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The algebra S(X)

Setup: X smooth projectiveic, dim X = n.
T*X := cotangent bundle, PT*X := (T*X \ 0x)/C*.

= @ H(X,SPTx) = O(T*X) = P H*PT*X, Opr=x(p))

p=0 p=0

Graded C-algebra (+ Poisson structure: Lie bracket on H%(Tx)
extends to S(X) (Schouten bracket)).

Much less studied than @ H°(SPQ5). Plan:
1. Examples

2. Bound on dim S(X).
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Example 1. P"

Proposition
S(P(V)) =@ (SPV®SPV*)/(Idy), Idy € End(V) = V® V*.

In coordinates: S(P") = C[X0Y0; - - - s Xi¥js - - - » XnYn]/ (X Xi¥i)-

Proof: PT*P =7 c P x P* T = {(x,H)|x € H}, defined by
Idy € HO(P, Op(1)) ® HO(P*, Op«(1)) = V*® V,

with Oprsp(1) = (Op(1) Op*(l))lz.

= S(P(V)) = @ (H°(P, Op(p)) ® H*(B*, Ops(p))) /{Idv). W
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Example 2: the quadric

Q < P(V) smooth, given by g = 0, g : 5>V — C non-degenerate.
Consider G(2, V) « P(A? V), homogeneous ideal .

Proposition

5(Q) = Pol(A* V)/{g, A%q).

Proof: PT*Q = {(x, P)| P hyperplane in PT,(Q),x € P}.

Gauss map: 7:PT*Q — G :=G(n, V) =2 G(2,V), (x,P) — P.
T :=Im~ = {P € G tangent to Q} given by A2q = 0 in P(A? V).
For Pe T, v~Y(P) = {(x, P)| P tangent to Q at x}. Either :

® v Y(P)={(x,P)} for Pe T general, or

® (¢, P) if P tangent along ¢ line: P € Ty © T smooth of codim 2.
— ~ = blow-up of T along Tj.
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The quadric (continued)

To summarize :
; 2
V:PT*Q—bIOW—uP> TCGCIF’(/\ V), T:A%g=0.

Claim: ’)/*OT(].) = OPT*Q(I)-

— HO(T OT( )) — HO(O]}»T*Q( )) = O(Q SPTQ), hence
S(Q) = homogeneous ideal of T = Pol /\2 V/{g, A%q). W

Remark : Other proof applies more generally to homogeneous

varieties, using the moment map. Then /\2 V appears as so(V).
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Example 3: Two quadrics

X=@Q nQcPt2 n=2

Theorem (A. Etesse, A. Horing, J. Liu, C. Voisin, —)

QO S(X) =5 Clx1,...,x%n], degx; = 2.

Q@ b:T*X ﬂ» C" Lagrangian fibration.

© For X general, \ general in C", CD_I()\) =~ AN Z, A explicit

abelian variety, codim Z > 2.

(3) means that ® defines an algebraically completely integrable
system (ACIS) — | will say a few words below. This is a rather
exceptional situation. There are a handful of such systems that
have been extensively studied classically: geodesics of the ellipsoid,

Lagrange, Euler, and Kovalevskaya tops.
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Interlude: ACIS

In the hamiltonian formulation, a mechanical system on a symplec-
tic manifold M is governed by a function h € O(M) (usually the
total energy of the system).

The evolution of the system is given by the flow of the vector field
Vi, on M corresponding to dh via the symplectic form.

Put dim M = 2n. An ACIS on M is given by a map & : M — C"
satisfying (2) and (3).

Then (2) implies that V}, is tangent to the fibers of ®, and (3) that
its restriction to a fiber A~ Z extends to a vector field on A. Thus
if A= C"/A, the flow of V, is just the projection of a linear flow

t — tv on C".

To describe the evolution of the system, it remains to go back
from A to T*X, usually using theta functions.
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Example 4: the Hitchin fibration

To my knowledge, the only other known examples of ACIS on

T*X are given by the Hitchin fibration.
C := curve of genus g > 2.

M := moduli space of rank r, degree d stable vector bundles on C,

(r,d) =1. M smooth projective.
Te(M) = HY(End(E)) 2 TE(M) = HO(End(E)) @ K).

ai s H(End(E) ® K) 21> HO(End( A E) @ K') T HO(K')

o TM -2 v o= @, HOK)
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Hitchin fibration

o T*M - v @!_; H°(K") is an ACIS. More precisely:

Q@ o*: Pol(V) = O(T*M) = S(M);

@ & is a Lagrangian fibration;
© For A € V general, Cb_l()\) = J~ Z, J Jacobian, codimZ > 2.

open

(2 and ®71(\) ‘= J due to Hitchin.

T*M °E" 3¢ (stable Higgs bundles), ® extends to & : H — V
proper, ®~1(\) = J and codim(H ~ T*M) =2 — 3) — (1.

Remarks : Same for M, (det(E) = L), or M, (parabolic bundles).
® Forg=r=2,d=1, M~ Q1 n Q< P v Example 3.
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Example 5: Ruled surfaces

C := curve of genus g = 2.
E stable rank 2 bundle, det E = O¢, X = P(E).

HO(X,SPTx) =~ H°(C,S?PE)

Idea: Tx,c = Op(g)(2) — Tx induces isomorphism on H°(SP). W

For E general, S(P(E)) = C.

Example: p: m(C) - G < SU(2,C), G finite —~ C? irreducibly.
v E, stable, det E = Oc¢. Then

S(X) = P H(S*E) = C[u,v]® = O(C?/G).
eg. G=UAs — S(X) =C[x,y,z]/(x*+ y3 + 2%).



Cases with S(X) = C

S(X) = C when:
Q i (X) =0 and 71(X) finite (Kobayashi, using Yau's theorem);

@ X of general type (Héring-Peternell)
© X hypersurface of degree > 3 (Horing-Liu-Shao).
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The Krull dimension of S(X)

Recall: for a line bundle L on Y, the litaka dimension is
[LP]
#(L) := max[dimIm @s], where ©pp: Y —— — PN,
P

In particular, kx(Ky) =: k(Y), the Kodaira dimension of Y.

Proposition

Put S(L) := @ HO(Y,LP). If S(L) # C, dimS(L) = 1 + s(L).
p=0

In particular: if S(X) # C, dimS(X) =1+ k(Op7xx(1)).
Hence: 0 < dimS(X) < 2n; dimS(X) =0 < S(X) =C.
dim S(X) = 2n <= Oprex(1) big <= Ty big. Holds for X toric,

homogeneous,...

Arnaud Beauville The algebra of symmetric tensors



dim S(X) < n — k(X)

dim S(X) < n — K(X)

Equality < Ax Y fE/e—»

X, A abelian, Y of general type.

Equality case : dim S(X) + x(X) = n holds for

® A abelian: S(A) = C[x1,...,%a],dimS(A) = n,k(A) = 0;

® Y of general type: dimS(Y) =0, x(Y) = n;

e X=AxY:SAxY)=5A)RS(Y)=S5A) =
dimS(Ax Y)=dmA, and k(Ax Y) =k(Y)=dimY.

® For X — Y étale, dim S(X) = dim S(Y), k(X) = k(Y) (Ueno).
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dim S(X) < n— k(X): sketch of proof

The proof uses a deep result of Horing, Peternell, Pereira, Touzet:

Assume S(X) # C, k(X) = 0. Fix a polarization. Then
Tx = F® G, where
@ F = @ F; with F; stable, c;(F;) = 0, and (det F)®N = Ox.

@ G is “negative” (in a precise sense).

Put S(F) := @ H°(X,SPF). (2) implies S(X) = S(F).

F; stable = h°(F;) <1 = h%(F) < rk F =: r. Apply to SPF:

hO(SPF) < rkSPF = hO(SPO%) v dim S(F) < dim S(O%) = r

Passing to étale cover, may assume det F = Ox v det G* = K.
G* %Qk = Kx =detG* — Q3.

k(X) < n—r (Bogomolov), hence dim S(X) + k(X)) <n. W



Some questions

Q1. Is the C-algebra S(X) finitely generated?

(No reason, but no counter-example.)

® S(X) #C <= c1(Opr=x(1)) € Eff = H?*(X,R).

® Tx pseudo-effective if c;(Oprx(1)) € Eff € H?(X,R).
Q2. Does Tx pseudo-effective imply S(X) # C?
Q3. Does Tx pseudo-effective and 71 (X) = 0 imply X uniruled?

We have a proof (of a more general statement) for dim X < 5.

THE END

Arnaud Beauville The algebra of symmetric tensors



