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Finite Subgroups of PGL2(K)
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Abstract. We classify, up to conjugacy, the finite subgroups of PGL2(K) of
order prime to char(K).

Introduction

The aim of this note is to describe, up to conjugacy, the finite subgroups of
PGL2(K), for an arbitrary field K. Throughout the paper, we consider only sub-
groups whose order is prime to the characteristic of K.

When K = C, or more generally when K is algebraically closed, the answer
is well known: any such group is isomorphic to Z/r, Dr (the dihedral group), A4,
S4 or A5, and there is only one conjugacy class for each of these groups. If K
is arbitrary, the group PGL2(K) is contained in PGL2(K), so the subgroups of
PGL2(K) are among the previous list; it is not difficult to decide which subgroups
occur for a given field K, see §1.

So the only question left is to describe the conjugacy classes in PGL2(K) of the
subgroups in the list. In §2 we give a general answer for subgroups of G(K), for an
algebraic group G, in terms of (non-abelian) Galois cohomology. We illustrate the
method on one example in §3, and apply it to the case G = PGL2 in §4.

The motivation for looking at this question was to understand the appearance
of the Brauer group in the case of (Z/2)2 considered in [B]. The result is somewhat
disappointing, as it turns out that this case (which could be treated directly, as in
[B]) is the only one where some second Galois cohomology group plays a role. At
least our method explains this role, and hopefully may be useful in other situations.

1. The possible subgroups

We repeat that whenever we mention a finite group, we always assume that its
order is prime to the characteristic of K. The following is classical (see [S2], 2.5).

Proposition 1.1. 1) PGL2(K) contains Z/r and Dr
1 if and only if K contains

ζ + ζ−1 for some primitive r-th root of unity ζ.
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2) PGL2(K) contains A4 and S4 if and only −1 is the sum of two squares in
K.

3) PGL2(K) contains A5 if and only if −1 is the sum of two squares and 5 is
a square in K.

Proof. One way to prove this is to use the isomorphism PGL2(K) ∼−→
SO(K, q), where q is the quadratic form q(x, y, z) = x2 + yz on K3 ([D], II.9).
If a group H embeds into SO(K, q), we have a faithful representation ρ of H in K3,
which preserves an indefinite quadratic form.

• Case H = Z/r : let g be a generator; the existence of q forces the eigenvalues
of ρ(g) in K to be of the form (ζ, ζ−1, 1), with ζ a primitive r-th root of 1. This
implies ζ + ζ−1 ∈ K. Conversely, if λ := ζ + ζ−1 is in K, the homography z �→
(λ+ 1)z − 1

z + 1
is an element of order r of PGL2(K).

• Case H = Dr : by the previous case, if Dr ⊂ PGL2(K), λ := ζ+ζ−1 is in K.

Conversely if λ ∈ K, the homographies z �→ 1/z and z �→ (λ+ 1)z − 1

z + 1
generate a

subgroup of PGL2(K) isomorphic to Dr.

• Cases H = A4,S4 or A5 . The representation ρ must be irreducible. Each
of the groups A4 and S4 has exactly one irreducible 3-dimensional representation
with trivial determinant, which is defined over the prime field; the only invariant
quadratic form (up to a scalar) is the standard form q0(x, y, z) = x2+y2+z2. Thus
A4 and S4 are contained in PGL2(K) if and only if q0 is equivalent to λq for some
λ ∈ K∗, which means that q0 represents 0.

Since A5 contains elements of order 5, the condition
√
5 ∈ K is necessary.

Suppose this is the case, and put ϕ = 1
2 (1 +

√
5); the subgroup of SO(K, q0)

preserving the icosahedron with vertices

{(±1, 0,±ϕ) , (±ϕ,±1, 0) , (0,±ϕ,±1)}
is isomorphic to A5. It follows as above that A5 embeds in SO(K, q) if and only if
q0 represents 0. �

2. Some Galois cohomology

2.1. In this section we consider an algebraic group G over K, and a subgroup
H ⊂ G(K). We choose a separable closure Ks of K, and put g := Gal(Ks/K). We
are interested in the set of embeddings H ↪→ G(K) which are conjugate in G(Ks)
to the natural inclusion i : H ↪→ G(K), modulo conjugacy by an element of G(K).
We denote this (pointed) set by Embi(H,G(K)).

We will use the standard conventions for non-abelian cohomology, as explained
for instance in [S3], ch. I, §5. We will also use the notation of [S3] for Galois
cohomology: if G is an algebraic group over K, we put Hi(K,G) := Hi(g, G(Ks)).

Proposition 2.2. Let Z be the centralizer of H in G(Ks). The pointed set
Embi(H,G(K)) is canonically isomorphic to the kernel of the natural map
H1(K,Z) → H1(K,G).

Proof. Let X ⊂ G(Ks) be the subset of elements g such that g−1 σg ∈ Z for
all σ ∈ g. The group G(K) (resp. Z) acts on X by left (resp. right) multiplication.
By [S3], ch. I, 5.4, cor. 1, the kernel of H1(K,Z) → H1(K,G) is identified with the
(left) quotient by G(K) of the subset of g-invariant elements in G(Ks)/Z; but this
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subset is by definition X/Z, so we can identify our kernel to the double quotient
G(K)\X/Z.

For every g ∈ X, the conjugate embedding gig−1 belongs to Embi(H,G(K)).
Any element j ∈ Embi(H,G(K)) is of the form gig−1 for some g ∈ G(Ks); for
σ ∈ g, the element σg again conjugates i to j, hence g−1 σg ∈ Z and g ∈ X.
Thus the map g �→ gig−1 from X to Embi(H,G(K)) is surjective. Two elements g
and g′ of X give the same element in Embi(H,G(K)) if and only if g′ belongs to
the double coset G(K)gZ. Therefore the above map induces a canonical bijection
G(K)\X/Z ∼−→ Embi(H,G(K)). �

2.3. Let us write down the correspondence explicitly: a class in our kernel is
represented by a 1-cocycle g → Z which becomes a coboundary in G, hence is of
the form σ �→ g−1 σg for some g ∈ X; we associate to this class the embedding
gig−1.

2.4. We are actually more interested in the set Conj(H,G(K)) of subgroups
of G(K) which are conjugate to H in G(Ks), modulo conjugacy by G(K). Associ-
ating to an embedding its image defines a surjective map im : Embi(H,G(K)) →
Conj(H,G(K)). The normalizer N of H in G(Ks) acts on H by automorphisms,
hence also on Embi(H,G(K)). Two embeddings with the same image differ by
an automorphism of H, which must be induced by an element of N if the em-
beddings are conjugate under G(Ks). It follows that im induces an isomorphism
Embi(H,G(K))/N ∼−→ Conj(H,G(K)).

2.5. Let us translate this in cohomological terms. Let H1(K,Z)0 denote the
kernel of the map H1(K,Z) → H1(K,G). An element n of N acts on
Embi(H,G(K)) by j �→ j ◦ int(n−1); if j = gig−1, this amounts to replace g
by gn, hence the 1-cocycle ϕ : σ �→ g−1 σg by n−1ϕ σn. This formula defines an
action of N on H1(K,Z) which preserves H1(K,Z)0; the map g �→ gHg−1 induces
an isomorphism of pointed sets H1(K,Z)0/N

∼−→ Conj(H,G(K)).

3. An example

3.1. In this section we fix an integer r ≥ 2, prime to char(K), and we assume
that K contains a primitive r-th root of unity ζ. We consider the matrices A,B ∈
Mr(K) defined on the canonical basis (e1, . . . , er) of K

r by

A · ei = ei+1 , B · ei = ζiei

for 1 ≤ i ≤ r, with the convention er+1 = e1.
The matrices A and B generate the K-algebra Mr(K), with the relations

Ar = Br = I , BA = ζAB .

Their classes Ā, B̄ in PGLr(K) commute; we consider the embedding i : (Z/r)2 ↪→
PGLr(K) which maps the two basis vectors to Ā and B̄. The image H of i is its
own centralizer; in particular, H is a maximal commutative subgroup of PGLr(K).

By the Kummer exact sequence (and the choice of ζ), the group H1(K,Z/r) is
identified with K∗/K∗r; the pointed set H1(K,PGLr) can be viewed as the set of
isomorphism classes of central simple K-algebras of dimension r2 ([S1], X.5).

Lemma 3.2. Let α, β ∈ K∗, and let ᾱ, β̄ be their images in K∗/K∗r. The map
H1(i) : H1(K,Z/r)2 → H1(K,PGLr) associates to (ᾱ, β̄) the class of the cyclic
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K-algebra Aα,β generated by two variables x, y with the relations xr = α, yr = β,
yx = ζxy.

Proof. We choose α′, β′ in Ks with α′r = α and β′r = β. The Kummer
isomorphism associates to (α, β) the homomorphism (a, b) : g → (Z/r)2 defined by

σα′ = ζa(σ)α′ σβ′ = ζb(σ)β′ for each σ ∈ g .

Its image in H1(K,PGLr(Ks)) is the class of the 1-cocycle σ �→ Āa(σ)B̄b(σ).
Now let us recall how we associate to the algebra Aα,β a cohomology class

[Aα,β ] in H1(K,PGLr) (loc. cit.). We choose an isomorphism of Ks-algebras u :
Mr(Ks)

∼−→ Aα,β ⊗K Ks. For each σ ∈ g, u−1 σu is an automorphism of Mr(Ks),
hence of the form int(gσ) for some gσ in PGLr(Ks). Then [Aα,β ] is the class of the
1-cocycle σ �→ gσ.

In our case we define u on the generators A,B by u(A) = β′y−1, u(B) = α′−1x.
Then the automorphism u−1 σu multiplies A by ζb(σ) and B by ζ−a(σ), which gives
gσ = Āa(σ)B̄b(σ) as above. �

3.3. The exact sequence

1 → Gm → GLr → PGLr → 1

gives rise to a coboundary homomorphism ∂r : H1(K,PGLr) → H2(K,Gm) =
Br(K) which is injective (loc. cit.). The class ∂r[Aα,β ] ∈ Br(K) is the symbol
(α, β)r; it depends only on the classes of α and β (mod. K∗r). The map ( , )r :
(K∗/K∗r)2 → Br(K) is bilinear and alternating. Since ∂r is injective, we find:

Proposition 3.4. The set Embi((Z/r)
2,PGLr(K)) is isomorphic to the set of

couples (α, β) in (K∗/K∗r)2 such that (α, β)r = 0. �
We will describe the correspondence more explicitely in the case r = 2 in the

next section.

4. Conjugacy classes in PGL2(K)

Proposition 4.1. Assume that K is separably closed. Two finite subgroups of
PGL2(K) which are isomorphic (and of order prime to char(K)) are conjugate.

Proof. Again this is certainly well-known; we give a quick proof for complete-
ness. The possible subgroups are those which appear in Proposition 1.1.

An element of order r of PGL2(K) comes from a diagonalizable element of
GL2(K), hence is conjugate to the homothety z �→ ζz for some ζ ∈ μr(K) 2; thus a
cyclic subgroup of order r of PGL2(K) is conjugate to the group Hr of homotheties
z �→ λz, λ ∈ μr(K).

There is only one group Dr containing Hr, namely the subgroup generated by
Hr and the involution z �→ 1/z; it follows that all dihedral subgroups of order 2r
are conjugate to this subgroup.

For the three remaining groups, we use again the isomorphism PGL2(K) ∼−→
SO3(K). The groups A4 and S4 have exactly one irreducible representation of
dimension 3 with trivial determinant, while A5 has two such representations which
differ by an outer automorphism: this is elementary in characteristic 0, and the
general case follows by [I], ch. 15. Therefore two isomorphic subgroups H and
H ′ of SO3(K) of this type are conjugate in GL3(K). The only quadratic forms

2As usual we denote by μr(K) the group of r-th roots of unity in K.
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preserved by H or H ′ are the multiple of the standard form; thus the element g
of GL3(K) which conjugates H to H ′ must satisfy tg g = λI for some λ ∈ K.
Replacing g by ±μg, with μ2 = λ−1, we have g ∈ SO3(K), hence our assertion. �

Recall that the determinant induces a homomorphism det : PGL2(K) →
K∗/K∗2.

Theorem 4.2. 1) PGL2(K) contains only one conjugacy class of subgroups
isomorphic to Z/r (r > 2), A4, S4 or A5.

2) The conjugacy classes of cyclic subgroups of order 2 of PGL2(K) are param-
etrized by K∗/K∗2: to α ∈ K∗ (mod.K∗2) corresponds the involution z �→ α/z.

3) The homomorphism det : PGL2(K) → K∗/K∗2 induces a bijective corre-
spondence between:

• conjugacy classes of subgroups of PGL2(K) isomorphic to (Z/2)2;
• subgroups G ⊂ K∗/K∗2 of order ≤ 4, such that (−α,−β)2 = 0 for all α, β in

G (see (3.3)).
4) Assume that μr(K) has order r. The conjugacy classes of subgroups Dr

of PGL2(K) are parametrized by K∗/K∗2μr(K). The subgroup corresponding to
α ∈ K∗ (mod. K∗2μr(K) ) consists of the homographies z �→ ζz and z �→ αη/z,
for ζ, η ∈ μr(K).

Proof. Using Proposition 4.1 we can apply the method of §3. We give the list
of the subgroups of PGL2(Ks) and their centralizers:

H Z/2 Z/r (r > 2) Z/2× Z/2 Dr (r > 2) A4 S4 A5

Z Gm � Z/2 Gm Z/2× Z/2 Z/2 1 1 1

In case 1), we have H1(K,Z) = {1} (using H1(K,Gm) = {1}). The result
follows from (2.5).

Case 2): This is the case where a direct approach is definitely simpler than our
method, so we follow the former and leave the latter to the reader. Let s be an
involution of PGL2(K), and let α ∈ K∗ such that α ≡ −det(s) (mod. K∗2). Then
s is represented by a matrix A ∈ GL2(K) with A2 = α I. In a basis (v,Av) of K2,

we have A =

(
0 α
1 0

)
, hence s is conjugate to the involution z �→ α/z. This implies

2).
Case 3): Let i : (Z/2)2 ↪→ PGL2(K) be the embedding which maps the basis

vectors e1 and e2 to the involutions z �→ 1/z and z �→ −z. By Proposition 3.4 the
set Embi((Z/2)

2,PGL2(K)) is canonically identified to the set of couples (α, β) in
(K∗/K∗2)2 with (α, β)2 = 0.

We make the correspondence explicit following (2.3). Let α, β ∈ K∗ with
(α, β)2 = 0. This means that the conic x2 − αy2 − βz2 = 0 is isomorphic to P1

K ,
thus there exists λ, μ in K with λ2 − α − βμ2 = 0. We choose α′ and β′ in Ks

such that α′2 = α and β′2 = β; as above we define the homomorphisms a and
b : g → Z/2 by

σα′ = (−1)a(σ)α′ and σβ′ = (−1)b(σ)β′ for each σ ∈ g .
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Put θ :=
β′μ

λ+ α′ =
λ− α′

β′μ
; let g ∈ PGL2(Ks) be the homography z �→ α′ z − θ

z + θ
.

An easy computation gives

g−1 σg = i(a(σ), b(σ)) .

Thus the embedding of (Z/2)2 associated to (α, β) is gig−1; it maps e1 to the

homography h1 : z �→ λu− α

z − λ
, and e2 to h2 : z �→ α/z . Note that det(h1) = −β

and det(h2) = −α.
Now we have to take into account the action of the normalizer N of H in

PGL2(Ks). This is the subgroup S4 generated by H and the homographies

n1 : z �→ z + 1

z − 1
, n2 : z �→ ιz ,

where ι is a square root of −1. We apply the recipe of (2.5). Since n1 ∈ PGL2(K),
it acts on H1(K,H) through its action on H, which permutes e1 and e2; thus it
maps (α, β) ∈ (K∗/K∗2)× (K∗/K∗2) to (β, α). The action of n2 on H fixes e2 and
exchanges e1 with e1 + e2; to get the action on H1(K,H) we have to multiply by
the class of the cocycle σ �→ n−1

2
σn2, that is, σ �→ i

(
(σ(ι)/ι) e2

)
. Hence n2 acts on

H1(K,H) by

n2 · (α, β) = (α,−αβ) .

Let Gα,β be the subgroup of K∗/K∗2 generated by −α and −β; it is the image

of H by the homomorphism det : PGL2(K) → K∗/K∗2. If Gα,β
∼= (Z/2)2, the

orbit N · (α, β) in (K∗/K∗2) × (K∗/K∗2) has 6 elements, which are the couples
(−x,−y) with x, y ∈ Gα,β , x 
= y. If Gα,β

∼= (Z/2), the orbit has 3 elements, which
are the couples (−x,−y) with x, y ∈ Gα,β , (x, y) 
= (1, 1). Finally if Gα,β is trivial
the orbit consists only of (−1,−1). Thus the conjugacy classes of subgroups (Z/2)2

in PGL2(K) are parametrized by the subgroups G ⊂ K∗/K∗2 of order ≤ 4, with
the property (−α,−β)2 = 0 for each α, β in G.

Case 4): The group Dr is generated by two elements s, t with the relations
s2 = tr = 1 and sts = t−1. We choose a primitive r-th root of unity ζ and consider
the embedding i : Dr ↪→ PGL2(K) such that i(s) is the involution z �→ 1/z and i(t)
the homothety z �→ ζz. The centralizer is Z/2, generated by the involution z �→ −z.
As in case 2) it follows that Embi(Dr,PGL2(K)) is isomorphic to H1(K,Z/2). Also
the previous argument shows that the embedding corresponding to α ∈ K∗ is the
conjugate of i by the homography z �→ α′z, with α′2 = α, so it maps s to z �→ α/z
and t to z �→ ζz.

To complete the picture we have to take into account the action of the normal-
izer N of i(Dr) in PGL2(Ks). This is the subgroup D2r generated by i(s) : z �→ 1/z
and the homothety n : z �→ ηz, where η ∈ Ks is a primitive 2r-th root of unity. The
action of i(s) is trivial, and n acts by multiplication by the cocycle σ �→ n−1 σn,
which corresponds to the class of η2 in K∗/K∗2. Since η2 generates μr(K), the
assertion 4) follows. �
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