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Abstract. A Rational Conformal Field Theory (RCFT) is a functor which asso-

ciates to any Riemann surface with marked points a finite-dimensional vector space,
so that certain axioms are satisfied; the Verlinde formula computes the dimension of

these vector spaces. For some particular RCFTs associated to a compact Lie group

G (the WZW models), these spaces have a beautiful algebro-geometric interpretation
as spaces of generalized theta functions, that is, sections of a determinant bundle (or

its powers) over the moduli space of G-bundles on a Riemann surface.

In this paper we explain the formalism of the Verlinde formula: the dimension
of the spaces are encoded in a finite-dimensional Z-algebra, the fusion ring of the

theory; everything can be expressed in terms of the characters of this ring. We show

how to compute these characters in the case of the WZW model and thus obtain an
explicit formula for the dimension of the space of generalized theta functions.

Dedicated to F. Hirzebruch

Introduction.

The Verlinde formula computes the dimension of certain vector spaces, the
spaces of conformal blocks, which are the basic objects of a particular kind of quan-
tum field theories, the so-called Rational Conformal Field Theories (RCFT). These
spaces appear as spaces of global multiform sections of some flat vector bundles on
the moduli space of curves with marked points, so that their dimension is simply
the rank of the corresponding vector bundles. The computation relies on the be-
haviour of these bundles under degeneration of the Riemann surface, often referred
to as the factorization rules. Verlinde’s derivation from the formula [V] rested on
a conjecture which does not seem to be proved yet in this very general framework.

The Verlinde formula started attracting a great deal of attention from math-
ematicians when it was realized that for some particular RCFTs associated to a
compact Lie group G (the WZW-models), the spaces of conformal blocks had a
nice interpretation as spaces of generalized theta functions, that is, sections of a
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determinant bundle (or its tensor powers) over the moduli space of G-bundles on a
Riemann surface. This interpretation has been worked out rigorously for SU(n) in
[B-L], and for the general case in [F], while the factorization rules for these models
have been established in [T-U-Y] and also in [F]. However, there seems to be some
confusion among mathematicians as to whether this work implies the explicit Ver-
linde formula for the spaces of generalized theta functions or not – perhaps because
of a few misprints and inadequate references in some of the above quoted papers.

Thus the aim of this paper is to explain how the Verlinde formula for the
WZW-models (hence for the space of generalized theta functions) can be derived
from the factorization rules, at least in the SU(n) case. As the title indicates,
the paper has three parts. In the first one, which is probably the most involved
technically, we fix a simple Lie algebra g ; following [T-U-Y] we associate a vector
space VC(~p,~λ) to a Riemann surface C and a finite number of points of C , to
each of which is attached a representation of g . The main novelty here is a more
concrete interpretation of this space (Prop. 2.3) which gives a simple expression in
the case C = P1 – an essential ingredient of the Verlinde formula. In the second
part we develop the formalism of the fusion rings, an elegant way of encoding the
factorization rules; this gives an explicit formula for the dimension of VC(~p,~λ) in
terms of the characters of the fusion ring. In the third part we apply this formalism
to the special case considered in part I; this leads to the fusion ring R`(g) of
representations of level ≤ ` . We show following [F] how one can determine the
characters of R`(g) when g is sl(n,C) or sp(n,C) (Faltings handles all the
classical algebras and G2 , but there seems to be no proof for the other exceptional
algebras). Putting things together we obtain in these cases the Verlinde formula
for the dimension of VC(~p,~λ) .

I have tried to make the paper as self-contained as possible, and in particular
not to assume that the reader is an expert in Kac-Moody algebras; however, some
familiarity with classical Lie theory will certainly help. I would like to mention the
preprint [S] which contains (among other things) results related to our Parts II and
III – though with a slightly different point of view.

I would like to thank Y. Laszlo, O. Mathieu and C. Sorger for useful discussions.

Part I: the spaces VC(~p,~λ)

1. Affine Lie algebras.

(1.1) Throughout this paper we fix a simple complex Lie algebra g , and
a Cartan subalgebra h ⊂ g . I refer e.g. to [Bo] for the definition of the root
system R(g, h) ⊂ h∗ , and of the coroot Hα ∈ h associated to a root α . We have a
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decomposition g = h⊕
∑

α∈R(g,h) gα . We also fix a basis (α1, . . . , αr) of the root
system, which provides us with a partition of the roots into positive and negative
ones.

The weight lattice P ⊂ h∗ is the group of linear forms λ ∈ h∗ such that
λ(Hα) ∈ Z for all roots α . A weight λ is dominant if λ(Hα) ≥ 0 for all positive
roots α ; we denote by P+ the set of dominant weights. To each dominant weight
λ is associated a simple g-module Vλ , unique up to isomorphism, containing a
highest weight vector vλ with weight λ (this means that vλ is annihilated by
gα for α > 0 and that H vλ = λ(H)vλ for all H in h ). The map λ 7→ [Vλ] is
a bijection of P+ onto the set of isomorphism classes of finite-dimensional simple
g-modules.

(1.2) The normalized Killing form ( | ) on g is the unique g-invariant non-
degenerate symmetric form on g satisfying (Hβ |Hβ) = 2 for every long root β .
We’ll denote by the same symbol the non-degenerate form induced on h and the
inverse form on h∗ . We will use these normalized forms throughout the paper.

(1.3) Let θ be the highest root of R(g, h) , and Hθ the corresponding coroot.
Following [Bo] we choose elements Xθ in gθ and X−θ in g−θ satisfying

[Hθ,Xθ] = 2Xθ , [Hθ,X−θ] = −2X−θ , [Xθ,X−θ] = −Hθ .

These elements span a Lie subalgebra s of g , isomorphic to sl2 , which will play
an important role in this paper.

(1.4) The affine Lie algebra ĝ associated to g is a central extension of
g⊗C((z)) by C :

ĝ =
(
g⊗C((z))

)
⊕Cc ,

the bracket of two elements of g⊗C((z)) being given by

[X⊗ f,Y ⊗ g] = [X,Y]⊗ fg + c · (X |Y) Res(g df) .

We denote by ĝ+ and ĝ− the subspaces g⊗ zC[[z]] and g⊗ z−1C[z−1] of ĝ , so
that we have a decomposition

ĝ = ĝ− ⊕ g⊕Cc⊕ ĝ+ .

By the formula for the Lie bracket, each summand is actually a Lie subalgebra of
ĝ .

(1.5) We fix an integer ` > 0 (the level); we are interested in the irreducible
representations of ĝ which are of level ` , i.e. such that the central element c of ĝ

acts as multiplication by ` . Let P` be the set of dominant weights λ of g such
that λ(Hθ) ≤ ` . The fundamental result of the representation theory of ĝ (see
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e.g. [K]) asserts that the reasonable representations of level ` are classified by P` .
More precisely, for each λ ∈ P` , there exists a simple ĝ-module Hλ of level ` ,
characterized up to isomorphism by the following property:

The subspace of Hλ annihilated by ĝ+ is isomorphic as a g-module to Vλ .
In the sequel we will identify Vλ with the subspace of Hλ annihilated by ĝ+ .

(1.6) We will need a few more technical details about the ĝ-module Hλ .
Let us first recall its construction. Let p be the Lie subalgebra g⊕Cc⊕ ĝ+ of
ĝ . We extend the representation of g on Vλ by letting ĝ+ act trivially and c

as ` IdVλ
; we denote by Vλ the induced ĝ-module U(ĝ)⊗U(p) Vλ . It contains a

unique maximal ĝ-submodule Zλ ; then Hλ is the quotient Vλ/Zλ .
Since U(ĝ) is isomorphic as a U(ĝ−)-module to U(ĝ−)⊗C U(p) , we see

that the natural map U(ĝ−)⊗C Vλ −→ Vλ is an isomorphism of ĝ−-modules.
Let us identify Vλ with the submodule 1⊗Vλ of Vλ . With the notation

of (1.3), the submodule Zλ is generated by the element (Xθ ⊗ z−1)`−λ(Hθ)+1 vλ

(cf. [K, exerc. 12.12]); this element is annihilated by ĝ+ (see remark (3.6) below).

(1.7) An important observation (which plays a crucial role in conformal field
theory) is that the representation theory of ĝ is essentially independent of the
choice of the local coordinate z . Let u = u(z) be an element of C[[z]] with
u(0) = 0 , u′(0) 6= 0 . The automorphism f 7→ f ◦u of C((z)) induces an au-
tomorphism of g⊗C((z)) , which extends to an automorphism γu of ĝ (given
by γu(X⊗ f) = X⊗ f◦u ). Let λ ∈ P` ; since γu preserves ĝ+ and is the iden-
tity on g , the representation πλ ◦γu is irreducible, and the subspace annihilated
by ĝ+ is exactly Vλ . Therefore the representation πλ ◦γu is isomorphic to
πλ . In other words, there is a canonical linear automorphism Γu of Hλ such
that Γu

(
(X⊗ f)v

)
= (X⊗ f◦u) Γu(v) for v ∈ Hλ , X⊗ f ∈ ĝ and Γu(v) = v for

v ∈ Vλ .

(1.8) Let a be a Lie algebra, V an a-module. The space of coinvariants of
V , denoted by [V]a , is the largest quotient of V on which a acts trivially, that is,
the quotient of V by the subspace spanned by the vectors Xv for X ∈ a , v ∈ V .
This is also V/U+(a)V , where U+(a) is the augmentation ideal of U(a) .

Let V and W two a-modules. Using the canonical anti-involution σ of
U(a) (characterized by σ(X) = −X for any X in a ) we can consider V as a
right U(a)-module. Then the space of coinvariants [V ⊗W]a is the tensor product
V ⊗U(a) W : they are both equal to the quotient of V ⊗W by the subspace spanned
by the elements Xv ⊗ w + v ⊗Xw ( X ∈ a , v ∈ V , w ∈ W ).

2. The spaces VC(~p,~λ) .

(2.1) Let C be a smooth, connected, projective curve over C . For each
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affine open set U ⊂ X , we denote by O(U) the ring of algebraic functions on U ,
and by g(U) the Lie algebra g⊗O(U) .

We want to associate a vector space to the data of C , a finite subset
~p = {p1, . . . , ps} of C , and an element λi of P` attached to each pi . In order
to do this we consider the ĝ-module H~λ := Hλ1 ⊗ . . .⊗Hλs . We choose a local
coordinate zi at each pi , and denote by fpi

the Laurent series at pi of an element
f ∈ O(C ~p) . This defines for each i a ring homomorphism O(C ~p) −→ C((z)) ,
hence a Lie algebra homomorphism g(C ~p) −→ g⊗C((z)) . We define an action
of g(C ~p) on H~λ by the formula

(2.2) (X⊗ f) · (v1 ⊗ . . .⊗ vs) =
∑

i

v1 ⊗ . . .⊗ (X⊗ fpi
)vi ⊗ . . .⊗ vs

(that this is indeed a Lie algebra action follows from the residue formula, which
gives

∑
i Respi

fpi
dgpi

= 0 ). Using the notation of (1.8), we put

VC(~p,~λ) = [H~λ]g(C ~p) , V†
C(~p,~λ) = Homg(C ~p)(H~λ,C) ,

where C is considered as a trivial g(C ~p)-module. Of course V†
C(~p,~λ) is the dual

of VC(~p,~λ) . By (1.7) these spaces do not depend – up to a canonical isomorphism –
on the choice of the local coordinates z1, . . . , zs . On the other hand it is important
to keep in mind that they depend on the Lie algebra g and the integer ` , though
neither of these appear in the notation.

Though this will play no role in the sequel, I would like to mention that these
spaces have a natural interpretation in the framework of algebraic geometry. Let me
restrict for simplicity to the case g = slr(C) . Then the space V†

C(∅) is canonically
isomorphic to H0(SUC(r),L`) , where SUC(r) is the moduli space of semi-stable
vector bundles on C with trivial determinant on C and L the determinant line
bundle (see [B-L], and [F] for the case of an arbitrary simple Lie algebra). A similar
interpretation for V†

C(~p,~λ) has been worked out by C. Pauly in terms of moduli
spaces of parabolic vector bundles.

Proposition 2.3. Let ~p = {p1, . . . , ps} , ~q = {q1, . . . , qt} be two finite nonempty
subsets of C , without common point; let λ1, . . . , λs, µ1, . . . , µt be elements of P` .
We let g(C ~p) act on Vµj

through the evaluation map X⊗ f 7→ f(qj)X . The
inclusions Vµj

↪−→ Hµj
induce an isomorphism

[H~λ ⊗V~µ]g(C ~p)
∼−→ [H~λ ⊗H~µ]g(C ~p ~q) = VC(~p ∪ ~q, (~λ, ~µ)) .

The case ~q = {q} , µ = 0 gives:

Corollary 2.4. Let q ∈ C ~p . There is a canonical isomorphism

VC(~p,~λ) ∼−→ VC(~p ∪ {q}, (~λ, 0)) .

This is the “propagation of vacua”, cf. [T-U-Y], Prop. 2.2.3.
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Corollary 2.5. Let q ∈ C ~p . There is a canonical isomorphism

VC(~p,~λ) ∼−→ [H0 ⊗V~λ]g(C q) .

Apply Cor. 2.4, then the proposition inverting the role of ~p and ~q .

(2.6) If ~λ = (0, . . . , 0) , Cor. 2.5 shows that VC(~p,~λ) is canonically isomor-
phic to [H0]g(C q) , and in particular independent of ~p . It follows that the space
[H0]g(C q) is independent of q up to a canonical isomorphism; we’ll denote it by
VC(∅) . Note that with this convention Cor. 2.4 still holds in the case ~p = ∅ .

I believe that the expression for VC(~p,~λ) given by Cor. 2.5 is more flexible
than the original definition. For instance, we are going to use it below to get a more
explicit expression in the case C = P1 . Also, an easy proof of the “factorization
rules” ([T-U-Y], Prop. 2.2.6) can be given in this set-up.

(2.7) Let me finish with an easy result which we will need later on. For
each λ ∈ P+ , the dual V∗

λ is a simple g-module; let us denote by λ∗ its highest
weight. The map λ 7→ λ∗ is an involution of P+ , which is actually the restriction
of a Z-linear involution of P (the experts have already recognized the automor-
phism −w0 , where w0 is the element of longest element of the Weyl group). This
involution also induces an involution of the root system which preserves the root
system, its basis, and therefore the longest root θ . An important consequence is
that P` is preserved by the involution λ 7→ λ∗ .

Proposition 2.8. Put ~λ∗ = (λ∗1, . . . , λ
∗
s) . There is a natural isomorphism

VC(~p,~λ) ∼−→ VC(~p,~λ∗) .

(This isomorphism is canonical once certain choices (a “Chevalley basis”)
have been made for the Lie algebra g .)

There exists an automorphism σ of g such that for each finite-dimensional
representation ρ : g −→ End(V) , ρ◦σ is isomorphic to the dual representation
([Bo, ch. VIII, §7, no 6, remarque 1]). The automorphism σ extends to an auto-
morphism σ̂ of ĝ , which preserves the decomposition ĝ = ĝ− ⊕ g⊕Cc⊕ ĝ+ .

Let λ ∈ P` , and let πλ : ĝ −→ End(Hλ) be the corresponding representa-
tion. The representation πλ ◦ σ̂ is simple, the subspace of Hλ annihilated by ĝ+

is Vλ , on which g acts by the representation ρλ ◦σ ; therefore πλ ◦ σ̂ is isomor-
phic to πλ∗ . In other words, there exists for each λ ∈ P` a C-linear isomorphism
tλ : Hλ −→ Hλ∗ such that tλ(Xv) = σ̂(X)v for X ∈ ĝ , v ∈ Hλ .

Now let t~λ : H~λ −→ H~λ∗ be the C-linear isomorphism tλ1 ⊗ . . .⊗ tλs
. It

follows from (2.2) and the above formula that t~λ
(
(X⊗ f) v

)
= (σ(X)⊗ f) t~λ(v) for

X ∈ g , f ∈ O(X ~p) , v ∈ H~λ . Therefore t~λ induces an isomorphism of VC(~p,~λ)
onto VC(~p,~λ∗) .
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3. Proof of Proposition 2.3.

Put q = qt , µ = µt , U = C ~p , and H = H~λ ⊗Vµ1 ⊗ . . .⊗Vµt−1 . Rea-
soning by induction on t it will be enough to prove that the inclusion Vµ ↪−→ Hµ

induces an isomorphism

[H⊗Vµ]g(U)
∼−→ [H⊗Hµ]g(U q) .

(3.1) Let me first explain the action of g(U q) on H⊗Hµ . We choose
a local coordinate z at q . As before, the map X⊗ f 7→ X⊗ fq defines a Lie
algebra homomorphism ε : g(U q) −→ g⊗C((z)) . Let us denote by ĝ(U q)
the pull-back by ε of the extension ĝ −→ g⊗C((z)) ; in other words, ĝ(U q) is
the space g(U q)⊕Cc , the bracket of two elements X⊗ f , Y ⊗ g being given
by

[X⊗ f,Y ⊗ g] = [X,Y]⊗ fg + c · (X |Y) Resq(g df) .

Applying again the Residue formula we see that the action of g(U q) on H~λ

given by formula (2.2) extends to an action of ĝ(U q) , which is of level −` in
the sense that the central element c acts as multiplication by −` . On the other
hand ε extends by construction to a homomorphism ĝ(U q) −→ ĝ through which
ĝ(U q) acts on Hµ with level ` , hence the action on H⊗Hµ is of level 0 and
therefore factors through g(U q) .

Besides the fact that it is of level −` , the only property we will use of the
action of ĝ(U q) on H is the following:

(*) The endomorphism X−θ ⊗ f of H is locally nilpotent for all f ∈ O(U) .
(This is because X−θ is a nilpotent element of g , while every element of ĝ+ is
locally nilpotent in the integrable modules Hλi

.)

(3.2) We first check that the map H⊗Vµ ↪−→ H⊗Hµ is equivariant with
respect to g(U) . This amounts to proving that the inclusion Vµ ↪−→ Hµ is equi-
variant. But Vµ is the subspace of Hµ annihilated by ĝ+ (1.5), so an element
X⊗ f of g(U) acts on Hµ as the element f(q)X of g , hence our assertion.
Therefore the inclusion induces a linear map

i : [H⊗Vµ]g(U) −→ [H⊗Hµ]g(U q) .

(3.3) We prove that the statement is true when we replace the simple module
Hµ by the module Vµ (1.6). Let us observe first that by (1.7), the statement
is independent of the choice of the local coordinate z at q . We choose z so
that z−1 ∈ O(U q) (this is possible as soon as ~p 6= ∅ ). From the decomposition
O(U q) = O(U)⊕

∑
n≥1

Cz−n we get

g(U q) = g(U)⊕ ĝ−
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where we have identified the Lie algebra
∑

n≥1 g z−n with its image ĝ− in ĝ .
Note that both summands can be viewed as Lie subalgebras of ĝ(U q) .

Let us consider first the coinvariants under ĝ− . By (1.8) [H⊗ Vµ]ĝ− can
be identified with H⊗U(ĝ−) Vµ . Since the natural map ĝ− ⊗C Vµ −→ Vµ is an
isomorphism of ĝ−-modules (1.6), we conclude that the inclusion Vµ ↪−→ Vµ in-
duces an isomorphism H⊗Vµ

∼−→ [H⊗ Vµ]ĝ− . Taking coinvariants under g(U)
gives the required isomorphism.

(3.4) Let Zµ be the kernel of the canonical surjection Vµ → Hµ ; we have
an exact sequence

H⊗Zµ −→ [H⊗ Vµ]g(U q) −→ [H⊗Hµ]g(U q) → 0 ,

so we want to prove that the image of H⊗Zµ in H⊗U(ĝ(U q)) Vµ is zero. As a
U(ĝ)-module Zµ is generated by the vector (Xθ ⊗ z−1)k vµ , where vµ is a high-
est weight vector and k = `− µ(Hθ) + 1 (1.6); moreover this vector is annihilated
by ĝ+ , so it generates Zµ as a U(ĝ− ⊕ g)-module. Since ĝ− ⊕ g ⊂ g(U q) , it
is enough to prove that h⊗ (Xθ ⊗ z−1)k vµ = 0 in H⊗U(g(U q)) Vµ for each vec-
tor h ∈ H . Let f be an element of O(U) such that fq ≡ z (mod. z2 ); put
Y = X−θ ⊗ f . By property (∗) in (3.1) there exists an integer N such that
YNh = 0 . By lemma (3.5) below (Xθ ⊗ z−1)k vµ can be written as YNw for
some w ∈ Vµ , so h⊗ (Xθ ⊗ z−1)k vµ is zero in H⊗U(ĝ(U q)) Vµ , which finishes
the proof.

Lemma 3.5. Let f(z) ∈ C[[z]] be such that f(0) = 0 , f ′(0) = 1 . Put X = Xθ ⊗ z−1 ,
Y = X−θ ⊗ f(z) in ĝ . Let µ ∈ P` , and p, q ∈ N with p ≥ `+ 1− µ(Hθ) . There
exists a nonzero rational number αp,q such that Xpvµ = αp,qYqXp+qvµ in Vµ .

Let H := [Y,X] =
(
Hθ ⊗ z−1f(z)

)
− c ; then [H,X] = 2Xθ ⊗ z−2f(z) com-

mutes with X , so one has in U(ĝ)

HXm = XmH +
∑

a+b=m−1

Xa[H,X]Xb = XmH +mXm−1[H,X]

Since vµ is annihilated by ĝ+ and by Xθ , one has [H,X]vµ = 2Xvµ and Hvµ =
−kvµ with k = `− µ(Hθ) , hence HXmvµ = (2m− k)Xmvµ . Then

YXp+1vµ =
∑

n+m=p

XnHXmvµ = (p+ 1)(p− k)Xpvµ .

This proves the lemma in the case q = 1 ; the general case follows at once by
induction on q .

Remark 3.6 .− The same method gives the vanishing of YX`−µ(Hθ)+1 vµ for any
Y ∈ ĝ+ .
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4. The case C = P1 .

We fix a coordinate t on P1 .

Proposition 4.1. Let p1, . . . , ps be distinct points of P1 , with coordinates t1, . . . ,
ts , and let λ1, . . . , λs be elements of P` . Let T be the endomorphism of V~λ de-
fined by

T(v1 ⊗ . . .⊗ vs) =
s∑

i=1

ti v1 ⊗ . . .⊗Xθ vi ⊗ . . .⊗ vs .

The space VP1(~p,~λ) is canonically isomorphic to the largest quotient of V~λ on
which g and T`+1 act trivially. The space V†

P1(~p,~λ) is isomorphic to the space
of g-invariant p-linear forms ϕ : Vλ1 × . . .×Vλs

−→ C such that ϕ◦T`+1 = 0 .

We apply Cor. 2.5 with q = ∞ (so that the local coordinate z at q is
t−1 ). This gives an isomorphism of VP1(~p,~λ) onto [H0 ⊗V~λ]g(A1) . Now g(A1)
is the sum of g and ĝ− ; it follows from (1.6) that the U(g(A1))-module H0

is generated by the highest weight vector v0 , with the relations g v0 = 0 and
(Xθ ⊗ z−1)`+1 v0 = 0 . Therefore the space [H0 ⊗V~λ]g(A1)

∼= H0 ⊗U(g(A1)) V~λ is
canonically isomorphic to V~λ/(gV~λ + Im T`+1) , where T (= Xθ ⊗ t) is the endo-
morphism of V~λ given by the above formula. The description of V†

P1(~p,~λ) follows
by duality.

When p = 3 , one can describe the space VP1(a, b, c;λ, µ, ν) (or its dual)
in a more concrete way. Let us first consider the case when g = sl2 . We denote
by E the standard 2-dimensional representation of g . We will identify P` with
the set of integers p with 0 ≤ p ≤ ` (by associating to such an integer the rep-
resentation SpE ). By Prop. 4.1, V†

P1(a, b, c; p, q, r) is the space of linear forms
F ∈ Homg(SpE⊗ SqE⊗ SrE,C) such that F◦T`+1 = 0 .

Lemma 4.2. a) The space Homg(SpE⊗ SqE⊗ SrE,C) is either 0- or 1-dimen-
sional. It is nonzero if and only if p+ q + r is even, say = 2m , and p, q, r are
≤ m .

b) The subspace V†
P1(a, b, c; p, q, r) is nonzero if and only if p+ q + r is

even and ≤ 2` .

The first assertion is an immediate consequence of the Clebsch-Gordan for-
mula. When the space Homg(SpE⊗ SqE⊗ SrE,C) is nonzero, a generator G is
obtained as follows: the dual of SpE⊗ SqE⊗ SrE is the space of polynomial maps
F(u, v, w) (u, v, w ∈ E) which are homogeneous of degree p in u , q in v and
r in w ; then the polynomial G(u, v, w) = ϕ(v, w)n−pϕ(w, u)n−qϕ(u, v)n−r , where
ϕ is any non-zero alternating form on E , is clearly g-invariant. It remains to make
explicit the action of T on the dual of SpE⊗ SqE⊗ SrE .
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This dual can also be seen as the space Pp,q,r of (non-homogeneous) poly-
nomials P(x, y, z) of degree ≤ p in x , ≤ q in y and ≤ r in t : the corre-
spondence is obtained by choosing a basis (e0, e1) of E and putting P(x, y, z) =
F(e0 + xe1, e0 + ye1, e0 + ze1) . In particular, the polynomial corresponding to G
is (up to a constant) Q(x, y, z) = (y − z)n−p(z − x)n−q(x− y)n−r .

Choose the basis so that Xθ e0 = e1 ; then the action of Xθ ⊗ 1⊗ 1 (resp.
1⊗Xθ ⊗ 1 , resp. 1⊗ 1⊗Xθ ) on Pp,q,r is the derivation with respect to x (resp.
y , resp. z ). Therefore T acts as the operator a ∂

∂x + b ∂
∂y + c ∂

∂z ; in other words,
Tm · P is the coefficient of hm

m! in the expansion of P(x+ ah, y + bh, z + ch) . Since
Q(x+ ah, y + bh, z + ch) is a polynomial of degree n in h (because a 6= b 6= c ),
we obtain b).

(4.3) In the general case, we consider the Lie subalgebra s ∼= sl2 of g with
basis (Xθ,X−θ,Hθ) (1.3). Following the (unpleasant) practice of the physicists,
we’ll say that an irreducible representation of sl2 has spin i if it is isomorphic to
S2iE ; so the spin is a half-integer. Let λ ∈ P` ; as a s -module, Vλ breaks up as
a direct sum of isotypic components V(i)

λ of spin i , with 0 ≤ i ≤ `/2 .

Proposition 4.3. a) The space VP1(a, b, c;λ, µ, ν) is canonically isomorphic to
the quotient of [Vλ ⊗Vµ ⊗Vν ]g by the image of the subspaces V(p)

λ ⊗V(q)
µ ⊗V(r)

ν

for p+ q + r > ` .
b) The space V†

P1(a, b, c;λ, µ, ν) is canonically isomorphic to the space of
g-invariant linear forms ϕ : Vλ ⊗Vµ ⊗Vν −→ C which vanish on the subspaces
V(p)

λ ⊗V(q)
µ ⊗V(r)

ν whenever p+ q + r > ` .

The two assertions are of course equivalent; let us prove b). By Prop. 4.1,
all we have to do is to express the condition ϕ◦T`+1 = 0 for a g-invariant linear

form ϕ : Vλ ⊗Vµ ⊗Vν −→ C . Write Vλ =
`/2
⊕

p=0
V(p)

λ , and similarly for Vµ and

Vν . The subspaces V(p)
λ ⊗V(q)

µ ⊗V(r)
ν are stable under s and T , so we have

to express that the restriction ϕpqr of ϕ to any of these subspaces vanishes on
Im T`+1 . By the above lemma this is automatically satisfied if p+ q + r ≤ ` , while
it imposes ϕpqr = 0 when p+ q + r > ` , hence the proposition.

Let me mention an easy consequence (which of course can also be proved
directly):

Corollary 4.4. One has

VP1(p, λ) = 0 for λ 6= 0 , VP1(p, 0) ∼= VP1(∅) ∼= C

VP1(p, q, λ, µ) = 0 for µ 6= λ∗ , VP1(p, q, λ, λ∗) ∼= C .
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(4.5) Let me now recall one of the essential results of [T-U-Y], the factoriza-
tion rules for the spaces VC(~p,~λ) . In this paper we will only be interested in the
dimension of these spaces, so I will formulate the factorization rules in these terms.
According to [T-U-Y] the dimension of VC(~p,~λ) depends only on the genus g of
C and of the set of weights ~λ = (λ1, . . . , λs) ; let us denote it by Ng(~λ) . One has

Ng(~λ) =
∑
ν∈P`

Ng−1(~λ, ν, ν∗) ,

and, if ~µ = (µ1, . . . , µt) is another set of weights and h , k non-negative integers
such that g = h+ k ,

Ng(~λ, ~µ) =
∑
ν∈P`

Nh(~λ, ν) Nk(~µ, ν∗) .

Part II: Fusion rings

5. Fusion rules and fusion rings.

(5.1) Let I be a finite set, with an involution λ 7→ λ∗ . We’ll denote by N(I)

the free commutative monoid generated by I , that is, the set of sums
∑
α∈I

nαα

with nα ∈ N ; we shall always identify I with a subset of N(I) . The involution of
I extends by linearity to an involution x 7→ x∗ of N(I) .

Definition. A fusion rule on I is a map N : N(I) → Z satisfying the following
three conditions:

(F 0) One has N(0) = 1 , and N(α) > 0 for some α ∈ I ;
(F 1) N(x∗) = N(x) for every x ∈ N(I) ;
(F 2) For x , y in N(I) , one has N(x+ y) =

∑
λ∈I

N(x+ λ) N(y + λ∗) .

Let us call kernel of a fusion rule N the set of elements α in I such that
N(α+ x) = 0 for all x ∈ N(I) ; one says that N is non-degenerate if its kernel is
empty. Let N be a fusion rule on I with kernel K ⊂ I ; then K is stable under ∗ ,
the restriction N0 of N to N(I K) is a fusion rule on I K , and N is simply the
extension by 0 of N0 to N(I) . Therefore we can restrict ourselves without loss of
generality to the non-degenerate fusion rules.

Examples 5.2. a) Fix a simple complex Lie algebra and a level ` . For λ1, . . . , λs

in P` , put using the notation of Part I

N(
∑

λi) = dim VP1(~p,~λ) ,
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where ~p is an arbitrary subset of P1 with s elements. Then N is a (non-
degenerate) fusion rule on P` : the condition (F 0) and the non-degeneracy con-
dition follows from Cor. 4.4, (F 1) from Prop. 2.8, and (F 2) is a particular case
(h = k = 0) of the factorization rules (4.5).

b) Let R be a commutative ring, endowed with an involutive ring homo-
morphism x 7→ x∗ and a Z-linear form t : R → Z ; suppose that the bilinear form
(x, y) 7→ t(xy∗) is symmetric and admits an orthonormal basis I (over Z ) con-
taining 1 . Define a map N : N(I) −→ Z by the formula N(

∑
nαα) = t(

∏
αnα) .

Then N is a (non-degenerate) fusion rule on I . For the condition on t implies
in particular t(x∗) = t(x) and t(1) = 1 , hence (F 0) and (F 1). Since I is an
orthonormal basis, one has, for x , y in R ,

(5.2) t(xy) =
∑
λ∈I

t(xλ) t(yλ∗) ,

which implies (F 2).

Conversely:

Proposition 5.3. Let N : N(I) → Z be a (non-degenerate) fusion rule on I . There
exists a Z-bilinear map Z(I) × Z(I) −→ Z(I) , which turns Z(I) into a commutative
ring, and a linear form t , uniquely determined, such that

N(
∑

nαα) = t(
∏

αnα)

for all elements
∑
nαα of N(I) . One has t(αβ∗) = δαβ for α , β in I .

Let us apply (F 2) with x = y = 0 . Using (F 0) and (F 1) we get
∑
λ∈I

N(λ)2 = 1 .

This means that there exists an element ε of I such that

ε = ε∗ , N(ε) = 1 , N(λ) = 0 for λ 6= ε .

Then (F 2) (with y = 0 ) implies N(x+ ε) = N(x) for all x ∈ N(I) .
Now let us apply (F 2) with x = α , y = α∗ ; we obtain (using (F 1))

N(α+ α∗) =
∑
λ∈I

N(α+ λ)2 ≥ N(α+ α∗)2 .

If N(α+ λ) = 0 for all λ ∈ I , one deduces from (F 2) N(α+ x) = 0 for all x ∈ N(I) ,
which contradicts the non-degeneracy hypothesis. Therefore the above inequality
implies

(5.4) N(α+ λ) = 0 for λ 6= α∗ , N(α+ α∗) = 1 .
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Let us define a multiplication law on Z(I) by putting

(5.5) α · β =
∑
λ∈I

N(α+ β + λ∗)λ ,

and extending by bilinearity. This law is commutative; for α , β , γ in I , one has
acording to (F 2)

(α ·β) ·γ =
∑

λ,µ∈I

N(α+β+λ∗) N(λ+γ+µ∗)µ =
∑
µ∈I

N(α+β+γ+µ∗)µ = α ·(β ·γ) ,

so that the multiplication is associative. One gets similarly, by induction on s ,

(5.6) α1 · · ·αs =
∑
λ∈I

N(α1 + . . .+ αs + λ∗) λ

for α1, . . . , αs in I . Moreover one deduces from (5.4)

ε · α =
∑
λ∈I

N(ε+ α+ λ∗)λ = α .

Condition (F 1) implies that the involution x 7→ x∗ is a ring homomorphism.
Let t : Z(I) −→ Z be the linear form

∑
nαα 7→ nε . One gets from (5.6)

t(α1 · · ·αs) = N(α1 + . . .+ αs)

which is the required formula for N . Then (5.4) translates as t(αβ∗) = δαβ .

Definition. The ring Z(I) with the multiplication given by (5.5) is called the
fusion ring associated to N . We will denote it by FN or simply F .

Remark 5.7 .− Most of the above still holds when one replaces (F 1) by the weaker
condition
(F 1′) : One has N(α∗) = N(α) and N(α∗ + β∗) = N(α+ β) for α, β ∈ I ,
the only difference being that the involution is not necessarily a ring homomorphism
– in fact this property is equivalent to (F 1).

(5.8) A consequence of Prop. 5.3 is that the bilinear form (x, y) 7→ t(xy)
defines an isomorphism of F onto the F -module HomZ(F ,Z) (this implies that
F is a Gorenstein Z-algebra). There is a canonical element Tr in HomZ(F ,Z) ,
the trace form: for each x ∈ F the multiplication by x is an endomorphism mx

of F , and we put Tr(x) := Tr(mx) . An easy (and standard) computation shows
that the element of F which corresponds to Tr under the above isomorphism is
the Casimir element ω :=

∑
λ∈I

λλ∗ ; in other words, one has

(5.8) Tr(x) = t(ωx) for every x ∈ I .

So far we have considered only fusion rules in genus 0 ; this is no restriction
because the general case reduces easily to the genus 0 case. To be precise:
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Proposition 5.9. Suppose given a sequence of maps Ng : N(I) −→ Z such that
N0 = N and

Ng(x) =
∑
λ∈I

Ng−1(x+ λ+ λ∗)

for x in N(I) and g ≥ 1 . Then one has, for g ≥ 1 and α1, . . . , αs ∈ I

Ng(α1 + . . .+ αs) = t(α1 · · ·αs ω
g) = Tr(α1 · · ·αs ω

g−1) .

By induction on g one gets

Ng(α1 + . . .+ αs) =
∑

λ1,... ,λg∈I

N0(α1 + . . .+ αs + λ1 + λ∗1 + . . .+ λg + λ∗g)

=
∑

λ1,... ,λg∈I

t(α1 · · ·αs λ1λ
∗
1 · · ·λgλ

∗
g)

= t(α1 · · ·αs ω
g) ;

the last equality follows from (5.8).

Remark 5.10 .− Using formula (5.2), it follows that the sequence (Ng) satisfies the
following rule, which generalizes (F 2):

Np+q(x+ y) =
∑
λ∈I

Np(x+ λ) Nq(y + λ∗)

for x , y in N(I) , p, q in N (compare with (4.5)).

6. Diagonalization of the fusion rules.

To go further we need some information on the structure of the ring F . We
have already observed that F carries a symmetric, positive definite bilinear form
< | > defined by <x | y>= t(xy∗) , for which I is an orthonormal basis. The
fact that ∗ is a ring homomorphism implies <xy | z>=<x | y∗z> for all x, y, z
in F . The existence of this form imposes strong restrictions on the ring F .

Proposition 6.1. The Q-algebra FQ := F ⊗Q is isomorphic to a product
∏

Ki

of finite extensions of Q , preserved by the involution, which are of the following
two types:

a) a totally real extension of Q with the trivial involution;
b) a totally imaginary extension of Q which is a quadratic extension of a to-

tally real extension of Q , the involution being the nontrivial automorphism
of that quadratic extension.

(Recall that an extension K of Q is called totally real (resp. totally imag-
inary) if K⊗Q R is isomorphic to Rr1 (resp. Cr2 ).)
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We first observe that the ring F is reduced: for x ∈ F , the relation x2 = 0
implies <xx∗ |xx∗>= 0 , hence xx∗ = 0 , which in turn implies <x |x>= 0 and
finally x = 0 . Since a reduced finite-dimensional Q-algebra is a product of fields,
we get the decomposition FQ =

∏
Ki . This decomposition is canonical (each factor

corresponds to an indecomposable idempotent of FQ ), so it is preserved by the
involution x 7→ x∗ : each factor Ki is either preserved by the involution, or mapped
isomorphically onto another factor Kj . In the second case FQ contains a product
of fields K×K , with the involution interchanging the two factors. Then the set
of elements xx∗ for x ∈ K×K is the diagonal K ⊂ K×K , a Q-vector space on
which t can take arbitrary values, contradicting the positivity assumption.

Now let K be one of the Ki ’s, and let σ denote the induced involution.
Applying the same argument to the R-algebra K⊗Q R we find that it is of the
form Rr1 ×Cr2 , with σ preserving each factor; since the induced involution on
each factor is R-linear, there is no choice but the identity on the real factors and
the complex conjugation on the complex ones. In particular, the fixed subfield Kσ

of σ is totally real and Kσ ⊗Q R is isomorphic to Rr1+r2 . If we are not in case
a), Kσ is strictly smaller than K ; counting degrees we get

r1 + 2r2 = [K : Q] = 2 [Kσ : Q] = 2(r1 + r2) ,

hence r1 = 0 , and we are in case b).

Let S be the set of characters (i.e. algebra homomorphisms) of F into C ;
we can view S as the spectrum of the C-algebra FC := F ⊗C . In the sequel
we’ll use Prop. 6.1 only through the following weaker corollary:

Corollary 6.2. a) The map FC −→ CS given by x 7→ (χ(x))χ∈S is an isomor-
phism of C-algebras.

b) One has χ(x∗) = χ(x) for χ ∈ S , x ∈ F .

The assertion a) follows immediately from the proposition. We have seen in
the proof of the proposition that FR is isomorphic as an algebra with involution to
Rp ×Cq , with the involution acting trivially on the real factors and by conjugation
on the complex factors; this is equivalent to b).

Clearly an explicit knowledge of the isomorphism FC −→ CS (that is, of
the characters χ : F → C ) will allow us to perform any computation we need to
in the ring F . As an example:

Proposition 6.3. In the situation of Prop. 5.9, one has

Ng(α1 + . . .+ αs) =
∑
χ∈S

χ(α1) . . . χ(αs)χ(ω)g−1 with χ(ω) =
∑
λ∈I

|χ(λ)|2 .
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Let x ∈ F ; the corresponding element of CS is (χ(x))χ∈S . In the standard
basis of CS , the matrix of mx is the diagonal matrix with entries (χ(x))χ∈S , so
we have Tr(x) =

∑
χ∈S χ(x) . Then the result follows from Prop. 5.9.

(6.4) One can obviously play around for a while with these formulas; let
me give a sample, also to make a link with the notation of the mathematical
physicists. Let α ∈ I ; the matrix of the multiplication mα in the basis I is
Nα = (Nβ

αγ)(β,γ)∈I×I , with Nβ
αγ = N(α+ β∗ + γ) . On the other hand the matrix

of mα in the standard basis of CS is the diagonal matrix Dα with entries χ(α) ,
for χ ∈ S . The base change matrix is Σ = (χ(λ))(χ,λ)∈S×I , so that

Nα = Σ−1DαΣ

i.e. “the matrix Σ diagonalizes the fusion rules”. Observe that this remains
true if we replace Σ by Σ′ = ∆Σ , where ∆ is a diagonal matrix. If we take
∆ = D− 1

2
ω (noting that χ(ω) =

∑
λ |χ(λ)|2 is positive), an easy computation gives

that the matrix Σ′ is unitary. This is only part of the story: for a RCFT the
Verlinde conjecture gives a geometric interpretation of the matrix Σ′ in terms of
the conformal blocks for g = 1 , providing further restrictions on the fusion ring
F .

Part III: The fusion ring R`(g)

7. The rings R(g) and R`(g) .

(7.1) Recall that the representation ring R(g) is the Grothendieck ring of
finite-dimensional representations of g , with the multiplicative structure defined
by the tensor product of representations. It is a free Z-module with basis the
isomorphism classes of irreducible representations (i.e. the [Vλ] for λ ∈ P+ ) with
the rule

[Vλ] · [Vµ] = [Vλ ⊗Vµ] .

We are interested in an analogue of R(g) for the level ` representations of
ĝ . However it is not clear how to define the multiplicative structure in terms of the
affine algebra ĝ : taking tensor products does not work, since the tensor product of
two representations of level ` has level 2` . Instead we will follow another route,
which can be expressed purely in ordinary Lie theory terms.

We have associated to the Lie algebra g and the integer ` a fusion rule
(example 5.2 a), defined by the formula N(

∑
λi) = dim VP1(~p,~λ) . We denote by

R`(g) the corresponding fusion ring, and call it the fusion ring of g at level ` .
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We can consider R`(g) as the free Z-module with basis the isomorphism classes
[Vλ] for λ ∈ P` . The product in R`(g) is given by

[Vλ] · [Vµ] =
∑
ν∈P`

N(λ+ µ+ ν∗) [Vν ] .

One can make this more explicit as follows. Consider the Lie subalgebra s of g

spanned by Hθ,Xθ,X−θ (1.3); as in (4.3) we denote by V(p) the isotypic compo-
nent of spin p of a s-module V .

Proposition 7.2. Let λ, µ ∈ P` . The product [Vλ] · [Vµ] in R`(g) is the class
of the g-module Vλ �Vµ quotient of Vλ ⊗Vµ by the g-module spanned by the
isotypic components of spin r of V(p)

λ ⊗V(q)
µ for all triples {p, q, r} such that

p+ q + r > ` .

By Prop. 4.3, for each ν ∈ P` , N(λ+ µ+ ν∗) is the dimension of the space of
g-invariant linear forms on Vλ ⊗Vµ ⊗V∗

ν which vanish on V(p)
λ ⊗V(q)

µ ⊗ (V(r)
ν )∗

for p+ q + r > ` ; this space is canonically isomorphic to the space Hν
λµ of g-

linear maps u : Vλ ⊗Vµ −→ Vν such that u(V(p)
λ ⊗V(q)

µ ) ⊂
∑

p+q+r≤`

V(r)
ν , that is,

such that u annihilates the isotypic component of spin r of V(p)
λ ⊗V(q)

µ whenever
p+ q + r > ` . Now for any finite-dimensional g-module V , the multiplicity of Vν

in V is dim Homg(V,Vν) ; therefore by definition Homg(Vλ �Vµ,Vν) is isomor-
phic to the subspace Hν

λµ of Homg(Vλ ⊗Vµ,Vν) . This is equivalent by duality
to the statement of the proposition.

Examples 7.3. a) Assume λ+ µ ∈ P` . Then V(p)
λ and V(q)

µ are nonzero only
if p ≤ 1

2λ(Hθ) and q ≤ 1
2µ(Hθ) , and V(p)

λ ⊗V(q)
µ has a component of spin r if

and only if r ≤ p+ q . Therefore the condition p+ q + r ≤ ` is always realized, so
[Vλ] · [Vµ] is the class of Vλ ⊗Vµ .

b) Assume λ(Hθ) + µ(Hθ) = `+ 1 . Then the relation p+ q + r > ` holds if
and only if p = 1

2λ(Hθ) , q = 1
2µ(Hθ) , r = 1

2 (`+ 1) ; moreover every component
of spin 1

2 (`+ 1) of Vλ ⊗Vµ occurs in this way. This means that [Vλ] · [Vµ] is
obtained by removing from Vλ ⊗Vµ all components Vν with ν(Hθ) = `+ 1 .

c) Assume λ(Hθ) + µ(Hθ) = `+ 2 . Then the same argument shows that one
has to remove the Vν ’s with ν(Hθ) = `+ 2 or `+ 1 , and the Vν ’s with ν(Hθ) = `

which intersect non-trivially V(λ(Hθ))
λ ⊗V(µ(Hθ))

µ .

8. The map R(g) −→ R`(g) .

Though R`(g) appears as a subgroup of R(g) , it is obviously not a subring.
We will see, however, that there is a natural way to look at R`(g) as a quotient
ring of R(g) .
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(8.1) We will need a few classical facts about root systems, all of which
can be found in [Bo]. For each root α , the equation λ(Hα) = 0 (or equivalently
(λ |α) = 0 ) defines a hyperplane in the real vector space P⊗R , called the wall
associated to α . The chambers of the root system are the connected components
of the complement of the walls. The chambers are fundamental domains for the
action of the Weyl group W on P⊗R .

To the basis (α1, . . . , αr) of the root system is associated a chamber C ,
defined by the conditions λ(Hαi) ≥ 0 . By definition the set P+ of dominant
weights is P ∩ C . Since C is a fundamental domain, every element of P can be
written wλ+ with w ∈ W , λ+ ∈ P+ ; the weight λ+ is uniquely determined, and
so is w if λ does not belong to a wall. Let us denote as usual by ρ the half sum
of the positive roots; it is characterized by the equality ρ(Hαi) = 1 for each simple
root αi . Therefore the weights which belong to the interior of C are the weights
λ+ ρ for λ ∈ P+ .

For studying the representation ring R`(g) we need to consider a closely
parallel situation where the role of W is played by an infinite Coxeter group, the
affine Weyl group W` . Let h∨ := ρ(Hθ) + 1 1 . Then W` is the group of motions
of P⊗R generated by W and the translation x 7→ x+ (`+ h∨)θ . Since each long
root is conjugate to θ under W , the group W` is the semi-direct product of W by
the lattice (`+ h∨)Qlg , where Qlg is the sublattice of P spanned by the long roots.
The affine walls of P⊗R are the affine hyperplanes (λ |α) = (`+ h∨)n for each
root α and each n ∈ Z . The connected components of the complement are called
alcoves; each alcove is a fundamental domain for the action of W` on P⊗R .
The alcove A contained in C and containing 0 is defined by the inequalities
λ(Hαi

) ≥ 0 for each basis root αi and λ(Hθ) ≤ `+ h∨ . We see as above that the
weights which belong to the interior of A are the λ+ ρ for λ ∈ P` .

Let Z[P] be the group ring of P ; following [Bo] we denote by (eλ)λ∈P its
canonical basis, so that the multiplication in Z[P] obeys the usual rule eλeµ = eλ+µ .
The action of W` (hence of W ) on P extends to an action on Z[P] . Let
ε : W → {±1} be the signature homomorphism. We denote by Z[P]W the quo-
tient of Z[P] by the sublattice spanned by the elements eλ − ε(w)ewλ (λ ∈ P ,
w ∈ W) and by the elements eλ for all weights λ ∈ P belonging to a wall 2 ; we
define Z[P]W`

in the same way.

Lemma 8.2. The linear maps

ϕ : R(g) −→ Z[P]W , ϕ` : R`(g) −→ Z[P]W`

which associate to [Vλ] the class of eλ+ρ , are bijective.

1 This number is often called the dual Coxeter number of the root system.
2 Observe that such an element satisfies λ(Hα) = 0 for some root α , hence 2eλ = eλ − ε(sα)esα(λ) .
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Let us define a linear map ψ : Z[P] −→ R(g) in the following way: let λ ∈ P .
By the above remarks, if λ does not lie on a wall, there exist w ∈ W and λ+ ∈ P+ ,
uniquely determined, such that λ = w(λ+ + ρ) . We put

ψ(eλ) =
{
ε(w) [Vλ+ ] if λ does not belong to a wall,
0 otherwise.

Then ψ factors through ψ : Z[P]W −→ R(g) , which is easily seen to be the inverse
of ϕ . The same construction applies identically to define the inverse of ϕ` .

By the lemma there is a unique Z-linear map

π : R(g) −→ R`(g)

such that the diagram

R(g) π−−−−→ R`(g)

ϕ

y y ϕ`

Z[P]W
p−−−−→ Z[P]W`

where p is the quotient map, is commutative. From the lemma (and its proof) we
get the following expression for π :

Proposition 8.3. Let λ ∈ P+ ; then

– π([Vλ]) = 0 if λ+ ρ belongs to an affine wall;
– π([Vλ]) = ε(w) [Vµ] otherwise, where µ ∈ P` , w ∈ W` are such that
λ+ ρ = w(µ+ ρ) .

In particular, one has π([Vλ]) = [Vλ] for λ ∈ P` .

9. The spectrum of R`(g) .

(9.1) To understand the fusion ring R`(g) we need to know its spectrum. Let
us first consider the ring R(g) ; it is convenient to introduce the simply-connected
group G whose Lie algebra is g , and the maximal torus T ⊂ G with Lie algebra
h . Any finite-dimensional representation of g can be (and will be) considered as
a G-module. Any element λ of P defines a character eλ of T , by the formula
eλ(expH) = expλ(H) ; this defines an isomorphism of P onto the character group
of T , which extends to an isomorphism of the group algebra C[P] onto the ring of
algebraic functions on T . We will identify Z[P] with a subring of C[P] , so that
the notation eλ for the character associated to λ is coherent with the one we used
before.
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(9.2) Each element t of T defines a character Tr∗(t) of R(g) , which
associates to the class of a g-module V the number TrV(t) . There is an ex-
plicit way of computing this character, the Weyl formula. Let me first intro-
duce the antisymmetrization operator J : C[P] → C[P] , defined by the formula
J(eµ) =

∑
w∈W ε(w)ewµ ; one has

J(eρ) = eρ
∏
α>0

(1− e−α)

([Bo, ch. VI, §3, Prop. 2]). An element t of T is called regular if eα(t) 6= 1 for
each root α , or equivalently if wt 6= t for each w ∈ W , w 6= 1 . Let t be a regular
element of T ; one has J(eρ)(t) 6= 0 and

TrVλ
(t) =

J(eλ+ρ)(t)
J(eρ)(t)

.

(9.3) We denote by T` the subgroup of elements t ∈ T such that eα(t) = 1
for each element α of (`+ h∨)Qlg , and by Treg

` the subset of regular elements in
T` . The finite group T` will play for R`(g) the role of T for R(g) .

Lemma 9.3. a) For t ∈ Treg
` , the character Tr∗(t) factors through π : R(g) → R`(g) .

b) Let us identify P⊗C with h using the normalized Killing form. Then

the map λ 7→ exp 2πi
λ

`+ h∨
induces an isomorphism of P/(`+ h∨)Qlg onto T` .

c) The map λ 7→ exp 2πi
λ+ ρ

`+ h∨
induces a bijection of P` onto Treg

` /W .

a) Let t ∈ Treg
` . The Weyl formula provides us with a commutative diagram

R(g)

ϕ

y
Z[P]W −−−−→

jt

C

Q
Q

Q
QQs

Tr∗(t)

where jt associates to the class of eµ ∈ Z[P] the complex number
J(eµ)(t)
J(eρ)(t)

.

The kernel of π corresponds through ϕ to the kernel of p (8.3), which is the
subspace of Z[P]W spanned by the elements eµ+α − eµ , for µ ∈ P , α ∈ (`+ h∨)Qlg ,
and eµ for µ in some affine wall. The elements of the first type are killed by jt be-
cause t is chosen so that eα(t) = 1 for α ∈ (`+ h∨)Qlg ; if µ belongs to an affine
wall, 2eµ is of the first type (see the footnote to (8.1)), so one has 2jt(eµ) = 0 and
therefore jt(eµ) = 0 . This proves a).

b) Consider the exponential exact sequence

0 → 2πiQ∨ −→ h
exp−−−−→ T → 0 ;
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here Q∨ is the dual root lattice of the root system of g , i.e. the lattice spanned
by the Hα ’s. Let us denote by P∨lg the subgoup of Q∨ ⊗Q consisting of elements

H such that α(H) ∈ Z for all α ∈ Qlg ; the map H 7→ exp(
2πi
`+ h∨

H) induces an

isomorphism of P∨lg/(`+ h∨)Q∨ onto T` . When we identify Q∨ ⊗Q with P⊗Q

using the normalized Killing form, P∨lg is identified with the dual lattice of Qlg ,
that is, the set of elements λ in P⊗Q such that (λ |β) ∈ Z for each long root β .
Because of the normalization this is equivalent to λ(Hβ) ∈ Z ; since the Hβ ’s are
the short roots of the dual system, and therefore span the coroot lattice Q∨ , the
dual lattice of Qlg is P . In the same way Q∨ is identified with the dual lattice
Qlg of P . This proves b).

c) The isomorphism P/(`+ h∨)Qlg
∼−→ T` is of course compatible with the

action of W . Now the orbits of W in P/(`+ h∨)Qlg are in one-to-one correspon-
dence with the orbits of W` in P , and we have seen that those are parametrized
by the elements of P which lie in the affine alcove; moreover the orbits where W
acts freely correspond to the weights which lie in the interior of the alcove, that is,
which are of the form λ+ ρ for λ ∈ P`. This gives c).

(9.4) For t ∈ Treg
` , we will still denote by Tr∗(t) the linear map R`(g) −→ C

obtained by passing to the quotient; because of Prop. 8.3, it is again given by
[V] 7→ TrV(t) . It depends only on the class of t in Treg

` /W . The next two results
are directly borrowed from [F]:

Proposition 9.4. The following conditions are equivalent:

(i) The map π : R(g) −→ R`(g) is a ring homomorphism;
(ii) One has π([Vλ ⊗V$]) = [Vλ] · [V$] for each λ in P` and each funda-

mental weight $ ∈ P` ;
(iii) The linear forms Tr∗(t) (t ∈ Treg

` /W) are characters of the fusion ring
R`(g) .

When these conditions hold, the spectrum of R`(g) consists of the characters
Tr∗(t) where t runs over Treg

` /W .

Since π([Vλ]) = [Vλ] for λ ∈ P` (Prop. 8.3), the implication (i)⇒ (ii) is
clear.

(ii)⇒ (iii): Fix some t ∈ Treg
` , and put χ = Tr∗(t) . Let Ω denote the

(finite) set of fundamental weights. By the lemma below the Z-algebra R`(g) is
generated by the family ([V$])$∈Ω . Therefore to prove that χ is a character it
is enough to check the equality χ(x · [V$] = χ(x)χ([V$]) for x ∈ R`(g) , $ ∈ Ω ;
moreover because χ is Z-linear we may take x of the form [Vλ] for λ ∈ P` . But
since χ◦π is a character of R(g) , this follows from (ii).

(iii)⇒ (i): Assume that (iii) holds. Different orbits of W in Treg
` give
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different characters of R(g) , hence of R`(g) ; because Card(P`) = Card(Treg
` /W)

by lemma 9.3 c), the spectrum of R`(g) consists of the characters Tr∗(t) for
t ∈ Treg

` /W . Since Tr∗(t)◦π is a ring homomorphism for each t in Treg
` /W it

follows that π is a ring homomorphism.

Lemma 9.5. The classes [V$] for $ ∈ Ω generate the Z-algebra R`(g) .

Let us choose an element H of Q∨ such that αi(H) is a positive integer
for each simple root αi . We will prove by induction on λ(H) that [Vλ] is a
polynomial in ([V$])$∈Ω for every λ ∈ P` . This is clear if λ = 0 . If λ 6= 0 , we
can write λ = µ+$ with µ ∈ P` , $ ∈ Ω . Then Vµ ⊗V$ is the sum of Vλ and
of irreducible g-modules Vν whose highest weights are of the form ν = λ−

∑
niαi

with ni ∈ N ,
∑
ni > 0 (see e.g. [Bo, Ch. VIII, §7, no 4, Prop. 9]). By the induction

hypothesis the elements [Vµ] and [Vν ] of R`(g) are polynomial in the [V$] ’s;
on the other hand the element [Vµ ⊗V$] is equal to [Vµ] · [V$] (example 7.3 a).
It follows that [Vλ] is a polynomial in the [V$] ’s, hence the lemma.

Proposition 9.6 [F]. The conditions of Prop. 9.4 hold when g is of type Ar ,
Br , Cr , Dr or G2 .

I will content myself with the cases Ar and Cr , which are easy, and refer
to the Appendix of [F] for the (rather technical) details in the remaining cases.

By Prop. 9.4 we need to prove the equality π([Vλ ⊗V$]) = [Vλ] · [V$] for
each λ in P` and each fundamental weight $ ∈ P` . For Ar and Cr a glance
at the tables in [Bo] show that $(Hθ) = 1 for each fundamental weight $ . If
λ(Hθ) < ` we are done by example 7.3 a). If λ(Hθ) = ` we just have to apply the
example 7.3 b) and observe that an irreducible g-modules Vµ with µ(Hθ) = `+ 1
is killed by π (Prop. 8.3).

We will now apply these results to reach our goal, which is to compute the
dimension of the spaces VC(~p,~λ) defined in part I. Since we have now (at least
in most cases) a precise description of the characters of R`(g) , we can use the
formula of Prop. 6.3. The only remaining difficulty is to compute the expression∑

λ∈P`
|χ(λ)|2 . This is provided by the following lemma:

Lemma 9.7. Let t ∈ Treg
` . Then∑

λ∈P`

|TrVλ
(t)|2 =

|T`|
∆(t)

,

where ∆(t) := |J(eρ)(t)|2 =
∏

α∈R(g,h)

(eα(t)− 1) .

For λ ∈ P` , let us denote by tλ the element exp 2πi
λ+ ρ

`+ h∨
of T ; the tλ ’s
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for λ ∈ P` form a system of representatives of Treg
` /W (lemma 9.3 c). For

λ, µ ∈ P` , one has

J(eλ+ρ)(tµ) =
∑

w∈W

ε(w) exp 2πi
(w(λ+ ρ) |µ+ ρ)

`+ h∨
= J(eµ+ρ)(tλ) .

so by the Weyl formula (9.2)∑
λ∈P`

|TrVλ
(tµ)|2 =

1
∆(tµ)

∑
λ∈P`

|J(eµ+ρ)(tλ)|2 .

Let L2(T`) be the space of functions on the (finite) group T` , endowed with
the usual scalar product

<f | g>=
1
|T`|

∑
t∈T`

f(t) g(t) .

The function h(t) = J(eµ+ρ)(t) on T is anti-invariant, i.e. satisfies h(wt) = ε(w)h(t)
for w ∈ W , t ∈ T . It follows on the one hand that it vanishes at any non-
regular point t of T (for any such point is fixed by a reflection s ∈ W , so
h(t) = h(s(t)) = −h(t) ), and on the other hand that |h|2 is W-invariant. There-
fore ∑

λ∈P`

|J(eµ+ρ)(tλ)|2 =
|T`|
|W|

||J(eµ+ρ)||2 ,

where the norm is taken in L2(T`) .
We claim that the restrictions to T` of the characters ew(µ+ρ) , for w ∈ W ,

are all distinct. Suppose this is not the case; then there exists distinct elements
w,w′ ∈ W such that

(
w(µ+ ρ)− w′(µ+ ρ) | λ

)
∈ (`+ h∨)Z for all λ ∈ P . But

we have seen in the proof of lemma 9.3 b) that the dual lattice of P is Qlg , so the
above condition means that µ+ ρ− w−1w′(µ+ ρ) belongs to (`+ h∨)Qlg . This
implies that there exists a nontrivial element of W` fixing µ+ ρ , a contradiction.

Then the orthogonality relations for the characters of the finite group T`

give ||J(eµ+ρ)||2 = |W| , from which the lemma follows.

Corollary 9.8 (Verlinde formula). Assume that the conditions of Prop. 9.4 hold,
e.g. that g is of type A, B, C, D or G. One has

dim VC(~p,~λ) = |T`|g−1
∑

t∈Treg
`

TrV~λ
(t)

∆(t)g−1

= |T`|g−1
∑

µ∈P`

TrV~λ
(exp 2πi

µ+ ρ

`+ h∨
)

∏
α>0

∣∣∣2 sinπ
(α |µ+ ρ)
`+ h∨

∣∣∣ 2−2g

.

The first expression is a simple reformulation of Prop. 6.3 using the explicit
description of the characters (Prop. 9.4) and the above lemma. The second one is
obtained, after some easy manipulations, by using the description of Treg

` given in
lemma 9.3 c).
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Remark 9.9 .− One obtains easily an explicit expression for |T`| , using the iso-
morphism P/(`+ h∨)Qlg

∼−→ T` (lemma 9.3 b). One finds |T`| = (`+ h∨)rfq ,
where r is the rank of g , f its connection index (= |P/Q|) , and q the index of
Qlg in Q . A glance at the tables gives q = 2 for Br , 2r−1 for Cr , 4 for F4 , 6
for G2 , and of course 1 otherwise.
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