The action of SL_2 on abelian varieties

Arnaud Beauville

Université de Nice

Bar Ilan, May 2008
$\text{SL}_2 \rightarrow \text{Aut}(A)$

Interest: Corr(A) acts on functorial invariants of A: $H^*(A)$, $\text{CH}(A)$, ..., hence action of SL_2 on these spaces.

On $H^*(A)$: classical action of SL_2 \iff Hard Lefschetz.

On $\text{CH}(A)$: gives a twisted version of Hard Lefschetz.

Note: Action of SL_2 on $\text{CH}(A)$ already known (K"unnemann, Polishchuk).

Arnaud Beauville

The action of SL_2 on abelian varieties
Synopsis

$\text{SL}_2 \hookrightarrow \text{Aut}(A) \cap \text{Corr}(A)$

Interest: $\text{Corr}(A)$ acts on functorial invariants of A: $H^*(A), \text{CH}(A), ...$, hence action of SL_2 on these spaces.

On $H^*(A)$: classical action of SL_2 \Rightarrow Hard Lefschetz.

On $\text{CH}(A)$: gives a twisted version of Hard Lefschetz.

Note: Action of SL_2 on $\text{CH}(A)$ already known (Künnemann, Polishchuk).

Arnaud Beauville

The action of SL_2 on abelian varieties
Interest: $\text{Corr}(A)$ acts on functorial invariants of A: $H^*(A)$, $CH(A)$, ... , hence action of SL_2 on these spaces.
Interest: $\text{Corr}(A)$ acts on functorial invariants of A: $H^*(A)$, $CH(A)$, ..., hence action of SL_2 on these spaces.

On $H^*(A)$: classical action of $\text{SL}_2 \leftrightarrow$ Hard Lefschetz.
Interest: Corr\((A)\) acts on functorial invariants of \(A\): \(H^\ast(A)\), \(CH(A)\), …, hence action of \(\text{SL}_2\) on these spaces.

On \(H^\ast(A)\): classical action of \(\text{SL}_2 \iff \) Hard Lefschetz.

On \(CH(A)\): gives a twisted version of Hard Lefschetz.
Interest: \(\text{Corr}(A) \) acts on functorial invariants of \(A \): \(H^*(A) \), \(CH(A) \), ... , hence action of \(\text{SL}_2 \) on these spaces.

On \(H^*(A) \): classical action of \(\text{SL}_2 \) \(\Longleftrightarrow \) Hard Lefschetz.

On \(CH(A) \): gives a twisted version of Hard Lefschetz.

Note: Action of \(\text{SL}_2 \) on \(CH(A) \) already known (K"unnemann, Polishchuk).
Reminder on cycles and correspondences

\[CH(A) := \left\{ \sum_i n_i Z_i \mid n_i \in \mathbb{Q} \right\} \text{ / rational equivalence} \]
Reminder on cycles and correspondences

\[CH(A) := \{ \sum_{i} n_i Z_i \mid n_i \in \mathbb{Q} \} / \text{rational equivalence} \]

Infinite-dimensional \(\mathbb{Q} \)-vector space, rather poorly understood.
Reminder on cycles and correspondences

\[CH(A) := \left\{ \sum_i n_i Z_i \mid n_i \in \mathbb{Q} \right\} / \text{rational equivalence} \]

Infinite-dimensional \(\mathbb{Q} \)-vector space, rather poorly understood.

\[\text{Corr}(A) := CH(A \times A), \text{ with } \mathbb{Q} \text{-algebra structure given by} \]

composition \((\alpha, \beta) \mapsto \alpha \circ \beta\) such that

\[\Gamma_u \circ \Gamma_v = \Gamma_{u \circ v} \quad \text{for} \quad u, v \in \text{Aut}(A) . \]
Reminder on cycles and correspondences

\[CH(A) := \left\{ \sum_i n_i Z_i \mid n_i \in \mathbb{Q} \right\} / \text{rational equivalence} \]

Infinite-dimensional \(\mathbb{Q} \)-vector space, rather poorly understood.

\[\text{Corr}(A) := CH(A \times A), \text{ with } \mathbb{Q} \text{-algebra structure given by} \]

composition \((\alpha, \beta) \mapsto \alpha \circ \beta\) such that

\[\Gamma_{u \circ v} = \Gamma_u \circ \Gamma_v \quad \text{for} \quad u, v \in \text{Aut}(A). \]

Action of \(\text{Corr}(A) \) on \(CH(A) \): for \(\alpha \in \text{Corr}(A), z \in CH(A) \):

\[\alpha_z := q_*(p^* z \cdot \alpha) \]
Main theorem: \(\text{SL}_2 \rightarrow \text{Corr}(A)^* \rightarrow \text{Aut}_Q(CH(A)). \)
Main theorem: $\text{SL}_2 \rightarrow \text{Corr}(A)^* \rightarrow \text{Aut}_Q(CH(A))$.

I will concentrate on $\text{SL}_2 \rightarrow \text{Aut}_Q(CH(A))$. Slight refinement of the proof gives the map $\text{SL}_2 \rightarrow \text{Corr}(A)^*$.
Some history: Mukai

Mukai (1981): action of $SL_2(\mathbb{Z})$ on $D(A)$ “up to shift”.

Arnaud Beauville

The action of SL_2 on abelian varieties
Mukai (1981): action of $SL_2(\mathbb{Z})$ on $D(A)$ “up to shift”.

$D(A) = (\text{bounded})$ derived category of A
Mukai (1981): action of $SL_2(\mathbb{Z})$ on $D(A)$ “up to shift”.

$D(A)$ = (bounded) derived category of A

= an extension $\text{Coh}(A) \subset D(A)$
Mukai (1981): action of $SL_2(\mathbb{Z})$ on $D(A)$ “up to shift”.

$D(A) = \text{(bounded) derived category of } A$

$= \text{an extension } Coh(A) \subset D(A)$

not abelian, but notion of exact functors; all classical functors f_\ast, f^\ast, \otimes become exact.
Mukai (1981): action of $SL_2(\mathbb{Z})$ on $D(A)$ “up to shift”.

$D(A) = (\text{bounded})$ derived category of A

$= \text{an extension } \text{Coh}(A) \subset D(A)$

not abelian, but notion of exact functors; all classical functors f_*, f^*, \otimes become exact.

For $K \in \text{Ob } D(A \times A)$, define

$$K_*(-) = q_*(p^*(-) \otimes K)$$
Mukai (1981): action of $SL_2(\mathbb{Z})$ on $D(A)$ “up to shift”.

$D(A) = \text{(bounded) derived category of } A$

$= \text{an extension } \text{Coh}(A) \subset D(A)$

not abelian, but notion of exact functors; all classical functors f_*, f^*, \otimes become exact.

For $K \in \text{Ob } D(A \times A)$, define

$$K_*(-) = q_*(p^*(-) \otimes K)$$

$K_* = D(A) \rightarrow D(A)$ is the Fourier-Mukai functor associated to K.

Arnaud Beauville

The action of SL_2 on abelian varieties
We assume that A has a polarization, i.e. an ample line bundle L (defined up to translation). For simplicity we will assume that the polarization is principal: it defines an isomorphism $A \sim \hat{A}$.

Recall: $SL_2(\mathbb{Z})$ is generated by $w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $u = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ with the relations $w^2 = (uw)^3$, $w^4 = 1$.

Arnaud Beauville
We assume that A has a polarization, i.e. an ample line bundle L (defined up to translation). For simplicity we will assume that the polarization is principal: it defines an isomorphism $A \sim \hat{A}$.

In particular, we have a Poincaré line bundle \mathcal{P} on $A \times A$.

Recall: $\text{SL}_2(\mathbb{Z})$ is generated by $w = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$ and $u = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$ with the relations $w^2 = (uw)^3$, $w^4 = 1$.

Arnaud Beauville

The action of SL_2 on abelian varieties
We assume that A has a polarization, i.e. an ample line bundle L (defined up to translation). For simplicity we will assume that the polarization is principal: it defines an isomorphism $A \sim \hat{A}$.

In particular, we have a Poincaré line bundle \mathcal{P} on $A \times A$.

Mukai 1981: $\mathcal{P}^* : \mathcal{D}(A) \to \mathcal{D}(A)$ is an equivalence. Moreover:
We assume that A has a polarization, i.e. an ample line bundle L (defined up to translation). For simplicity we will assume that the polarization is principal: it defines an isomorphism $A \sim \hat{A}$.

In particular, we have a Poincaré line bundle \mathcal{P} on $A \times A$.

Mukai 1981: $\mathcal{P}_* : \mathcal{D}(A) \to \mathcal{D}(A)$ is an equivalence. Moreover:

$$\mathcal{P}^2 = (\mathcal{P}_* \circ (\otimes L))^3 = (-1_A)^*[-g] \quad (g = \dim A).$$
We assume that A has a polarization, i.e. an ample line bundle L (defined up to translation). For simplicity we will assume that the polarization is principal: it defines an isomorphism $A \sim \hat{A}$.

In particular, we have a Poincaré line bundle \mathcal{P} on $A \times A$.

Mukai 1981: $\mathcal{P}_* : \mathcal{D}(A) \rightarrow \mathcal{D}(A)$ is an equivalence. Moreover:

$$\mathcal{P}_*^2 = (\mathcal{P}_* \circ (\otimes L))^3 = (-1_A)^*[-g] \quad (g = \text{dim } A).$$

Recall: $SL_2(\mathbb{Z})$ is generated by

$$w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad u = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
We assume that A has a polarization, i.e. an ample line bundle L (defined up to translation). For simplicity we will assume that the polarization is principal: it defines an isomorphism $A \xrightarrow{\sim} \hat{A}$.

In particular, we have a Poincaré line bundle \mathcal{P} on $A \times A$.

Mukai 1981: $\mathcal{P}_* : \mathcal{D}(A) \to \mathcal{D}(A)$ is an equivalence. Moreover:

$$\mathcal{P}_*^2 = (\mathcal{P}_* \circ (\otimes L))^3 = (-1_A)^*[-g] \quad (g = \dim A).$$

Recall: $SL_2(\mathbb{Z})$ is generated by

$$w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad u = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

with the relations $w^2 = (uw)^3, w^4 = 1$.

Arnaud Beauville

The action of SL_2 on abelian varieties
A way of formulating Mukai’s observation:
A way of formulating Mukai’s observation:

Introduce $\widetilde{SL}_2(\mathbb{Z})$ generated by \tilde{w}, \tilde{u} with $\tilde{w}^2 = (\tilde{u}\tilde{w})^3 \overset{\text{def}}{=} z$:
A way of formulating Mukai’s observation:

Introduce $\widetilde{SL}_2(\mathbb{Z})$ generated by \tilde{w}, \tilde{u} with $\tilde{w}^2 = (\tilde{u}\tilde{w})^3 \overset{\text{def}}{=} z$:

Central extension: $0 \to \mathbb{Z} \cdot z^2 \to \widetilde{SL}_2(\mathbb{Z}) \to SL_2(\mathbb{Z}) \to 1$
A way of formulating Mukai’s observation:

Introduce $\tilde{SL}_2(\mathbb{Z})$ generated by \tilde{w}, \tilde{u} with $\tilde{w}^2 = (\tilde{u}\tilde{w})^3 \overset{\text{def}}{=} z$:

Central extension: $0 \rightarrow \mathbb{Z} \cdot z^2 \rightarrow \tilde{SL}_2(\mathbb{Z}) \rightarrow SL_2(\mathbb{Z}) \rightarrow 1$

$\tilde{SL}_2(\mathbb{Z}) = \text{trefoil knot group} = \text{braid group } B_3$
A way of formulating Mukai’s observation:

Introduce $\tilde{SL}_2(\mathbb{Z})$ generated by \tilde{w}, \tilde{u} with $\tilde{w}^2 = (\tilde{u}\tilde{w})^3 \overset{\text{def}}{=} z$:

Central extension: $0 \rightarrow \mathbb{Z} \cdot z^2 \rightarrow \tilde{SL}_2(\mathbb{Z}) \rightarrow SL_2(\mathbb{Z}) \rightarrow 1$

($\tilde{SL}_2(\mathbb{Z}) = \text{trefoil knot group} = \text{braid group } B_3$)

We have $\tilde{SL}_2(\mathbb{Z}) \rightarrow \text{Aut}(D(A))$ with

\[
\begin{cases}
 w \mapsto \mathcal{P}_* \\
 u \mapsto \bigotimes L
\end{cases}
\]
From $D(A)$ to $CH(A)$

The Chern character provides $\text{Aut}(D(A)) \to \text{Aut}_Q(CH(A))$:
The Chern character provides $\text{Aut}(D(A)) \to \text{Aut}_Q(CH(A))$:

$$
\begin{align*}
D(A) & \xrightarrow{p_*} D(A) \\
\text{ch} & \\
CH(A) & \xrightarrow{\mathcal{F}} CH(A)
\end{align*}
$$

$$
\begin{align*}
D(A) & \xrightarrow{\otimes L} D(A) \\
\text{ch} & \\
CH(A) & \xrightarrow{\cdot e^\theta} CH(A)
\end{align*}
$$

where $\theta = [L]$ in $CH^1(A)$. Since z^2 acts by an even shift:
From $D(A)$ to $CH(A)$

The Chern character provides $\text{Aut}(D(A)) \rightarrow \text{Aut}_Q(CH(A))$:

$$
\begin{array}{ccc}
D(A) & \xrightarrow{\mathcal{P}^*} & D(A) \\
\downarrow \text{ch} & & \downarrow \text{ch} \\
CH(A) & \xrightarrow{\mathcal{F}} & CH(A) \\
\end{array}
\quad \quad
\begin{array}{ccc}
D(A) & \xrightarrow{\otimes L} & D(A) \\
\downarrow \text{ch} & & \downarrow \text{ch} \\
CH(A) & \xrightarrow{\cdot e^\theta} & CH(A) \\
\end{array}
$$

where $\theta = [L]$ in $CH^1(A)$. Since z^2 acts by an even shift:

$$
\begin{array}{ccc}
\tilde{SL}_2(\mathbb{Z}) & \longrightarrow & \text{Aut}(D(A)) \\
\downarrow & & \downarrow \\
SL_2(\mathbb{Z}) & \xrightarrow{\tau} & \text{Aut}(CH(A)) \\
\end{array}
$$

with $\tau(w) = \mathcal{F}$, $\tau(u) = \times e^\theta$.
The action of $\text{SL}_2(\mathbb{Z})$ on $\text{CH}(A)$ extends to an action of SL_2, such that $\text{CH}(A)$ is a direct sum of finite-dimensional representations.

We have

$$
\begin{align*}
\begin{pmatrix} n & 0 \\ 0 & n^{-1} \end{pmatrix} \cdot z & = n^{-g} n_A^* z \\
\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot z & = \mathcal{F}(z) \\
\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \cdot z & = e^{a\theta} z \\
\begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \cdot z & = a^g e^{\theta/a} \ast z
\end{align*}
$$

Arnaud Beauville

The action of SL_2 on abelian varieties
Key point: description of SL_2 by generators and relations (Demazure, SGA 3).
Key point: description of SL_2 by generators and relations (Demazure, SGA 3).

\[T = \left\{ \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\} \quad U = \left\{ \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \right\} \quad B = \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\} \]
Key point: description of SL_2 by generators and relations (Demazure, SGA 3).

$$T = \left\{ \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\} \quad U = \left\{ \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \right\} \quad B = \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}$$

Lemma

H algebraic group over \mathbb{Q}.

Given

$$\begin{align*}
\tau &: \text{SL}_2(\mathbb{Z}) \to H(\mathbb{Q}) \\
\beta &: B \to H
\end{align*}$$

which coincide on $B(\mathbb{Z})$

and

$$\tau(w)\beta(t)\tau(w)^{-1} = \beta(t^{-1}) \text{ for } t \in T,$$

\exists a unique morphism $f : \text{SL}_2 \to H$ extending τ and β.
Need to define $\beta : B \to \text{Aut}(CH(A))$. Use $B = U \rtimes T$.
Need to define $\beta : B \to \text{Aut}(CH(A))$. Use $B = U \rtimes T$.

On U, must have $
\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \cdot z = e^{a\theta} z$.

\text{Arnaud Beauville} The action of SL_2 on abelian varieties
Sketch of proof, II

Need to define $\beta : B \to \text{Aut}(CH(A))$. Use $B = U \times T$.

On U, must have $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \cdot z = e^{a\theta} z$.

$\beta : T \to \text{Aut}(CH(A))$ given by graduation $CH(A) = \bigoplus_s CH_s(A)$

$$CH^p_s(A) = \{z \in CH^p(A) \mid n^*_Az = n^{2p-s}z \quad \forall n \in \mathbb{Z}\}$$

Relations in the lemma are satisfied \implies action extends to SL_2.

Arnaud Beauville
The action of SL_2 on abelian varieties
Sketch of proof, II

Need to define $\beta : B \to \text{Aut}(CH(A))$. Use $B = U \rtimes T$.

On U, must have \[
\begin{pmatrix}
1 & a \\
0 & 1
\end{pmatrix} \cdot z = e^{a\theta} z .
\]

$\beta : T \to \text{Aut}(CH(A))$ given by graduation $CH(A) = \bigoplus_s CH_s(A)$

\[
CH_p^s(A) = \{ z \in CH_p(A) \mid n_A^* z = n^{2p-s} z \quad \forall n \in \mathbb{Z} \}
\]

Relations in the lemma are satisfied \implies action extends to SL_2.

Differentiating gives action of $\mathfrak{sl}_2(\mathbb{Q})$, for $z \in CH_p^s(A)$:

\[
X \cdot z = \theta z \quad H \cdot z = (2g - p - s)z \quad Y \cdot z = \frac{\theta^g}{g!} * z .
\]
Sketch of proof, II

Need to define $\beta : B \to \text{Aut}(CH(A))$. Use $B = U \rtimes T$.

On U, must have $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \cdot z = e^{a\theta} z$.

$\beta : T \to \text{Aut}(CH(A))$ given by graduation $CH(A) = \bigoplus_s CH_s(A)$

$$CH^p_s(A) = \{ z \in CH^p(A) \mid n^*_A z = n^{2p-s} z \quad \forall n \in \mathbb{Z} \}$$

Relations in the lemma are satisfied \implies action extends to SL_2.

Differentiating gives action of $\mathfrak{sl}_2(\mathbb{Q})$, for $z \in CH^p_s(A)$:

$$X \cdot z = \theta z \quad H \cdot z = (2g - p - s)z \quad Y \cdot z = \frac{\theta^g}{g!} \ast z.$$

H diagonal, X, Y nilpotent \implies $CH(A) = \bigoplus V_i$, $\dim V_i < \infty$.

Arnaud Beauville

The action of SL_2 on abelian varieties
The “level” grading

\[CH^0(A) = \mathbb{Q} \]
\[CH^1(A) = CH^1_0(A) \oplus CH^1_1(A) \]
\[\vdots \]
\[CH^g(A) = CH^g_0(A) \oplus CH^g_1(A) \ldots \oplus CH^g_g(A) \]
The “level” grading

\[CH^0(A) = \mathbb{Q} \]
\[CH^1(A) = CH_0^1(A) \oplus CH_1^1(A) \]
\[\vdots \]
\[CH^g(A) = CH_0^g(A) \oplus CH_1^g(A) \ldots \oplus CH_g^g(A) \]

Vanishing conjecture (1986): \(CH_s(A) = 0 \) for \(s < 0 \).
The “level” grading

\[CH^0(A) = \mathbb{Q} \]
\[CH^1(A) = CH^1_0(A) \oplus CH^1_1(A) \]
\[\vdots \]
\[CH^g(A) = CH^g_0(A) \oplus CH^g_1(A) \oplus \ldots \oplus CH^g_g(A) \]

Vanishing conjecture (1986): \(CH_s(A) = 0 \) for \(s < 0 \).

Follows from the Beilinson conjectures – hopefully easier?
Applications

The well-known structure of finite-dimensional representations of SL_2 gives:

Proposition ("Twisted" Hard Lefschetz)

The multiplication map $\times \theta_{g-2p+s} : \text{CH}^p(A) \to \text{CH}^{g-2p+s}(A)$ is bijective.

What about "standard" Hard Lefschetz? Cannot expect surjectivity (see above), but:

Proposition

$\text{CH}^s(A) = 0$ for $s < 0 \iff \times \theta_{g-2p} : \text{CH}^p(A) \to \text{CH}^{g-2p}(A)$ injective.

Note: Right hand side makes sense for any smooth projective variety.

Arnaud Beauville

The action of SL_2 on abelian varieties
Applications

The well-known structure of finite-dimensional representations of SL_2 gives:

Proposition (“Twisted” Hard Lefschetz)

The multiplication map

$$\times \theta^{g-2p+s} : CH^p_s(A) \longrightarrow CH^{g-p+s}_s(A)$$

is bijective.

Note: Right hand side makes sense for any smooth projective variety.
The well-known structure of finite-dimensional representations of SL_2 gives:

Proposition ("Twisted" Hard Lefschetz)

The multiplication map

$$\times \theta^{g-2p+s} : CH^p_s(A) \longrightarrow CH^{g-p+s}_s(A)$$

is bijective.

What about "standard" Hard Lefschetz? Cannot expect surjectivity (see above), but:

Proposition

$$CH_s(A) = 0 \text{ for } s < 0 \iff \times \theta^{g-2p} : CH^p(A) \longrightarrow CH^{g-p}(A)$$

injective.
Applications

The well-known structure of finite-dimensional representations of SL_2 gives:

Proposition ("Twisted" Hard Lefschetz)

The multiplication map

$$\times \theta^{g-2p+s} : CH_s^p(A) \longrightarrow CH_s^{g-p+s}(A)$$

is bijective.

What about "standard" Hard Lefschetz? Cannot expect surjectivity (see above), but:

Proposition

$$CH_s(A) = 0 \text{ for } s < 0 \iff \times \theta^{g-2p} : CH^p(A) \longrightarrow CH^{g-p}(A)$$

injective.

Note: Right hand side makes sense for any smooth projective variety.

Arnaud Beauville
The action of SL_2 on abelian varieties