The algebra of symmetric tensors

Arnaud Beauville

Université Côte d'Azur

(Joint work with Jie Liu)

The algebra S(X)

Setup: X smooth projective_{|C}, dim X = n.

 $T^*X:=$ cotangent bundle, $\mathbb{P}T^*X:=(T^*X\smallsetminus 0_X)/\mathbb{C}^*.$

$$S(X) := \bigoplus_{p \geqslant 0} H^0(X, \mathsf{S}^p T_X) = \mathcal{O}(T^*X) = \bigoplus_{p \geqslant 0} H^0(\mathbb{P}T^*X, \mathcal{O}_{\mathbb{P}T^*X}(p))$$

Graded \mathbb{C} -algebra (+ Poisson structure: Lie bracket on $H^0(T_X)$ extends to S(X) (Schouten bracket)).

Much less studied than $\bigoplus H^0(S^p\Omega^1_X)$. Plan:

- 1. Examples
- 2. Bound on dim S(X).

Example 1: \mathbb{P}^n

Proposition

$$S(\mathbb{P}(V)) = \bigoplus (\mathsf{S}^p V \otimes \mathsf{S}^p V^*)/(\mathsf{Id}_V), \ \ \mathsf{Id}_V \in \mathsf{End}(V) \cong V \otimes V^*.$$

In coordinates:
$$S(\mathbb{P}^n) = \mathbb{C}[x_0y_0, \dots, x_iy_j, \dots, x_ny_n]/(\sum x_iy_i).$$

Proof:
$$\mathbb{P}T^*\mathbb{P} = \mathcal{I} \subset \mathbb{P} \times \mathbb{P}^*$$
, $\mathcal{I} = \{(x, H) \mid x \in H\}$, defined by

$$\operatorname{Id}_V \in H^0(\mathbb{P},\mathcal{O}_\mathbb{P}(1)) \otimes H^0(\mathbb{P}^*,\mathcal{O}_{\mathbb{P}^*}(1)) = V^* \otimes V,$$

with
$$\mathcal{O}_{\mathbb{P}\mathcal{T}^*\mathbb{P}}(1) = \left(\mathcal{O}_{\mathbb{P}}(1)\boxtimes\mathcal{O}_{\mathbb{P}^*}(1)\right)_{|\mathcal{I}}$$
 .

$$\implies S(\mathbb{P}(V)) = \bigoplus \left(H^0(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(p)) \otimes H^0(\mathbb{P}^*, \mathcal{O}_{\mathbb{P}^*}(p))\right) / \langle \operatorname{Id}_V \rangle. \quad \blacksquare$$

Example 2: the quadric

 $Q \subset \mathbb{P}(V)$ smooth, given by q = 0, $q : \mathsf{S}^2V \to \mathbb{C}$ non-degenerate.

Consider $\mathbb{G}(2, V) \subset \mathbb{P}(\bigwedge^2 V)$, homogeneous ideal $\mathbb{J}_{\mathbb{G}}$.

Proposition

$$S(Q) = \text{Pol}(\bigwedge^2 V)/\langle \mathfrak{I}_{\mathbb{G}}, \wedge^2 q \rangle.$$

Proof: $\mathbb{P}T^*Q = \{(x, P) \mid P \text{ hyperplane in } \mathbb{P}T_x(Q), x \in P\}.$

Gauss map: $\gamma: \mathbb{P}T^*Q \to \mathbb{G} := \mathbb{G}(n, V) \cong \mathbb{G}(2, V), (x, P) \mapsto P.$

 $T := \operatorname{Im} \gamma = \{ P \in \mathbb{G} \text{ tangent to } Q \} \text{ given by } \wedge^2 q = 0 \text{ in } \mathbb{P}(\bigwedge^2 V).$

For $P \in T$, $\gamma^{-1}(P) = \{(x, P) \mid P \text{ tangent to } Q \text{ at } x\}$. Either :

- $\gamma^{-1}(P) = \{(x, P)\}$ for $P \in T$ general, or
- (ℓ, P) if P tangent along ℓ line: $P \in T_1 \subset T$ smooth of codim 2.
- $\implies \gamma = \text{blow-up of } T \text{ along } T_1.$

The quadric (continued)

To summarize:

$$\gamma: \mathbb{P} T^*Q \xrightarrow{\text{blow-up}} T \subset \mathbb{G} \subset \mathbb{P}(\bigwedge^2 V), \quad T: \wedge^2 q = 0.$$

Claim: $\gamma^* \mathcal{O}_T(1) = \mathcal{O}_{\mathbb{P}T^*Q}(1)$.

$$\implies H^0(T,\mathcal{O}_T(p)) \stackrel{\sim}{\longrightarrow} H^0(\mathcal{O}_{\mathbb{P}T^*Q}(p)) = H^0(Q,\mathsf{S}^pT_Q), \text{ hence}$$

$$S(Q) = \text{homogeneous ideal of } T = \text{Pol}(\bigwedge^2 V)/\langle \mathfrak{I}_{\mathbb{G}}, \wedge^2 q \rangle.$$

Remark: Other proof applies more generally to homogeneous varieties, using the moment map. Then $\bigwedge^2 V$ appears as $\mathfrak{so}(V)$.

Example 3: Two quadrics

$$X = Q_1 \cap Q_2 \subset \mathbb{P}^{n+2}, n \geqslant 2.$$

Theorem (A. Etesse, A. Höring, J. Liu, C. Voisin, —)

- $\bullet: T^*X \xrightarrow{(x_i)} \mathbb{C}^n$ Lagrangian fibration.
- **3** For X general, λ general in \mathbb{C}^n , $\Phi^{-1}(\lambda) \cong A \setminus Z$, A explicit abelian variety, codim $Z \geqslant 2$.
- \bigcirc means that Φ defines an algebraically completely integrable system (ACIS) I will say a few words below. This is a rather exceptional situation. There are a handful of such systems that have been extensively studied classically: geodesics of the ellipsoid, Lagrange, Euler, and Kovalevskaya tops.

Interlude: ACIS

In the hamiltonian formulation, a mechanical system on a symplectic manifold M is governed by a function $h \in \mathcal{O}(M)$ (usually the total energy of the system).

The evolution of the system is given by the flow of the vector field V_h on M corresponding to dh via the symplectic form.

Put dim M=2n. An ACIS on M is given by a map $\Phi:M\to\mathbb{C}^n$ satisfying 2 and 3.

Then ② implies that V_h is tangent to the fibers of Φ , and ③ that its restriction to a fiber $A \setminus Z$ extends to a vector field on A. Thus if $A = \mathbb{C}^n/\Lambda$, the flow of V_h is just the projection of a linear flow $t \mapsto t \mathbf{v}$ on \mathbb{C}^n .

To describe the evolution of the system, it remains to go back from A to T^*X , usually using theta functions.

Example 4: the Hitchin fibration

To my knowledge, the only other known examples of ACIS on T^*X are given by the **Hitchin fibration**.

 $C := \text{curve of genus } g \geqslant 2.$

 $\mathcal{M}:=$ moduli space of rank r, degree d stable vector bundles on C, (r,d)=1. \mathcal{M} smooth projective.

$$T_{E}(\mathcal{M}) = H^{1}(\mathcal{E}nd(E)) \overset{\mathsf{Serre}}{\Longrightarrow} T_{E}^{*}(\mathcal{M}) = H^{0}(\mathcal{E}nd(E)) \otimes K).$$

$$a_{i}: H^{0}(\mathcal{E}nd(E) \otimes K) \xrightarrow{\wedge^{i}} H^{0}(\mathcal{E}nd(\bigwedge^{i} E) \otimes K^{i}) \xrightarrow{\mathsf{Tr}} H^{0}(K^{i})$$

$$\Phi: T^{*}\mathcal{M} \xrightarrow{(a_{i})} V := \bigoplus_{i=1}^{r} H^{0}(K^{i})$$

Hitchin fibration

$\mathsf{Theorem}$

- $\Phi: T^*\mathfrak{M} \xrightarrow{(a_i)} V := \bigoplus_{i=1}^r H^0(K^i)$ is an ACIS. More precisely:

 - Φ is a Lagrangian fibration;
 - **3** For $\lambda \in V$ general, $\Phi^{-1}(\lambda) = J \setminus Z$, J Jacobian, $codimZ \ge 2$.
- (2) and $\Phi^{-1}(\lambda) \stackrel{open}{\subset} J$ due to Hitchin.

 $T^*\mathcal{M} \subset \mathcal{H}$ (stable **Higgs bundles**), Φ extends to $\bar{\Phi}: \mathcal{H} \to V$ proper, $\bar{\Phi}^{-1}(\lambda) = J$ and $\operatorname{codim}(\mathcal{H} \setminus T^*\mathcal{M}) \geqslant 2 \implies \boxed{3} \implies \boxed{1}$.

Remarks: Same for \mathfrak{M}_L (det(E) = L), or \mathfrak{M}_p (parabolic bundles).

• For g=r=2, d=1, $\mathcal{M}_{I}\cong Q_{1}\cap Q_{2}\subset \mathbb{P}^{5}$ \longleftrightarrow Example 3.

Example 5: Ruled surfaces

 $C := \text{curve of genus } g \geqslant 2.$

E stable rank 2 bundle, det $E = \mathcal{O}_C$, $X = \mathbb{P}(E)$.

Lemma

$$H^0(X, S^pT_X) \cong H^0(C, S^{2p}E)$$

Idea: $T_{X/C} = \mathcal{O}_{\mathbb{P}(E)}(2) \to T_X$ induces isomorphism on $H^0(S^p)$.

Corollary

For E general, $S(\mathbb{P}(E)) = \mathbb{C}$.

Example: $\rho : \pi_1(C) \twoheadrightarrow G \subset SU(2,\mathbb{C})$, G finite \mathbb{C}^2 irreducibly.

 $\leadsto E_{\rho}$ stable, det $E = \mathcal{O}_C$. Then

$$S(X) = \bigoplus H^0(S^{2p}E) = \mathbb{C}[u,v]^G = \mathcal{O}(\mathbb{C}^2/G)$$
.

e.g.
$$G = \tilde{\mathfrak{A}}_5 \implies S(X) = \mathbb{C}[x, y, z]/(x^2 + y^3 + z^5).$$

Cases with $S(X) = \mathbb{C}$

Theorem

 $S(X) = \mathbb{C}$ when:

- $c_1(X) = 0$ and $\pi_1(X)$ finite (Kobayashi, using Yau's theorem);
- 2 X of general type (Höring-Peternell)
- **3** *X* hypersurface of degree ≥ 3 (Höring-Liu-Shao).

The Krull dimension of S(X)

Recall: for a line bundle L on Y, the **litaka dimension** is

$$\kappa(L) := \max_{p} \left[\dim \operatorname{Im} \varphi_{L^{p}} \right], \text{ where } \varphi_{L^{p}} : Y \stackrel{|L^{p}|}{--} \to \mathbb{P}^{N_{p}}.$$

In particular, $\kappa(K_Y) =: \kappa(Y)$, the **Kodaira dimension** of Y.

Proposition

Put
$$S(L) := \bigoplus_{p \geqslant 0} H^0(Y, L^p)$$
. If $S(L) \neq \mathbb{C}$, dim $S(L) = 1 + \kappa(L)$.

In particular: if $S(X) \neq \mathbb{C}$, dim $S(X) = 1 + \kappa(\mathcal{O}_{\mathbb{P}T*X}(1))$.

Hence: $0 \leqslant \dim S(X) \leqslant 2n$; $\dim S(X) = 0 \iff S(X) = \mathbb{C}$.

 $\dim S(X) = 2n \iff \mathcal{O}_{\mathbb{P}T^*X}(1) \text{ big} \stackrel{\mathsf{def}}{\iff} \mathcal{T}_X \text{ big. Holds for } X \text{ toric,}$

homogeneous,...

$\dim S(X) \leqslant n - \kappa(X)$

$\mathsf{Theorem}$

$$\dim S(X) \leqslant n - \kappa(X)$$

Equality $\iff A \times Y \xrightarrow{\text{\'etale}} X$, A abelian, Y of general type.

Equality case: dim $S(X) + \kappa(X) = n$ holds for

- A abelian: $S(A) = \mathbb{C}[x_1, \dots, x_n]$, dim S(A) = n, $\kappa(A) = 0$;
- Y of general type: dim S(Y) = 0, $\kappa(Y) = n$;
- $X = A \times Y$: $S(A \times Y) = S(A) \otimes S(Y) = S(A) \Longrightarrow$ $\dim S(A \times Y) = \dim A$, and $\kappa(A \times Y) = \kappa(Y) = \dim Y$.
- For $X \to Y$ étale, dim $S(X) = \dim S(Y)$, $\kappa(X) = \kappa(Y)$ (Ueno).

$\dim S(X) \leq n - \kappa(X)$: sketch of proof

The proof uses a deep result of Höring, Peternell, Pereira, Touzet:

$\mathsf{Theorem}$

Assume $S(X) \neq \mathbb{C}$, $\kappa(X) \geqslant 0$. Fix a polarization. Then $T_X = F \oplus G$, where

- $F = \bigoplus F_i$ with F_i stable, $c_1(F_i) = 0$, and $(\det F)^{\otimes N} = \mathcal{O}_X$.
- ② G is "negative" (in a precise sense).

Put
$$S(F) := \bigoplus H^0(X, S^p F)$$
. 2 implies $S(X) = S(F)$.

$$F_i$$
 stable $\implies h^0(F_i) \leqslant 1 \Rightarrow h^0(F) \leqslant \operatorname{rk} F =: r$. Apply to S^pF :

$$h^0(S^pF) \leqslant \operatorname{rk} S^pF = h^0(S^p\mathcal{O}_X^r) \iff \dim S(F) \leqslant \dim S(\mathcal{O}_X^r) = r.$$

Passing to étale cover, may assume $\det F = \mathcal{O}_X \iff \det G^* = \mathcal{K}_X$.

$$G^* \hookrightarrow \Omega^1_X \implies K_X = \det G^* \hookrightarrow \Omega^{n-r}_X.$$

$$\kappa(X) \leq n - r$$
 (Bogomolov), hence dim $S(X) + \kappa(X) \leq n$.

Some questions

Q1. Is the \mathbb{C} -algebra S(X) finitely generated?

(No reason, but no counter-example.)

- $S(X) \neq \mathbb{C} \iff c_1(\mathcal{O}_{\mathbb{P}T^*X}(1)) \in \mathsf{Eff} \subset H^2(X,\mathbb{R}).$
- T_X pseudo-effective if $c_1(\mathcal{O}_{\mathbb{P}T^*X}(1)) \in \overline{\mathsf{Eff}} \subset H^2(X,\mathbb{R})$.
- **Q2.** Does T_X pseudo-effective imply $S(X) \neq \mathbb{C}$?
- **Q3.** Does T_X pseudo-effective and $\pi_1(X) = 0$ imply X uniruled?

We have a proof (of a more general statement) for dim $X \leq 5$.

THE END