replace \(\mathbb{R}^r \) by \(\mathbb{P}^r \).

Definition

\(X \) holomorphic symplectic, \(\dim(X) = 2r \). Lagrangian fibration:

\(h : X \to \mathbb{P}^r \), general fiber connected Lagrangian.

\(\Rightarrow \) on \(h^{-1}(\mathbb{C}^r) \to \mathbb{C}^r \), Arnold-Liouville situation.
Holomorphic set-up

No global functions \leadsto replace \mathbb{R}^r by \mathbb{P}^r.

Definition

X holomorphic symplectic, $\dim(X) = 2r$. Lagrangian fibration:

$h : X \to \mathbb{P}^r$, general fiber connected Lagrangian.

\Rightarrow on $h^{-1}(\mathbb{C}^r) \to \mathbb{C}^r$, Arnold-Liouville situation.

Theorem

$f : X \to B$ surjective with connected fibers \Rightarrow
Holomorphic set-up

No global functions \leadsto replace \mathbb{R}^r by \mathbb{P}^r.

Definition

X holomorphic symplectic, $\text{dim}(X) = 2r$. **Lagrangian fibration:**

$h : X \to \mathbb{P}^r$, general fiber connected Lagrangian.

\Rightarrow on $h^{-1}(\mathbb{C}^r) \to \mathbb{C}^r$, Arnold-Liouville situation.

Theorem

$f : X \to B$ surjective with connected fibers \Rightarrow

1. h is a Lagrangian fibration (Matsushita);
Holomorphic set-up

No global functions \leadsto replace \mathbb{R}^r by \mathbb{P}^r.

Definition

X holomorphic symplectic, $\dim(X) = 2r$. Lagrangian fibration:

$h : X \to \mathbb{P}^r$, general fiber connected Lagrangian.

\Rightarrow on $h^{-1}(\mathbb{C}^r) \to \mathbb{C}^r$, Arnold-Liouville situation.

Theorem

$f : X \to B$ surjective with connected fibers \Rightarrow

1. h is a Lagrangian fibration (Matsushita);
2. If X projective, $B \cong \mathbb{P}^r$ (Hwang).
Holomorphic set-up

No global functions \leadsto replace \mathbb{R}^r by \mathbb{P}^r.

Definition

X holomorphic symplectic, $\dim(X) = 2r$. Lagrangian fibration: $h : X \to \mathbb{P}^r$, general fiber connected Lagrangian.

\Rightarrow on $h^{-1}(\mathbb{C}^r) \to \mathbb{C}^r$, Arnold-Liouville situation.

Theorem

$f : X \to B$ surjective with connected fibers \Rightarrow

1. h is a Lagrangian fibration (Matsushita);
2. If X projective, $B \cong \mathbb{P}^r$ (Hwang).

Is there a simple characterization of Lagrangian fibration?

Conjecture

$\exists X \dashrightarrow \mathbb{P}^r$ Lagrangian $\iff \exists L$ on X, $q(c_1(L)) = 0$.
An example

Many examples of such systems. Here is one:

\[S \subset P^5 \] given by

\[P = Q = R = 0, \]

\(P, Q, R \) quadratic \(\Rightarrow S \subset K^3. \)

\[\Pi = \{ \text{quadrics} \supset S \} = \{ \lambda P + \mu Q + \nu R \} \sim P^2. \]

\(\Pi^* = \text{dual projective plane} = \{ \text{pencils of quadrics} \supset S \}. \)

\[h: S^2 \to \Pi^*: h((x, y)) = \{ \text{quadrics of } \Pi \supset \langle x, y \rangle \}. \]

By the theorem, \(h \) is a Lagrangian fibration \(\Rightarrow h^{-1}(\langle P, Q \rangle) = \{ \text{lines} \subset \{ P = Q = 0 \} \subset P^5 \} \sim 2\text{-dim'l complex torus}, \) a classical result of Kummer.
Many examples of such systems. Here is one:

\[S \subset P^5 \]

Given by

\[P = Q = R = 0, \]

where \(P, Q, R \) are quadratic.

\[\Pi = \{ \text{quadrics} \supset S \} = \{ \lambda P + \mu Q + \nu R \} \sim P^2 \]

\[\Pi^* = \text{dual projective plane} = \{ \text{pencils of quadrics} \supset S \} \]

\[h: S[2] \to \Pi^* : h(\langle x, y \rangle) = \{ \text{quadrics of } \Pi \supset \langle x, y \rangle \} \]

By the theorem, \(h^{-1}(\langle P, Q \rangle) = \{ \text{lines} \subset \{ P = Q = 0 \} \subset P^5 \} \sim 2\text{-dim'l complex torus} \), a classical result of Kummer.
Many examples of such systems. Here is one:

\[S \subset \mathbb{P}^5 \text{ given by } P = Q = R = 0, \ P, Q, R \text{ quadratic } \Rightarrow S \text{ K3.} \]
Many examples of such systems. Here is one:

$S \subset \mathbb{P}^5$ given by $P = Q = R = 0$, P, Q, R quadratic $\Rightarrow S$ K3.

$$\Pi = \{\text{quadrics } \supset S\} = \{\lambda P + \mu Q + \nu R\} \cong \mathbb{P}^2$$
An example

Many examples of such systems. Here is one:

\(S \subset \mathbb{P}^5 \) given by \(P = Q = R = 0, \ P, Q, R \) quadratic \(\Rightarrow \ S \) K3.

\[\Pi = \{ \text{quadrics } \supset S \} = \{ \lambda P + \mu Q + \nu R \} \cong \mathbb{P}^2 \]

\(\Pi^* = \) dual projective plane \(= \{ \text{pencils of quadrics } \supset S \} \).
Many examples of such systems. Here is one:

$S \subset \mathbb{P}^5$ given by $P = Q = R = 0$, P, Q, R quadratic $\Rightarrow S$ K3.

$$\Pi = \{\text{quadrics } \supset S\} = \{\lambda P + \mu Q + \nu R\} \cong \mathbb{P}^2$$

$$\Pi^* = \text{dual projective plane} = \{\text{pencils of quadrics } \supset S\}.$$

$$h : S^{[2]} \to \Pi^* : h(x, y) = \{\text{quadrics of } \Pi \supset \langle x, y \rangle\}.$$
Many examples of such systems. Here is one:

$S \subset \mathbb{P}^5$ given by $P = Q = R = 0$, P, Q, R quadratic $\Rightarrow S$ K3.

$$\Pi = \{\text{quadrics } \supset S\} = \{\lambda P + \mu Q + \nu R\} \cong \mathbb{P}^2$$

$\Pi^* =$ dual projective plane $= \{\text{pencils of quadrics } \supset S\}$.

$$h : S^{[2]} \to \Pi^* : \quad h(x, y) = \{\text{quadrics of } \Pi \supset \langle x, y \rangle\}.$$

By the theorem, h Lagrangian fibration \Rightarrow
Many examples of such systems. Here is one:

Let $S \subset \mathbb{P}^5$ be given by $P = Q = R = 0$, P, Q, R quadratic $\Rightarrow S$ K3.

$$\Pi = \{\text{quadrics } \supset S\} = \{\lambda P + \mu Q + \nu R\} \cong \mathbb{P}^2$$

$$\Pi^* = \text{dual projective plane } = \{\text{pencils of quadrics } \supset S\}.$$

$$h : S^{[2]} \to \Pi^* : h(x, y) = \{\text{quadrics of } \Pi \supset \langle x, y \rangle\}.$$

By the theorem, h Lagrangian fibration \Rightarrow

$$h^{-1}(\langle P, Q \rangle) = \{\text{lines } \subset \{P = Q = 0\} \subset \mathbb{P}^5\} \cong 2\text{-dim'l complex torus},$$
Many examples of such systems. Here is one:

\[S \subset \mathbb{P}^5 \text{ given by } P = Q = R = 0, \ P, Q, R \text{ quadratic } \Rightarrow \ S \text{ K3.} \]

\[\Pi = \{ \text{quadrics } \supset S\} = \{ \lambda P + \mu Q + \nu R \} \cong \mathbb{P}^2 \]

\[\Pi^* = \text{dual projective plane } = \{ \text{pencils of quadrics } \supset S\}. \]

\[h : S^{[2]} \to \Pi^* : h(x, y) = \{ \text{quadrics of } \Pi \supset \langle x, y \rangle \}. \]

By the theorem, \(h \) Lagrangian fibration \(\Rightarrow \)

\[h^{-1}(\langle P, Q \rangle) = \{ \text{lines } \subset \{ P = Q = 0 \} \subset \mathbb{P}^5 \} \cong 2\text{-dim'}l \text{ complex torus,} \]

a classical result of Kummer.
II. Contact geometry

What about odd dimensions?

Definition

A contact form on a manifold X is a 1-form η such that:

\[
\ker \eta(x) = H_x \lhd T_x (X) \quad \text{and} \quad d\eta|_{H_x} \text{non-degenerate} \quad \forall x \in X;
\]

\iff locally $\eta = dt + p_1 dq_1 + \ldots + p_r dq_r$.

A contact structure on X is a family $H_x \lhd T_x (X) \quad \forall x \in X$, defined locally by a contact form.

Again the definition makes sense in the holomorphic set-up \Rightarrow holomorphic contact manifold. We will be looking for projective contact manifolds.
What about odd dimensions?
What about odd dimensions?

Definition

A **contact form** on a manifold X is a 1-form η such that:

$\text{Ker}(\eta)(x) = H_x \subseteq T_x(X)$ and $d\eta|_{H_x}$ non-degenerate $\forall x \in X$; \iff locally $\eta = dt + p_1 dq_1 + \ldots + p_r dq_r$.

A **contact structure** on X is a family $H_x \subseteq T_x(X) \forall x \in X$, defined locally by a contact form.

Again the definition makes sense in the holomorphic set-up \Rightarrow **holomorphic contact manifold**. We will be looking for **projective contact manifolds**.
II. Contact geometry

What about odd dimensions?

Definition

A **contact form** on a manifold X is a 1-form η such that:

- $\text{Ker}\ \eta(x) = H_x \not\subset T_x(X)$ and $d\eta|_{H_x}$ non-degenerate $\forall x \in X$;
II. Contact geometry

What about odd dimensions?

Definition

A contact form on a manifold X is a 1-form η such that:

1. $\text{Ker} \, \eta(x) = H_x \not\subset T_x(X)$ and $d\eta|_{H_x}$ non-degenerate $\forall x \in X$;

2. locally $\eta = dt + p_1 dq_1 + \ldots + p_r dq_r$.
What about odd dimensions?

Definition

A contact form on a manifold X is a 1-form η such that:

- $\text{Ker } \eta(x) = H_x \subsetneq T_x(X)$ and $d\eta|_{H_x}$ non-degenerate $\forall x \in X$;
- \iff locally $\eta = dt + p_1 dq_1 + \ldots + p_r dq_r$.

- A contact structure on X is a family $H_x \subsetneq T_x(X)$ $\forall x \in X$, defined locally by a contact form.
II. Contact geometry

What about odd dimensions?

Definition

A **contact form** on a manifold X is a 1-form η such that:

- $\text{Ker} \eta(x) = H_x \subsetneq T_x(X)$ and $d\eta|_{H_x}$ non-degenerate $\forall x \in X$;
- \iff locally $\eta = dt + p_1dq_1 + \ldots + p_rdq_r$.

- A **contact structure** on X is a family $H_x \subsetneq T_x(X) \forall x \in X$, defined locally by a contact form.

Again the definition makes sense in the holomorphic set-up \rightsquigarrow **holomorphic contact manifold**. We will be looking for **projective** contact manifolds.
Examples

Examples of contact projective manifolds $P^* (M)$ for every projective manifold M. "contact elements".

g a simple Lie algebra; $O_{min} \subset P(g)$ unique closed adjoint orbit. (example: rank 1 matrices in $P(slr)$).

Conjecture These are the only contact projective manifolds. (⇒ classical conjecture in Riemannian geometry: classification of compact quaternion-Kähler manifolds (LeBrun, Salamon)).
Examples

Examples of contact projective manifolds

1. $\mathbb{P} T^*(M)$ for every projective manifold M ($\{ (m, H) | H \subset T_m(M) \}$: "contact elements")

2. $g_{\text{simple Lie algebra}}$; $O_{\text{min}} \subset \mathbb{P}(g)$ unique closed adjoint orbit. (example: rank 1 matrices in $\mathbb{P}(\mathfrak{sl}_r)$.)

Conjecture

These are the only contact projective manifolds. (\Rightarrow classical conjecture in Riemannian geometry: classification of compact quaternion-Kähler manifolds (LeBrun, Salamon).)
Examples of contact projective manifolds

1. $\mathbb{P} T^*(M)$ for every projective manifold M
Examples of contact projective manifolds

1. $\mathbb{P} T^*(M)$ for every projective manifold M

 ($= \{(m, H) \mid H \subset T_m(M)\}$: “contact elements”);
Examples

Examples of contact projective manifolds

1. $\mathbb{P}T^*(M)$ for every projective manifold M
 $\left(= \{(m, H) \mid H \subset T_m(M)\}: \text{“contact elements”}\right)$;

2. \mathfrak{g} simple Lie algebra; $O_{\text{min}} \subset \mathbb{P}(\mathfrak{g})$ unique closed adjoint orbit.

Conjecture

These are the only contact projective manifolds.

\Rightarrow classical conjecture in Riemannian geometry: classification of compact quaternion-Kähler manifolds (LeBrun, Salamon).
Examples of contact projective manifolds

1. $\mathbb{P} T^*(M)$ for every projective manifold M

 ($= \{(m, H) \mid H \subset T_m(M)\}$: “contact elements”);

2. \mathfrak{g} simple Lie algebra; $O_{\text{min}} \subset \mathbb{P}(\mathfrak{g})$ unique closed adjoint orbit.
 (example: rank 1 matrices in $\mathbb{P}(\mathfrak{sl}_r)$.)
Examples of contact projective manifolds

1. \(\mathbb{P} T^*(M) \) for every projective manifold \(M \)

\(= \{(m, H) \mid H \subset T_m(M)\} \): “contact elements”;

2. \(g \) simple Lie algebra; \(O_{min} \subset \mathbb{P}(g) \) unique closed adjoint orbit.

(example: rank 1 matrices in \(\mathbb{P}(\mathfrak{sI}_r) \).)

Conjecture

These are the only contact projective manifolds.

(⇒ classical conjecture in Riemannian geometry: classification of compact quaternion-Kähler manifolds (LeBrun, Salamon).)

Arnaud Beauville Holomorphic symplectic geometry
Examples of contact projective manifolds

1. $\mathbb{P} T^*(M)$ for every projective manifold M

 \[= \{(m, H) \mid H \subset T_m(M)\} \text{: “contact elements”}; \]

2. \mathfrak{g} simple Lie algebra; $\mathcal{O}_{min} \subset \mathbb{P}(\mathfrak{g})$ unique closed adjoint orbit.

 (example: rank 1 matrices in $\mathbb{P}(\mathfrak{sl}_r)$.)

Conjecture

These are the only contact projective manifolds.
Examples

Examples of contact projective manifolds

1. $\mathbb{P}T^*(M)$ for every projective manifold M

 \[= \{ (m, H) \mid H \subset T_m(M) \}: \text{“contact elements”}; \]

2. \mathfrak{g} simple Lie algebra; $O_{\text{min}} \subset \mathbb{P}(\mathfrak{g})$ unique closed adjoint orbit.

 (example: rank 1 matrices in $\mathbb{P}(\mathfrak{sl}_r)$.)

Conjecture

These are the only contact projective manifolds.

(\Rightarrow classical conjecture in Riemannian geometry:)
Examples of contact projective manifolds

1. $\mathbb{P} T^* (M)$ for every projective manifold M

 \[\{ (m, H) \mid H \subset T_m(M) \} : \text{“contact elements”} \];

2. \mathfrak{g} simple Lie algebra; $O_{\min} \subset \mathbb{P}(\mathfrak{g})$ unique closed adjoint orbit.

 (example: rank 1 matrices in $\mathbb{P}(\mathfrak{sl}_r)$.)

Conjecture

These are the only contact projective manifolds.

(\Rightarrow classical conjecture in Riemannian geometry: classification of compact quaternion-Kähler manifolds (LeBrun, Salamon).)
Partial results

Definition: A projective manifold X is Fano if K_X is negative, i.e., K_X^N has "enough sections" for $N \gg 0$.

X is a contact manifold; let $L := T(X) / H$ be a line bundle; then $K_X \sim L - k$ with $k = \frac{1}{2} (\dim(X) + 1)$.

Thus X is Fano $\iff L^N$ has enough sections for $N \gg 0$.

Theorem 1: If X is not Fano, then $X \sim \mathbb{P} T^* (M)$ (Kebekus, Peternell, Sommese, Wiśniewski + Demailly).

2. X is Fano and L^N has "enough sections" $\implies Z \sim \mathbb{O}_{\text{min}} \subset \mathbb{P}(g)$ (AB).

Arnaud Beauville
Holomorphic symplectic geometry
Definition: A projective manifold X is **Fano** if K_X negative, i.e.

$$K_X \sim L - k$$

with $k = \frac{1}{2} (\dim(X) + 1)$. Thus

$$X \text{ Fano} \iff L \text{ has enough sections for } N \gg 0.$$
Definition: A projective manifold X is Fano if K_X negative, i.e. K_X^{-N} has “enough sections” for $N \gg 0$.
Definition: A projective manifold X is **Fano** if K_X negative, i.e. K_X^{-N} has “enough sections” for $N \gg 0$.

X contact manifold; $L := T(X)/H$ line bundle; then $K_X \cong L^{-k}$ with $k = \frac{1}{2}(\dim(X) + 1)$.

Theorem 1

- If X is not Fano, $X \sim \mathbb{P}^{T^* M}$ (Kebekus, Peternell, Sommese, Wiśniewski + Demailly)
- X Fano and L has “enough sections” $\Rightarrow Z \sim \mathbb{O}_{\min} \subset \mathbb{P}(g)$ (AB)
Definition: A projective manifold X is Fano if K_X negative, i.e. K_X^{-N} has “enough sections” for $N \gg 0$.

X contact manifold; $L := T(X)/H$ line bundle; then $K_X \cong L^{-k}$ with $k = \frac{1}{2}(\dim(X) + 1)$. Thus X Fano $\iff L^N$ has enough sections for $N \gg 0$.

Definition: A projective manifold X is Fano if K_X negative, i.e. K_X^{-N} has “enough sections” for $N \gg 0$.

X contact manifold; $L := T(X)/H$ line bundle; then $K_X \cong L^{-k}$ with $k = \frac{1}{2}(\dim(X) + 1)$. Thus X Fano $\iff L^N$ has enough sections for $N \gg 0$.

Theorem

If X is not Fano, $X \sim P \mathbb{T}^\ast(M)$ (Kebekus, Peternell, Sommese, Wiśniewski + Demailly)

X Fano and L has “enough sections” $\implies Z \sim O_{\min} \subset P(g)$ (AB)

Arnaud Beauville

Holomorphic symplectic geometry
Definition : A projective manifold X is Fano if K_X negative, i.e. K_X^{-N} has “enough sections” for $N \gg 0$.

X contact manifold; $L := T(X)/H$ line bundle; then $K_X \cong L^{-k}$ with $k = \frac{1}{2}(\dim(X) + 1)$. Thus X Fano $\iff L^N$ has enough sections for $N \gg 0$.

Theorem

1. If X is not Fano, $X \cong \mathbb{P} T^\ast (M)$
 (Kebekus, Peternell, Sommese, Wiśniewski + Demailly)
Definition: A projective manifold X is Fano if K_X negative, i.e. K_X^{-N} has “enough sections” for $N \gg 0$.

X contact manifold; $L := T(X)/H$ line bundle; then $K_X \cong L^{-k}$ with $k = \frac{1}{2}(\dim(X) + 1)$. Thus X Fano $\iff L^N$ has enough sections for $N \gg 0$.

Theorem

1. If X is not Fano, $X \cong \mathbb{P}T^*(M)$
 (Kebekus, Peternell, Sommese, Wiśniewski + Demailly)

2. X Fano and L has “enough sections” $\Rightarrow Z \cong \mathcal{O}_{\text{min}} \subset \mathbb{P}(g)$
 (AB)
III. Poisson manifolds

Few symplectic or contact manifolds ⇝ look for weaker structure.

ϕ symplectic ⇝ ϕ♯:
T(X) → T∗(X) ⇝ τ ∈ ∧²T(X) ⇝ (f, g) ↦ → {f, g} := ⟨τ, df ∧ dg⟩ for f, g functions on U ⊂ X.

Fact: dϕ = 0 ⇐⇒ Lie algebra structure (Jacobi identity).

Definition Poisson structure on X: bivector field τ: x ↦ → τ(x) ∈ ∧²T_x(X), such that (f, g) ↦ → {f, g} Lie algebra structure. Again this makes sense for X complex manifold, τ holomorphic.

Arnaud Beauville

Holomorphic symplectic geometry
III. Poisson manifolds

Few symplectic or contact manifolds \rightsquigarrow look for weaker structure.
III. Poisson manifolds

Few symplectic or contact manifolds \(\rightsquigarrow \) look for weaker structure.

\(\phi \) symplectic \(\rightsquigarrow \) \(\phi^\# : T(X) \xrightarrow{\sim} T^*(X) \rightsquigarrow \tau \in \wedge^2 T(X) \rightsquigarrow \)

\((f, g) \mapsto \{f, g\} := \langle \tau, df \wedge dg \rangle \) for \(f, g \) functions on \(U \subset X \).

Fact: \(d\phi = 0 \iff \) Lie algebra structure (Jacobi identity).

Definition Poisson structure on \(X \): bivector field \(\tau : x \mapsto \tau(x) \in \wedge^2 T_x(X) \), such that \((f, g) \mapsto \{f, g\} \) Lie algebra structure.

Again this makes sense for \(X \) complex manifold, \(\tau \) holomorphic.
Few symplectic or contact manifolds \leadsto look for weaker structure.

\[\varphi \text{ symplectic} \leadsto \varphi^\#: T(X) \xrightarrow{\sim} T^*(X) \leadsto \tau \in \wedge^2 T(X) \leadsto \]

\[(f, g) \mapsto \{f, g\} := \langle \tau, df \wedge dg \rangle \text{ for } f, g \text{ functions on } U \subset X . \]
III. Poisson manifolds

Few symplectic or contact manifolds $\xrightarrow{\sim}$ look for weaker structure.

φ symplectic $\xrightarrow{\sim}$ $\varphi^\#: T(X) \xrightarrow{\sim} T^*(X) \xrightarrow{\sim} \tau \in \wedge^2 T(X) \xrightarrow{\sim}$

$$(f, g) \mapsto \{f, g\} := \langle \tau, df \wedge dg \rangle$$ for f, g functions on $U \subset X$.

Fact: $d\varphi = 0 \iff$ Lie algebra structure (Jacobi identity).
Few symplectic or contact manifolds look for weaker structure.

ϕ symplectic $\leadsto \varphi^\#: T(X) \xrightarrow{\sim} T^*(X) \leadsto \tau \in \wedge^2 T(X) \leadsto$

$\{f, g\} \mapsto \{f, g\} := \langle \tau, df \wedge dg \rangle$ for f, g functions on $U \subset X$.

Fact: $d\varphi = 0 \iff$ Lie algebra structure (Jacobi identity).

Definition

Poisson structure on X: bivector field $\tau : x \mapsto \tau(x) \in \wedge^2 T_x(X)$, such that $\{f, g\} \mapsto \{f, g\}$ Lie algebra structure.
Few symplectic or contact manifolds look for weaker structure.

\[\varphi \text{ symplectic } \Rightarrow \varphi^\# : T(X) \sim T^*(X) \sim \tau \in \wedge^2 T(X) \sim \]

\[(f, g) \mapsto \{f, g\} := \langle \tau, df \wedge dg \rangle \text{ for } f, g \text{ functions on } U \subset X. \]

Fact: \(d\varphi = 0 \iff \text{Lie algebra structure (Jacobi identity)}. \)

Definition

Poisson structure on \(X \): bivector field \(\tau : x \mapsto \tau(x) \in \wedge^2 T_x(X) \), such that \((f, g) \mapsto \{f, g\} \) Lie algebra structure.

Again this makes sense for \(X \) complex manifold, \(\tau \) holomorphic.
Examples

1. $\dim(X) = 2$: any global section of $\wedge^2 T(X) = K^{-1}X$ is Poisson.

2. $\dim(X) = 3$: wedge product $\wedge^2 T(X) \otimes T(X) \rightarrow K^{-1}X$ gives $\wedge^2 T(X) \sim \rightarrow \Omega^1 X \otimes K^{-1}X$. Then $\alpha \in H^0(\Omega^1 X \otimes K^{-1}X)$ is Poisson $\iff \alpha \wedge d\alpha = 0 \iff$ locally $\alpha = \text{fdg}$.

3. On P^3, P, Q quadratic $\Rightarrow \alpha = PdQ - QdP \in \Omega^1 P^3(4) = \Omega^1 P^3 \otimes K^{-1}P^3$ Poisson.

4. A holomorphic symplectic manifold is Poisson.

5. If X is Poisson, any $X \times Y$ is Poisson.
Examples

1. \(\dim(X) = 2 \): any global section of \(\wedge^2 T(X) = K^{-1} \) is Poisson.

2. \(\dim(X) = 3 \): wedge product \(\wedge^2 T(X) \otimes T(X) \to K^{-1} \) gives \(\wedge^2 T(X) \sim \to \Omega^1 X \otimes K^{-1} X \). Then \(\alpha \in H^0(\Omega^1 X \otimes K^{-1} X) \) is Poisson if and only if \(\alpha \wedge d\alpha = 0 \) locally.

3. On \(P^3 \), any \(\alpha = PdQ - QdP \in \Omega^1 P^3(4) = \Omega^1 P^3 \otimes K^{-1} P^3 \) is Poisson.

4. A holomorphic symplectic manifold is Poisson.

5. If \(X \) is Poisson, any \(X \times Y \) is Poisson.
Examples

1. \(\dim(X) = 2 \): any global section of \(\wedge^2 T(X) = K_X^{-1} \) is Poisson.
Examples

1. \(\dim(X) = 2 \): any global section of \(\wedge^2 T(X) = K_X^{-1} \) is Poisson.

2. \(\dim(X) = 3 \); wedge product \(\wedge^2 T(X) \otimes T(X) \to K_X^{-1} \) gives \(\wedge^2 T(X) \sim \Omega_X^1 \otimes K_X^{-1} \). Then \(\alpha \in H^0(\Omega_X^1 \otimes K_X^{-1}) \) is Poisson \(\iff \alpha \wedge d\alpha = 0 \iff \text{locally } \alpha = fdg. \)
Examples

1. \(\dim(X) = 2 \): any global section of \(\wedge^2 T(X) = K_X^{-1} \) is Poisson.

2. \(\dim(X) = 3 \); wedge product \(\wedge^2 T(X) \otimes T(X) \to K_X^{-1} \) gives
 \(\wedge^2 T(X) \xrightarrow{\sim} \Omega_X^1 \otimes K_X^{-1} \). Then \(\alpha \in H^0(\Omega_X^1 \otimes K_X^{-1}) \) is Poisson
 \(\iff \alpha \wedge d\alpha = 0 \iff \text{locally } \alpha = f dg \).

3. On \(\mathbb{P}^3 \), \(P, Q \) quadratic
 \(\sim \alpha = PdQ - QdP \in \Omega_{\mathbb{P}^3}^1(4) = \Omega_{\mathbb{P}^3}^1 \otimes K_{\mathbb{P}^3}^{-1} \) Poisson.
Examples

1. $\dim(X) = 2$: any global section of $\wedge^2 T(X) = K_X^{-1}$ is Poisson.

2. $\dim(X) = 3$; wedge product $\wedge^2 T(X) \otimes T(X) \to K_X^{-1}$ gives $\wedge^2 T(X) \stackrel{\sim}{\to} \Omega^1_X \otimes K_X^{-1}$. Then $\alpha \in H^0(\Omega^1_X \otimes K_X^{-1})$ is Poisson $\iff \alpha \wedge d\alpha = 0 \iff$ locally $\alpha = fdg$.

3. On \mathbb{P}^3, P, Q quadratic

 $\sim \quad \alpha = PdQ - QdP \in \Omega^1_{\mathbb{P}^3}(4) = \Omega^1_{\mathbb{P}^3} \otimes K_{\mathbb{P}^3}^{-1}$ Poisson.

4. A holomorphic symplectic manifold is Poisson.
Examples

1. $\dim(X) = 2$: any global section of $\wedge^2 T(X) = K_X^{-1}$ is Poisson.

2. $\dim(X) = 3$; wedge product $\wedge^2 T(X) \otimes T(X) \to K_X^{-1}$ gives $\wedge^2 T(X) \sim \Omega^1_X \otimes K_X^{-1}$. Then $\alpha \in H^0(\Omega^1_X \otimes K_X^{-1})$ is Poisson $\iff \alpha \wedge d\alpha = 0 \iff$ locally $\alpha = f dg$.

3. On \mathbb{P}^3, P, Q quadratic
 \[\sim \alpha = PdQ - QdP \in \Omega^1_{\mathbb{P}^3}(4) = \Omega^1_{\mathbb{P}^3} \otimes K_{\mathbb{P}^3}^{-1} \text{ Poisson.} \]

4. A holomorphic symplectic manifold is Poisson.

5. If X is Poisson, any $X \times Y$ is Poisson.
The Bondal conjecture

τ Poisson, $x \in X$. $\tau_x : T^* x (X) \to T x (X)$ skew-symmetric, rk even.

$X_r := \{ x \in X | \text{rk}(\tau_x) = r \}$ (r even)

$X = \bigsqcup X_r$

Proposition

If $X_r \neq \emptyset$, $\dim X_r \geq r$.

Proof:

X_r is a Poisson submanifold, i.e. at a smooth $x \in X_r$

$\tau_x \in \wedge^2 T x (X_r) \subset \wedge^2 T x (X) = \Rightarrow \text{rk}(\tau_x) \leq \dim X_r$.

Conjecture (Bondal)

X compact Poisson manifold, $X_r \neq \emptyset \Rightarrow \dim X_r > r$.

Example:

$X_0 = \{ x \in X | \tau_x = 0 \}$ contains a curve.

(e.g.: on \mathbb{P}^3, $P dQ - Q dP$ vanishes on the curve $P = Q = 0$.)
The Bondal conjecture

\[\tau \text{ Poisson, } x \in X. \quad \tau_x : T^*_x(X) \to T_x(X) \text{ skew-symmetric, rk even.} \]
The Bondal conjecture

τ Poisson, $x \in X$. $\tau_x : T^*_x(X) \to T_x(X)$ skew-symmetric, rk even.

$$X_r := \{ x \in X \mid \text{rk}(\tau_x) = r \} \quad (r \text{ even}) \quad X = \bigsqcup X_r$$
The Bondal conjecture

τ Poisson, $x \in X$. $\tau_x : T^*_x(X) \to T_x(X)$ skew-symmetric, rk even.

$$X_r := \{ x \in X \mid \text{rk}(\tau_x) = r \} \quad (r \text{ even}) \quad X = \bigsqcup X_r$$

Proposition

If $X_r \neq \emptyset$, dim $X_r \geq r$.

Arnaud Beauville
Holomorphic symplectic geometry
The Bondal conjecture

\(\tau \) Poisson, \(x \in X \). \(\tau_x : T^*_x(X) \to T_x(X) \) skew-symmetric, \(\text{rk even} \).

\[X_r := \{ x \in X \mid \text{rk}(\tau_x) = r \} \quad (r \text{ even}) \quad X = \bigsqcup X_r \]

Proposition

If \(X_r \neq \emptyset \), \(\dim X_r \geq r \).

Proof: \(X_r \) is a Poisson submanifold, i.e. at a smooth \(x \in X_r \)
\[
\tau_x \in \wedge^2 T_x(X_r) \subset \wedge^2 T_x(X)
\]
The Bondal conjecture

\(\tau\) Poisson, \(x \in X\). \(\tau_x : T^*_x(X) \to T_x(X)\) skew-symmetric, \(\text{rk}\) even.

\[X_r := \{x \in X \mid \text{rk}(\tau_x) = r\} \quad (r \text{ even}) \quad X = \bigsqcup X_r \]

Proposition

If \(X_r \neq \emptyset\), \(\dim X_r \geq r\).

Proof: \(X_r\) is a Poisson submanifold, i.e. at a smooth \(x \in X_r\)

\[\tau_x \in \wedge^2 T_x(X_r) \subset \wedge^2 T_x(X) \quad \implies \quad \text{rk}(\tau_x) \leq \dim X_r. \]
The Bondal conjecture

τ Poisson, $x \in X$. $\tau_x : T^*_x(X) \to T_x(X)$ skew-symmetric, rk even.

$X_r := \{x \in X \mid \text{rk}(\tau_x) = r\}$ (r even) \quad X = \bigsqcup X_r$

Proposition

If $X_r \neq \emptyset$, $\dim X_r \geq r$.

Proof: X_r is a Poisson submanifold, i.e. at a smooth $x \in X_r$,

$\tau_x \in \wedge^2 T_x(X_r) \subset \wedge^2 T_x(X) \implies \text{rk}(\tau_x) \leq \dim X_r$.

Conjecture (Bondal)

X compact Poisson manifold, $X_r \neq \emptyset \implies \dim X_r > r$.

Arnaud Beauville
Holomorphic symplectic geometry
The Bondal conjecture

\(\tau \) Poisson, \(x \in X \). \(\tau_x : T^*_x(X) \to T_x(X) \) skew-symmetric, \(\text{rk even} \).

\[X_r := \{ x \in X \mid \text{rk}(\tau_x) = r \} \quad (r \text{ even}) \quad X = \bigsqcup X_r \]

Proposition

If \(X_r \neq \emptyset \), \(\dim X_r \geq r \).

Proof: \(X_r \) is a Poisson submanifold, i.e. at a smooth \(x \in X_r \)

\[\tau_x \in \bigwedge^2 T_x(X_r) \subset \bigwedge^2 T_x(X) \implies \text{rk}(\tau_x) \leq \dim X_r. \]

Conjecture (Bondal)

\(X \) compact Poisson manifold, \(X_r \neq \emptyset \) \(\implies \) \(\dim X_r > r \).

Example: \(X_0 = \{ x \in X \mid \tau_x = 0 \} \) contains a curve.
The Bondal conjecture

\[\tau \text{ Poisson, } x \in X. \, \tau_x : T_x^*(X) \to T_x(X) \text{ skew-symmetric, } \text{rk even.} \]

\[X_r := \{ x \in X \mid \text{rk}(\tau_x) = r \} \quad (r \text{ even}) \quad X = \bigsqcup X_r \]

Proposition

If \(X_r \neq \emptyset \), \(\dim X_r \geq r \).

Proof: \(X_r \) is a Poisson submanifold, i.e. at a smooth \(x \in X_r \)
\[\tau_x \in \wedge^2 T_x(X_r) \subset \wedge^2 T_x(X) \implies \text{rk}(\tau_x) \leq \dim X_r. \]

Conjecture (Bondal)

\(X \) compact Poisson manifold, \(X_r \neq \emptyset \) \(\Rightarrow \) \(\dim X_r > r \).

Example: \(X_0 = \{ x \in X \mid \tau_x = 0 \} \) contains a curve.

(e.g.: on \(\mathbb{P}^3 \), \(PdQ - QdP \) vanishes on the curve \(P = Q = 0 \).)
Some evidence

The Bondal conjecture 2

Some evidence

Proposition (Polishchuk) τ Poisson on \mathbb{P}^3, vanishes along smooth curve C. Then C elliptic, $\deg(C) = 3$ or 4; if $= 4$, $\tau = PdQ - QdP$ and C: $P = Q = 0$.
Some evidence

1. True for X projective threefold (Druel: $X_0 = \emptyset$ or dim ≥ 1).
Some evidence

1. True for X projective threefold (Druel: $X_0 = \emptyset$ or dim ≥ 1).

2. $\text{rk}(\tau_x) = r$ for x general \Rightarrow true for X_{r-2} if $c_1(X)^q \neq 0$, $q = \dim X - r + 1$.

THE END
Some evidence

1. True for X projective threefold (Druel: $X_0 = \emptyset$ or $\dim \geq 1$).

2. $\text{rk}(\tau_x) = r$ for x general \Rightarrow true for X_{r-2} if $c_1(X)^q \neq 0$, $q = \dim X - r + 1$.

Proposition (Polishchuk)

τ Poisson on \mathbb{P}^3, vanishes along smooth curve C. Then C elliptic, $\deg(C) = 3$ or 4;
Some evidence

1. True for X projective threefold (Druel: $X_0 = \emptyset$ or $\dim \geq 1$).

2. $\text{rk}(\tau_x) = r$ for x general \Rightarrow true for X_{r-2} if $c_1(X)^q \neq 0$, $q = \dim X - r + 1$.

Proposition (Polishchuk)

τ Poisson on \mathbb{P}^3, vanishes along *smooth* curve C. Then C elliptic, $\deg(C) = 3$ or 4; if $= 4$, $\tau = PdQ - QdP$ and $C : P = Q = 0$.
Some evidence

1. True for X projective threefold (Druel: $X_0 = \emptyset$ or $\dim \geq 1$).

2. $\text{rk}(\tau_x) = r$ for x general \Rightarrow true for X_{r-2} if $c_1(X)^q \neq 0,$ $q = \dim X - r + 1.$

Proposition (Polishchuk)

τ Poisson on \mathbb{P}^3, vanishes along smooth curve C. Then C elliptic, $\deg(C) = 3$ or 4; if $= 4$, $\tau = PdQ - QdP$ and $C : P = Q = 0.$

THE END